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This article constructs a class of random probability measures based on exponentially and polynomially
tilting operated on the laws of completely random measures. The class is proved to be conjugate in that
it covers both prior and posterior random probability measures in the Bayesian sense. Moreover, the class
includes some common and widely used random probability measures, the normalized completely ran-
dom measures (James (Poisson process partition calculus with applications to exchangeable models and
Bayesian nonparametrics (2002) Preprint), Regazzini, Lijoi and Prünster (Ann. Statist. 31 (2003) 560–585),
Lijoi, Mena and Prünster (J. Amer. Statist. Assoc. 100 (2005) 1278–1291)) and the Poisson–Dirichlet pro-
cess (Pitman and Yor (Ann. Probab. 25 (1997) 855–900), Ishwaran and James (J. Amer. Statist. Assoc. 96
(2001) 161–173), Pitman (In Science and Statistics: A Festschrift for Terry Speed (2003) 1–34 IMS)), in
a single construction. We describe an augmented version of the Blackwell–MacQueen Pólya urn sampling
scheme (Blackwell and MacQueen (Ann. Statist. 1 (1973) 353–355)) that simplifies implementation and
provide a simulation study for approximating the probabilities of partition sizes.

Keywords: Bayesian non-parametric; completely random measures; Dirichlet process; generalized gamma
process; Poisson Dirichlet process; random probability measures; tilting

1. Introduction

Random probability measures derived from normalized independent increment processes have
been studied for decades. Kingman [27] considers normalization over subordinators of Lévy
processes with only positive jumps. Regazzini et al. [44] introduce the class of the normalized
random measures with independent increments (normalized completely random measures) for
studying the probabilistic properties of mean functionals of random probability measures. Inves-
tigations for statistical modeling are available in James [18], Lijoi et al. [32] and James et al.
[22].

In Bayesian non-parametric statistics, the normalized random process is considered to be an
unknown parameter and the posterior distribution of the process is usually of interest. The most
popular class of such random processes for statistical modelling is the Dirichlet process (Fergu-
son [12]; Lo [36]). The Dirichlet process is appealing because it induces model flexibility and it
is also conjugate in the sense that the posterior process, the process conditional on the data, is
also a Dirichlet process. In fact, a surprising result shown in James et al. [21] states that only the
Dirichlet process has the conjugacy property among the random probability measures in the class
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of normalized independent increment processes. In the present work, we are able to show that
it is not the case for a richer class of normalized processes. The class of normalized processes
considered in this article is derived based on tilting, in particular, exponentially and polynomi-
ally tilting operated on the laws of completely random measures and this yields the class of laws
containing the prior random probability measures and their posteriors in the Bayesian sense. So,
the random probabilities in this class is conjugate.

Tilting the laws of random processes provides a way to enrich the class of random processes
through change of measure. For example, Pitman [41] constructs the Poisson–Kingman process
by normalizing a random process that has a tilted law of completely random measures. Other well
known special cases are the Poisson–Dirichlet process, whose law is constructed by polynomially
tilting the laws of positive α-stable processes (Pitman [41]), and the beta-gamma process (James
[20]), whose law is obtained by polynomially tilting the laws of gamma processes. However,
these studies give less attention to the statistical properties of the tilted processes. Our studies
in fact focus on showing conjugate property of the random probability measure derived from
tilted laws of the completely random measures and providing the posterior analysis of the class
of random probability measures.

Applications of non-parametric models are becoming increasingly common in Bayesian statis-
tics. However, implementing non-parametric models is rarely straightforward and often involves
Markov chain Monte Carlo (MCMC) algorithms that might require evaluation of complicated
functions. This article provides an augmented form of the sampling algorithm, namely the
Blackwell–MacQueen Pólya urn sampling scheme, which avoids the necessity of evaluating
those functions for some special cases and which we believe would be beneficial to the use of
normalized random measures in statistical applications in future. We provide a simulation study
concerned with estimating probabilities of partition sizes, a problem that arises in biological spe-
ciation (Lijoi et al. [33]). We show our algorithm yields similar results to three other sampling
schemes based on the Blackwell–MacQueen Pólya urn distribution.

The article proceeds as follows. Section 2 describes the construction of a class of random prob-
ability measures obtained by tilting the laws of completely random measures. Materials presented
here are in compact form; we refer the reader to Daley and Vere-Jones [8] for the complete treat-
ment on these topics (see also Kingman [25–27]; Kallenberg [23,24]). Section 3 considers a class
of random probability measures constructed through polynomially and exponentially tilting the
laws of completely random measures. Section 3 also provides details on the prior and posterior
distributions, proves the conjugacy property and describes the augmented Blackwell–MacQueen
sampling scheme. Section 4 describes two specific examples of the tilting strategy, tilting the
laws of the generalized gamma process and the generalized Dirichlet process is demonstrated.
Section 5 presents the simulation study. Section 6 concludes the articles and provides a future
research perspective. Proofs of theorems and propositions are included in the Appendix.

In addition, as a referee pointed out that theorems in Section 3 are not entirely new and a
version of them has appeared in an unpublished manuscript (James [18]), we would like to ac-
knowledge that the class of random probability measures involving polynomially and exponen-
tially tilting was first studied in the manuscript (James [18], Chapter 5), including a posterior
analysis. We will further comments on these aspects and connections in Section 3.
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2. Construction of the class of random probability measures

Let the triple (�,F,P) be the basic probability space. Assume X is a Polish space endowed
with a metric dX generating a Borel σ -field B(X). Let MX denote the space of boundedly finite
measures on (X, B(X)). A measure is said to be boundedly finite if it is finite on bounded sets.
The space MX is a Polish space equipped with the metric of weak convergence. This induces
the Borel σ -field B(MX). A random measure, μ say, taking values from MX, is a measureable
mapping μ :�×X → R

+ ∪{0} where R
+ denotes the positive real line. For each ω ∈ �, μ(ω, ·)

is a boundedly finite measure on (X, B(X)) and μ(ω,A) is a random variable for all bounded
sets A ∈ B(X). For convenience of notation, we write μ(A) instead of μ(ω,A) from now on. For
further details, see Daley and Vere-Jones [8], Chapter 9.

A random measure μ is a completely random measure (CRM) on the measure space (X, B(X))

if for all finite families of pairwise disjoint, bounded Borel sets A1,A2, . . . ,Ak ∈ B(X), the
random variables μ(A1), μ(A2), . . . ,μ(Ak) are mutually independent. For any CRM, there is
a representation theorem due to Kingman [25], Theorem 1 (see also Kingman [27] and King-
man [26], Chapter 8), and the theorem is nicely described in Daley and Vere-Jones [8], Theo-
rem 10.1.III. The version in Daley and Vere-Jones [8], Theorem 10.1.III, says that a CRM μ can
be represented as a sum of an atomic measure with countably many fixed atoms, a deterministic
non-atomic measure and a measure derived from a Poisson process. The representation is given
by

μ(A) =
∞∑

k=1

Ukδxk
(A) + λ(A) +

∫
R+

yN(A,dy), A ∈ B(X), (2.1)

where the sequence {x1, x2, . . .} is the countable set of fixed atoms of μ, {U1,U2, . . .} is a se-
quence of mutually independent non-negative random variables, λ is a fixed non-atomic bound-
edly finite measure on X, and N is a Poisson process on X × R

+. This Poisson process N is
independent of {U1,U2, . . .} and has an intensity measure ν on X × R

+. The intensity ν satisfies
the following two conditions. For every bounded set A ∈ B(X),∫

R+
min{y, s}ν(A,dy) < ∞, s ∈ R

+, (2.2)

and

ν
({x},R

+) = 0, x ∈ X. (2.3)

Notice that conditions (2.2) and (2.3) guarantee that the random measure
∫

R+ yN(·,dy) is bound-
edly finite on X and has no fixed atoms respectively (see also Kallenberg [24], Chapter 12).

The Poisson process in (2.1) can be considered as a marked Poisson process on X hav-
ing mark space R

+. Again the product space X × R
+ is a Polish space with a suitable met-

ric dX×R+ extended from dX. The Borel σ -field of the Polish space X × R
+ is given by

B(X × R
+) = B(X) ⊗ B(R+) where B(R+) denotes the σ -field generated by the open sub-

sets of R
+. Then the Poisson process N is a mapping N :� × X × R

+ → Z
+ ∪ {0} where



A conjugate class of random probability measures 2593

Z
+ denotes the positive integers. This Poisson process takes value from the space of bound-

edly finite measures (MX×R+ , B(MX×R+)) defined analogous to the space (MX, B(MX)) dis-
cussed in the first paragraph. Here we write N(A,B) to represent N(ω,A,B) for convenience
of notation. The intensity measure ν of this Poisson process is a non-atomic σ -finite measure
ν : X × R

+ → R
+ ∪ {0}. The intensity measure is particularly important since it is the only pa-

rameter of the random measure and also the first moment of the measure. It determines the nature
of the process and further it also determines the nature of the random measures derived from the
Poisson process. Here (2.3) also implies that N(·,R

+) is a simple point process on X. This point
process N(·,R

+) is called ground process in Daley and Vere-Jones [8], Chapter 9.
Initially, we restrict our attention to the CRM on X without the first two components, the atomic

component and the drift, in (2.1), that is the CRM is in the form of

μ̃(A) :=
∫

R+
yN(A,dy), A ∈ B(X), (2.4)

with respect to the Poisson process N defined on X × R
+ with intensity measure ν satisfying

conditions (2.2) and (2.3). The law of the CRM μ̃, denoted by Pμ̃, which is derived from the law
of the Poisson process. For the sake of simplicity, we say μ̃ has the parameter measure ν. The
measure ν can be decomposed into two measures, ρx and η, written as ν(dx,ds) = η(dx)ρx(ds).
Such a decomposition is guaranteed by Kallenberg [23], Appendix 15.3.3, in which the measure
ρx is uniquely determined outside any set of ν measure zero. Here ρx is a mapping ρx : R+ →
R

+ ∪ {0} for any x ∈ X such that ρx(A) is X measureable for every bounded set A ∈ B(R+)

and ρx is a σ -finite measure. In particular, when ρx is dependent on x ∈ X, the CRM μ̃ is non-
homogeneous. Otherwise, when ρx is not dependent on x ∈ X, the CRM μ̃ is homogeneous. The
σ -finiteness of ρx ensures the CRM μ̃ has countably infinite jumps on any bounded set in B(X).
Here η is a finite non-atomic measure η : X → R

+ ∪ {0}. Without loss of generality, the measure
η is restricted to be a proper probability measure on X. This implies that the total mass of the
measure μ̃ is finite almost surely. Then a random probability measure could be defined according
to the ratio of μ̃(A) and the total mass μ̃(X), that is G̃(A) := μ̃(A)/μ̃(X) for A ∈ B(X).

Let h be a positive Borel measurable function h : R+ ∪ {0} → R
+. Here h(μ̃(X)) is a tilting

factor transforming the total mass to a positive scalar. The law of the tilted completely random
measure (tilted CRM) is given by scaling the law of the CRM by the tilting factor. To ensure that
the law of the tilted CRM is proper, the proportional constant of the law, E[h(μ̃(X))], is required
to be finite, that is,

E
[
h
(
μ̃(X)

)]
< ∞. (2.5)

Definition 2.1. Let μ̃ be a CRM defined on (X, B(X)) in (2.4). The CRM μ̃ has a probability
measure Pμ̃ on (MX, B(MX)) and with the parameter measure ν that satisfies conditions (2.2)
and (2.3). Let h be a positive Borel measurable function on the non-negative real line, that sat-
isfies condition (2.5). A tilted CRM, μ̃t , defined on (X, B(X)), has a probability measure Pμ̃t on
(MX, B(MX)) such that

Pμ̃t (A) := 1

E[h(μ̃(X))]
∫

A

h
(
μ(X)

)
Pμ̃(dμ), A ∈ B(MX), (2.6)
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with the parameter measures ν and h.

Definition 2.2. Let μ̃t be a tilted CRM with the parameter measures ν and h defined from Defi-
nition 2.1, a normalized tilted CRM G̃t is given by

G̃t (A) = μ̃t (A)/μ̃t (X), A ∈ B(X), (2.7)

on (X, B(X)). This normalized tilted CRM G̃t is with the parameter measures ν and h.

