Change of measures for Markov chains and the LlogL theorem for branching processes

KRISHNA B. ATHREYA

Departments of Mathematics and Statistics, Iowa State University, Ames IA 50011, USA. E-mail: athreya@math.iastate.edu

Let P(.,.) be a probability transition function on a measurable space (M, \mathbf{M}) . Let V(.) be a strictly positive eigenfunction of P with eigenvalue $\rho > 0$. Let

$$\tilde{P}(x, dy) \equiv \frac{V(y)P(x, dy)}{\rho V(x)}.$$

Then $\tilde{P}(.,.)$ is also a transition function. Let P_x and \tilde{P}_x denote respectively the probability distribution of a Markov chain $\{X_j\}_0^\infty$ with $X_0=x$ and transition functions P and \tilde{P} . Conditions for \tilde{P}_x to be dominated by P_x or to be singular with respect to P_x are given in terms of the martingale sequence $W_n\equiv V(X_n)/\rho^n$ and its limit. This is applied to establish an LlogL theorem for supercritical branching processes with an arbitrary type space.

Keywords: change of measures; Markov chains; martingales; measure-valued branching processes

1. Introduction

Recently Lyons *et al.* (1995) (see also Kurtz *et al.* 1997; Lyons 1997) used a result from measure theory to give a probabilistic proof of the LlogL theorem of Kesten and Stigum (1966) for branching processes in single- and multiple cases. In this paper their techniques are extended to a Markov chain context and then used to prove an LlogL theorem for measure-valued branching processes on a general type space.

2. Markov chains

Let (M, \mathbf{M}) be a measurable space and P(., .) be a transition probability function on it. Thus, for each x in M, P(x, .) is a probability measure on \mathbf{M} and for each A in \mathbf{M} , P(., A) is an \mathbf{M} -measurable function on M. Let v(.) be a strictly positive function on (M, \mathbf{M}) such that, for some $\rho > 0$,

$$\int v(y)P(x, dy) = \rho v(x) \qquad \text{for all } x \text{ in } M$$
 (1)

and

1350–7265 © 2000 ISI/BS

$$\tilde{P}(x, A) \equiv \left(\int_{A} v(y) P(x, dy) \right) (\rho v(x))^{-1}. \tag{2}$$

Then \tilde{P} is also a transition function. We exclude the special case when $v(x) \equiv 1$ since in this case $\rho = 1$ and $\tilde{P} = P$.

We now introduce some notation and definitions. Let $\Omega \equiv M^{\infty}$, the space of all M-valued functions on $\{0, 1, 2, \ldots\}$. Let $X_n(\omega) \equiv \omega(n)$, the coordinate projection for n=0, $1, 2, \ldots$. Write $F_n \equiv \sigma(X_0, X_1, \ldots, X_n)$, the σ -algebra generated by X_0, X_1, \ldots, X_n , $B \equiv \sigma(X_0, X_1, \ldots, X_n, \ldots)$, $W_n \equiv v(X_n)/\rho^n v(X_0)$ and $\pi_n(\omega) \equiv (X_0, X_1, \ldots, X_n)$. Let P_x be the probability measure on (Ω, B) that with probability one makes $\{X_j\}_0^{\infty}$ a Markov chain with $X_0 = x$, and transition function P, and let $P_{x,n}$ be the restriction of P_x to F_n , and \tilde{P}_x , $\tilde{P}_{x,n}$ the corresponding quantities with transition function \tilde{P} .

Using the obvious notation, we see that

$$\tilde{P}_{x,n}(dx_1 \times dx_2 \times \dots \times dx_n) = \tilde{P}(x, dx_1)\tilde{P}(x_1, dx_2) \dots \tilde{P}(x_{n-1}, dx_n)
= \frac{v(x_1)P(x, dx_1)}{\rho v(x)} \frac{v(x_2)P(x_1, dx_2)}{\rho v(x_1)} \dots \frac{v(X_n)P(x_{n-1}, dx_n)}{\rho v(x_{n-1})}
= v(x_n) \frac{P(x, dx_1)P(x_1, dx_2) \dots P(x_{n-1}, dx_n)}{\rho^n v(x)}
= \frac{v(x_n)}{\rho^n v(x)} P_{x,n}(dx_1 \times dx_2 \times \dots \times dx_n),$$

leading to the following proposition.

Proposition 1. For each $n \ge 1$, $\tilde{P}_{x,n}$ is dominated by $P_{x,n}$ with the Radon–Nikodym derivative W_n .

Next, using (1) and the Markov property we see that under P_x

$$E(W_{n+1}|F_n) = \int \frac{v(y)P(X_n, dy)}{\rho^{n+1}v(X_0)} = \frac{\rho v(X_n)}{\rho^{n+1}v(X_0)} = \frac{v(X_n)}{\rho^n v(X_0)} = W_n.$$

Also under P_x

$$\tilde{E}_{x}(W_{n+1}^{-1}|F_{n}) = \tilde{E}_{x} \left(\rho^{n+1} \frac{v(X_{0})}{v(X_{n+1})} \middle| F_{n} \right)
= \rho^{n+1} v(X_{0}) \int \frac{1}{v(y)} \tilde{P}(X_{n}, dy)
= \rho^{n+1} v(X_{0}) \int \frac{v(y)P(X_{n}, dy)}{v(y)\rho v(X_{n})}
= \frac{\rho^{n+1} v(X_{0})}{v(X_{n})} \int P(X_{n}, dy)
= W_{n}^{-1}.$$

So we have the following proposition.

Proposition 2. Under P_x , $\{W_n, F_n\}_0^{\infty}$ is a non-negative martingale and under \tilde{P}_x , $\{W_n^{-1}, F_n\}_0^{\infty}$ is a non-negative martingale.

Remark 1. The kernel \tilde{P} defined in (2) is known in the literature as the *tilted kernel* and is a standard tool especially in the study of large deviations. Also, as pointed out by a referee, if we define the space-time Markov chain $Y_n \equiv (X_n, n)$ and set $h(x, n) \equiv \rho^{-n}v(x)$ then $h(\cdot)$ is a harmonic function and hence $W_n \equiv h(Y_n)$ is a martingale. For more information on this see Rogers and Williams (1994).

