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When is Eaton’s Markov chain irreducible?
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Consider a parametric statistical model P(dx|θ) and an improper prior distribution ν(dθ) that together yield
a (proper) formal posterior distribution Q(dθ |x). The prior is called strongly admissible if the generalized
Bayes estimator of every bounded function of θ is admissible under squared error loss. Eaton [Ann. Sta-
tist. 20 (1992) 1147–1179] has shown that a sufficient condition for strong admissibility of ν is the local
recurrence of the Markov chain whose transition function is R(θ,dη) = ∫

Q(dη|x)P (dx|θ). Applications
of this result and its extensions are often greatly simplified when the Markov chain associated with R is ir-
reducible. However, establishing irreducibility can be difficult. In this paper, we provide a characterization
of irreducibility for general state space Markov chains and use this characterization to develop an easily
checked, necessary and sufficient condition for irreducibility of Eaton’s Markov chain. All that is required
to check this condition is a simple examination of P and ν. Application of the main result is illustrated
using two examples.
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1. Introduction

Consider a parametric statistical decision problem with sample space X and parameter space �.
Both X and � are assumed to be Polish spaces equipped with their Borel σ -algebras B(X) and
B(�). Suppose that P :B(X) × � → [0,1] represents a parametric statistical model, that is, for
each θ , P(·|θ) is a probability measure and, for each A, P(A|·) is a measurable function. As
usual, the idea is that we will observe a random element whose distribution is P(dx|θ), the goal
being to use the observation to make inferences about the unknown parameter θ . This will be
done within the Bayesian paradigm using an improper prior distribution. In particular, let ν(dθ)

denote a σ -finite measure with ν(�) = ∞. Define the marginal measure as

M(dx) =
∫

�

P (dx|θ)ν(dθ).

Eaton [2] shows that if M is σ -finite, then there exists a formal posterior distribution Q, defined
as follows.

Definition 1. A function Q :B(�) × X → [0,1] is called a formal posterior distribution (FPD)
if:

1. Q(·|x) is a probability measure for each x;
2. Q(B|·) is a measurable function for each B;
3. Q(dθ |x)M(dx) = P(dx|θ)ν(dθ), that is, for all A ∈ B(X) and B ∈ B(�),∫

A

Q(B|x)M(dx) =
∫

B

P (A|θ)ν(dθ).
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The FPD is unique in the sense that if Q̃ is another FPD, then there is an M-null set A0 such
that x /∈ A0 implies Q(dθ |x) = Q̃(dθ |x). Throughout this paper, M is assumed to be σ -finite, so
an FPD is guaranteed to exist. We now briefly describe a method of evaluating improper prior
distributions that is due to M.L. Eaton. (For a more in depth review of this area, see Eaton [4,6].)

Consider the problem of estimating a bounded, real-valued function γ (θ) under squared error
loss. Of course, the formal Bayes estimator of γ (θ) is γ̂ (x) = ∫

�
γ (θ)Q(dθ |x). The risk function

of a generic estimator, say δ, is its mean squared error, that is,

r(δ, θ) =
∫

X

(
δ(x) − γ (θ)

)2
P(dx|θ).

The estimator δ is called almost-ν-admissible if for any estimator δ′ such that

r(δ′, θ) ≤ r(δ, θ) ∀θ ∈ �,

the set {θ ∈ � : r(δ′, θ) < r(δ, θ)} has ν-measure zero. If P(dx|θ) and ν(dθ) combine to yield
an FPD that generates (almost) admissible estimators for a large class of functions of θ , then
we would be willing to endorse ν as a good “all purpose” prior to use in conjunction with the
statistical model P(dx|θ). This idea provides motivation for the following definition.

Definition 2. The prior ν is called strongly admissible if γ̂ is almost-ν-admissible for every
bounded, real-valued function γ .

Eaton [3] developed a sufficient condition for strong admissibility that involves the Markov
transition function R :� ×B(�) → [0,1] given by

R(θ,dη) =
∫

X
Q(dη|x)P (dx|θ).