Notice that when the function is a finite constant (h(x) = constant < ∞), the normalized tilted
CRM G̃t is simply a normalized CRM, which has been extensively studied by James [18] and
James et al. [22]. Some special cases with various choices of function h and CRMs have been
considered. James [20] considers polynomially tilting the law of gamma process with h(μ(X)) =
μ(X)−q . Pitman [41,42] constructs the Poisson–Dirichlet process from polynomially tilting the
law of positive stable process. These are all interesting special cases covered by the class of the
normalized tilted CRMs which will be further discussed in Section 3.

The total mass is a key ingredient of both normalized CRMs and normalized tilted CRMs.
We consider the connection between these two total masses and the general framework on a
characterization of the masses through the Laplace transform. Let the total masses of CRM and
tilted CRM be T̃ := μ̃(X) and T̃t := μ̃t (X). Both μ̃ and μ̃t are the mappings to the positive line
so that T̃ > 0 and T̃t > 0 and the laws of T̃ and T̃t are both absolutely continuous with respect to
Lebesgue measure. Their densities, fT̃ (y) and fT̃t

(y), are related through the equality

fT̃t
(y) = h(y)fT̃ (y)∫

R+ h(y)fT̃ (y)dy
. (2.8)

The Laplace transform of the random variable T̃ is given by

E
[
e−λT̃

] =
∫

R+
e−λyfT̃ (y)dy = e−ψ0(λ),

where in general ψa(b) is given by

ψa(b) =
∫

R+×X

(
1 − e−bs

)
e−asρx(ds)η(dx), a ≥ 0, b > 0. (2.9)

In terms of the density of T̃ , the Laplace transform of the random variable T̃t could be seen as

E
[
e−λT̃t

] =
∫

R+
e−λyfT̃t

(y)dy =
∫

R+
e−λy h(y)fT̃ (y)∫

R+ h(s)fT̃ (s)ds
dy. (2.10)

From (2.10), it requires to specify h to derive an explicit form. In fact, it is clear that the total
masses are connected through the equality (2.8) and this could be utilized to derive the distri-
butional results of the masses. A further extension on characterizing the random measures may
concern the Laplace transform of their functionals, specifically linear functionals, that play an
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important role in the studies of random measures. One could see it as a generalization from mea-
suring a set (e.g., equation (2.4)) as an indicator function to measuring a class of functions. Let
BM+(X) denote the class of positive Borel measurable functions mapping from X to R

+ ∪ {0}
and all functions in this class vanish outside the bounded sets of X. Let g be a function in
BM+(X) and let the functional defined as μ̃(g) := ∫

X
g(x)μ̃(dx). This functional is also re-

garded as a Poisson functional since it has an expression with respect to the Poisson process on
X × R

+, that is μ̃(g) = ∫
R+×X

g(x)yN(dx,dy). Then the properties of the CRM μ̃ could be de-
rived from the Poisson process N . For general discussion of functionals and Laplace functionals,
see Daley and Vere-Jones [8], Chapters 9, 10. An early application to Bayesian non-parametric
statistics would be found in [39] (see also Dykstra and Laud [11]).

3. The normalized random measure derived from the
polynomially and exponentially tilted law

Here we aim at showing the conjugacy property of the normalized tilted CRM G̃t with a specific
choice of h (Definition 2.2). First, we take h as follows

h(x) = h′(x)x−q, q ≥ 0, (3.1)

where h′ is a positive measurable function h′ : R+ ∪{0} → R
+ and satisfying condition (2.5), that

is E[h′(μ̃(X))μ̃(X)−q ] < ∞, but it is not depending on the scalar q . Take the normalized tilted
CRM G̃t be a prior random probability measure in the Bayesian non-parametric content, we can
show that the posterior of G̃t is belong to the same class of random probability measure (Defini-
tion 2.2). So the conjugacy property of G̃t with the choice of h (3.1) is immediately revealed. We
then consider the polynomially and exponentially tilted law of the CRM μ̃t , specifically, we take

h′(x) = e−γ x, γ ≥ 0, (3.2)

in (3.1). This choice covers a rich class of random probability measures and the interest in this
choice is desirable. The posterior analysis of this class of tilted CRMs is given after the conjugacy
property has been shown.

In general, the law of the tilted CRM μ̃t is given by

Pμ̃t (A) = 1

E[h′(μ̃(X))μ̃(X)−q ]
∫

A

h′(μ(X)
)
μ(X)−q Pμ̃(dμ), A ∈ B(MX).

The parameters of both the tilted CRM μ̃t and normalized tilted CRM G̃t are now q ≥ 0, h′ and
the intensity measure ν only. In particular, if h′ is chosen to be e−γ x in (3.1), the parameters are
then q ≥ 0, γ ≥ 0 and the intensity measure ν. The random probability measures in the class of
normalized tilted CRMs are more general than those in the class of the normalized CRMs (Regazz-
ini et al. [44]; James et al. [22]); one could easily realize that the tilted CRM μ̃t (Definition 2.1)
is not necessarily a CRM and this could be seen as a generalization of the class.
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Remark 3.1. A referee pointed out that here the exponentially tilting, say h(x) = e−γ x , is re-
dundant as the exponentially tilting operation on a CRM leads to another CRM. So taking h′ as in
(3.2), such that h(x) = e−γ xx−q , operated with a CRM is equivalent to taking h′ as a fixed finite
constant, such that h(x) = x−q , operated with another CRM.

Remark 3.2. Scaling operation on the law of Poisson random measures and CRMs has been
studied in James [18]. James [18], equation 70, has the same construction as in this work by
taking h′ to be a fixed finite constant in (3.1), or to be (3.2) from Definition 2.1.

3.1. The posterior law and structural conjugacy

Consider a sequence of exchangeable random elements taking values in X. These random vari-
ables are assumed to be conditionally independent and identically distributed given the normal-
ized tilted CRM G̃t (Definition 2.2) such that for every integer n ≥ 1

P(X1 ∈ B1, . . . ,Xn ∈ Bn|G̃t ) =
n∏

i=1

G̃t (Bi) =
n∏

i=1

μ̃t (Bi)

μ̃t (X)
, B1, . . . ,Bn ∈ B(X), (3.3)

where G̃t , or equivalently μ̃t , is regarded as a parameter. Then, (3.3) is the “likelihood” with the
parameter μ̃t . Let P (Xn)

μ̃t
indicate the posterior distribution of μ̃t , namely the distribution of μ̃t

conditional on Xn, that is

P (Xn)
μ̃t

(A) := Pμ̃t ,Xn
(A,B1, . . . ,Bn)

Pμ̃t ,Xn
(MX,B1, . . . ,Bn)

, A ∈ B(MX),B1, . . . ,Bn ∈ B(X),

where Pμ̃t ,Xn
represents the joint distribution of (μ̃t ,Xn) such that

Pμ̃t ,Xn
(A,B1, . . . ,Bn) =

∫
A

n∏
i=1

μ(Bi)

μ(X)
Pμ̃t (dμ), A ∈ B(MX),B1, . . . ,Bn ∈ B(X). (3.4)

Taking into consideration of the above assumption of conditional independence (3.3), the joint
distribution Pμ̃t ,Xn

of (μ̃t ,Xn) is defined on the space (MX × X
n, B(MX) ⊗ B(X)n) for n =

1,2, . . . . Now, considering Definition 2.1 of Pμ̃t , one obtains∫
A

n∏
i=1

μ(Bi)

μ(X)
Pμ̃t (dμ) = 1

E[h′(μ̃(X))μ̃(X)−q ]
∫

A

h′(μ(X))

μ(X)n+q

(
n∏

i=1

μ(Bi)

)
Pμ̃(dμ), (3.5)

A ∈ B(MX),B1, . . . ,Bn ∈ B(X).

This shows the key element needed for deriving the posterior law of μ̃t is the law of the CRM

Pμ̃ as seen in the right-hand side of (3.5). The usual technique to derive the posterior of μ̃t re-
quires application of change of measure or disintegration. So, the major task is to apply change
of measure updating the law Pμ̃ with the information, namely (

∏n
i=1 μ(Bi)), h′(μ(X)) and
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μ(X)−(n+q), to a posterior law, P (Xn)
μ̃ . Dealing with the term (

∏n
i=1 μ(Bi)) could be simply

adopted by the standard arguments (James [18–20]). The next term h′(μ(X)) should be chosen
explicitly to proceed. When h′(μ(X)) = e−γμ(X), change of measure only involves the Laplace
transform and doesn’t cost much effort. Eventually, dealing with the term μ(X)−(n+q) could be
somehow challenging. James [18] (see also James et al. [22]) introduces an augmentation ap-
proach that allows us to proceed further in particular for this polynomial term μ(X)−(n+q). This
leads to the analysis on the posteriors of the normalized tilted CRMs.

James [18]’s approach makes use of the gamma identity and introduces an augmented variable.
We now address the role of the augmented variable. Here the well-known gamma identity is given
by

1

ba
= 1


(a)

∫
R+

e−buua−1 du, a, b ∈ R
+. (3.6)

Then take the term μ(X)−(n+q) in (3.5) as b−a in (3.6), term involving μ becomes tractable,
positioned as an exponent. The integral (numerator) appearing in the right-hand side (3.5) can be
rewritten as∫

A×R+
h′(y)

[∫
R+

un+q−1e−uy


(n + q)
du

](
n∏

i=1

μ(Bi)

)
P(μ̃ ∈ dμ|T̃ = y)fT̃ (y)dy, (3.7)

A ∈ B(MX),B1, . . . ,Bn ∈ B(X).

where P(μ̃ ∈ dμ|T̃ = y) denotes the conditional distribution of μ̃ given its’ total mass T̃ = μ̃(X).
Rewriting the last expression by replacing fT̃ with its expression in term fT̃t

(2.8), from (3.5)
and (3.7) one finally gets

∫
A

n∏
i=1

μ(Bi)

μ(X)
Pμ̃t (dμ) =

∫
A×R+×R+

(
n∏

i=1

μ(Bi)

y

)
P(μ̃ ∈ dμ|T̃ = y)�n(y,u)dy du, (3.8)

A ∈ B(MX),B1, . . . ,Bn ∈ B(X).

where

�n(y,u) = un+q−1e−uyyn+q


(n + q)
fT̃t

(y), u > 0, y > 0. (3.9)

Here �n is a joint probability density on R
+ × R

+. Without loss of generality, we assume that
(�,F,P) is large enough to support a sequence Un of random numbers such that the distribution
of (Un, T̃t ) admits �n as density function. Then, it follows that

fUn(u) =
∫

R+
�n(y,u)dy = un+q−1


(n + q)

∫
R+

yn+qe−uyfT̃t
(y)dy, u > 0. (3.10)



2598 J.W. Lau

Here fUn is a probability density for Un. In view of these elementary developments, one can
disintegrate the law of (μ̃t ,Xn) as follows∫

A

n∏
i=1

μ(Bi)

μ(X)
Pμ̃t (dμ) =

∫
A×R+×R+

(
n∏

i=1

μ(Bi)

y

)

× P(μ̃ ∈ dμ|T̃ = y)fT̃ |Un
(y|u)fUn(u)dudy, (3.11)

A ∈ B(MX),B1, . . . ,Bn ∈ B(X),

where

fT̃ |Un
(y|u) = �n(u, y)∫

R+ �n(u, y)dy
= yn+qe−uy

E[T̃ n+q
t e−uT̃t ]fT̃t

(y), y > 0.

This disintegration (3.11) shows the role of Un as an augmented variable.

Remark 3.3. The representation of the density (3.10) suggests that Un has the gamma distribu-
tion with a random scale T̃t which has the density fT̃t

. Given T̃t , Un has the gamma distribution
with parameters (n + q, T̃t ). The product of the random variables, UnT̃t , has the gamma distri-
bution with parameters (n + q,1) and independent of T̃t .