By the martingale convergence theorem the sequence W_n converges with probability one under P_x . Let

$$W(\omega) \equiv \overline{\lim}_n W_n(\omega). \tag{3}$$

Thus $W(\omega)$ is actually the limit of $W_n(\omega)$ on a set of probability one under P_x . For any $A \in F_k$, $k < \infty$,

$$\tilde{P}_x(A) = \tilde{P}_{x,k}(A) = \tilde{P}_{x,n}(A), \quad \text{for } n \ge k,$$

$$= \int_A W_n \, dP_{x,n} = \int_A W_n \, dP_x.$$

Now fix k and let $n \to \infty$. By Fatou's lemma we have

$$\tilde{P}_x(A) \geqslant \int_A W \, \mathrm{d}P_x.$$
 (4)

This being true for $A \in F_k$ for any k, (4) holds for all $A \in B$. The question as to when equality holds in (4) is answered by the following theorem.

Theorem 1. For all $A \in B$

$$\tilde{P}_x(A\cap (\mathbb{W}<\infty))=\int_A W\,\mathrm{d}P_x,$$

and hence

$$\tilde{P}_x(A) = \int_A W \, \mathrm{d}P_x + \tilde{P}_x(A \cap (W = \infty)).$$

This theorem is a special case of a more general result in measure theory (Durrett 1996).

Theorem 2. Let (Ω, B) be a measurable space and $\{F_n\}_0^\infty$ a filtration such that $B = \sigma(\bigcup_0^\infty F_n)$. Let μ and $\tilde{\mu}$ be two probability measures such that for each n the restrictions μ_n and $\tilde{\mu}_n$ of μ and $\tilde{\mu}$ to F_n respectively are such that $\tilde{\mu}_n$ is dominated by μ_n with derivative W_n . Let $W = \overline{\lim} W_n$. Then

(a) $\{W_n, F_n\}_0^{\infty}$ is a martingale under μ and so $W = \lim_n W_n$ with probability one with respect to μ ;

(b) for any $A \in B$,

$$\tilde{\mu}(A) = \int_A W \, \mathrm{d}\mu + \tilde{\mu}(A \cap (W = \infty));$$

(c) if $\tilde{\mu}_a(A) \equiv \int_A W \, d\mu$ and $\tilde{\mu}_s(A) = \tilde{\mu}(A \cap (W = \infty))$, then $\tilde{\mu} = \tilde{\mu}_a + \tilde{\mu}_s$ is the unique Lebesgue-Radon-Nikodym decomposition of $\tilde{\mu}$ with respect to μ .

Corollary 1.

- (a) $\tilde{\mu}$ is dominated by μ if and only if $\int_{\Omega} W d\mu = 1$ if and only if $\tilde{\mu}(W = \infty) = 0$.
- (b) $\tilde{\mu}$ is singular with respect to μ if and only if $\mu(W=0)=1$ if and only if $\tilde{\mu}(W=\infty)=1$.

Thus equality holds in (4) for all $A \in B$ if and only if \tilde{P}_x is dominated by P_x if and only if $\tilde{P}_x(W = \infty) = 0$. Although the proof of Theorem 2 is available in the literature (Durrett 1996, p. 242), a simple proof is given below to make this paper self-contained.

Proof of Theorem 2. (a) For all $A \in \mathscr{T}_n$, $\int_A W_{n+1} d\mu = \tilde{\mu}_{n+1}(A) = \tilde{\mu}_n(A) = \int_A W_n d\mu$ and so under μ , $E(W_{n+1}|\mathscr{T}_n) = W_n$ with probability one.

(b) Let $M_{k,n}(\omega) \equiv \sup_{k \leq j \leq n} W_j(\omega)$. Then, for each k, $\{M_{k,n}(\omega)\}_{n=k}^{\infty}$ is a non-decreasing sequence whose limit $M_k(\omega)$ is $\sup_{k \leq j} W_j(\omega)$. Next, $\{M_k(\omega)\}_{k=1}^{\infty}$ is a non-increasing sequence whose limit is $W(\omega) = \overline{\lim}_n W_n(\omega)$. Now fix k_0 and $N < \infty$. Let $A \in \mathcal{F}_{k_0}$. Then for $n \geq k \geq k_0$, $B_{k,n} \equiv A \cap (M_{k,n} \leq N) \in \mathcal{F}_n$ and so

$$\tilde{\mu}(B_{k,n}) = \int_{B_{k,n}} W_n \, \mathrm{d}\mu = \int W_n(\omega) I_{B_{k,n}}(\omega) \, \mathrm{d}\mu. \tag{5a}$$

As $n \to \infty$, $I_{B_{k,n}}(\omega) \to I_{B_k}(\omega)$ for all ω , where $B_k = A \cap (M_k \le N)$. Also under μ , $W_n(\omega) \to W(\omega)$ with probability one. So, by the bounded convergence theorem (applied to both sides of (5a)), we obtain

$$\tilde{\mu}(B_k) = \int W(\omega) I_{B_k}(\omega) \, \mathrm{d}\mu.$$

Now let $N \to \infty$. By the monotone convergence theorem applied to both sides,

$$\tilde{\mu}(A \cap (M_k < \infty)) = \int_A W(\omega) I_{(M_k < \infty)}(\omega) \, \mathrm{d}\mu.$$

Next, as $k \to \infty$, $I_{(M_k < \infty)}(\omega)$ increases to $I_{(W < \infty)}(\omega)$. Another application of the monotone convergence theorem yields

$$\tilde{\mu}(A \cap (W < \infty)) = \int_{A} W(\omega) I_{(W < \infty)}(\omega) \, \mathrm{d}\mu = \int_{A} W \, \mathrm{d}\mu \tag{5b}$$

since $\mu(W < \infty) = 1$. Since (5b) is true for every $A \in \mathcal{F}_{k_0}$ and $k_0 < \infty$, it is true for $A \in \bigcup_{k=0}^{\infty} \mathcal{F}_{k_0}$ and hence for all $A \in B$. Finally, for any $A \in B$,

$$\tilde{\mu}(A) = \tilde{\mu}(A \cap (W < \infty)) + \tilde{\mu}(A \cap (W = \infty)),$$

so (b) follows.