Before we can state the result, we need a couple of concepts from general state space Markov
chain theory. Let W = {Wn}∞n=0 denote the Markov chain on � driven by R and let Prθ denote
the overall probability law governing the chain when W0 = θ . For B ∈ B(�), let σB denote the
first return to B , that is,

σB = min{n ≥ 1 :Wn ∈ B},
with the understanding that σB = ∞ if Wn ∈ B for all n ≥ 1, where B denotes the complement
of B .

Definition 3. The Markov chain W is called locally-ν-recurrent if, for each B with 0 <

ν(B) < ∞, the set

{θ ∈ B : Prθ (σB < ∞) < 1}
has ν-measure 0.

In words, the chain is locally-ν-recurrent if, when started inside the set B , aside from a set of
starting values that has ν-measure 0, the chain returns to B with probability 1. Note that, unlike
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the standard definition of recurrence (see, e.g., Meyn and Tweedie [11], Chapter 8), this definition
pertains to both reducible and irreducible chains. Indeed, just before defining local-ν-recurrence
on page 1174, Eaton [3] states: “The following definition, a modified notion of recurrence, allows
us to circumvent a discussion of irreducibility issues while relating our previous admissibility
results to the recurrence of W .” The following was proven in Eaton [3] (see also Eaton [5]).

Theorem 1. If W is a locally-ν-recurrent Markov chain, then ν is a strongly admissible prior.

Establishing local-ν-recurrence directly using the definition (or the characterization based on
the Dirichlet form of R) is typically infeasible. However, if W is ν-irreducible, that is, any set B

with ν(B) > 0 is accessible from any θ ∈ �, then recurrence and local-ν-recurrence are equiv-
alent (Eaton, Hobert and Jones [7]). Hence, if ν-irreducibility of W can be demonstrated, then
all of the techniques that have been developed for establishing recurrence can be brought to bear
on the problem. Indeed, nearly all of the applications of Theorem 1 have involved first demon-
strating that W is ν-irreducible and then showing that W is recurrent. Examples can be found
in Eaton [3], Hobert and Robert [9], Hobert and Schweinsberg [10] and Hobert, Marchev and
Schweinsberg [8]. Similarly, Eaton et al. [7] have recently extended and generalized the theo-
retical results of Eaton [3] and Hobert and Robert [9] under the assumption that the chains of
interest are irreducible.

There is one very simple sufficient condition for ν-irreducibility of W and this was used in
most of the applications mentioned above. If the support of the statistical model does not depend
on the parameter, that is, if the set {A ∈ B(X) :P(A|θ) > 0} is the same for all θ ∈ �, then W

is ν-irreducible (Eaton et al. [7]). Until now, however, there has been no easy way to check for
ν-irreducibility of Eaton’s Markov chain when this condition fails. In this paper, we provide an
easily checked, necessary and sufficient condition for ν-irreducibility of W . This result cannot
be stated precisely at this point, but the sufficiency half, which is the practically important part,
can be.

Theorem 2. The Markov chain W is ν-irreducible if there do not exist two sets A ∈ B(X) and
C ∈ B(�) with the following properties: C is non-empty, ν(C) > 0, P(A|θ) = 0 for every θ ∈ C

and P(A|θ) = 0 for ν-almost all θ ∈ C.

This result allows one to establish ν-irreducibility of Eaton’s Markov chain through a simple
examination of P and ν. Neither the posterior distribution Q nor the Markov transition function
R is required to check the condition. It is interesting to note that if the sets A and C do exist,
then P(dx|θ) and P(dx|θ ′) are mutually singular probability measures whenever θ ∈ C and
θ ′ ∈ C (aside from a ν-null set of θ ’s in C). Thus, the statistical model is, in a sense, an artificial
concatenation of two different models.