Before proceeding to the posterior distribution, additional notations are introduced. The nor-
malized tilted CRM G̃t is almost surely discrete. A random sample Xn of G̃t usually contains
ties. We can always express Xn by two elements, namely a partition and distinct values. Here pn

is a partition of the integers {1, . . . , n} that are the indices of Xn and Yℵ(pn) = {Y1, . . . , Yℵ(pn)}
represents the distinct values of Xn. The partition pn locates the distinct values from Xn to Yℵ(pn)

or vice versa. As a result, we have the following equivalent representations

Xn = {X1, . . . ,Xn} = {Y1, . . . , Yℵ(pn),pn} = {Yℵ(pn),pn}. (3.12)

A partition pn contains ℵ(pn) cells (known as clusters), that is pn = {C1, . . . ,Cℵ(pn)}. Each cell
Ck contains the indices of a subset of Xn, namely the unique values Yk such that Ck = {i :Xi =
Yk, i = 1, . . . , n} for k = 1, . . . ,ℵ(pn). The number of elements in the cell k, Ck , of the partition
is indicated by nk , for k = 1, . . . ,ℵ(pn), so that

∑ℵ(pn)

k=1 nk = n. Therefore, the union of all cells is

the set of all n integers,
⋃ℵ(pn)

k=1 Ck = {1, . . . , n} and all cells are pairwise mutually exclusive, that
is Ck ∩Ck′ = ∅ where k �= k′ for k, k′ = 1, . . . ,ℵ(pn). This partition representation is commonly
used in Bayesian non-parametric literature (see Lo [36]; Lo and Weng [39]; James [18–20]) since
it well describes the variates generated from those random probability measures and is also useful
in expressing the marginal distribution of Xn.

Lijoi and Prünster [35] describe the concept of structural conjugacy. A random probability
measure, say G, is a structurally conjugate random probability measure if the resulting posterior
law of G given Xn = {X1, . . . ,Xn}, has the same structure. Neutral to the right process (Doksum
[10]) is one of the classes that has this property. In the present work, we show that the normalized
tilted CRMs in Definition 2.1 are also structurally conjugate. Here we follow James et al. [22],
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write G̃
(Xn)
t as the posterior normalized tilted CRM. Theorem 3.1 shows that the normalized tilted

CRMs in Definition 2.2 have the conjugate property, that is, both G̃t and G̃
(Xn)
t are in the same

class.

Theorem 3.1. Let G̃t = μ̃t /μ̃t (X) be a normalized tilted CRM (Definition 2.2) defined on X with
h as in (3.1), that is h(x) = h′(x)x−q . The parameters of this normalized tilted CRM are given by
the Borel measurable function h′, the measure ν, and the scalar q ≥ 0. With the prior measure
G̃t and the likelihood (3.3), the posterior measure, namely G̃

(Xn)
t , has the same distribution of a

normalized tilted CRM such that

G̃
(Xn)
t

d= μ̃
(Xn)
t /μ̃

(Xn)
t (X), (3.13)

where

1. μ̃
(Xn)
t has the law

P (Xn)
μ̃t

(A) = 1

E[h′(μ̃(Xn)(X))μ̃(Xn)(X)−(n+q)]
∫

A

h′(μ(X)
)
μ(X)−(n+q)P (Xn)

μ̃ (dμ)

for A ∈ B(MX).
2. μ̃(Xn) is a normalized tilted CRM whose law P (Xn)

μ̃ , has the same law as

μ̃ +
ℵ(pn)∑
k=1

J
(Xn)
k δYk

, (3.14)

where δa is the Dirac delta function evaluated at a, μ̃ is a CRM with law Pμ̃ and in-
tensity measure ν, {Y1, . . . , Yℵ(pn)} is a sequence of fixed points of discontinuity, and

{J (Xn)
1 , . . . , J

(Xn)
ℵ(pn)

} are the corresponding jumps.

3. Conditional on Xn, each jump J
(Xn)
k has the conditional distribution

P
(
J

(Xn)
k ∈ ds

) = snkρYk
(ds)∫

R+ snkρYk
(ds)

, k = 1, . . . ,ℵ(pn).

4. Conditional on Xn, μ̃ and {J (Xn)
1 , . . . , J

(Xn)
ℵ(pn)} are independent.

Proof. See Appendix A.1. �

In Theorem 3.1, the posterior law of μ̃t , namely μ̃
(Xn)
t , is shown to have the tilted

law of the CRM μ̃(Xn), which has the law P (Xn)
μ̃ , where the tilting factor is updated to

h′(μ̃(Xn)(X))μ̃(Xn)(X)−(n+q). Under the normalization of the process, the posterior of the ran-

dom probability measure becomes G̃
(Xn)
t

d= μ̃
(Xn)
t /μ̃

(Xn)
t (X). This confirms the conjugate prop-

erty of the normalized tilted CRM.
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Remark 3.4. Following Remark 3.2, the posterior distribution discussed in James [18], Chap-
ter 5, over the scaling operation on CRMs has been established in James [18], Corollary 5.1. This
result is a version of Theorem 3.1. Furthermore, James [18], Theorem 5.1, also supplies the pos-
terior law of the corresponding Poisson random measure. In particular, putting statements i and
ii of James [18], Corollary 5.1, and statements i and ii of James [18], Proposition 5.2, together is
equivalent to Theorem 3.1.

A special case of the tilted CRM (Definition 2.1) that takes h(x) = e−γ xx−q is of interest. The
following theorem, Theorem 3.2, describes an augmented posterior law of G̃t and μ̃t , denoted
by G̃

(Un,Xn)
t and μ̃

(Un,Xn)
t , that are the conditional laws of G̃t and μ̃t , respectively, given both Un

and Xn.

Theorem 3.2. Let G̃t = μ̃t /μ̃t (X) be a normalized tilted CRM (Definition 2.2) on X with h as
in (3.1) and h′ as in (3.2), that is h(x) = e−γ xx−q . The parameters of this normalized tilted
CRM are given by the measure ν, and the scalers q ≥ 0 and γ ≥ 0. With the prior measure
G̃t and the likelihood (3.3), the conditional posterior measure, namely G̃

(Un,Xn)
t , given Un and

Xn = {X1, . . . ,Xn} has the same distribution of a normalized CRM such that

G̃
(Un,Xn)
t

d= μ̃(Un,Xn)/μ̃(Un,Xn)(X),

where

1. μ̃(Un,Xn) is a CRM with the same law as

μ̃(Un) +
ℵ(pn)∑
k=1

J
(Un,Xn)
k δYk

, (3.15)

where μ̃(Un) is a CRM with intensity ν(dx,ds) = η(dx)×e−s(γ+Un)ρx(ds), {Y1, . . . , Yℵ(pn)}
is a sequence of fixed points of discontinuity, and {J (Un,Xn)

1 , . . . , J
(Un,Xn)
ℵ(pn) } are the corre-

sponding jumps.
2. Conditional on Un and Xn, each jump J

(Un,Xn)
k has the conditional density

P
(
J

(Un,Xn)
k ∈ ds

) = snk e−s(γ+Un)ρYk
(ds)∫

R+ snk e−s(γ+Un)ρYk
(ds)

, k = 1, . . . ,ℵ(pn).

3. Conditional on Un and Xn, μ(Un) and {J (Un,Xn)
1 , . . . , J

(Un,Xn)
ℵ(pn) } are independent.

4. Conditional on Xn, Un has the density

fUn|Xn
(u) = e−ψ0(γ+u)

∏ℵ(pn)

k=1 τnk,Yk
(γ + u)un+q−1∫

R+ e−ψ0(γ+u)
∏ℵ(pn)

k′=1 τnk′ ,Yk′ (γ + u)un+q−1 du
, (3.16)

where

τm,z(a) =
∫

R+
sme−saρz(ds), m > 0, z ∈ X, a ≥ 0, (3.17)
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and ψa(b) for a ≥ 0 and b ≥ 0 is defined in (2.9).

Proof. See Appendix A.2. �

Theorem 3.2 shows that the augmented posterior random probability measure G̃
(Un,Xn)
t has the

same distribution of a normalized CRM and further also provides the posterior distribution of the
augmented variables Un, fUn|Xn

. Combining these two yields the posterior random probability

measure G̃
(Xn)
t . This is certainly useful in applications of Bayesian non-parametric. For example,

this theorem could be useful in simulating the posterior normalized tilted CRM G̃
(Xn)
t that is

desirable in some applications.

Remark 3.5. The posterior distribution of the tilted CRM, namely μ̃
(Xn)
t , can be achieved by

mixing the law in (3.15) (Theorem 3.2, statement 1) over the distribution of Un given Xn in
(3.16) (Theorem 3.2, statement 4). This is equivalent to the law of the tilted CRM in statement i
of James [18], Corollary 5.1.

3.2. Generalized Blackwell and MacQueen Pólya urn sampling scheme
and marginal distribution of partitions

Blackwell and MacQueen [3] first introduce the Pólya urn sampling scheme for the Dirichlet pro-
cess and this scheme can be utilized to generate random sequences from the Dirichlet process.
This employs so called the Blackwell–MacQueen Pólya (BMP) urn formula, that is the predic-
tive distribution of the Dirichlet process random sequences. Lo [37] also shows that this BMP

urn formula can be used to characterize the Dirichlet process. James et al. [22] generalize the
Blackwell–MacQueen Pólya (BMP) urn formula for the normalized CRMs, namely Generalized
Blackwell–MacQueen Pólya (GBMP) urn formula. A further generalization will be considered
for the normalized tilted CRM in this section.

We consider a normalized tilted CRM G̃t with h(x) = e−γ xx−q in Definition 2.2. Here
the GBMP urn formula for this normalized tilted CRM will be presented under two formu-
lations, namely the unconditional and the conditional GBMP urn formulas for the normal-
ized tilted CRM. The unconditional GBMP urn formula is simply the predictive distribution,
P{Xn+1 ∈ dx|Xn} where {Xn+1,Xn} is the random sequence drawn from the normalized tilted
CRM G̃t . The conditional GBMP urn formula is the augmented version of GBMP urn formula
derived from Theorem 3.2. An impression directly comes to the mind is that the conditional urn
formula, namely P{Xn+1 ∈ dx|Xn,Un} could be derived according to the predictive distribution
P{Xn+1 ∈ dx|Xn} = E[P{Xn+1 ∈ dx|Xn,Un}|Xn] with respect to the distribution Un given Xn,
fUn|Xn

(3.16). However, the term P{Xn+1 ∈ dx|Xn,Un} is not necessarily a proper distribution.
A rescaling over both P{Xn+1 ∈ dx|Xn,Un} and fUn|Xn

with a factor involving terms like Un

seems to be needed. This leads to a new variable Ũn introduced and this new variable has a tilted
density of Un. So, we obtain a proper distribution P{Xn+1 ∈ dx|Xn, Ũn} and also the conditional
GBMP urn formula is established by mixing over Ũn.
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Proposition 3.1. Let G̃t = μ̃t /μ̃t (X) be a normalized tilted CRM (Definition 2.2) defined on X

with h as in (3.1) and h′ as in (3.2), that is h(x) = e−γ xx−q . The parameters of this normalized
tilted CRM are given by the measure ν, and the scalers q ≥ 0 and γ ≥ 0. Then,

1. The predictive distribution for Xn+1 given Xn = {X1, . . . ,Xn} is given by

P{Xn+1 ∈ dx|Xn} = ωn,ℵ(pn)+1(x)

φ(Xn)
η(dx) +

ℵ(pn)∑
k=1

ωn,k(Yk)

φ(Xn)
δYk

(dx), (3.18)

where

φ(Xn) =
∫

X

ωn,ℵ(pn)+1(x)η(dx) +
ℵ(pn)∑
k=1

ωn,k(Yk),

ωn,ℵ(pn)+1(x) =
∫

R+
uτ1,x(γ + u)fUn|Xn

(u)du and

ωn,k(Yk) =
∫

R+
u

τnk+1,Yk
(γ + u)

τnk,Yk
(γ + u)

fUn|Xn
(u)du, k = 1, . . . ,ℵ(pn).