(c) Clearly, $\tilde{\mu}_a$ in (c) is absolutely continuous with respect to μ and $\tilde{\mu}_s$ is singular with respect to μ since $\tilde{\mu}_s(W < \infty) = 0$ and $\mu(W = \infty) = 0$. The uniqueness follows since both μ and $\tilde{\mu}$ are finite measures.

Next, we apply Corollary 1 to prove the LlogL theorem for Galton-Watson processes with arbitrary type space.

3. An application to branching processes

Let (S, \mathbf{S}) be a measurable space. Let $M \equiv \{\mu : \mu(\cdot) = \sum_{i=1}^{n} \delta_{x_i}(\cdot) \text{ for some } n < \infty, x_1, x_2, \ldots, x_n \in S\}$ where $\delta_x(\cdot)$ is the delta measure at x, that is, $\delta_x(A) = 1$ if $x \in A$ and 0 if $x \notin A$. Let \mathbf{M} be the σ -algebra generated by sets of the form $\{\mu : \mu(A) = k\}$, where $A \in \mathbf{S}$ and $k \in \{0, 1, 2 \ldots\}$. By a point process on (S, \mathbf{S}) we mean a random mapping ξ from some probability space (Ω, B, P) to (M, \mathbf{M}) . It is clear that M is closed under addition. Let, for each x in S, $P^x(\cdot)$ denote a probability measure on (M, \mathbf{M}) .

Given the family of probability measures $\{P^x: x \in S\}$, one can generate an M-valued Markov chain $\{Z_n\}_0^\infty$ as follows. Starting with $Z_0 = \sum_{i=1}^{z_0} \delta_{x_{0i}}$, let $\xi^{x_{0i}}$, $i = 1, 2, ..., z_0$, be independent point processes (that is, M-valued random variables) such that $\xi^{x_{0i}}$ has distribution $P^{x_{0i}}(\cdot)$. If we think of Z_0 as the zeroth generation, then the first generation Z_1 is given by

$$Z_1 = \sum_{i=1}^{z_0} \xi^{x_{0i}}.$$

If $Z_1(S) = z_1$, then we can rewrite Z_1 as

$$Z_1 = \sum_{i=1}^{z_1} \delta_{x_{1,i}} \tag{6}$$

and $\{x_{1j}: j=1, 2, \ldots, z_1\}$ are the types of the first-generation individuals. Similarly, given $Z_n = \sum_{i=1}^{z_n} \delta_{x_{ni}}$ where $Z_n = Z_n(S)$, and $Z_j: j \leq n$, generate independent point processes $\xi^{x_{ni}}$, $i=1,2,\ldots,Z_n$, such that $\xi^{x_{ni}}$ has distribution $P^{x_{ni}}(\cdot)$. Then set

$$Z_{n+1} \equiv \sum_{i=1}^{z_n} \xi^{x_{ni}} = \sum_{j=1}^{z_{n+1}} \delta_{x_{n+1,j}},\tag{7}$$

where $z_{n+1} = Z_{n+1}(S)$

Definition 1. The Markov chain $\{Z_n\}_0^{\infty}$ is called a measure-valued Galton–Watson branching process with type space S, initial population Z_0 and offspring distribution family $P^x(\cdot)$; $x \in S$.

When S is a singleton this reduces to the simple Galton-Watson branching process. When S is a finite set of size k, this becomes the multitype Galton-Watson branching

process; see Athreya and Ney (1972) for definition and properties. Many continuous-time processes, such as the single- and multitype Bellman-Harris processes, branching Markov processes and branching random walks, can be cast as measure-valued branching processes in the above sense when considered at discrete time points $t = n\Delta$, $n = 0, 1, 2, \ldots$ For example, the single-type Bellman-Harris process may be viewed as a measure-valued branching process with $S = [0, \infty]$ and **S** the Borel σ -algebra of S, for each S, for each S is the probability distribution of the vector S of ages at time S in a Bellman-Harris process initiated by one particle of age S at time S.

Let $m(x, A) = E\xi^x(A)$ be the *mean kernel*. Let $\rho > 1$ and $v: S \to (0, \infty)$ be an S-measurable eigenfunction of the mean kernel m with eigenvalue ρ . That is,

$$\int_{S} v(y)m(x, dy) = \rho v(x). \tag{8a}$$

Let $V: M \to (0, \infty)$ be defined by

$$V(\mu) \equiv \int v \, \mathrm{d}\mu \equiv \sum_{i=1}^{n} v(x_i) \tag{8b}$$

if $\mu = \sum_{i=1}^{n} \delta_{x_i}$.

Then from (7) we see that

$$E(V(Z_{n+1})|Z_0, Z_1, ..., Z_n) = E(V(Z_{n+1})|Z_n)$$

$$= E\left(\sum_{i=1}^{z_n} V(\xi^{x_{ni}})|Z_n\right)$$

$$= E\left(\rho \sum_{i=1}^{z_n} v(x_{ni})\right) = \rho V(Z_n)$$

by virtue of (8).

Thus V is an eigenfunction for the Markov chain $\{Z_n\}_0^{\infty}$ with eigenvalue ρ . Let P(.,.) denote the transition function of $\{Z_n\}_0^{\infty}$.

For any initial value z in M let P_z and \tilde{P}_z be the distribution of the Markov chain with initial condition z and transition function P and \tilde{P} , where

$$\tilde{P}(z, d\mu) = \frac{V(\mu)P(z, d\mu)}{\rho V(z)}$$
(9)

as in Section 2.

The results of Section 2 on the absolute continuity or singularity of P_z and \tilde{P}_z will now be used to establish a condition for the non-triviality of the limit random variable W of the martingale

$$W_n = \frac{V(Z_n)}{\rho^n} \tag{10}$$

under P_{Z_0} for the Galton-Watson branching process $\{Z_n\}$.