The remainder of the paper is organized as follows. Section 2 contains a new characterization
of irreducibility for general state space Markov chains. This characterization is used in Section 3
to prove the main result. Application of the main result is illustrated in Section 4.
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2. A characterization of irreducibility for general
Markov chains

Let S(y,dz) be a Markov transition function on a general state space (Y,B(Y)), as described,
for example, in Meyn and Tweedie [11], Section 3.4. Denote the corresponding Markov chain
by Y = {Yn}∞n=0. For n ∈ N := {1,2,3, . . .}, let Sn(y,dz) denote the n-step Markov transition
function corresponding to S, which is defined inductively by

Sn+1(y,dz) =
∫

Y
Sn(w,dz)S(y,dw),

where S1 ≡ S. Of course, Sn(y,A) = Pry(Yn ∈ A), where Pry(·) denotes the overall law govern-
ing Y on Y∞, assuming that Y0 = y. Let ϕ denote a non-trivial, σ -finite measure on (Y,B(Y)).
The following is a standard definition of irreducibility for general state space Markov chains.

Definition 4 (Meyn and Tweedie [11], page 87). The Markov chain Y is called ϕ-irreducible if,
for every measurable A with ϕ(A) > 0 and every y ∈ Y, there exists an n ∈ N (which may depend
on y and A) such that Sn(y,A) > 0.

In words, ϕ-irreducibility means that every set A with ϕ(A) > 0 is accessible from any y ∈ Y.
We will call the Markov chain ϕ-reducible when it is not ϕ-irreducible, that is, when there exist y

and A with ϕ(A) > 0 such that Sn(y,A) = 0 for all n ∈ N. We will sometimes find it convenient
to apply the descriptions “ϕ-irreducible” and “ϕ-reducible” to the Markov transition function S.
Our first result shows that if the chain is ϕ-reducible, then we may assume that y ∈ A.

Proposition 1. The Markov chain Y is ϕ-reducible if and only if there exists A ∈ B(Y) with
ϕ(A) > 0 and y ∈ A such that Sn(y,A) = 0 for all n ∈ N.

Proof. The sufficiency part is obvious. Now, assume that the chain is ϕ-reducible, so there exist
y ∈ Y and A ∈ B(Y) with ϕ(A) > 0 such that Sn(y,A) = 0 for all n ∈ N. If y ∈ A, then there
is nothing to prove, so assume that y ∈ A. We will establish the existence of y′ ∈ A such that
Sn(y′,A) = 0 for all n ∈ N. First, for each m ∈ N, define

Bm = {w ∈ A :Sm(w,A) > 0},
and set B = ⋃∞

m=1 Bm. Now, fix m ∈ N and note that

0 = Sm+1(y,A) =
∫

Y
Sm(z,A)S(y,dz) ≥

∫
Bm

Sm(z,A)S(y,dz).

Since Sm(z,A) > 0 for z ∈ Bm, we must have S(y,Bm) = 0. But this result holds for every
m ∈ N, so it follows that S(y,B) = 0. Note that Y can be partitioned into A, B and A \B and we
know that S(y,A) = S(y,B) = 0. Therefore, S(y,A \ B) = 1, which implies that A \ B is not
empty. Clearly, any y′ ∈ A \ B satisfies Sn(y′,A) = 0 for all n ∈ N. �
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In the classical case where Y is countable, the chain is called irreducible (with no prefix) if, for
each i, j ∈ Y, there exists an n ∈ N such that Sn(i, {j}) > 0. This is equivalent to c-irreducibility,
where c denotes counting measure on Y. In this context, a non-empty set C ⊂ Y is called closed
if, once the chain enters C, it cannot leave. Formally, C is closed if

∑
j∈C S(i, {j}) = 1 for all

i ∈ C. Obviously, the state space Y is closed. In fact, the Markov chain is irreducible if and only
if Y has no proper, closed subset (see, e.g., Billingsley [1], Problem 8.21). We now extend these
ideas to handle Markov chains on general state spaces.

Definition 5. A set C ∈ B(Y) is called closed if it is non-empty and S(y,C) = 0 for all y ∈ C.

The following is the general state space version of the result in Billingsley’s [1] Problem 8.21.

Theorem 3. The Markov chain Y is ϕ-reducible if and only if there exists a closed set C with
ϕ(C) > 0.

Proof. To prove sufficiency, suppose that C is a closed set with ϕ(C) > 0. Assume that for some
n ∈ N, Sn(y,C) = 0 for all y ∈ C. Then, for any y ∈ C, we have

Sn+1(y,C) =
∫

Y
Sn(z,C)S(y,dz) =

∫
C

Sn(z,C)S(y,dz) = 0.