2. Conditional on Ũn, the predictive distribution for Xn+1 given Xn = {X1, . . . ,Xn} is given
by

P{Xn+1 ∈ dx|Xn, Ũn} = ωn,ℵ(pn)+1(Ũn, x)

φ(Ũn,Xn)
η(dx) +

ℵ(pn)∑
k=1

ωn,k(Ũn, Yk)

φ(Ũn,Xn)
δYk

(dx), (3.19)

where

φ(u,Xn) =
∫

X

ωn,ℵ(pn)+1(u, x)η(dx) +
ℵ(pn)∑
k=1

ωn,k(u,Yk),

ωn,ℵ(pn)+1(u, x) = uτ1,x(γ + u),

ωn,k(u,Yk) = u
τnk+1,Yk

(γ + u)

τnk,Yk
(γ + u)

, k = 1, . . . ,ℵ(pn) and

fŨn|Xn
(u) = φ(u,Xn)

E[φ(Un,Xn)|Xn]fUn|Xn
(u), u > 0.

3. In addition,

φ(Xn) = E
[
φ(Un,Xn)|Xn

] = n + q,

ωn,ℵ(pn)+1(x) = E
[
ωn,ℵ(pn)+1(Un, x)|Xn

]
and

ωn,k(Yk) = E
[
ωn,k(Un,Yk)|Xn

]
, k = 1, . . . ,ℵ(pn),
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where ψa(b) for a ≥ 0 and b ≥ 0 defined in (2.9) and τm,z(a) for m > 0, z ∈ X and a ≥ 0 defined
in (3.17).

Proof. See Appendix A.3. �

Proposition 3.1 gives the predictive distribution and the augmented predictive distribu-
tion for the sequence Xn = {X1, . . . ,Xn} as in Blackwell and MacQueen [3] and James
et al. [22]. Statement 1 of Proposition 3.1 could be viewed as a direct sampling scheme
and statement 2 as a conditional sampling scheme that involves iterative sampling with
Ũn given Xn. From statement 1, conditional on Xn = {Yℵ(pn),pn}, Xn+1 is sampled from
[∫

X
ωn,ℵ(pn)+1(x)η(dx)]−1ωn,ℵ(pn)+1(x)η(dx) with probability [φ(Xn)]−1

∫
X

ωn,ℵ(pn)+1(x) ×
η(dx) and the new sample is allocated a new index ℵ(pn) + 1, becoming Yℵ(pn)+1. Otherwise
Xn+1 has probability 1 − [φ(Xn)]−1

∫
X

ωn,ℵ(pn)+1(x)η(dx) to be one of the existing sample
Yℵ(pn). This sequential scheme directly collects sample of size n cumulatively. Statement 2
of Proposition 3.1 suggests an alternative sampling scheme that draws from {Xi, Ũi} sequen-
tially for i = 1, . . . , n. To initialize the scheme, a sample of Ũ0 from the marginal distribution
fŨ0

= fU0 and a sample of X1 from [∫
X

τ1,x(γ + Ũ0)η(dx)]−1τ1,x(γ + Ũ0)η(dx) are required,
then a sample of {X2, . . . ,Xn} can be achieved through iterating the following steps

• Step 1: conditional on Xi , sample Ũi from fŨi |Xi
,

• Step 2: conditional on Xi and Ũi , sample Xi+1 from P{Xi+1 ∈ dx|Xi , Ũi},
for i = 1, . . . , n − 1, where Xi = {Yℵ(pi ),pi}. The scheme described here is more general than
those in existing articles and provides alternatives to sample from some common processes, such
as the normalized generalized gamma process and the generalized Dirichlet process (see James
[18]; Lijoi et al. [31,32] for a direct sampling scheme). These two cases will be discussed in
Section 4.

Remark 3.6. The joint distribution of Xn can be recovered according to (3.18) that can be also
found in James [18], Theorem 5.2.

Proposition 3.2. Let G̃t = μ̃t /μ̃t (X) be a normalized tilted CRM (Definition 2.2) defined on X

with h as in (3.1) and h′ as in (3.2), that is h(x) = e−γ xx−q . The parameters of this normalized
tilted CRM are given by the measure ν, and the scalers q ≥ 0 and γ ≥ 0. Then,

1. The marginal distribution for Xn = {Yℵ(pn),pn} is given by

∫
R+ e−ψ0(γ+u)

∏ℵ(pn)

k=1 τnk,Yk
(γ + u)un+q−1 du∑

pn

∫
R+ e−ψ0(γ+u)

∏ℵ(pn)

k=1 κnk
(γ + u)un+q−1 du

ℵ(pn)∏
k=1

η(dYk),

where

κm(a) =
∫

X

τm,x(a)η(dx) =
∫

X

[∫
R+

sme−saρx(ds)

]
η(dx), m > 0, a ≥ 0.
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2. The marginal distribution for pn is given by

∫
R+ e−ψ0(γ+u)

∏ℵ(pn)

k=1 κnk
(γ + u)un+q−1 du∑

pn

∫
R+ e−ψ0(γ+u)

∏ℵ(pn)

k=1 κnk
(γ + u)un+q−1 du

.

3. Conditional on Un, the distribution for Xn = {Yℵ(pn),pn} is given by

∏ℵ(pn)

k=1 τnk,Yk
(γ + Un)∑

pn

∏ℵ(pn)

k=1 κnk
(γ + Un)

ℵ(pn)∏
k=1

η(dYk).

4. Conditional on Un, the distribution for pn is given by

∏ℵ(pn)

k=1 κnk
(γ + Un)∑

pn

∏ℵ(pn)

k=1 κnk
(γ + Un)

.

5. Conditional on pn, the distribution for Un is given by

e−ψ0(γ+u)
∏ℵ(pn)

k=1 κnk
(γ + u)un+q−1∫

R+ e−ψ0(γ+u)
∏ℵ(pn)

k=1 κnk
(γ + u)un+q−1 du

,

where ψa(b) for a ≥ 0 and b ≥ 0 defined in (2.9) and τm,z(a) for m > 0, z ∈ X and a ≥ 0 defined
in (3.17).

Proof. See Appendix A.4. �

Proposition 3.2 gives the marginal distributions of Xn, both conditional and unconditional on
Un, in statements 1 and 3, respectively. In statements 2 and 4, the proposition gives the distribu-
tions of pn of first n integers {1, . . . , n} both conditional and unconditional on Un. The distribu-
tions of the partitions are the exchangeable partition probability function (EPPF) as they all are
symmetric functions of {n1, . . . , nℵ(pn)}. A special structure of the EPPF, called the Gibbs form,
is also available in the conditional case. Specifically, the distribution of the partition, pn, con-
ditional on Un (Statement 4 of Proposition 3.2) has the Gibbs form (Pitman [42], Theorem 4.6,
page 86), that is, the EPPF is of the form Vn,ℵ(pn)

∏ℵ(pn)

k=1 Wnk
in which Vn,ℵ(pn) is a function of n

and ℵ(pn) and Wnk
is a function of nk . Such a partition is called the Gibbs partition and therefore

pn is a Gibbs partition conditional on Un (see Pitman [40] and Pitman [42] for the details of the
EPPF and the Gibbs form).

Remark 3.7. The results appear in Proposition 3.2 can be derived from James [18], Theorem 5.2.
Some special cases could be found in James [18], Sections 5.3 and 5.4.
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4. The tilted version of generalized gamma process and
generalized Dirichlet process

We consider the tilted version of two interesting and important classes of measures, namely the
generalized gamma process and the generalized Dirichlet process. Tilting these two classes of
measures yields the normalized beta-gamma process, the Poisson–Dirichlet process, the normal-
ized generalized gamma process and the Dirichlet process. They all have been extensively studied
and have wide applications in both statistics and probability. We now discuss the tilted version
of these processes. Let G̃t be a normalized tilted CRM with h(x) = e−γ xx−q and with ν chosen
in the following subsections.

4.1. Generalized gamma process

The generalized gamma process is considered a building block for random probability mea-
sures (James [18]) and has been widely investigated (Lijoi et al. [34]). Earlier studies on this
process can be found in modeling survival functions (Hougaard [15]) and in spatial model-
ing (Wolpert and Ickstadt [45]; Brix [4]). The intensity of the generalized gamma process is
given by

ν(dx,ds) = η(dx) × ρx(ds) = η(dx) × θ


(1 − α)
s−1−αe−b(x)s ds,

0 ≤ α < 1, θ > 0, b(x) ≥ 0.

This process is an important class since it contains the following well known processes:

1. Taking 0 ≤ α < 1, θ > 0, b(x) = 0 yields the intensity of positive α stable process,
2. Taking α = 0, θ > 0, b(x) = b ≥ 0 yields the intensity of gamma process, where b is a

known constant,
3. Taking α = 0, θ > 0, b(x) ≥ 0 yields the intensity of extended gamma process and
4. Taking α = 1/2, θ > 0, b(x) = b ≥ 0 yields the intensity of inverse Gaussian process,

where b is a known constant.

We now consider the normalized random measure derived from the polynomially and exponen-
tially tilted law of the generalized gamma process. An application of Theorem 3.2 and Proposi-
tion 3.1 leads to the conditional GBMP urn formula

P{Xn+1 ∈ dx|Xn, Ũn}

=
(

θ

(γ + Ũn + b(x))1−α/(∫
X

θ

(γ + Ũn + b(x))1−α
η(dx) +

ℵ(pn)∑
k′=1

nk′ − α

γ + Ũn + b(Yk′)

))
η(dx) (4.1)
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+
ℵ(pn)∑
k=1

(
nk − α

γ + Ũn + b(Yk)/(∫
X

θ

(γ + Ũn + b(x))1−α
η(dx) +

ℵ(pn)∑
k′=1

nk′ − α

γ + Ũn + b(Yk′)

))
δYk

(dx),

and the posterior distribution of Ũn is given by

fŨn|Xn
(u) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∫
X

θ

(γ + u + b(x))1−α
η(dx) +

ℵ(pn)∑
k′=1

nk′ − α

γ + u + b(Yk′)

]

× e−(θ/α)
∫
X
(γ+u+b(x))αη(dx)un+q∏ℵ(pn)

k=1

(
γ + u + b(Yk)

)nk−α
, 0 < α < 1,[∫

X

θ

γ + u + b(x)
η(dx) +

ℵ(pn)∑
k′=1

nk′

γ + u + b(Yk′)

]

× e−θ
∫
X

ln(γ+u+b(x))η(dx)un+q∏ℵ(pn)

k=1

(
γ + u + b(Yk)

)nk
, α = 0.

Notice that when b(x) = b > 0 and α = 0, then the condition (2.5) is reduced to θ > q ≥ 0.
In fact, when b(x) = b > 0 and 0 < α < 1, then θ is not required to be greater than
q and the condition (2.5) holds with q ≥ 0 and θ > 0. With a general b(x), the condi-
tion (2.5) is required to be examined. By inspection of (4.1), one could find that when
α = 0 and b(x) = b, Xn+1 is no longer dependent on Ũn given the past {X1, . . . ,Xn},
that is P{Xn+1 ∈ dx|Xn, Ũn} = P{Xn+1 ∈ dx|Xn}. This fact is also emphasized in Re-
mark 2 of James et al. [22], page 86. This setting with q = 0 is corresponding to the
normalized gamma process or the Dirichlet process and the GBMP urn formula is given
by

P{Xn+1 ∈ dx|Xn, Ũn} = θ

θ + n
η(dx) +

ℵ(pn)∑
k=1

nk

θ + n
δYk

(dx). (4.2)

This (4.2) is the BMP urn formula (see also Blackwell and MacQueen [3]).

Normalized beta-gamma process

The law of the beta-gamma process can be derived from the polynomially tilting the law of the
gamma process (James [20]). The beta-gamma process was first introduced for the proof of the
Markov–Krein identity of the Dirichlet process mean functionals and since then it has become a
useful analytical tool for studying the Dirichlet process (see James [20] and James et al. [22]).
Here we mention that Cifarelli and Regazzini [5–7] were the first works in which this identity
was explicitly demonstrated in relation to the research of the law of the Dirichlet process mean
functionals. An important fact in James [20] states that a Dirichlet process can be expressed
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as a normalized beta-gamma process. This becomes an interesting alternative expression of the
Dirichlet process that is usually expressed as the normalized gamma process. This expression is
given by taking q > 0, γ = 0, α = 0, θ > q , b(x) = b ≥ 0. The condition θ > q (see also James
[20], equation 5, page 649) is equivalent to the condition (2.5). With α = 0 and b(x) = b, as in
the construction through the normalized gamma process, the variable Xn+1 is not dependent on
Ũn nor Un given the past {X1, . . . ,Xn}.

Poisson–Dirichlet process

The Poisson–Dirichlet process is a common and well known process used in both statistical
and probabilistic modeling. This is also called Pitman–Yor process which is coined by Ishwaran
and James [16]. This process has been shown to be useful in a variety of interesting applica-
tions in combinatorics (Arratia et al. [2]), population genetics (Griffiths and Lessard [14]) and
Bayesian statistics (Ishwaran and James [16,17]). This process was first introduced by King-
man [27] and Pitman and Yor [43] provided a detailed study of its properties. We consider
the Poisson–Dirichlet process with parameters (α,q) that is equivalent to take θ = 1, γ = 0,
b(x) = 0, q > 0, and 0 < α < 1. Special cases include the Dirichlet process and the normalized
stable process with parameters (0, q) and (α,0) respectively. These two processes could be seen
as an two parameter extension of the Dirichlet process. Even thought there is an explicit expres-
sion of the unconditional GBMP urn formula (Pitman [41,42]; Ishwaran and James [16,17]), it
is still worth examining the augmented version for the Poisson–Dirichlet process (α,q) process.
The conditional GBMP urn formula is given by

P{Xn+1 ∈ dx|Xn, Ũn} = Ũα
n

Ũα
n + n − αℵ(pn)

η(dx) +
ℵ(pn)∑
k=1

nk − α

Ũα
n + n − αℵ(pn)

δYk
(dx),

where

fŨn|Xn
(u) = q + αℵ(pn)

n + q

e−(1/α)uα
uq+αℵ(pn)+α−1

αq/α+ℵ(pn)
(q/α + ℵ(pn) + 1)
(4.3)

+ n − αℵ(pn)

n + q

e−(1/α)uα
uq+αℵ(pn)−1

αq/α+ℵ(pn)−1
(q/α + ℵ(pn))
.

This is equivalent to Ũn
d= G

1/α

1 with probability (q + αℵ(pn))/(n + q) and Ũn
d= G

1/α

2 with
probability (n−αℵ(pn))/(n+q) where G1 is a Gamma(q/α+ℵ(pn)+1,1/α) random variable
and G2 is a Gamma(q/α + ℵ(pn),1/α) random variable.

Normalized generalized gamma process

The normalized generalized gamma process with θ > 0, γ = 0, b(x) = b > 0, q = 0, and 0 <

α < 1 is considered in James [18] and Lijoi et al. [32,34]. Specifically, the conditional GBMP urn
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formula is given by

P{Xn+1 ∈ dx|Xn, Ũn} = θ(Ũn + b)α

θ(Ũn + b)α + n − αℵ(pn)
η(dx)

+
ℵ(pn)∑
k=1

nk − α

θ(Ũn + b)α + n − αℵ(pn)
δYk

(dx),

where the density of the augmented variable Ũn is given by

fŨn|Xn
(u) ∝ [θ(u + b)α + n − αℵ(pn)]e−(θ/α)(u+b)αun

(u + b)n−αℵ(pn)+1
. (4.4)

A little effort might be required for sampling Ũn from (4.4). One could follow Devroye [9], Sec-
tion II.3.3, page 47, to derive a suitable rejection procedure. Here we give a simple illustration.
A sample of Vn could be drawn from

αℵ(pn)

n

θℵ(pn)+1e−(θ/α)vα
vαℵ(pn)+α−1

αℵ(pn)
(ℵ(pn) + 1)
+ n − αℵ(pn)

n

θℵ(pn)e−(θ/α)vα
vαℵ(pn)−1

αℵ(pn)−1
(ℵ(pn))
,

and if ζ < ψ(Vn), then Ũn = Vn, otherwise sample Vn again until ζ < ψ(Vn) where ζ is
an uniform random variable which is independent of Vn and ψ(v) = e−(θ/α)[(v+b)α−vα] ×
( v
v+b

)n−αℵ(pn)+1 × θ(v+b)α+(n−αℵ(pn))
θvα+(n−αℵ(pn))

. Notice that Ũn given Xn (4.4) and Vn are identical in

distribution when b = 0. The random variable Vn can be described as: Vn
d= G

1/α

1 with probabil-

ity αℵ(pn)/n and Vn
d= G

1/α

2 with probability (n − αℵ(pn))/n where G1 is a Gamma(ℵ(pn) +
1, θ/α) random variable and G2 is a Gamma(ℵ(pn), θ/α) random variable.

4.2. Generalized Dirichlet process

Regazzini et al. [44] introduce the generalized Dirichlet process as an example for determining
the mean of normalized random measures with independent increments. Apart from studying
probabilistic properties of the generalized Dirichlet process, its use in Bayesian non-parametric
statistics is developed in Lijoi et al. [31]. We state the intensity of the generalized Dirichlet
process as

ν(ds,dx) = η(dx) × ρx(ds) = η(dx) × θ
1 − e−cs

1 − e−s
s−1e−s ds,

and introduce the difference of two Hurwitz Zeta functions as,

ϕnk
(γ + u, c) =

∞∑
�=0

[
1

(γ + u + 1 + �)nk
− 1

(γ + u + c + 1 + �)nk

]
.
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When c is a positive integer (which is considered by Regazzini et al. [44] and Lijoi et al. [31]),
the function can be simplified to a finite sum,

ϕnk
(γ + u, c) =

c−1∑
�=0

1

(γ + u + 1 + �)nk
, c = 1,2, . . . .

The conditional GBMP urn is given by

P{Xn+1 ∈ dx|Xn, Ũn} =
(

θϕ1(γ + Ũn, c)

/(
θϕ1(γ + Ũn, c) +

ℵ(pn)∑
k′=1

nk′
ϕnk′+1(γ + Ũn, c)

ϕnk′ (γ + Ũn, c)

))
η(dx)

+
ℵ(pn)∑
k=1

(
nk

ϕnk+1(γ + Ũn, c)

ϕnk
(γ + Ũn, c)/(

θϕ1(γ + Ũn, c) +
ℵ(pn)∑
k′=1

nk′
ϕnk′+1(γ + Ũn, c)

ϕnk′ (γ + Ũn, c)

))
δYk

(dx),

where the density of the augmented variable is given by

fŨn|Xn
(u) ∝ χ(u)

=
[
θϕ1(γ + u, c) +

ℵ(pn)∑
k′=1

nk′
ϕnk′+1(γ + u, c)

ϕnk′ (γ + u, c)

]

×
[


(γ + u + 1)


(γ + u + c + 1)

]θ

un+q × θℵ(pn)

ℵ(pn)∏
k=1

ϕnk
(γ + u, c).

Again, the condition (2.5) stated in the construction that E[h(μ(X))] < ∞ is equivalent to θ > q .
In particular, when c = 1 this is corresponding to the Dirichlet process, ϕ1(γ +u,1) = ϕnk+1(γ +
u,1)/ϕnk

(γ + u,1) and it can be shown that Xn+1 given {X1, . . . ,Xn} is not dependent on Un.
Similar to the normalized generalized gamma process, the rejection method can also be proposed
due to Devroye [9], Section II.3.3, page 47. That is, sample Wn from Beta(n+ q + 1, θ − q), and
if ζ < ψ((γ + 1)Wn/(1 − Wn)), then Ũn = (γ + 1)Wn/(1 − Wn), otherwise sample Wn again
until ζ < ψ((γ + 1)Wn/(1 − Wn)) where ζ is an uniform random variable which is independent
of Wn and ψ(v) = χ(v) × (γ + v + 1)θ+n+1/(cℵ(pn)(cθ + n)).
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5. Simulation study on approximating distribution of partition
size via the augmented Blackwell–MacQueen Pólya urn
formula

We conduct a simulation study on approximating the posterior probabilities of partition sizes,
P{ℵ(pn) = i} for i = 1, . . . , n, using the conditional GBMP urn formula discussed in last section.
We consider two popular random probability measures, the Poisson–Dirichlet process and the
normalized generalized gamma process. For the Poisson–Dirichlet process, we simulate data
according to α = 0.5, θ = 1, q = 1, γ = 0, b(x) = 0. For the normalized generalised gamma
process, we simulate data according to α = 0.5, θ = 1, q = 0, γ = 0, b(x) = 1. In both cases,
we set n = 50. We examine two exact sequential sampling schemes and two MCMC schemes.
Specifically:

A.1. Sample Xi sequentially for i = 1, . . . , n according to the unconditional GBMP urn for-
mula, P{Xi+1 ∈ dx|Xi} for i = 1, . . . , n − 1.

A.2. Sample {Xi, Ũi} sequentially for i = 1, . . . , n according to the conditional GBMP urn
formula, P{Xi+1 ∈ dx|Xi , Ũi} and fŨi |Xi

(u) for i = 1, . . . , n − 1.
A.3. Re-sample Xi iteratively for i = 1, . . . , n according to the unconditional GBMP urn for-

mula, P{Xi ∈ dx|Xn\{Xi}} for i = 1, . . . , n.
A.4. Re-sample {Xi,Un} iteratively for i = 1, . . . , n according to the conditional GBMP urn

formula, P{Xi ∈ dx|Xn\{Xi},Un} and fUn|Xn
(u) for i = 1, . . . , n.

Algorithms A.1 and A.2 are exact and are identical in distribution. Algorithm A.1 has been fre-
quently used in the literature and for the normalized generalized gamma process requires the
evaluation of the complicated functions. Algorithm A.2 is the conditional GBMP urn formula
derived from the tilted measure proposed in this article. This method is straightforward to imple-
ment without much complication in evaluations. We also include two MCMC Gibbs sampling
algorithms described in A.3 and A.4 for comparison. These are not exact sampling algorithms
and an initial sampling period is necessary to converge to the stationary distribution. The station-
ary distribution itself is identical to that of A.1 and A.2.

In each replication, we sample 10,000 independent samples from A.1 and A.2 to approxi-
mate P{ℵ(pn) = i} for i = 1, . . . , n. Starting with a partition pn = {{1}, . . . , {n}} with all sin-
gleton clusters, we draw 20,000 samples from algorithms A.3 and A.4. We ignore the first
10,000 warmup samples and use the last 10,000 samples to approximate P{ℵ(pn) = i} for
i = 1, . . . , n. So, each algorithm produces 10,000 approximates of probabilities of partition sizes,
P{ℵ(pn) = 1}, . . . ,P{ℵ(pn) = n}. To summarize the results, Figures 1 and 2 show the range and
95% confidence levels of 10,000 approximates of probabilities of partition sizes for the Poisson–
Dirichlet process and the normalized generalized gamma process respectively for algorithms
A.1–A.4. Similarly, Tables 1 and 2 shows the true probabilities and the means and standard er-
rors of the approximates given by algorithms A.1–A.4.

Figure 1 and Table 1 show that for the Poisson–Dirichlet process algorithms A.1 and A.2 result
in samples from identical distributions, as the theory would suggest. The MCMC algorithms, A.3
and A.4 also produce similar results to A.1 and A.2 except for the standard errors in Table 1. The
standard errors indicate the variability of the MCMC generated samples is generally greater than
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Figure 1. Approximate probabilities of partition sizes of the Poisson Dirichlet process (α = 0.5, θ = 1,
q = 1, γ = 0, b(x) = 0), P{ℵ(p50) = i} for i = 1, . . . ,50. Top Left: A.1 algorithm; Top Right: A.2 al-
gorithm; Bottom Left: A.3 algorithm; Bottom Right: A.4 algorithm. The solid bound lines indicate the
range of all 10,000 approximates of the probabilities; The dash bound lines indicate the 95% confidence
level (2.5% and 97.5% quantiles) of all 10,000 approximates of the probabilities. The dots indicate the true
probabilities.

the exact sequential sampling algorithms, as we would expect. The results for the normalized
generalized gamma process shown in Figure 2 and Table 2 point to a similar story as in the
Poisson–Dirichlet process.