It follows from Corollary 1 that, for $Z_0 \neq 0$,

$$P_{Z_0}(W=0) = 1 \text{ if and only if } \tilde{P}_{Z_0}(W=\infty) = 1$$
 (11)

and

$$E_{Z_0}W = V(Z_0) \text{ if and only if } \tilde{P}_{Z_0}(W = \infty) = 0.$$
 (12)

When S is a singleton Lyons *et al.* (1995) showed that, under \tilde{P}_{Z_0} , the Markov chain $\{Z_n\}_0^{\infty}$ is a branching process with an immigration component and used a simple criterion for the two cases $\tilde{P}_{Z_0}(W=\infty)=1$ and $\tilde{P}_{Z_0}(W=\infty)=0$. It turns out this is a *dichotomy*, that is, $\tilde{P}_{Z_0}(W=\infty)$ is either 1 or 0, and that the former prevails if and only if the LlogL condition of Kesten and Stigum (1966) holds, that is, if and only if $EZ_1 \log Z_1 < \infty$, where $Z_0 = 1$.

Our goal now is to show that \tilde{P}_{Z_0} can still be interpreted as the distribution of a measure-valued branching process with an immigration component and to seek sufficient conditions for $P_{Z_0}(W=\infty)$ to be one and also for it to be zero. In a number of special cases this becomes a dichotomy.

Here is a probabilistic description of the \tilde{P} Markov chain. For any non-negative measurable function f and a measure μ on (S, S) let

$$(f,\mu) \equiv \int f \,\mathrm{d}\mu,$$

and for any (M, \mathbf{M}) random variable ξ its moment generating functional

$$M_{\varepsilon}(f) = \mathrm{E}(\mathrm{e}^{-(f,\xi)}).$$

It is known that $M_{\xi}(.)$ determines the probability distribution of ξ .

Let $\{Z_n\}_0^{\infty}$ be a Markov chain with values in (M, \mathbf{M}) and transition function \tilde{P} defined in (9), that is,

$$\tilde{P}(m, dm') = \frac{V(m')P(m, dm')}{\rho V(m)}$$

where $V(\cdot)$ is as in (8a); v is a non-negative function on (S, \mathbf{S}) such that, for any x in S, $\mathrm{E}V(\xi^x) = \rho v(x)$, ξ^x being a point process with distribution P^x ; and, for $m = \sum_{i=1}^{n} \delta_{x_i}$, $P(m, \mathrm{d}m') = P(\sum_{i=1}^{n} \xi^{x_i} \in \mathrm{d}m')$ where ξ^{x_i} , $i = 1, 2, \ldots, n$, are independent point processes with ξ^{x_i} having distribution P^{x_i} .

Thus, under \tilde{P} , the moment generating functional of Z_1 given Z_0 is

$$\begin{split} M_{Z_1|Z_0}(f) &= \tilde{\mathbf{E}}(\mathbf{e}^{-(f,Z_1)}|Z_0) \\ &= \mathbf{E}\left(\frac{\mathbf{e}^{-(f,Z_1)}V(Z_1)}{\rho V(Z_0)}\bigg|Z_0\right), \end{split}$$

where \tilde{E} denotes expectation under \tilde{P} and E denotes expectation under P. But under P, if $Z_0 = \sum_{i=1}^{n} \delta_{x_i}$, then Z_1 may be written as

$$Z_1 = \sum_{1}^{n} \xi^{x_i}$$

where $\{\xi^{x_i}, i=1, 2...\}$ are being independent, ξ^{x_i} having distribution P^{x_i} . So

$$M_{Z_1|Z_0}(f) = E\left(\frac{\exp\{-(f, \sum_{i=1}^n \xi^{x_i})\}V(\sum_{i=1}^n \xi^{x_i})\}}{\rho(\sum_{i=1}^n v(x_i))}\right).$$

Since $V(\sum_{1}^{n} \xi^{x_i}) = \sum_{1}^{n} V(\xi^{x_i}),$

$$\begin{split} M_{Z_{1}|Z_{0}}(f) &= \sum_{j=1}^{n} \frac{v(x_{j})}{(\sum_{1}^{n} v(x_{i}))} \operatorname{E}\left(\frac{\mathrm{e}^{-(f,\xi^{x_{j}})} V(\xi^{x_{j}})}{\rho v(x_{j})} \prod_{i \neq j} \mathrm{e}^{-(f,\xi^{x_{i}})}\right) \\ &= \sum_{j=1}^{n} \frac{v(x_{j})}{(\sum_{1}^{n} v(x_{i}))} \operatorname{E}\left(\frac{\mathrm{e}^{-(f,\xi^{x_{j}})} V(\xi^{x_{j}})}{\rho v(x_{j})}\right) \prod_{i \neq j} \operatorname{E}(\mathrm{e}^{-(f,\xi^{x_{i}})}) \text{ (by independence)} \\ &= \sum_{j=1}^{n} \frac{v(x_{j})}{(\sum_{1}^{n} v(x_{i}))} \operatorname{E}(\mathrm{e}^{-(f,\xi^{x_{j}})}) \prod_{i \neq j} \operatorname{E}(\mathrm{e}^{-(f,\xi^{x_{i}})}), \end{split}$$

where $\tilde{\xi}^x$ is an M-valued random variable with probability distribution

$$P(\tilde{\xi}^x \in dm) = \frac{V(m)P(\xi^x \in dm)}{\rho v(x)}.$$
 (13)

This shows that the Markov chain $\{Z_n\}_0^\infty$ with transition function \tilde{P} evolves in the manner now described. Given $Z_n = (x_{n1}, x_{n2}, \dots x_{nz_n}), Z_{n+1}$ is generated as follows:

- (i) First pick the individual x_{nj} with probability $v(x_{nj})/\sum_{1}^{z_n}v(x_{ni})$ and choose its offspring point process $\tilde{\xi}^{x_{nj}}$ according to the $V(\cdot)$ -biased probability distribution $\tilde{P}^x(\mathrm{d}m)=$ $V(m)P^{x}(\mathrm{d}m)/\rho v(x)$.
- (ii) For all the other individuals choose the offspring point process $\xi^{x_{ni}}$ according to the original probability distribution $P^{x_{ni}}(dm)$.

(iii) Choose
$$\tilde{\xi}^{x_{nj}}$$
 and $\xi^{x_{ni}}i \neq j$ all independently.
(iv) Set $Z_{n+1} = \tilde{\xi}^{x_{nj^*}} + \sum_{i \neq j^*} \xi^{x_{ni}}$, (14)

where j^* is the index of the individual chosen according to (i).

The above construction is similar to that of Lyons et al. (1995). (The measure corresponding to $\tilde{P}_{Z_0,n}$ is a sort of average of the one introduced by Lyons *et al.* (1995) that keeps track of the 'spine' $\{x_{nj^*}, n = 1, 2, ...\}$.) For some Galton-Watson processes their more elaborate construction is not necessary.

The idea of using a $V(\cdot)$ -biased distribution is similar to 'size biasing' in population genetics literature and also occurs in the work of Waymire and Williams (1996).

Thus

$$\frac{V(Z_{n+1})}{\rho^{n+1}} = \sum_{i \neq i, *} \frac{V(\xi^{x_{ni}})}{\rho^{n+1}} + \frac{V(\tilde{\xi}^{x_{nj^*}})}{\rho^{n+1}}.$$
 (15)

The condition for P(W=0)=1 is $\tilde{P}(W=\infty)=1$. So if $\overline{\lim}(V(\tilde{\xi}^{x_{nj^*}}))/(\rho^{n+1})=\infty$ with probability one then, under \tilde{P} , $\overline{\lim}W_{n+1} \ge \overline{\lim}(V(\tilde{\xi}^{x_{nj^*}}))/(\rho^{n+1})=\infty$ with probability one and hence $P_{z_0}(W=0)$ would be one.

A sufficient condition for $P_{Z_0}(W=0)=1$ is that, for $\tilde{\xi}^x$ as in (13),

$$\inf_{Y} P(V(\tilde{\xi}^x) > t) \equiv \underline{h}(t), \qquad t > 0, \tag{16a}$$

satisfies

$$\int_{1}^{\infty} \underline{h}(e^{u}) du = \infty.$$
 (16b)

This is so because, for all K > 0,

$$\tilde{P}\left(\frac{V(\tilde{\xi}^{x_{nj^*}})}{\rho^{n+1}} \ge K|F_n\right) \ge \underline{h}(K\rho^{n+1})$$

and (16b) implies $\Sigma \underline{h}(K\rho^{n+1}) = \infty$ yielding, by the conditional Borel-Cantelli lemma (Durrett 1996, p. 240), the conclusion that

$$\overline{\lim} \frac{V(\tilde{\xi}^{x_{\eta^*}})}{\rho^{n+1}} \ge K \qquad \text{with probability one.}$$
 (17)

This being true for every $K=1, 2, \ldots, \overline{\lim}(V(\tilde{\xi}^{x_{nj^*}}))/\rho^{n+1})=\infty$ with probability one. Next we look for a sufficient condition for $E_{Z_0}(W)=1$. This is equivalent to $\tilde{P}_{Z_0}(W=\infty)=0$. Consider the condition that, for $\tilde{\xi}^x$ as in (13),

$$\overline{h}(t) \equiv \sup_{x} P(V(\tilde{\xi}^{x}) > t)$$
 (18a)

satisfies

$$\int_{1}^{\infty} \overline{h}(e^{u}) du < \infty. \tag{18b}$$

It follows from (15) that

$$\tilde{E}\left(\frac{V(Z_{n+1})}{\rho^{n+1}} \middle| Z_n, \, \tilde{\xi}^{x_{nj^*}}\right) = \sum_{i \neq j^*} \frac{\rho V(x_{ni})}{\rho^{n+1}} + \frac{V(\tilde{\xi}^{x_{nj^*}})}{\rho^{n+1}}$$

$$\leq \sum_{i} \frac{V(x_{ni})}{\rho^n} + \frac{V(\tilde{\xi}^{x_{nj^*}})}{\rho^{n+1}} \quad \text{(since } V(\cdot) \geq 0)$$

$$= \frac{V(Z_n)}{\rho^n} + \frac{V(\tilde{\xi}^{x^{nj^*}})}{\rho^{n+1}} \quad (19a).$$

Iterating the above yields,

$$\begin{split} \tilde{\mathbf{E}}\left(\frac{V(Z_{n+1})}{\rho^{n+1}} \bigg| Z_{n-1}, \, \tilde{\xi}^{x_{n-1,j^*}}, \, \tilde{\xi}^{x_{nj^*}}\right) &= E\left(\frac{V(Z_n)}{\rho^n} \bigg| Z_{n-1}, \, \tilde{\xi}^{x_{n-1,j^*}}, \, \tilde{\xi}^{x_{nj^*}}\right) + \frac{V(\tilde{\xi}^{x_{nj^*}})}{\rho^{n+1}} \\ &\leq \frac{V(Z_{n-1})}{\rho^{n-1}} + \frac{V(\tilde{\xi}^{x_{n-1,j^*}})}{\rho^n} + \frac{V(\tilde{\xi}^{x_{nj^*}})}{\rho^{n+1}}, \end{split}$$

and hence

$$\tilde{E}\left(\frac{V(Z_{n+1})}{\rho^{n+1}} \middle| Z_0, \, \tilde{\xi}^{x_{0j^*}}, \, \tilde{\xi}^{x_{ij^*}}, \dots, \, \tilde{\xi}^{x_{nj^*}}\right) \leq V(Z_0) + \sum_{r=0}^n \frac{V(\tilde{\xi}^{x_{rj^*}})}{\rho^{r+1}} \\
\leq V(Z_0) + \sum_{r=0}^\infty \frac{V(\tilde{\xi}^{x_{nj^*}})}{\rho^{r+1}} \equiv W^*, \, \text{say.} \quad (19b)$$

Next,

$$\hat{P}\left(\frac{V(\tilde{\xi}^{x_{rj^*}})}{\rho^r} \geqslant \delta^r\right) = \tilde{E}\left(P\left(\frac{V(\tilde{\xi}^{x_{rj^*}})}{\rho^r} \geqslant \delta^r \middle| x_{rj^*}\right)\right)$$

$$\leq \overline{h}((\rho\delta)^r)$$

where \overline{h} is as in (18a). By (18b), $\sum_r \overline{h}((\rho\delta)^r) < \infty$ if $0 < \delta < 1$ is chosen such that $\rho\delta > 1$. By Borel-Cantelli this implies that, with probability one under \tilde{P} , $V(\tilde{\xi}^{x_{\eta^*}})/\rho^r \le \delta^r$ for all but a finite number of r, and hence that $W^* < \infty$ with probability one under \tilde{P} (since $0 < \delta < 1$).

Next, from Proposition 2, under \tilde{P} , the sequence $\{W_n^{-1}: n=0, 1, 2...\}$ is a non-negative martingale and hence $\lim W_n = W \leq \infty$ exists with probability one under \tilde{P} . Let \tilde{G}_n be the σ -algebra generated by Z_0 and $\tilde{\xi}^{x_{rj^*}}r=0, 1, 2, \ldots n$ and $\tilde{G}=\sigma(\bigcup_0^\infty \tilde{G}_n)$. Then, by Fatou,

$$\tilde{\mathrm{E}}(W|\tilde{G}) \leq \lim \tilde{\mathrm{E}}(W_n|G).$$

But $\tilde{\mathrm{E}}(W_n|G) \leq \tilde{\mathrm{E}}(\tilde{\mathrm{E}}(W_n|G_n)|G) \leq \tilde{\mathrm{E}}(W^*|G) = W^*$, since W^* is G-measurable. Thus $\tilde{\mathrm{E}}(W|\tilde{G}) < \infty$ with probability one under \tilde{P}_{z_0}

and hence

$$\tilde{P}_{Z_0}(W < \infty) = 1$$
 or $\tilde{P}_{Z_0}(W = \infty) = 0$.

So under (18b) we conclude that

$$E_{Z_0}W = 1$$
 under P_Z .

Summarizing the above discussion we have the following:

Theorem 3. Let $\{Z_n\}_0^{\infty}$ be a measure-valued branching process with type space (S, \mathbf{S}) and offspring distribution family $\{P^x : x \in S\}$ as in Definition 1. Let $\rho > 1$, $v : S \to (0, \infty)$ and $V : M \to (0, \infty)$ satisfy (8a) and (8b). Let $W_n = V(Z_n)/\rho^n$. Let $\underline{h}(t) \equiv \inf_x P(V(\tilde{\xi}^x) > t)$ and

 $\overline{h}(t) \equiv \sup_{x} P(V(\tilde{\xi}^{x}) > t)$, where $\tilde{\xi}^{x}$ has distribution defined by (13). Then for any non-zero non-trivial Z_0 ,

(i)
$$\lim_{n} W_{n} = W \text{ exits with probability one under } P_{Z_{0}};$$

(ii)
$$P_{Z_0}(W=0) = 1 \text{ if } \int_1^\infty \underline{h}(e^u) \, \mathrm{d}u = \infty;$$

(iii)
$$E_{Z_0}W = V(Z_0) \text{ if } \int_1^\infty \overline{h}(e^u) du < \infty.$$

Remark 2. In many cases the two conditions $\int_1^\infty \underline{h}(e^u) du = \infty$ and $\int_1^\infty \overline{h}(e^u) du < \infty$ become a dichotomy. That is, $\int_1^\infty \underline{h}(e^u) du < \infty$ implies $\int_1^\infty \overline{h}(e^u) du < \infty$.

Remark 3. There are other versions of the LlogL theorem for the general state space case. Asmussen and Herring (1983) give a version with some compactness type conditions on the mean kernel. Kesten (1989) has a version in the countably infinite type case. The present author has not attempted to deduce these previously known results from Theorem 3 above. It does appear that in terms of hypotheses Theorem 3 above is perhaps more transparent and simpler to verify than those in the quoted works.

4. Examples

4.1. Multitype Galton-Watson process

Let $S = \{1, 2, ..., k\}$. An individual located at site i will be referred to as of type i. Let ξ^i denote the random vector of offspring of a type i individual. Let $m_{ij} = E(\xi^i_j)$, where ξ^i_j is the jth coordinate of ξ^i . Assume there is no extinction, that is, $P(\xi^i = \mathbf{0}) = 0$ for all i where $\mathbf{0}$ is the vector of zeros. Assume simple irreducibility, that is, $0 < m_{ij} < \infty$ for all i, j.

Let $1 < \rho < \infty$ be the Perron-Froebenius maximal eigenvalue of $M = ((m_{ij}))$ with corresponding left and right eigenvectors \mathbf{u} and \mathbf{v} respectively normalized so that $\mathbf{u} \cdot \mathbf{1} = 1$ and $\mathbf{u} \cdot \mathbf{v} = 1$ where $\mathbf{1}$ is the vector of ones and \cdot refers to dot product.

Let $\tilde{\xi}^i$ be the random vector with **v**-biased distribution

$$P(\tilde{\boldsymbol{\xi}}^i = \mathbf{j}) = \frac{\mathbf{j} \cdot \mathbf{v} P(\tilde{\boldsymbol{\xi}}^i = \mathbf{j})}{\rho v_i}.$$

Let $h_i(t) = P(\mathbf{v} \cdot \tilde{\mathbf{\xi}}^i > t)$ for t > 0.

We first consider sufficiency. Clearly $\overline{h}(t) \equiv \sup_i h_i(t) \leq \sum_{i=1}^k h_i(t)$. Thus $\int_1^\infty h_i(e^u) du < \infty$ for all i implies $\int_1^\infty \overline{h}(e^u) du < \infty$. But

$$\int_{1}^{\infty} h_{i}(\mathbf{e}^{u}) \, \mathrm{d}u = \int_{1}^{\infty} P(\mathbf{v} \cdot \tilde{\mathbf{\xi}}^{i} > \mathbf{e}^{u}) \, \mathrm{d}u = \int_{1}^{\infty} \left(\sum_{\mathbf{j}} \frac{\mathbf{v} \cdot \mathbf{j}}{\rho v_{i}} P(\mathbf{\xi}^{i} = \mathbf{j}) I(\mathbf{v} \cdot \mathbf{j} > \mathbf{e}^{u}) \right) \, \mathrm{d}u, \tag{20}$$

where $I(t > e^u) = 1$ if $t > e^u$ and 0 if $t \ge e^u$. The above integral equals

$$\sum_{\mathbf{j}} \frac{\mathbf{v} \cdot \mathbf{j}}{\rho v_i} P(\mathbf{\xi}^i = \mathbf{j}) \int_1^{\infty} I(\mathbf{v} \cdot \mathbf{j} > \mathbf{e}^u) \, \mathrm{d}u.$$

Since for t > e, $\int_{1}^{\infty} I(t > e^{u}) du = \log t$, it follows that

$$\int_{1}^{\infty} h_{i}(e^{u}) du < \infty \text{ if and only if } E(\mathbf{v}\boldsymbol{\xi}^{i}) \log(\mathbf{v} \cdot \boldsymbol{\xi}^{i}) < \infty.$$
 (21)

Thus, Theorem 3(iii) yields the sufficiency part of the Kesten-Stigum theorem (see Kesten and Stigum 1966) under the assumption $0 < m_{ij} < \infty$ for all i, j.

Turning now to the necessary part, consider the chain $\{Z_{2n}: n = 0, 1, 2 ...\}$ which is also a Galton-Watson branching process. Let

$$h_{i2}(t) = P(V(\tilde{Z}_2) > t | Z_0 = e_i),$$

$$h_i(t) = P(V(\tilde{Z}_1) > t | Z_1 = e_i).$$

Once again assuming simple irreducibility, that is, $m_{ij} > 0$ for all i, j, it can be seen that for every i, j, there exist $C_{ij} > 0$ such that

$$h_{i2}(t) \ge C_{ij}h_j(t)$$
.

Now suppose

$$E(\mathbf{v} \cdot \boldsymbol{\xi}^{(j)})\log(\mathbf{v} \cdot \boldsymbol{\xi}^{(j)}) = \infty \qquad \text{for some } j = j_0.$$
 (22)

Then

$$\underline{h}(t) = \inf_{i} h_{i2}(t) \ge Ch_{j_0}(t),$$

where $C = \inf_i C_{ij_0}$ and $\int_1^\infty \underline{h}(e^u) du \ge C \int_1^\infty h_{j_0}(e^u) du$. But by (21) this last integral is ∞ under (22). Now by Theorem 3(ii) it follows that W = 0 with probability one and the necessary part of the Kesten–Stigum theorem holds (see Kesten and Stigum 1966).

The above arguments can be extended to the general irreducible non-singular case when there exists an r such that M^r has all strictly positive entries by considering the Galton-Watson process along the sequence nr, $n = 0, 1, 2, \ldots$

4.2. Single-type Bellman-Harris process

Let $\{p_j\}^{\infty}$ be a probability distribution and $G(\cdot)$ be a non-lattice probability distribution on $(0, \infty)$. Let $S = [0, \infty)$ and $\mathbf{S} = B[0, \infty)$, the Borel σ -algebra. For each x > 0, let $\{\xi_t^x\}$ be the point process corresponding to the ages of all the individuals present at time t in a Bellman–Harris process initiated by one particle of age x at time 0 and with offspring distribution $\{p_j\}$ and lifetime distribution G. Then, for any $\Delta > 0$, the sequence $Z_n = \xi_{n\Delta}^x$, $n = 0, 1, 2, 3, \ldots$, is a measure-valued branching process of the type treated in Section 3 with type space S and offspring family $\{P^x(\cdot): x \in S\}$ given by

$$P^{x}(\cdot) = P(\xi_{\Delta}^{x} \varepsilon \cdot)$$

Let $\alpha > 0$ be the Malthusian parameter defined by

$$m \int_{[0,\infty)} e^{-\alpha u} dG(u) = 1, \qquad (23a)$$

where $1 < m = \sum j p_j < \infty$. For all $x \ge 0$ such that 1 - G(x) > 0, let

$$v(x) \equiv \left(\int_{[x,\infty)} e^{-\alpha u} dG(u) \right) e^{\alpha x} (1 - G(x))^{-1}$$

$$= E(e^{-\alpha L_x}), \qquad (23b)$$

where L_x denotes the time of death of an ancestor whose age is x so that

$$P(L_x > t) = \frac{1 - G(x + t)}{(1 - G(x))}$$
 for $t \ge 0$.

If $T = \sup\{x: 1 - G(x) > 0\}$ then the effective type space is S = [0, T]. We set v(T) = 1 since $L_T = 0$ with probability one. It can be shown that (see Athreya and Ney 1972)

$$EV(\xi_t^x) = e^{at}v(x).$$

Consider an ancestor of age x who dies at time L_x and produces N offspring. Let $\{\xi_t^{0,i}: t \ge 0\}$, $i=1,2,\ldots$, be independent and identically distributed copies of the process $\{\xi_t^0: t \ge 0\}$ and independent of L_x and N. Then the process $\{\xi_t^x: t \ge 0\}$ for this ancestor may be written as:

$$\xi_t^x = \begin{cases} x + t, & L_x > t, \\ \sum_{i=1}^{N} \xi_{t-L_x}^{0,i}, & L_x \leq t. \end{cases}$$

Let $\Delta = 1$ and $h_x(t) = P(V(\tilde{\xi}_1^x) > t)$ for $t \ge 0$. Then from the definition of $\tilde{\xi}^x$ as in (13) we obtain

$$h_x(t) = \frac{E(V(\xi_1^x): V(\xi_1^x) > t)}{e^a v(x)}$$
 (24)

Since $v(x) = E(e^{-\alpha L_x})$ for x < T and 1 for x = T, $v(\cdot)$ is always in [0,1]. Thus,

$$V(\xi_1^x) = \begin{cases} v(x+1), & L_x > 1, \\ \sum_{i=1}^{N} V(\xi_{1-L_x}^{0,i}), & L_x \le 1. \end{cases}$$
 (25)

Since there is no extinction, $\xi_t^{0,i}([0,\infty))$ is non-decreasing in t and, $v(\cdot)$ being less than or equal to 1, we obtain

$$\sum_{1}^{N} V(\xi_{1-L_x}^{0,i}) \le \sum_{1}^{N} \xi_{1}^{0,i} = \sum_{1}^{N} Z_i = Y, \text{ say.}$$
 (26)

By the conditional independence of N, L_x and $\sum_{i=1}^{N} Z_i$ we have, for t > 1,

$$h_x(t) \le \mathrm{E}(Y:Y > t) \frac{P(L_x \le 1)}{\mathrm{e}^{\alpha} p(x)}. \tag{27}$$

Since $e^{\alpha}v(x) = E(e^{\alpha(1-L_x)}) \ge P(L_x \le 1)$, we obtain

$$\overline{h}(t) = \sup_{x} h_x(t) \le E(Y: Y > t) \equiv K_1(t), \text{ say.}$$
 (28)

So $\int_1^\infty \overline{h}(e^u) du < \infty$ if $\int_1^\infty K_1(e^u) du < \infty$. But

$$\int_{1}^{\infty} K_{1}(e^{u}) du = \int_{1}^{\infty} E(YI(Y > e^{u})) du$$

$$= E\left(\int_{1}^{\infty} YI(Y > e^{u}) du\right)$$

$$= E(Y \log Y : Y > e)$$

$$\leq EY(\log Y).$$

From the definition of Y in (26) and the independence of N and $\{Z_i\}$ it follows that

$$E(Y \log Y) = E((N \log N)\bar{Z}) + E(N\bar{Z} \log \bar{Z}), \quad \text{where } \bar{Z} = \frac{1}{N} \sum_{i=1}^{N} Z_{i},$$

$$= E(E((N \log N)\bar{Z}|N)) + E(N\bar{Z} \log \bar{Z}).$$

But

$$E((N \log N)\bar{Z}|N) = (N \log N)E(Z_1)$$
(29)

and by the convexity of the function $x \log x$, for x > 0,

$$\bar{Z}\log\bar{Z} \leq \frac{1}{N}\sum_{i=1}^{N} Z_{i}\log Z_{i},$$

so that

$$E(N\bar{Z}\log\bar{Z}) \le E\left(\sum_{1}^{N} Z_{1}\log Z_{i}\right)$$
$$= E(Z_{1}\log Z_{i})(EN).$$

It is known (see Athreya and Ney 1972) that $EN \log N = \sum j(\log j) p_j < \infty$ implies

 $EZ_1 \log Z_1 < \infty$ and hence $EY \log Y < \infty$. Thus $\Sigma j(\log j)p_j < \infty$ implies $\int_1^\infty \overline{h}(e^u) du < \infty$. Now consider the measure-valued branching process $\{\xi_n^0, n = 1, 2, ...\}$ and the associated martingale sequence $\{W_n = e^{-an}V(\xi_n^0)\}_0^\infty$. By Theorem 3(iii), we see that $\sum j(\log j)p_j < \infty$ implies W_n has a non-trivial limit. This is the 'if' part of Kesten-Stigum theorem for the Bellman-Harris process.

For the only if part we make the assumption that

$$\delta = \inf_{x} P(L_x \le 1) > 0. \tag{30}$$

Then

$$v(x) = E(e^{-\alpha L_x}) \ge e^{-\alpha} P(L_x \le 1) \ge e^{-\alpha} \delta = c$$
, say.

So

$$V(\xi_1^x) \ge c \left(\sum_{i=1}^N Z_i\right) I(L_x \le 1)$$

and hence $h_x(\cdot)$ defined in (24) satisfies

$$h_x(t) \ge c \operatorname{E}(Y : cY > t) \frac{P(L_x \le 1)}{e^{\alpha} v(x)}$$

 $\ge c \operatorname{E}(Y : cY > t) \delta.$

Thus

$$\underline{h}(t) = \inf_{\mathbf{x}} h_{\mathbf{x}}(t) \ge c\delta \mathbf{E}(Y:Y > t/c)$$

and

$$\int_{1}^{\infty} \underline{h}(e^{u}) du = \infty \quad \text{if} \quad \int_{1}^{\infty} E(Y: Y > t/c) dt = \infty,$$

that is, if $EY(\log Y) = \infty$.

It can be seen from (27) and (28) that $EN \log N = \Sigma j(\log j)p_j = \infty$ implies $EY(\log Y) = \infty$. Thus we conclude that $\Sigma j(\log j)p_j = \infty$ and $\delta \equiv \inf_x P(L_x \le 1) > 0$ imply $\int_1^\infty \underline{h}(e^u) \, \mathrm{d}u = \infty$ and hence that $S_n \to 0$ with probability one. The same argument works if there is a $t_0 > 0$ such that $\inf_x P(L_x \le t_0) > 0$.

It is possible to drop this last condition with a slightly more involved argument to show

$$\Sigma P(V(\tilde{\xi}_{n}^{X_{nj^*}}) > Ke^{\alpha n} | \mathscr{F}_n) = \infty$$

and hence (17). This argument looks at the empirical distribution of $\{x_{nj}\}$ at time n and establishes that, for some 0 < a < T, the proportion of $x_{nj} \le a$ is bounded below by a positive quantity.

The argument for the single-type case above can be extended to the multitype Bellman–Harris case; see Athreya and Rama Murthy (1977) for a statement of the LlogL theorem in this case.

Acknowledgement

The author would like to thank the two referees for their thorough examination of the paper and their many suggestions for improvement.

References

- Asmussen, S. and Herring, H. (1983) Branching Processes. Boston: Birkhäuser.
- Athreya, K.B. and Ney, P. (1972) Branching Processes. New York: Springer-Verlag.
- Athreya, K.B. and Rama Murthy, K. (1977) The convergence of the state distribution in multidimensional Crump–Mode–Jagers processes. *J. Indian Math. Soc.*, **41**, 27–57.
- Durrett, R. (1996) Probability: Theory and Examples, 2nd edition. Belmont, CA: Duxbury Press.
- Kesten, H. (1989) Supercritical branching processes with countably many types and the sizes of random cantor sets. In T.N. Anderson, K.B. Athreya and D. Iglehart (eds), *Probability, Statistics and Mathematics Papers in Honor of Samuel Karlin*, pp. 108–121. New York: Academic Press.
- Kesten, H. and Stigum, B.P. (1966) A limit theorem for multidimensional Galton-Watson process. *Ann. Math. Statist.*, **37**, 1211–1223.
- Kurtz, T.G., Lyons, R., Pemantle, R. and Peres, Y. (1997) A conceptual proof of the Kesten-Stigum theorem for multitype branching processes. In K.B. Athreya and P. Jagers (eds), *Classical and Modern Branching Processes*, IMA Vol. Math. Appl. 84, pp. 181–186. New York: Springer-Verlag.
- Lyons, R. (1997) A simple path to Biggins Martingale convergence for branching random walk. In K.B. Athreya and P. Jagers (eds), *Classical and Modern Branching Processes*, IMA Vol. Math. Appl. 84, pp. 217–222. New York: Springer-Verlag.
- Lyons, R., