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Let P(: , :) be a probability transition function on a measurable space (M , M). Let V (:) be a strictly

positive eigenfunction of P with eigenvalue r. 0. Let

~P(x, dy) � V (y)P(x, dy)

rV (x)
:

Then ~P(: , :) is also a transition function. Let Px and ~Px denote respectively the probability distribution

of a Markov chain fX jg10 with X 0 � x and transition functions P and ~P. Conditions for ~Px to be

dominated by Px or to be singular with respect to Px are given in terms of the martingale sequence

Wn � V (X n)=rn and its limit. This is applied to establish an LlogL theorem for supercritical branching

processes with an arbitrary type space.

Keywords: change of measures; Markov chains; martingales; measure-valued branching processes

1. Introduction

Recently Lyons et al. (1995) (see also Kurtz et al. 1997; Lyons 1997) used a result from

measure theory to give a probabilistic proof of the LlogL theorem of Kesten and Stigum

(1966) for branching processes in single- and multiple cases. In this paper their techniques

are extended to a Markov chain context and then used to prove an LlogL theorem for

measure-valued branching processes on a general type space.

2. Markov chains

Let (M , M) be a measurable space and P(: , :) be a transition probability function on it.

Thus, for each x in M , P(x, .) is a probability measure on M and for each A in M, P(: , A) is

an M-measurable function on M . Let v(:) be a strictly positive function on (M , M) such that,

for some r. 0, �
v(y)P(x, dy) � rv(x) for all x in M (1)

and
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~P(x, A) �
�

A

v(y)P(x, dy)

� �
(rv(x))ÿ1: (2)

Then ~P is also a transition function. We exclude the special case when v(x) � 1 since in this

case r � 1 and ~P � P.

We now introduce some notation and de®nitions. Let Ù � M1, the space of all M-

valued functions on f0, 1, 2, . . . :g. Let X n(ù) � ù(n), the coordinate projection for n � 0,

1, 2, . . . : Write Fn � ó (X0, X 1, . . . , X n), the ó-algebra generated by X 0, X1, . . . , X n,

B � ó (X 0, X 1, . . . , X n, . . .), Wn � v(Xn)=rnv(X 0) and ðn(ù) � (X 0, X1, . . . , Xn). Let Px

be the probability measure on (Ù, B) that with probability one makes fX jg10 a Markov

chain with X 0 � x, and transition function P, and let Px,n be the restriction of Px to Fn,

and ~Px, ~Px,n the corresponding quantities with transition function ~P.

Using the obvious notation, we see that

~Px,n(dx1 3 dx2 3 � � � 3 dxn) � ~P(x, dx1) ~P(x1, ds2) . . . ~P(xnÿ1, dxn)

� v(x1)P(x, dx1)

rv(x)

v(x2)P(x1, dx2)

rv(x1)
. . .

v(X n)P(xnÿ1, dxn)

rv(xnÿ1)

� v(xn)
P(x, dx1)P(x1, dx2) . . . P(xnÿ1, dxn)

rnv(x)

� v(xn)

rnv(x)
Px,n(dx1 3 dx2 3 � � � 3 dxn),

leading to the following proposition.

Proposition 1. For each n > 1, ~Px,n is dominated by Px,n with the Radon±Nikodym

derivative Wn.

Next, using (1) and the Markov property we see that under Px

E(Wn�1jFn) �
�

v(y)P(Xn, dy)

rn�1v(X0)
� rv(X n)

rn�1v(X 0)
� v(X n)

rnv(X 0)
� Wn:

Also under ~Px

~Ex(Wÿ1
n�1jFn) � ~Ex rn�1 v(X0)

v(X n�1)

����Fn

 !

� rn�1v(X 0)

�
1

v(y)
~P(X n, dy)

� rn�1v(X 0)

�
v(y)P(Xn, dy)

v(y)rv(Xn)

� rn�1v(X 0)

v(Xn)

�
P(X n, dy)

� Wÿ1
n :
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So we have the following proposition.