Hence, by induction, Sn(y,C) = 0 for all y ∈ C and all n ∈ N. Therefore, since C is non-empty
and ϕ(C) > 0, the chain is ϕ-reducible.

Now, to prove necessity, assume that the chain is ϕ-reducible. By Proposition 1, there exist a
measurable A with ϕ(A) > 0 and a y ∈ A such that Sn(y,A) = 0 for all n ∈ N. For each m ∈ N,
define

Bm = {w ∈ Y :Sm(w,A) > 0}
and set B = ⋃∞

m=1 Bm. We will show that the measurable set C := A ∩ B is the closed set that
we seek. First, y ∈ C, so C is non-empty. Now, suppose that y′ ∈ C is such that S(y′,C) > 0.
Then,

S(y′,A) + S(y′,B) ≥ S(y′,A ∪ B) = S(y′,C) > 0.

Since y′ ∈ C ⇒ y′ ∈ B ⇒ y′ ∈ B1, we know that S(y′,A) = 0, so it must be the case that
S(y′,B) > 0. Hence, there must exist a k ∈ N such that S(y′,Bk) > 0, which implies that

Sk+1(y′,A) =
∫

Y
Sk(z,A)S(y′,dz) =

∫
Bk

Sk(z,A)S(y′,dz) > 0.

But this implies that y′ ∈ Bk+1, which contradicts the fact that y′ ∈ C. Therefore, it must be the
case that S(y,C) = 0 for all y ∈ C and this implies that C is closed. Finally, ϕ(C) ≥ ϕ(A) > 0. �

In the next section, we use Theorem 3 to develop an easily checked, necessary and sufficient
condition for ν-irreducibility of Eaton’s Markov chain.
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3. Conditions for irreducibility of Eaton’s Markov chain

Eaton [3] studied the Markov transition function

R(θ,dη) =
∫

X
Q(dη|x)P (dx|θ),

where P is the statistical model and Q is an FPD. Since any FPD can be used to construct R, R

is not unique. For example, if Q̃ 
= Q is another FPD, then

R̃(θ,dη) =
∫

X
Q̃(dη|x)P (dx|θ)

is an equally valid version of the Markov transition function. However, the following result shows
that R enjoys a uniqueness property similar to the uniqueness property of the FPD that was
discussed in Section 1.

Proposition 2. If R and R̃ are two different versions of Eaton’s Markov transition function, then
there exists a ν-null set B0 ∈ B(�) such that θ /∈ B0 implies R(θ, ·) = R̃(θ, ·).

Proof. Since Q and Q̃ are both FPD’s, there exists an M-null set A0 such that x /∈ A0 ⇒
Q(dθ |x) = Q̃(dθ |x). Fix B ∈ B(�) and note that

R(θ,B) − R̃(θ,B) =
∫

A0

[Q(B|x) − Q̃(B|x)]P(dx|θ).

Now, since 0 = M(A0) = ∫
�

P (A0|θ)ν(dθ), there exists a ν-null set B0 such that P(A0|θ) = 0
for all θ ∈ B0. Hence, θ /∈ B0 ⇒ R(θ,B) = R̃(θ,B). Finally, note that A0 is determined by Q

and Q̃, and B0 is determined by A0. Therefore, B0 does not depend on the set B , so θ /∈ B0 ⇒
R(θ, ·) = R̃(θ, ·). �

Remark 1. An important consequence of Proposition 2 is that either all versions of R are locally-
ν-recurrent, or none of them is.

Every FPD satisfies P(dx|θ)ν(dθ) = Q(dθ |x)M(dx) and it follows that every version of R is
reversible (or symmetric) with respect to ν, that is, if f and g are bounded, real-valued functions
on �, then

∫
�

∫
�

f (θ)g(η)R(θ,dη)ν(dθ) =
∫

�

∫
�

f (θ)g(η)R(η,dθ)ν(dη).

This property is key in the proof of our main result, which we now state and prove.

Theorem 4. There exists a ν-reducible version of R if and only if there exist a non-empty set
C ∈ B(�) with ν(C) > 0 and another set A ∈ B(X) such that P(A|θ) = 0 for every θ ∈ C and
P(A|θ) = 0 for ν-a.e. θ ∈ C.
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Proof. To prove sufficiency, suppose that A and C exist. Using property 3 of Definition 1, we
have ∫

A

Q(C|x)M(dx) =
∫

C

P (A|θ)ν(dθ) = 0.

Hence, if

D = {x ∈ A :Q(C|x) > 0},
then M(D) = 0 and, obviously, Q(C|x) = 0 for all x ∈ A \ D. Fix θ0 ∈ C and let δθ0(dθ) denote
a probability measure concentrated on the point θ0. Now, define

Q̃(dθ |x) =
{

Q(dθ |x), if x /∈ D,
δθ0(dθ), if x ∈ D.

Clearly, Q̃ satisfies the first and third properties of Definition 1. Moreover, we show in the Ap-
pendix that, for any B ∈ B(�), Q̃(B|·) is measurable. Therefore, Q̃ is an FPD and we now show
that

R̃(θ,dη) =
∫

X
Q̃(dη|x)P (dx|θ)

is the ν-reducible version of R that we seek. By construction, Q̃(C|x) = 0 for all x ∈ A. It
follows that, for every θ ∈ C,

R̃(θ,C) =
∫

X
Q̃(C|x)P (dx|θ) =

∫
A

Q̃(C|x)P (dx|θ) = 0.

Consequently, C is a closed set with ν(C) > 0 and it follows from Theorem 3 that R̃ is ν-
reducible.

To prove necessity, assume that R is ν-reducible. By Theorem 3, there exists a closed set C

with ν(C) > 0. Using the reversibility of R, we have
∫

C

R(θ,C)ν(dθ) =
∫

C

R(θ,C)ν(dθ) = 0.

This, of course, implies that R(θ,C) = 0 for ν-a.e. θ ∈ C. Now, define F1 = {x ∈ X :Q(C|x) >

0} and F2 = {x ∈ X :Q(C|x) > 0}. Since Q(C|x) + Q(C|x) = 1 for every x ∈ X, we have
F1 ∪ F2 = X. Consequently, F 2 ⊂ F1. Since C is closed, we know that for any θ ∈ C,

0 = R(θ,C) =
∫

X
Q(C|x)P (dx|θ) =

∫
F2

Q(C|x)P (dx|θ).

Thus, P(F2|θ) = 0 for all θ ∈ C. Similarly, for ν-a.e. θ ∈ C, we have

0 = R(θ,C) =
∫

X
Q(C|x)P (dx|θ) =

∫
F1

Q(C|x)P (dx|θ).
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Therefore, P(F1|θ) = 0 for ν-a.e. θ ∈ C and since F 2 ⊂ F1, it follows that P(F 2|θ) = 0 for
ν-a.e. θ ∈ C. Letting A = F 2, we have P(A|θ) = 0 for all θ ∈ C and P(A|θ) = 0 for ν-a.e.
θ ∈ C. �

Obviously, a sufficient condition for ν-irreducibility of R is the non-existence of the sets A

and C in Theorem 4. This is precisely what Theorem 2 says. However, as will become clear from
the examples in the next section, even when the sets A and C do exist, it is often the case that
some versions of R are ν-irreducible. One way to establish local-ν-recurrence (of all versions)
of R is to identify a single version of R that is ν-irreducible and then show that this version of R

is recurrent. The result then follows from the equivalence of recurrence and local-ν-recurrence
(under irreducibility) mentioned in Section 1.

4. Examples

In this section, we illustrate the use of Theorem 4 with two examples.

Example 1. Let X = � = R and P(dx|θ) = p(x|θ)dx, where

p(x|θ) = I(θ,θ+1)(x)

and where dx denotes Lebesgue measure on X. Take the prior distribution to be ν(dθ) = dθ .
A simple calculation shows that the marginal measure is M(dx) = dx, which is clearly σ -finite.
This is all the information we require to apply Theorem 4. Let C ∈ B(�) be a non-empty set such
that ν(C) > 0. We claim that there exist θ ′ ∈ C and D ⊂ C such that ν(D) > 0 and |θ − θ ′| <

1/4 for every θ ∈ D. To see this, let Di = [ i
8 , i+1

8 ) for all i ∈ Z := {. . . ,−1,0,1, . . .}. Then,
� = ⋃

i∈Z
Di . If there exists an i0 such that C ∩ Di0 is not empty and ν(C ∩ Di0) > 0, then

we can simply take θ ′ to be any point in C ∩ Di0 and D to be the set C ∩ Di0 . Otherwise, for
every i ∈ Z, either Di ⊂ C or ν(C ∩ Di) = 0. Since ν(C) > 0, there must exist an i0 such that
ν(C ∩Di0) > 0 and it follows that Di0 ⊂ C. Assume, without loss of generality, that C ∩ [ i0

8 ,∞)

is non-empty and let i1 = min{i > i0 : C ∩ Di is non-empty}, which is clearly finite. Now, any
point in C ∩ Di1 and the set Di1−1 play the roles of θ ′ and D. These arguments show that there
exist θ ∈ C and θ ′ ∈ C such that |θ −θ ′| < 1/4, where θ can be chosen outside of any subset of C

having Lebesgue measure zero. It follows that if I1 = (θ, θ +1), I2 = (θ ′, θ ′ +1) and I = I1 ∩I2,
then ν(I ) > 0. Now, if there exists an A ∈ B(X) such that P(A|θ) = 0 and P(A|θ ′) = 0, then

ν(I ) = ν(A ∩ I ) + ν(A ∩ I ) ≤ ν(A ∩ I1) + ν(A ∩ I2) = 0,

which is a contradiction. Hence, such an A cannot exist and it follows from Theorem 4 that every
version of Eaton’s Markov chain is ν-irreducible.

For the sake of comparison, we now explain what is required to establish irreducibility in this
situation if we make no appeal to Theorem 4. A version of the posterior is given by Q(dθ |x) =
q(θ |x)dθ , where

q(θ |x) = I(x−1,x)(θ).
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It follows that R(θ,dη) = r(η|θ)dη, where

r(η|θ) = (
1 + (η − θ)

)
I(−1,0)(η − θ) + (

1 − (η − θ)
)
I(0,1)(η − θ).

Since θ is a location parameter in the density r(η|θ), the Markov chain W can be expressed as a
random walk

Wn+1 = Wn + Zn+1,

where Z1,Z2, . . . is an independent and identically distributed (i.i.d.) sequence of random vari-
ables with density given by

f (z) = (1 + z)I(−1,0)(z) + (1 − z)I(0,1)(z).

For any ε ∈ (0,1), we have

P
(
Z1 ∈ (0, ε)

) = P
(
Z1 ∈ (−ε,0)

)
> 0.

This implies that the chain W can make arbitrarily small jumps in either direction. While this
argument makes it intuitively clear that the chain is ν-irreducible, a formal proof requires a
technical argument similar to that used in Section 4.3.3 of Meyn and Tweedie [11].

It turns out that this random walk is recurrent, which implies that W is locally-ν-recurrent.
Hence, by Theorem 1, ν is strongly admissible. In fact, Eaton [3] shows that, under very mild
conditions, Lebesgue measure is a strongly admissible prior for one- and two-dimensional loca-
tion problems. This concludes Example 1.

Example 2. Let � = R+ := [0,∞) and X = R
n+. Suppose that when θ > 0, the statistical model

P(dx|θ) has a density (with respect to Lebesgue measure on X) given by

p(x|θ) =
n∏

i=1

1

θ
I[0,θ)(xi),

where x = (x1, . . . , xn). In words, our statistical model stipulates that X1, . . . ,Xn are i.i.d.
random variables from the uniform distribution on [0, θ). Take the prior distribution to be
ν(dθ) = dθ

θ
, where dθ denotes Lebesgue measure on �. While we have yet to define P(dx|θ)

in the case where θ = 0, from a practical (statistical) standpoint this definition is irrelevant since
ν({0}) = 0. However, technically speaking, this distribution must be specified to complete the
model. (Note that we cannot simply remove the point {0} from � because (0,∞) is not a Polish
space.) We consider two alternatives for P(dx|0):

1. a unit point mass at (0, . . . ,0) ∈ R
n;

2. n i.i.d. exponential random variables with unit scale.

We now apply Theorem 4. In case 1, there does exist a ν-reducible version of R since we can
take A to be the point (0, . . . ,0) ∈ R

n and C = {0}. However, in case 2, the sets A and C do
not exist. Indeed, let µ denote Lebesgue measure on X and note that it is impossible to satisfy
the conditions of Theorem 4 if µ(A) = 0 since this yields P(A|θ) = 1 for all θ ∈ �. Now, if
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µ(A) > 0 and P(A|θ) = 0, then it must be true that θ > 0 and µ(A ∩ [0, θ)n) = 0. Similarly, if
θ∗ > 0 and P(A|θ∗) = 0, then µ(A ∩ [0, θ∗)n) = 0. Now, let θ0 = min{θ, θ∗} and note that

µ([0, θ0)
n) = µ

(
A ∩ [0, θ0)

n
) + µ

(
A ∩ [0, θ0)

n
) ≤ µ

(
A ∩ [0, θ∗)n

) + µ
(
A ∩ [0, θ)n

) = 0.

This is a contradiction, which implies that the sets A and C do not exist. It follows that every
version of R is ν-irreducible. Note that, by defining the statistical model carefully on an irrele-
vant (ν-null) set of θ ’s, we were able to employ Theorem 4 to show that all versions of R are
ν-irreducible.

Regardless of how P(dx|0) is defined, the marginal measure is given by

M(dx) = dx

nxn
(n)

,

where x(n) := max{x1, . . . , xn} and dx denotes Lebesgue measure on X. Consider case 1 again.
For x such that x(n) > 0, define

q(θ |x) = nxn
(n)

θn+1
I(x(n),∞)(θ).

Since the point (0, . . . ,0) ∈ R
n has M-measure 0, Q(dθ |x) can essentially be chosen arbitrarily

when x(n) = 0. We consider two different choices. Let δ0(dθ) denote the probability measure
concentrated at {0} and let δ1(dθ) denote a probability measure with support R+. (It seems
more appropriate to take Q(dθ |x) equal to δ0(dθ) when x(n) = 0.) Two different versions of the
posterior distribution are given by

Qi(dθ |x) =
{

q(θ |x)dθ, x(n) > 0,
δi(dθ), x(n) = 0,

for i ∈ {0,1}. The version of Eaton’s chain associated with Q0 is ν-reducible since, if the chain is
started at θ = 0, it stays there forever. On the other hand, Eaton et al. [7] show that the version as-
sociated with Q1 is ν-irreducible and go on to show that this chain is recurrent. Consequently, this
version of Eaton’s chain is locally-ν-recurrent and it follows from Theorem 1 that ν is strongly
admissible. This concludes Example 2.

Appendix: On the measurability of Q̃

Here, we establish the measurability of Q̃. Fix B ∈ B(�). It suffices to show that, for any t ∈ R,
the set

G̃t = {x ∈ X : Q̃(B|x) < t}
is in B(X). We will accomplish this using the partition

G̃t = (G̃t ∩ D) ∪ (G̃t ∩ D).
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The set Gt = {x ∈ X :Q(B|x) < t} ∈ B(X) since Q(B|·) is a measurable function. The measures
Q and Q̃ agree on D, hence

G̃t ∩ D = {x ∈ D : Q̃(B|x) < t} = {x ∈ D :Q(B|x) < t} = Gt ∩ D ∈ B(X).

It remains to show that G̃t ∩ D ∈ B(X). There are four possible cases:

1. θ0 ∈ B and t ≤ 1;
2. θ0 ∈ B and t > 1;
3. θ0 /∈ B and t ≤ 0;
4. θ0 /∈ B and t > 0.

In the first two cases, Q̃(B|x) = 1 for all x ∈ D. Hence, in the first case, G̃t ∩ D = ∅ ∈ B(X),
and in the second, G̃t ∩ D = D ∈ B(X). In the last two cases, Q̃(B|x) = 0 for all x ∈ D. Hence,
in the third case, G̃t ∩ D = ∅ ∈ B(X), and in the last case, G̃t ∩ D = D ∈ B(X).
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