Finally, we note that it is not necessary to sample Xn to conduct the simulation. It could be
done by simply simulating partitions pn directly instead. It is possible to integrate out all Yℵ(pn)

from the conditional GBMP urn formula and obtain the weights for partition sampling using the
Chinese restaurant process (see Aldous [1], Lo et al. [38] and Pitman [42]).
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Figure 2. Approximate probabilities of partition sizes of the normalized generalized Gamma process
(α = 0.5, θ = 1, q = 0, γ = 0, b(x) = 1), P{ℵ(p50) = i} for i = 1, . . . ,50. Top Left: A.1 algorithm;
Top Right: A.2 algorithm; Bottom Left: A.3 algorithm; Bottom Right: A.4 algorithm. The solid bound
lines indicate the range of all 10,000 approximates of the probabilities; The dash bound lines indicate the
95% confidence level (2.5% and 97.5% quantiles) of all 10,000 approximates of the probabilities. The dots
indicate the true probabilities.

6. Conclusion and further research

This article has introduced a class of random probability measures based on polynomially and
exponentially tilting. We have provided a complete Bayesian analysis of this class of measures
with details on the prior and posterior laws and shown that the class is structurally conjugate.
We described a conditional Blackwell–MacQueen Pólya urn sampling scheme that simplifies the
computational requirements to implement such sampling schemes. The new sampling scheme
yields similar answers to more complicated schemes described in the literature.



A
conjugate

class
ofrandom

probability
m

easures
2613

Table 1. Approximate probabilities of partition sizes of the Poisson Dirichlet process (α = 0.5, θ = 1, q = 1, γ = 0, b(x) = 0), P{ℵ(p50) = i}
for i = 1, . . . ,50. First Column: Partition sizes; Second Column: True probability of partition sizes; Third Column: Mean of 10,000 approximates
of the probabilities according to algorithm A.1; Fourth Column: Standard error of 10,000 approximates of the probabilities according to algorithm
A.1; Fifth Column: Mean of 10,000 approximates of the probabilities according to algorithm A.2; Sixth Column: Standard error of 10,000 approx-
imates of the probabilities according to algorithm A.2; Seventh Column: Mean of 10,000 approximates of the probabilities according to algorithm
A.3; Eighth Column: Standard error of 10,000 approximates of the probabilities according to algorithm A.3; Ninth Column: Mean of 10,000 ap-
proximates of the probabilities according to algorithm A.4; Tenth Column: Standard error of 10,000 approximates of the probabilities according to
algorithm A.4

P{ℵ(pn) = i} A.1 algorithm A.2 algorithm A.3 algorithm A.4 algorithm

True Mean of the SE of the Mean of the SE of the Mean of the SE of the Mean of the SE of the
i probability approximates approximates approximates approximates approximates approximates approximates approximates

1 0.000063 0.000062 0.000080 0.000063 0.000079 0.000063 0.000088 0.000064 0.000088
2 0.000315 0.000316 0.000179 0.000318 0.000179 0.000313 0.000207 0.000311 0.000207
3 0.000936 0.000933 0.000306 0.000934 0.000308 0.000934 0.000369 0.000936 0.000371
4 0.002139 0.002138 0.000462 0.002133 0.000460 0.002138 0.000567 0.002141 0.000575
5 0.004142 0.004146 0.000639 0.004140 0.000641 0.004147 0.000806 0.004135 0.000807
6 0.007139 0.007129 0.000837 0.007143 0.000836 0.007139 0.001071 0.007131 0.001068
7 0.011258 0.011256 0.001060 0.011242 0.001066 0.011257 0.001351 0.011258 0.001333
8 0.016537 0.016519 0.001274 0.016563 0.001277 0.016536 0.001613 0.016526 0.001610
9 0.022898 0.022916 0.001510 0.022901 0.001502 0.022883 0.001868 0.022890 0.001849

10 0.030135 0.030133 0.001705 0.030123 0.001716 0.030089 0.002075 0.030119 0.002101
11 0.037923 0.037944 0.001923 0.037937 0.001905 0.037893 0.002248 0.037910 0.002311
12 0.045836 0.045829 0.002081 0.045820 0.002121 0.045812 0.002430 0.045901 0.002421
13 0.053388 0.053358 0.002248 0.053434 0.002243 0.053396 0.002515 0.053364 0.002539
14 0.060073 0.060076 0.002407 0.060042 0.002371 0.060038 0.002572 0.060061 0.002600
15 0.065424 0.065423 0.002486 0.065396 0.002497 0.065402 0.002638 0.065415 0.002683
16 0.069059 0.069067 0.002527 0.069071 0.002554 0.069094 0.002677 0.069051 0.002689
17 0.070723 0.070738 0.002575 0.070720 0.002555 0.070754 0.002673 0.070746 0.002684
18 0.070317 0.070311 0.002544 0.070328 0.002558 0.070302 0.002729 0.070290 0.002691
19 0.067906 0.067983 0.002499 0.067911 0.002480 0.067937 0.002692 0.067889 0.002688
20 0.063706 0.063723 0.002443 0.063674 0.002479 0.063756 0.002640 0.063700 0.002636
21 0.058061 0.058033 0.002325 0.058056 0.002349 0.058063 0.002585 0.058066 0.002583
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Table 1. (Continued)

P{ℵ(pn) = i} A.1 algorithm A.2 algorithm A.3 algorithm A.4 algorithm

True Mean of the SE of the Mean of the SE of the Mean of the SE of the Mean of the SE of the
i probability approximates approximates approximates approximates approximates approximates approximates approximates

22 0.051397 0.051395 0.002197 0.051413 0.002207 0.051427 0.002442 0.051390 0.002478
23 0.044176 0.044171 0.002073 0.044176 0.002040 0.044161 0.002278 0.044206 0.002309
24 0.036847 0.036842 0.001887 0.036834 0.001885 0.036833 0.002103 0.036846 0.002140
25 0.029805 0.029810 0.001705 0.029819 0.001708 0.029830 0.001912 0.029824 0.001945
26 0.023361 0.023352 0.001510 0.023346 0.001515 0.023366 0.001707 0.023369 0.001712
27 0.017724 0.017689 0.001306 0.017739 0.001320 0.017739 0.001477 0.017737 0.001493
28 0.013001 0.012989 0.001127 0.013005 0.001131 0.013004 0.001266 0.013002 0.001259
29 0.009208 0.009204 0.000958 0.009221 0.000963 0.009200 0.001042 0.009208 0.001072
30 0.006287 0.006294 0.000783 0.006280 0.000801 0.006282 0.000859 0.006291 0.000858
31 0.004130 0.004141 0.000645 0.004137 0.000639 0.004129 0.000688 0.004138 0.000690
32 0.002606 0.002606 0.000513 0.002608 0.000514 0.002606 0.000537 0.002603 0.000539
33 0.001575 0.001574 0.000395 0.001571 0.000398 0.001579 0.000423 0.001576 0.000409
34 0.000910 0.000906 0.000302 0.000908 0.000299 0.000911 0.000308 0.000913 0.000312
35 0.000501 0.000502 0.000225 0.000499 0.000223 0.000498 0.000227 0.000502 0.000228
36 0.000261 0.000261 0.000162 0.000261 0.000160 0.000258 0.000163 0.000263 0.000164
37 0.000129 0.000129 0.000113 0.000130 0.000113 0.000128 0.000113 0.000129 0.000114
38 0.000060 0.000061 0.000078 0.000061 0.000079 0.000060 0.000078 0.000059 0.000078
39 0.000026 0.000026 0.000051 0.000027 0.000052 0.000027 0.000052 0.000027 0.000051
40 0.000011 0.000011 0.000032 0.000010 0.000032 0.000011 0.000033 0.000010 0.000032
41 0.000004 0.000004 0.000020 0.000004 0.000020 0.000003 0.000019 0.000004 0.000021
42 0.000001 0.000001 0.000012 0.000001 0.000012 0.000001 0.000012 0.000001 0.000012
43 0.000000 0.000000 0.000006 0.000000 0.000006 0.000000 0.000006 0.000000 0.000006
44 0.000000 0.000000 0.000004 0.000000 0.000004 0.000000 0.000003 0.000000 0.000003
45 0.000000 0.000000 0.000002 0.000000 0.000002 0.000000 0.000002 0.000000 0.000002
46 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
47 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
48 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
49 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table 2. Approximate of probabilities of partition sizes of the normalized generalized Gamma process (α = 0.5, θ = 1, q = 0, γ = 0, b(x) = 1),
P{ℵ(p50) = i} for i = 1, . . . ,50. First Column: Partition sizes; Second Column: True probability of partition sizes; Third Column: Mean of 10,000
approximates of the probabilities according to algorithm A.1; Fourth Column: Standard error of 10,000 approximates of the probabilities according
to algorithm A.1; Fifth Column: Mean of 10,000 approximates of the probabilities according to algorithm A.2; Sixth Column: Standard error of
10,000 approximates of the probabilities according to algorithm A.2; Seventh Column: Mean of 10,000 approximates of the probabilities according
to algorithm A.3; Eighth Column: Standard error of 10,000 approximates of the probabilities according to algorithm A.3; Ninth Column: Mean of
10,000 approximates of the probabilities according to algorithm A.4; Tenth Column: Standard error of 10,000 approximates of the probabilities
according to algorithm A.4

P{ℵ(pn) = i} A.1 algorithm A.2 algorithm A.3 algorithm A.4 algorithm

True Mean of the SE of the Mean of the SE of the Mean of the SE of the Mean of the SE of the
i probability approximates approximates approximates approximates approximates approximates approximates approximates

1 0.000035 0.000036 0.000059 0.000035 0.000060 0.000035 0.000061 0.000035 0.000061
2 0.000291 0.000294 0.000170 0.000290 0.000170 0.000288 0.000178 0.000293 0.000183
3 0.001234 0.001227 0.000353 0.001238 0.000356 0.001229 0.000389 0.001241 0.000396
4 0.003621 0.003621 0.000599 0.003624 0.000604 0.003620 0.000701 0.003622 0.000703
5 0.008265 0.008274 0.000916 0.008266 0.000909 0.008249 0.001101 0.008262 0.001083
6 0.015684 0.015709 0.001237 0.015683 0.001250 0.015647 0.001554 0.015666 0.001551
7 0.025793 0.025807 0.001598 0.025753 0.001594 0.025786 0.001989 0.025825 0.001997
8 0.037832 0.037827 0.001887 0.037807 0.001896 0.037806 0.002365 0.037843 0.002367
9 0.050538 0.050540 0.002207 0.050498 0.002233 0.050500 0.002645 0.050583 0.002657

10 0.062458 0.062450 0.002393 0.062502 0.002396 0.062445 0.002807 0.062497 0.002823
11 0.072282 0.072260 0.002591 0.072270 0.002557 0.072238 0.002921 0.072246 0.002880
12 0.079070 0.079074 0.002674 0.079123 0.002698 0.079058 0.002932 0.079112 0.002914
13 0.082360 0.082371 0.002745 0.082353 0.002724 0.082412 0.002945 0.082404 0.002924
14 0.082159 0.082126 0.002758 0.082176 0.002764 0.082174 0.002894 0.082143 0.002915
15 0.078842 0.078821 0.002708 0.078836 0.002675 0.078878 0.002847 0.078786 0.002846
16 0.073037 0.072990 0.002618 0.073001 0.002614 0.073106 0.002783 0.073063 0.002804
17 0.065486 0.065510 0.002469 0.065512 0.002465 0.065489 0.002706 0.065455 0.002707
18 0.056942 0.056976 0.002343 0.056984 0.002316 0.056960 0.002585 0.056956 0.002560
19 0.048085 0.048085 0.002165 0.048092 0.002160 0.048113 0.002429 0.048047 0.002398
20 0.039472 0.039478 0.001975 0.039484 0.001980 0.039473 0.002225 0.039428 0.002223
21 0.031516 0.031532 0.001743 0.031496 0.001741 0.031529 0.002037 0.031498 0.002037
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Table 2. (Continued)

P{ℵ(pn) = i} A.1 algorithm A.2 algorithm A.3 algorithm A.4 algorithm

True Mean of the SE of the Mean of the SE of the Mean of the SE of the Mean of the SE of the
i probability approximates approximates approximates approximates approximates approximates approximates approximates

22 0.024480 0.024454 0.001541 0.024485 0.001554 0.024485 0.001765 0.024466 0.001769
23 0.018499 0.018503 0.001338 0.018488 0.001361 0.018484 0.001535 0.018502 0.001544
24 0.013595 0.013589 0.001155 0.013583 0.001166 0.013584 0.001308 0.013604 0.001307
25 0.009711 0.009716 0.000978 0.009696 0.000982 0.009703 0.001091 0.009714 0.001110
26 0.006738 0.006750 0.000824 0.006743 0.000819 0.006738 0.000907 0.006725 0.000910
27 0.004537 0.004544 0.000670 0.004547 0.000676 0.004544 0.000738 0.004538 0.000732
28 0.002960 0.002961 0.000545 0.002959 0.000547 0.002958 0.000593 0.002960 0.000585
29 0.001870 0.001866 0.000434 0.001867 0.000432 0.001870 0.000460 0.001872 0.000463
30 0.001141 0.001144 0.000337 0.001144 0.000338 0.001136 0.000354 0.001146 0.000359
31 0.000672 0.000672 0.000260 0.000674 0.000257 0.000667 0.000269 0.000673 0.000273
32 0.000381 0.000379 0.000195 0.000380 0.000195 0.000381 0.000203 0.000384 0.000203
33 0.000207 0.000207 0.000144 0.000206 0.000143 0.000208 0.000148 0.000205 0.000147
34 0.000108 0.000108 0.000105 0.000108 0.000104 0.000107 0.000105 0.000107 0.000105
35 0.000054 0.000053 0.000073 0.000053 0.000072 0.000054 0.000075 0.000053 0.000073
36 0.000025 0.000025 0.000050 0.000025 0.000051 0.000026 0.000052 0.000025 0.000050
37 0.000011 0.000011 0.000033 0.000012 0.000034 0.000011 0.000033 0.000012 0.000034
38 0.000005 0.000005 0.000023 0.000005 0.000022 0.000005 0.000022 0.000005 0.000022
39 0.000002 0.000002 0.000014 0.000002 0.000014 0.000002 0.000013 0.000002 0.000014
40 0.000001 0.000001 0.000008 0.000001 0.000009 0.000001 0.000009 0.000001 0.000008
41 0.000000 0.000000 0.000006 0.000000 0.000005 0.000000 0.000005 0.000000 0.000005
42 0.000000 0.000000 0.000003 0.000000 0.000002 0.000000 0.000002 0.000000 0.000002
43 0.000000 0.000000 0.000001 0.000000 0.000001 0.000000 0.000001 0.000000 0.000001
44 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
45 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
46 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
47 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
48 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
49 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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We also note a general tilting treatment could be considered for any measurable function h on
R

+ evaluated at the total mass of the corresponding CRM in (2.6). This general class of random
probability measures with homogeneous intensity, ν(dx,ds) = η(dx)ρ(ds), can be shown to be
the Poisson–Kingman process (Pitman [41,42]) by showing that the normalized random proba-
bility measure (2.6) has a Poisson–Kingman partition (ρ,γ ), where γ denotes the tilted density
of total mass such that γ = fT̃t

(2.8) and ρ represents the σ -finite non-atomic intensity measure
ρ(ds). Then, the conditional partition distribution is given by

P(pn|t) =
∫

(R+)ℵ(pn)

I{t−∑ℵ(pn)

k=1 sk>0}
fT̃ (t − ∑ℵ(pn)

k=1 sk)

tnfT̃ (t)

ℵ(pn)∏
k=1

s
nk

k ρ(dsk). (6.1)

The proof is given in Appendix A.5; See also Pitman [41], Lemma 5, page 8, for the related
joint distribution of partitions and jumps. Investigation of the properties of this general class of
random probably measures and even special cases of (2.6) is interesting for further research.

Finally, we note that the applications of Bayesian non-parametric mixture models in Bayesian
statistics is steadily increasing (see Lo [36]; James [18]; Ishwaran and James [16,17]; James et
al. [22]; Lijoi et al. [31,32,34]). In particular, time series model mixing over random probability
measures has been considered recently in Griffin and Steel [13], Lau and So [29,30] and Lau
and Cripps [28]. Often in mixture models over the normalized tilted CRM, it is necessary to
consider a collection of latent variables, which is a sample of the normalized tilted CRM but
these latent variables are not observed directly. In fact, sampling latent variables is essential for
approximating estimates of parameters of interest that are functions of the latent variables, Xn

because of the high cardinality of the posterior distribution due to combinatorial property of the
latent variables. As a result, sampling schemes for Xn are required for estimation based on the
conditional Blackwell–MacQueen Pólya urn formula and the distributions of Xn and partitions
pn. In this article, we have provided the marginal distributions of Xn and pn, both conditional
and unconditional on Un, that are essential elements in implementing mixture models over the
normalized tilted CRM.

Appendix

A.1. Proof of Theorem 3.1

Consider the joint distribution of (μ̃t ,Xn), which is given by (3.4) and (3.5), that is

Pμ̃t ,Xn
(A,B1, . . . ,Bn) = 1

E[h′(μ̃(X))μ̃(X)−q ]
∫

A

h′(μ(X))

μ(X)n+q

(
n∏

i=1

μ(Bi)

)
Pμ̃(dμ). (A.1)

In (A.1), the CRM μ̃(·) is now replaced by the linear functional of the Poisson process∫
R+ sN(·,ds) on X (2.4). Following by writing the right hand side of (A.1) without the inte-

grals, that is given by

h′(
∫

X×R+ sN(dx,ds))

(
∫

X×R+ sN(dx,ds))n+q

(
n∏

i=1

siN(dxi,dsi)

)
PN(dN), (A.2)
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where this Poisson process N has distribution denoted by PN , has the intensity measure ν same
as that of μ̃ (2.4), and belong to the set in B(MX×R+) corresponding to the set A that μ ∈ A ∈
B(MX). Here (xi, si) for i = 1, . . . , n represent the points generated from the Poisson process N .
For k = 1, . . . ,ℵ(pn), (Yk, Jk) denotes the distinct points of the (xi, si)’s and ℵ(pn) denotes the
number of the distinct points. In addition, we take {J1, . . . , Jℵ(pn)} to be the augmented variables.
We then apply the Fubini theorem following from an application of Lemma 2.2 of James [18],
page 8 (see also James [18] for some detail discussions), to yield the joint distribution of N , pn

and (Yk, Jk) for k = 1, . . . ,ℵ(pn), which is given by (A.2) without the proportional constant,

h′(
∫

X×R+ sN(Xn)(dx,ds))

(
∫

X×R+ sN(Xn)(dx,ds))n+q
PN(dN)

ℵ(pn)∏
k=1

η(dYk)s
nk

k ρYk
(dsk), (A.3)

where N(Xn) d= N + ∑ℵ(pn)

k=1 δ
(Yk,J

(Xn)
k )

. Here the distribution of N(Xn) is identical to the

distribution of the sum over a Poisson process N and the fixed points of discontinuity at
(Yk, J

(Xn)
k ). The Poisson process N has the intensity measure ν and be independent of

(Yk, J
(Xn)
k ) for k = 1, . . . ,ℵ(pn). The pairs (Yk, J

(Xn)
k ) for k = 1, . . . ,ℵ(pn) and pn has

the joint distribution
∏ℵ(pn)

k=1 [η(dYk) × P(J
(Xn)
k ∈ dsk) × τnk,Yk

(0)] where P(J
(Xn)
k ∈ dsk) =

s
nk

k ρYk
(dsk)/

∫
R+ s

nk

k ρYk
(dsk) and τnk,Yk

(0) defined in (3.17). The distribution of N(Xn) now

is denoted by P (Xn)
N , so (A.3) could be reduced to

h′(
∫

X×R+ sN(dx,ds))

(
∫

X×R+ sN(dx,ds))n+q
P (Xn)

N (dN). (A.4)

The Poisson linear functional appears in (A.4),
∫

R+ sN(Xn)(dx,ds) (=: μ̃(Xn)(dx)), is a com-
pletely random measure according to (2.1) (see also Daley and Vere-Jones [8], Theorem 10.1.III,
page 79), such that

μ̃(Xn)(dx)
d=

∫
R+

sN(dx,ds) +
ℵ(pn)∑
k=1

J
(Xn)
k δYk

(dx)
d= μ̃(dx) +

ℵ(pn)∑
k=1

J
(Xn)
k δYk

(dx), (A.5)

where μ̃ denote a CRM (2.4) derived from the Poisson process N . So, the total mass μ̃(Xn)(X) in
(A.4) is given by

μ̃(Xn)(X)
d= μ̃(X) +

ℵ(pn)∑
k=1

J
(Xn)
k . (A.6)

This immediately reveals the distribution of the tilted completely random measure, μ̃
(Xn)
t (Defi-

nition 2.1), that is P (Xn)
μ̃t

(dμ) ∝ h′(μ(Xn)(X))

(μ(Xn)(X))n+q P (Xn)
μ̃ (dμ). Lastly, the distributional identity derived

from the a sample μ̃
(Xn)
t from P (Xn)

μ̃t
, G(Xn)(·) d= μ̃

(Xn)
t (·)/μ̃(Xn)

t (X) on X is obtained by the same
arguments in the proof of Theorem 2 of James et al. [22], page 96. Thus, the proof is complete.
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A.2. Proof of Theorem 3.2

Following the proof of Theorem 3.1 from the beginning to (A.3) with chosen h′(x) = e−γ x .
Using the facts from (A.5) and (A.6), the distribution (A.3) becomes

e−γ (μ(X)+∑ℵ(pn)

k=1 sk)

(μ(X) + ∑ℵ(pn)

k=1 sk)n+q
Pμ̃(dμ)

ℵ(pn)∏
k=1

η(dYk)s
nk

k ρYk
(dsk). (A.7)

This is the joint distribution of μ̃, pn and Yk for k = 1, . . . ,ℵ(pn). Then we apply the gamma
identity (3.6) on the term (μ(X) + ∑ℵ(pn)

k=1 sk)
−(n+q) in (A.7)

1

(μ(X) + ∑ℵ(pn)

k=1 sk)n+q
= 1


(n + q)

∫
R+

e−(μ(X)+∑ℵ(pn)

k=1 sk)uun+q−1 du, (A.8)

Here the augmented variable Un is introduced due to the gamma identity. Incorporating (A.7)
with (A.8) and omiting the integrals, it turns out that the following is the joint distribution of Un,
μ̃, pn and Yk for k = 1, . . . ,ℵ(pn),

e−(γ+u)μ(X)Pμ̃(dμ)
un+q−1


(n + q)

ℵ(pn)∏
k=1

η(dYk)s
nk

k e−sk(γ+u)ρYk
(dsk)du. (A.9)

The disintegration between terms in e−(γ+u)μ(X) and Pμ̃(dμ) in (A.9) yields e−ψ0(γ+u) and
Pμ̃(u) (dμ) where ψ0 is defined in (2.9) and the completely random measure μ̃(u) has the intensity
measure ν(u)(dx,ds) = η(dx)e−(γ+u)sρx(ds). Then, (A.9) turns out to be

Pμ̃(u) (dμ)e−ψ0(γ+u) un+q−1


(n + q)

ℵ(pn)∏
k=1

η(dYk)s
nk

k e−sk(γ+u)ρYk
(dsk)du. (A.10)

So, conditional on Un and Xn, the process μ̃(Un) + ∑ℵ(pn)

k=1 J
(Un,Xn)
k δYk

is a completely random
measure (2.1) (see also Daley and Vere-Jones [8], page 79, Theorem 10.1.III) such that

μ̃(Un,Xn)(dx)
d= μ̃(Un)(dx) +

ℵ(pn)∑
k=1

J
(Un,Xn)
k δYk

(dx), (A.11)

where each J
(Un,Xn)
k has the density P(J

(Un,Xn)
k ∈ ds) = snk e−s(γ+Un)ρYk

(ds)∫
R+ snk e−s(γ+Un)ρYk

(ds)
for k = 1, . . . ,

ℵ(pn) and {J (Un,Xn)
1 , . . . , J

(Un,Xn)
ℵ(pn) } are conditionally independent. Furthermore, conditional

on Un, μ̃(Un) and {J (Un,Xn)
1 , . . . , J

(Un,Xn)
ℵ(pn) } are independent. Lastly the distributional identity

G̃(Un,Xn)(·) d= μ̃(Un,Xn)(·)/μ̃(Un,Xn)(X) is obtained by the same arguments in the proof of Theo-
rem 2 of James et al. [22], page 96, and G̃(Un,Xn) is a normalized completely random measure.
Thus, the proof is complete.
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A.3. Proof of Proposition 3.1

Following the definition of the predictive distribution,

P{Xn+1 ∈ dx|Xn} =
∫

R+
E

[
G̃(Un,Xn)(dx)|Xn,Un = u

]
fUn|Xn

(u)du, (A.12)

and using the result from Theorem 3.2, the expectation (A.12) inside the integral is given by

E
[
G̃(Un,Xn)(dx)|Xn,Un

]
= E

[
μ̃(Un)(dx)

μ̃(Un)(X) + ∑ℵ(pn)

k′=1 J
(Un,Xn)

k′

∣∣∣Xn,Un

]
(A.13)

+
ℵ(pn)∑
k=1

E

[
J

(Un,Xn)
k

μ̃(Un)(X) + ∑ℵ(pn)

k′=1 J
(Un,Xn)

k′

∣∣∣Xn,Un

]
δYk

(dx).

We use Theorem 3.2 to obtain the explicit results of the expectations (A.13) according to the
conditional distributions of μ̃(Un) and J

(Un,Xn)
k for k = 1, . . . ,ℵ(pn). There are two expected

values (A.13) considered in the following. Firstly, an exponential identity in the first integral of
(A.13) yields,

E

[
μ̃(Un)(dx)

μ(Un)(X) + ∑ℵ(pn)

k′=1 J
(Un,Xn)

k′

∣∣∣Xn,Un

]
(A.14)

=
∫

R+
E

[
μ̃(Un)(dx)e−zμ̃(Un)(X)

ℵ(pn)∏
k′=1

e−zJ
(Un,Xn)

k′
∣∣∣Xn,Un

]
dz.

We apply a change of measure on μ̃(Un) and compute directly on the expectation with respect to
J

(Un,Xn)
k for k = 1, . . . ,ℵ(pn), (A.14) turns out to be

η(dx) ×
∫

R+
e−ψγ+Un (z)τ1,x(γ + z + Un)

ℵ(pn)∏
k=1

τnk,Yk
(γ + z + Un)

τnk,Yk
(γ + Un)

dz. (A.15)

Marginalizing over Un on (A.15) is given by∫
R+

E

[
μ̃(Un)(dx)

μ̃(Un)(X) + ∑ℵ(pn)

k′=1 J
(Un,Xn)

k′
|Xn,Un

]
fUn|Xn

(u)du

= η(dx) ×
∫

R+×R+
e−ψγ+u(z)τ1,x(γ + z + u) (A.16)

× e−ψ0(γ+u)
∏ℵ(pn)

k=1 τnk,Yk
(γ + z + u)un+q−1∫

R+ e−ψ0(γ+u)
∏ℵ(pn)

k=1 τnk,Yk
(γ + u)un+q−1 du

dudz.
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Taking the equality ψ0(γ + z + u) = ψγ+u(z) + ψ0(γ + u) and transforming the upper integral
with (w,v) = (u + z,u), (A.16) becomes

η(dx) ×
∫

R+ e−ψ0(γ+w)τ1,x(γ + w)
∏ℵ(pn)

k=1 τnk,Yk
(γ + w)wn+q/(n + q)dw∫

R+ e−ψ0(γ+u)
∏ℵ(pn)

k=1 τnk,Yk
(γ + u)un+q−1 du

= η(dx) × 1

n + q

∫
R+

τ1,x(γ + u)ufUn|Xn
(u)du.

Now consider the second expectation of (A.13). As before, an exponential identity in the second
integral yields,

E

[
J

(Un,Xn)
k

μ(Un)(X) + ∑ℵ(pn)

k′=1 J
(Un,Xn)

k′

∣∣∣Xn,Un

]
(A.17)

=
∫

R+
E

[
J

(Un,Xn)
k e−zμ(Un)(X)

ℵ(pn)∏
k′=1

e−zJ
(Un,Xn)

k′
∣∣∣Xn,Un

]
dz.

By direct computation, (A.17) turns out to be

∫
R+

e−ψγ+Un (z) τnk+1,Yk
(γ + z + Un)

τnk,Yk
(γ + Un)

ℵ(pn)∏
k′=1,k′ �=k

τnk′ ,Yk′ (γ + z + Un)

τnk′ ,Yk′ (γ + Un)
dz. (A.18)

Marginalizing over Un on (A.18) is given by

∫
R+

E

[
J

(Un,Xn)
k

μ̃(Un)(X) + ∑ℵ(pn)

k′=1 J
(Un,Xn)

k′

∣∣∣Xn,Un

]
fUn|Xn

(u)du

=
∫

R+×R+
e−ψγ+u(z)τnk+1,Yk

(γ + z + u) (A.19)

× e−ψ0(γ+u)
∏ℵ(pn)

k′=1,k′ �=k
τnk′ ,Yk′ (γ + z + u)un+q−1∫

R+ e−ψ0(γ+u)
∏ℵ(pn)

k′=1 τnk′ ,Yk′ (γ + u)un+q−1 du
dudz.

Taking the equality ψ0(γ + z + u) = ψγ+u(z) + ψ0(γ + u) and transforming the upper integral
with (w,v) = (u + z,u), (A.19) becomes∫

R+ e−ψ0(γ+w)τnk+1,Yk
(γ + w)

∏ℵ(pn)

k′=1,k′ �=k
τnk′ ,Yk′ (γ + w)wn+q/(n + q)dw∫

R+ e−ψ0(γ+u)
∏ℵ(pn)

k′=1 τnk′ ,Yk′ (γ + u)un+q−1 du
(A.20)

= 1

n + q

∫
R+

τnk+1,Yk
(γ + u)

τnk,Yk
(γ + u)

ufUn|Xn
(u)du.
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We conclude that the predictive distribution for Xn+1 given Xn = {X1, . . . ,Xn} is given by

P{Xn+1 ∈ dx|Xn} = 1

n + q

∫
R+

uτ1,x(γ + u)fUn|Xn
(u)du × η(dx)

(A.21)

+
ℵ(pn)∑
k=1

1

n + q

∫
R+

u
τnk+1,Yk

(γ + u)

τnk,Yk
(γ + u)

fUn|Xn
(u)du × δYk

(dx).

This representation is analogous to James et al. [22]. In fact, we prefer an intuitive representation
for this predictive distribution for the next proof of the conditional case. A representation of the
predictive distribution is given by

P{Xn+1 ∈ dx|Xn} = ωn,ℵ(pn)+1(x)

φ(Xn)
η(dx) +

ℵ(pn)∑
k=1

ωn,k(Yk)

φ(Xn)
δYk

(dx), (A.22)

where

ωn,ℵ(pn)+1(x) =
∫

R+
uτ1,x(γ + u)fUn|Xn

(u)du,

ωn,k(Yk) =
∫

R+
u

τnk+1,Yk
(γ + u)

τnk,Yk
(γ + u)

fUn|Xn
(u)du,

φ(Xn) =
∫

X

ωn,ℵ(pn)+1(x)η(dx) +
ℵ(pn)∑
k=1

ωn,k(Yk) = n + q.

Clearly, we could write (A.21) or (A.22) as an expectation with respect to the distribution
Un given Xn, P{Xn+1 ∈ dx|Xn} = E[P{Xn+1 ∈ dx|Xn,Un}|Xn]. However, the term P{Xn+1 ∈
dx|Xn,Un} might not be a proper distribution. We suggest the following expectation instead with
respect to the distribution Ũn given Xn, P{Xn+1 ∈ dx|Xn} = E[P{Xn+1 ∈ dx|Xn, Ũn}|Xn]. So
conditional on Ũn, the predictive distribution is given by

P{Xn+1 ∈ dx|Xn, Ũn} = ωn,ℵ(pn)+1(Ũn, x)

φ(Ũn,Xn)
η(dx) +

ℵ(pn)∑
k=1

ωn,k(Ũn, Yk)

φ(Ũn,Xn)
δYk

(dx),

φ(u,Xn) =
∫

X

ωn,ℵ(pn)+1(u, x)η(dx) +
ℵ(pn)∑
k=1

ωn,k(u,Yk),

ωn,ℵ(pn)+1(u, x) = uτ1,x(γ + u),

ωn,k(u,Yk) = u
τnk+1,Yk

(γ + u)

τnk,Yk
(γ + u)

, k = 1, . . . ,ℵ(pn) and

fŨn|Xn
(u) = φ(u,Xn)

E[φ(Un,Xn)|Xn]fUn|Xn
(u).
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Lastly, the following equality can be achieved by inspection of (A.21) and (A.22),
φ(Xn) = E[φ(Un|Xn)|Xn] = n + q and the following equalities can be obtained according to
the definitions, ωn,ℵ(pn)+1(x) = E[ωn,ℵ(pn)+1(Un, x)|Xn] and ωn,k(Yk) = E[ωn,k(Un,Yk)|Xn]
for k = 1, . . . ,ℵ(pn).

A.4. Proof of Proposition 3.2

The joint distribution of {Yℵ(pn),pn,Un} could be simply derived from (A.10) of Theorem 3.2,
which is proportional to

e−ψ0(γ+u) un+q−1


(n + q)

ℵ(pn)∏
k=1

η(dYk)τnk,Yk
(γ + u)du,

where τm,z(a) is defined in (3.17). Distributional results around these random variables
{Yℵ(pn),pn,Un} are achieved immediately with some simple algebra.

A.5. Proof of equation (6.1)

Starting from the marginal distribution of Xn which is given by∫
MX

n∏
i=1

μ(dxi)

μ(X)
Pμ̃t (dμ) =

∫
MX

n∏
i=1

μ(dxi)
h(μ(X))μ(X)−n

E[h(μ(X))] Pμ̃(dμ). (A.23)

One could apply the Fubini theorem following from an application of Lemma 2.2 of James [18],
page 8, on (A.23) to yield the joint distribution of {Yℵ(pn),pn},

1

E[h(μ(X))]
∫

MX×(R+)ℵ(pn)

h(μ(X) + ∑ℵ(pn)

k=1 sk)

(μ(X) + ∑ℵ(pn)

k=1 sk)n
Pμ̃(dμ)

ℵ(pn)∏
k=1

η(dYk)s
nk

k ρ(dsk). (A.24)

Then, in (A.24), marginalizing Yℵ(pn) and replacing the distribution of the total T̃ = μ̃(X) by
fT̃ (t), the distribution of pn is given by the following without the proportional constant,

∫
(R+)ℵ(pn)×R+

h(t + ∑ℵ(pn)

k=1 sk)

(t + ∑ℵ(pn)

k=1 sk)n

1

E[h(T̃ )]fT̃ (t)

ℵ(pn)∏
k=1

s
nk

k ρ(dsk)dt. (A.25)

Considering the transformation t∗ = t + ∑ℵ(pn)

k=1 sk and (A.25) becomes

∫
(R+)ℵ(pn)×R+

I{t∗−∑ℵ(pn)

k=1 sk>0}
h(t∗)
(t∗)n

fT̃ (t∗ − ∑ℵ(pn)

k=1 sk)

E[h(T̃ )]
ℵ(pn)∏
k=1

s
nk

k ρ(dsk)dt∗. (A.26)



2624 J.W. Lau

Rearranging terms in (A.26) yields∫
(R+)ℵ(pn)×R+

I{t∗−∑ℵ(pn)

k=1 sk>0}
fT̃ (t∗ − ∑ℵ(pn)

k=1 sk)

(t∗)nfT̃ (t∗)

ℵ(pn)∏
k=1

s
nk

k ρ(dsk)
h(t∗)fT̃ (t∗)

E[h(T̃ )] dt∗.

Thus, the proof is complete.
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