Proposition 2. Under Px, fWn, Fng10 is a non-negative martingale and under ~Px, fWÿ1
n ,

Fng10 is a non-negative martingale.

Remark 1. The kernel ~P de®ned in (2) is known in the literature as the tilted kernel and is a

standard tool especially in the study of large deviations. Also, as pointed out by a referee, if

we de®ne the space-time Markov chain Yn � (X n, n) and set h(x, n) � rÿnv(x) then h(:) is a

harmonic function and hence Wn � h(Yn) is a martingale. For more information on this see

Rogers and Williams (1994).

By the martingale convergence theorem the sequence Wn converges with probability one

under Px. Let

W (ù) � limn Wn(ù): (3)

Thus W (ù) is actually the limit of Wn(ù) on a set of probability one under Px. For any

A 2 Fk , k ,1,

~Px(A) � ~Px,k(A) � ~Px,n(A), for n > k,

�
�

A

Wn dPx,n �
�

A

Wn dPx:

Now ®x k and let n!1. By Fatou's lemma we have

~Px(A) >

�
A

W dPx: (4)

This being true for A 2 Fk for any k, (4) holds for all A 2 B. The question as to when

equality holds in (4) is answered by the following theorem.

Theorem 1. For all A 2 B

~Px(A \ (W ,1)) �
�

A

W dPx,

and hence

~Px(A) �
�

A

W dPx � ~Px(A \ (W � 1)):

This theorem is a special case of a more general result in measure theory (Durrett 1996).

Theorem 2. Let (Ù, B) be a measurable space and fFng10 a ®ltration such that

B � ó ([10 Fn). Let ì and ~ì be two probability measures such that for each n the

restrictions ìn and ~ìn of ì and ~ì to Fn respectively are such that ~ìn is dominated by ìn

with derivative Wn. Let W � lim Wn. Then

(a) fWn, Fng10 is a martingale under ì and so W � limn Wn with probability one with

respect to ì;
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(b) for any A 2 B,

~ì(A) �
�

A

W dì� ~ì(A \ (W � 1));

(c) if ~ìa(A) � � AW dì and ~ìs(A) � ~ì(A \ (W � 1)), then ~ì � ~ìa � ~ìs is the unique

Lebesgue±Radon±Nikodym decomposition of ~ì with respect to ì.

Corollary 1.

(a) ~ì is dominated by ì if and only if
�
ÙW dì � 1 if and only if ~ì(W � 1) � 0.

(b) ~ì is singular with respect to ì if and only if ì(W � 0) � 1 if and only if

~ì(W � 1) � 1.

Thus equality holds in (4) for all A 2 B if and only if ~Px is dominated by Px if and only

if ~Px(W � 1) � 0. Although the proof of Theorem 2 is available in the literature (Durrett

1996, p. 242), a simple proof is given below to make this paper self-contained.

Proof of Theorem 2. (a) For all A 2 F n,
�

AWn�1 dì � ~ìn�1(A) � ~ìn(A) � � AWn dì and so

under ì, E(Wn�1jF n) � Wn with probability one.

(b) Let M k,n(ù) � supk< j<n Wj(ù). Then, for each k, fM k,n(ù)g1n�k is a non-decreasing

sequence whose limit Mk(ù) is supk< j Wj(ù). Next, fMk(ù)g1k�1 is a non-increasing

sequence whose limit is W (ù) � limn Wn(ù). Now ®x k0 and N ,1. Let A 2 F k0
. Then

for n > k > k0, Bk,n � A \ (M k,n < N ) 2 F n and so

~ì(Bk,n) �
�

Bk, n

Wn dì �
�

Wn(ù)I Bk, n
(ù) dì: (5a)

As n!1, I Bk, n
(ù)! I Bk

(ù) for all ù, where Bk � A \ (Mk < N ). Also under ì,

Wn(ù)! W (ù) with probability one. So, by the bounded convergence theorem (applied to

both sides of (5a)), we obtain

~ì(Bk) �
�

W (ù)I Bk
(ù) dì:

Now let N !1. By the monotone convergence theorem applied to both sides,

~ì(A \ (Mk ,1)) �
�

A

W (ù)I (Mk ,1)(ù) dì:

Next, as k !1, I (Mk ,1)(ù) increases to I (W ,1)(ù). Another application of the monotone

convergence theorem yields

~ì(A \ (W ,1)) �
�

A

W (ù)I (W ,1)(ù) dì �
�

A

W dì (5b)

since ì(W ,1) � 1. Since (5b) is true for every A 2 F k0
and k0 ,1, it is true for

A 2 [10 F k and hence for all A 2 B. Finally, for any A 2 B,

~ì(A) � ~ì(A \ (W ,1))� ~ì(A \ (W � 1)),

so (b) follows.
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(c) Clearly, ~ìa in (c) is absolutely continuous with respect to ì and ~ìs is singular with

respect to ì since ~ìs(W ,1) � 0 and ì(W � 1) � 0. The uniqueness follows since both

ì and ~ì are ®nite measures. h

Next, we apply Corollary 1 to prove the LlogL theorem for Galton±Watson processes

with arbitrary type space.

3. An application to branching processes

Let (S, S) be a measurable space. Let M � fì : ì(:) �Pn
i�1äxi

(:) for some n ,1, x1, x2,

. . . , xn 2 Sg where äx(:) is the delta measure at x, that is, äx(A) � 1 if x 2 A and 0 if x =2 A:
Let M be the ó-algebra generated by sets of the form fì : ì(A) � kg, where A 2 S and

k 2 f0, 1, 2 . . .g. By a point process on (S, S) we mean a random mapping î from some

probability space (Ù, B, P) to (M , M). It is clear that M is closed under addition. Let, for

each x in S, Px(:) denote a probability measure on (M , M).

Given the family of probability measures fPx : x 2 Sg, one can generate an M-valued

Markov chain fZng10 as follows. Starting with Z0 �
Pz0

i�1äx0i
, let îx0i , i � 1, 2, . . . , z0, be

independent point processes (that is, M-valued random variables) such that îx0i has

distribution Px0i (:). If we think of Z0 as the zeroth generation, then the ®rst generation Z1 is

given by

Z1 �
Xz0

i�1

î x0i :

If Z1(S) � z1, then we can rewrite Z1 as

Z1 �
Xz1

j�1

äx1 j
(6)

and fx1 j : j � 1, 2, . . . , z1g are the types of the ®rst-generation individuals. Similarly, given

Zn �
Pz n

i�1äxni
where Zn � Zn(S), and Z j : j < n, generate independent point processes îxni ,

i � 1, 2, . . . , Zn, such that î xni has distribution Pxni (:). Then set

Z n�1 �
Xz n

i�1

î xni �
Xzn�1

j�1

äxn�1, j
, (7)

where zn�1 � Z n�1(S)

De®nition 1. The Markov chain fZng10 is called a measure-valued Galton±Watson branching

process with type space S, initial population Z0 and offspring distribution family Px(:);
x 2 S.

When S is a singleton this reduces to the simple Galton±Watson branching process.

When S is a ®nite set of size k, this becomes the multitype Galton±Watson branching
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process; see Athreya and Ney (1972) for de®nition and properties. Many continuous-time

processes, such as the single- and multitype Bellman±Harris processes, branching Markov

processes and branching random walks, can be cast as measure-valued branching processes

in the above sense when considered at discrete time points t � nÄ, n � 0, 1, 2, . . . : For

example, the single-type Bellman±Harris process may be viewed as a measure-valued

branching process with S � [0, 1] and S the Borel ó-algebra of S, for each x, Px(:) is the

probability distribution of the vector îx of ages at time Ä in a Bellman±Harris process

initiated by one particle of age x at time 0.

Let m(x, A) � Eîx(A) be the mean kernel. Let r. 1 and v : S ! (0, 1) be an S-

measurable eigenfunction of the mean kernel m with eigenvalue r. That is,�
S

v(y)m(x, dy) � rv(x): (8a)

Let V : M ! (0, 1) be de®ned by

V (ì) �
�

v dì �
Xn

1

v(xi) (8b)

if ì �Pn
1äxi

.

Then from (7) we see that

E(V (Z n�1)jZ0, Z1, . . . , Zn) � E(V (Z n�1)jZn)

� E
Xz n

i�1

V (îxni )jZn

 !

� E r
Xzn

i�1

v(xni)

 !
� rV (Zn)

by virtue of (8).

Thus V is an eigenfunction for the Markov chain fZng10 with eigenvalue r. Let P(: , :)
denote the transition function of fZng10 .

For any initial value z in M let Pz and ~Pz be the distribution of the Markov chain with

initial condition z and transition function P and ~P, where

~P(z, dì) � V (ì)P(z, dì)

rV (z)
(9)

as in Section 2.

The results of Section 2 on the absolute continuity or singularity of Pz and ~Pz will now

be used to establish a condition for the non-triviality of the limit random variable W of the

martingale

Wn � V (Zn)

rn
(10)

under PZ0
for the Galton±Watson branching process fZng.
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It follows from Corollary 1 that, for Z0 6� 0,

PZ0
(W � 0) � 1 if and only if ~PZ0

(W � 1) � 1 (11)

and

E Z0
W � V (Z0) if and only if ~PZ0

(W � 1) � 0: (12)

When S is a singleton Lyons et al. (1995) showed that, under ~PZ0
, the Markov chain

fZng10 is a branching process with an immigration component and used a simple criterion

for the two cases ~PZ0
(W � 1) � 1 and ~PZ0

(W � 1) � 0. It turns out this is a dichotomy,

that is, ~PZ0
(W � 1) is either 1 or 0, and that the former prevails if and only if the LlogL

condition of Kesten and Stigum (1966) holds, that is, if and only if EZ1 log Z1 ,1, where

Z0 � 1.

Our goal now is to show that ~PZ0
can still be interpreted as the distribution of a measure-

valued branching process with an immigration component and to seek suf®cient conditions

for PZ0
(W � 1) to be one and also for it to be zero. In a number of special cases this

becomes a dichotomy.

Here is a probabilistic description of the ~P Markov chain. For any non-negative

measurable function f and a measure ì on (S, S) let

( f , ì) �
�

f dì,

and for any (M , M) random variable î its moment generating functional

Mî( f ) � E(eÿ( f ,î)):

It is known that Mî(:) determines the probability distribution of î.

Let fZng10 be a Markov chain with values in (M , M) and transition function ~P de®ned

in (9), that is,

~P(m, dm9) � V (m9)P(m, dm9)

rV (m)

where V (:) is as in (8a); v is a non-negative function on (S, S) such that, for any x in S,

EV (îx) � rv(x), î x being a point process with distribution Px; and, for m �Pn
1äxi

,

P(m, dm9) � P(
Pn

1î
xi 2 dm9) where îxi , i � 1, 2 . . . , n, are independent point processes

with îxi having distribution Pxi .

Thus, under ~P, the moment generating functional of Z1 given Z0 is

M Z1jZ0
( f ) � ~E(eÿ( f , Z1)jZ0)

� E
eÿ( f , Z1)V (Z1)

rV (Z0)

����Z0

 !
,

where ~E denotes expectation under ~P and E denotes expectation under P. But under P, if

Z0 �
Pn

1äxi
, then Z1 may be written as

Z1 �
Xn

1

îxi
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where fî xi , i � 1, 2 . . .g are being independent, îxi having distribution Pxi . So

M Z1jZ0
( f ) � E

expfÿ( f ,
Pn

1î
xi )gV (

Pn
1î

xi )

r(
Pn

1 v(xi))

 !
:

Since V (
Pn

1î
xi ) �Pn

1 V (î xi ),

MZ1jZ0
( f ) �

Xn

j�1

v(xj)

(
Pn

1 v(xi))
E

eÿ( f ,î x j )V (îx j )

rv(xj)

Y
i 6� j

eÿ( f ,î xi )

 !

�
Xn

j�1

v(xj)

(
Pn

1 v(xi))
E

eÿ( f ,î x j )V (îx j )

rv(xj)

 !Y
i 6� j

E(eÿ( f ,î xi )) (by independence)

�
Xn

j�1

v(xj)

(
Pn

1 v(xi))
E(eÿ( f ,~î x j ))

Y
i6� j

E(eÿ( f ,î xi )),

where ~î x is an M-valued random variable with probability distribution

P(~î x 2 dm) � V (m)P(îx 2 dm)

rv(x)
: (13)

This shows that the Markov chain fZng10 with transition function ~P evolves in the

manner now described. Given Zn � (xn1, xn2, . . . xnzn
), Z n�1 is generated as follows:

(i) First pick the individual xnj with probability v(xnj)=
Pz n

1 v(xni) and choose its

offspring point process ~î xnj according to the V (:)-biased probability distribution ~Px(dm) �
V (m)Px(dm)=rv(x).

(ii) For all the other individuals choose the offspring point process îxni according to the

original probability distribution Pxni (dm).

(iii) Choose ~îxnj and îxni i 6� j all independently.

(iv) Set Z n�1 � ~îxnj� �
X
i 6� j�

îxni , (14)

where j� is the index of the individual chosen according to (i).

The above construction is similar to that of Lyons et al. (1995). (The measure

corresponding to ~PZ0,n is a sort of average of the one introduced by Lyons et al. (1995) that

keeps track of the `spine' fxnj� , n � 1, 2, . . .g:) For some Galton±Watson processes their

more elaborate construction is not necessary.

The idea of using a V (:)-biased distribution is similar to `size biasing' in population

genetics literature and also occurs in the work of Waymire and Williams (1996).

Thus

V (Z n�1)

rn�1
�
X
i 6� j�

V (îxni )

rn�1
� V (~îxnj� )

rn�1
: (15)
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The condition for P(W � 0) � 1 is ~P(W � 1) � 1. So if lim(V (~î xnj� ))=(rn�1) � 1 with

probability one then, under ~P, limWn�1 > lim(V (~îxnj� ))=(rn�1) � 1 with probability one

and hence Pz0
(W � 0) would be one.

A suf®cient condition for PZ0
(W � 0) � 1 is that, for ~îx as in (13),

inf
x

P(V (~îx) . t) � h(t), t . 0, (16a)

satis®es �1
1

h(eu) du � 1: (16b)

This is so because, for all K . 0,

~P
V (~î xnj� )

rn�1
> KjFn

 !
> h(Krn�1)

and (16b) implies Óh(Krn�1) � 1 yielding, by the conditional Borel±Cantelli lemma

(Durrett 1996, p. 240), the conclusion that

lim
V (~îxnj� )

rn�1
> K with probability one. (17)

This being true for every K � 1, 2, . . . , lim(V (~îxnj� ))=rn�1) � 1 with probability one.

Next we look for a suf®cient condition for E Z0
(W ) � 1. This is equivalent to

~PZ0
(W � 1) � 0. Consider the condition that, for ~îx as in (13),

h(t) � sup
x

P(V (~îx) . t) (18a)

satis®es �1
1

h(eu) du ,1: (18b)

It follows from (15) that

~E
V (Z n�1)

rn�1

����Zn, ~îxnj�

 !
�
X
i 6� j�

rV (xni)

rn�1
� V (~îxnj� )

rn�1

<
X

i

V (xni)

rn
� V (~îxnj� )

rn�1
(since V (:) > 0)

� V (Zn)

rn
� V (~î x nj�

)

rn�1
(19a):

Iterating the above yields,
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~E
V (Z n�1)

rn�1

����Z nÿ1, ~îxnÿ1, j� , ~îxnj�

 !
� E

V (Zn)

rn

����Z nÿ1, ~îxnÿ1, j� , ~îxnj�

 !
� V (~îxnj� )

rn�1

<
V (Z nÿ1)

rnÿ1
� V (~î xnÿ1, j� )

rn
� V (~î xnj� )

rn�1
,

and hence

~E
V (Z n�1)

rn�1

����Z0, ~î x0 j� , ~î xij� , . . . , ~îxnj�

 !
< V (Z0)�

Xn

r�0

V (~îxrj� )

rr�1

< V (Z0)�
X1
r�0

V (~îxnj� )

rr�1
� W�, say: (19b)

Next,

P̂
V (~îxrj� )

rr
> är

 !
� ~E P

V (~î xrj� )

rr
> är

����xrj�

 ! !

< h((rä)r)

where h is as in (18a). By (18b),
P

r h((rä)r) ,1 if 0 , ä, 1 is chosen such that rä. 1.

By Borel±Cantelli this implies that, with probability one under ~P, V (~îxnj� )=rr < är for all

but a ®nite number of r, and hence that W�,1 with probability one under ~P (since

0 , ä, 1).

Next, from Proposition 2, under ~P, the sequence fWÿ1
n : n � 0, 1, 2 . . .g is a non-

negative martingale and hence lim Wn � W <1 exists with probability one under ~P. Let
~Gn be the ó-algebra generated by Z0 and ~îxrj� r � 0, 1, 2, . . . n and ~G � ó (

S1
0

~Gn). Then,

by Fatou,

~E(W j ~G) < lim ~E(WnjG):

But ~E(WnjG) < ~E(~E(WnjGn)jG) < ~E(W�jG) � W�, since W� is G-measurable. Thus

~E(W j ~G) ,1 with probability one under ~Pz0

and hence

~PZ0
(W ,1) � 1 or ~PZ0

(W � 1) � 0:

So under (18b) we conclude that

E Z0
W � 1 under PZ :

Summarizing the above discussion we have the following:

Theorem 3. Let fZng10 be a measure-valued branching process with type space (S, S) and

offspring distribution family fPx : x 2 Sg as in De®nition 1. Let r. 1, v : S ! (0, 1) and

V : M ! (0, 1) satisfy (8a) and (8b). Let Wn � V (Zn)=rn. Let h(t) � inf x P(V (~îx) . t) and
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h(t) � supx P(V (~îx) . t), where ~îx has distribution de®ned by (13). Then for any non-zero

non-trivial Z0,

(i) lim
n

Wn � W exits with probability one under PZ0
;

(ii) PZ0
(W � 0) � 1 if

�1
1

h(eu) du � 1;

(iii) E Z0
W � V (Z0) if

�1
1

h(eu) du ,1:

Remark 2. In many cases the two conditions
�1

1
h(eu) du � 1 and

�1
1

h(eu) du ,1 become

a dichotomy. That is,
�1

1
h(eu) du ,1 implies

�1
1

h(eu) du ,1.

Remark 3. There are other versions of the LlogL theorem for the general state space case.

Asmussen and Herring (1983) give a version with some compactness type conditions on the

mean kernel. Kesten (1989) has a version in the countably in®nite type case. The present

author has not attempted to deduce these previously known results from Theorem 3 above. It

does appear that in terms of hypotheses Theorem 3 above is perhaps more transparent and

simpler to verify than those in the quoted works.

4. Examples

4.1. Multitype Galton±Watson process

Let S � f1, 2, . . . , kg. An individual located at site i will be referred to as of type i. Let îi

denote the random vector of offspring of a type i individual. Let mij � E(îi
j), where îi

j is the

jth coordinate of îi. Assume there is no extinction, that is, P(îi � 0) � 0 for all i where 0 is

the vector of zeros. Assume simple irreducibility, that is, 0 , mij ,1 for all i, j.

Let 1 , r,1 be the Perron±Froebenius maximal eigenvalue of M � ((mij)) with

corresponding left and right eigenvectors u and v respectively normalized so that u . 1 � 1

and u . v � 1 where 1 is the vector of ones and . refers to dot product.

Let ~îi be the random vector with v-biased distribution

P(~îi � j) � j . vP(~îi � j)

rvi

:

Let hi(t) � P(v . ~îi . t) for t . 0.

We ®rst consider suf®ciency. Clearly h(t) � supi hi(t) <
Pk

i�1 hi(t).

Thus
�1

1
hi(e

u) du ,1 for all i implies
�1

1
h(eu) du ,1. But�1

1

hi(e
u) du �

�1
1

P(v . ~îi . eu) du �
�1

1

X
j

v . j

rvi

P(îi � j)I(v . j . eu)

 !
du, (20)

where I(t . eu) � 1 if t . eu and 0 if t > eu. The above integral equals
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X
j

v . j

rvi

P(îi � j)

�1
1

I(v . j . eu) du:

Since for t . e,
�1

1
I(t . eu)) du � log t, it follows that�1
1

hi(e
u) du ,1 if and only if E(vîi) log (v . îi) ,1: (21)

Thus, Theorem 3(iii) yields the suf®ciency part of the Kesten±Stigum theorem (see

Kesten and Stigum 1966) under the assumption 0 , mij ,1 for all i, j.

Turning now to the necessary part, consider the chain fZ2n : n � 0, 1, 2 . . .g which is

also a Galton±Watson branching process. Let

hi2(t) � P(V (~Z2) . tjZ0 � ei),

hi(t) � P(V (~Z1) . tjZ1 � ei):

Once again assuming simple irreducibility, that is, mij . 0 for all i, j, it can be seen that for

every i, j, there exist Cij . 0 such that

hi2(t) > Cij h j(t):

Now suppose

E(v . î( j))log(v . î( j)) � 1 for some j � j0: (22)

Then

h(t) � inf
i

hi2(t) > Ch j0 (t),

where C � inf i Cij0
and

�1
1

h(eu) du > C
�1

1
h j0 (eu) du. But by (21) this last integral is 1

under (22). Now by Theorem 3(ii) it follows that W � 0 with probability one and the

necessary part of the Kesten±Stigum theorem holds (see Kesten and Stigum 1966).

The above arguments can be extended to the general irreducible non-singular case when

there exists an r such that M r has all strictly positive entries by considering the Galton±

Watson process along the sequence nr, n � 0, 1, 2, . . . :

4.2. Single-type Bellman±Harris process

Let fpjg1 be a probability distribution and G(:) be a non-lattice probability distribution on

(0, 1). Let S � [0, 1) and S � B[0, 1), the Borel ó-algebra. For each x . 0, let fîx
tg be

the point process corresponding to the ages of all the individuals present at time t in a

Bellman±Harris process initiated by one particle of age x at time 0 and with offspring

distribution f pjg and lifetime distribution G. Then, for any Ä. 0, the sequence Zn � îx
nÄ,

n � 0, 1, 2, 3, . . . , is a measure-valued branching process of the type treated in Section 3

with type space S and offspring family fPx(:) : x 2 Sg given by

Px(:) � P(îx
Äå .)

Let á. 0 be the Malthusian parameter de®ned by
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m

�
[0,1)

eÿáu dG(u) � 1, (23a)

where 1 , m � Ó jpj ,1. For all x > 0 such that 1ÿ G(x) . 0, let

v(x) �
�

[x,1)

eÿáu dG(u)

 !
eáx(1ÿ G(x))ÿ1 (23b)

� E(eÿáLx ),

where Lx denotes the time of death of an ancestor whose age is x so that

P(Lx . t) � 1ÿ G(x� t)

(1ÿ G(x))
for t > 0:

If T � supfx : 1ÿ G(x) . 0g then the effective type space is S � [0, T ]. We set v(T ) � 1

since LT � 0 with probability one. It can be shown that (see Athreya and Ney 1972)

EV (îx
t ) � eá tv(x):

Consider an ancestor of age x who dies at time Lx and produces N offspring.

Let fî0,i
t : t > 0g, i � 1, 2, . . . , be independent and identically distributed copies of the

process fî0
t : t > 0g and independent of Lx and N . Then the process fîx

t : t > 0g for this

ancestor may be written as:

îx
t �

x� t, Lx . t,XN

i�1

î0,i
tÿLx

, Lx < t:

8><>:
Let Ä � 1 and hx(t) � P(V (~îx

1) . t) for t > 0. Then from the de®nition of ~î x as in (13)

we obtain

hx(t) � E(V (îx
1) : V (îx

1) . t)

eáv(x)
(24)

Since v(x) � E(eÿáLx ) for x , T and 1 for x � T, v(:) is always in [0,1]. Thus,

V (îx
1) �

v(x� 1), Lx . 1,XN

1

V (î0,i
1ÿLx), Lx < 1:

8><>: (25)

Since there is no extinction, î0,i
t ([0, 1)) is non-decreasing in t and, v(:) being less than

or equal to 1, we obtainXN

1

V (î0,i
1ÿLx

) <
XN

1

î0,i
1 �

XN

1

Zi � Y , say: (26)

By the conditional independence of N , Lx and
PN

1 Zi we have, for t . 1,
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hx(t) < E(Y : Y . t)
P(Lx < 1)

eáv(x)
: (27)

Since eáv(x) � E(eá(1ÿLx)) > P(Lx < 1), we obtain

h(t) � sup
x

hx(t) < E(Y : Y . t) � K1(t), say: (28)

So
�1

1
h(eu) du ,1 if

�1
1

K1(eu) du ,1. But�1
1

K1(eu) du �
�1

1

E(YI(Y . eu)) du

� E

�1
1

YI(Y . eu) du

� �
� E(Y log Y : Y . e)

< EY (log Y ):

From the de®nition of Y in (26) and the independence of N and fZig it follows that

E(Y log Y ) � E((N log N )�Z)� E(N �Z log �Z), where �Z � 1

N

XN

1

Zi,

� E(E((N log N )�ZjN ))� E(N �Z log �Z):

But

E((N log N )�ZjN ) � (N log N )E(Z1) (29)

and by the convexity of the function x log x, for x . 0,

�Z log �Z <
1

N

XN

1

Zi log Zi,

so that

E(N �Z log �Z) < E
XN

1

Z1 log Zi

 !

� E(Z1 log Zi)(EN ):

It is known (see Athreya and Ney 1972) that EN log N � Ó j(log j) pj ,1 implies

EZ1 log Z1 ,1 and hence EY log Y ,1. Thus Ó j(log j) pj ,1 implies
�1

1
h(eu) du ,1.

Now consider the measure-valued branching process fî0
n, n � 1, 2, . . .g and the

associated martingale sequence fWn � eÿánV (î0
n)g10 . By Theorem 3(iii), we see that

Ó j(log j) pj ,1 implies Wn has a non-trivial limit. This is the `if' part of Kesten±Stigum

theorem for the Bellman±Harris process.

For the only if part we make the assumption that
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ä � inf
x

P(Lx < 1) . 0: (30)

Then

v(x) � E(eÿáLx ) > eÿáP(Lx < 1) > eÿáä � c, say:

So

V (îx
1) > c

XN

1

Zi

 !
I(Lx < 1)

and hence hx(:) de®ned in (24) satis®es

hx(t) > cE(Y : cY . t)
P(Lx < 1)

eáv(x)

> cE(y : cY . t)ä:

Thus

h(t) � inf
x

hx(t) > cäE(Y : Y . t=c)

and �1
1

h(eu) du � 1 if

�1
1

E(Y : Y . t=c) dt � 1,

that is, if EY (log Y ) � 1.

It can be seen from (27) and (28) that EN log N � Ó j(log j) pj � 1 implies

EY (log Y ) � 1. Thus we conclude that Ó j(log j) pj � 1 and ä � inf x P(Lx < 1) . 0 imply�1
1

h(eu) du � 1 and hence that Sn ! 0 with probability one. The same argument works if

there is a t0 . 0 such that inf x P(Lx < t0) . 0.

It is possible to drop this last condition with a slightly more involved argument to show

ÓP(V (~îxnj�
n ) . KeánjF n) � 1

and hence (17). This argument looks at the empirical distribution of fxnjg at time n and

establishes that, for some 0 , a , T , the proportion of xnj < a is bounded below by a

positive quantity.

The argument for the single-type case above can be extended to the multitype Bellman±

Harris case; see Athreya and Rama Murthy (1977) for a statement of the LlogL theorem in

this case.
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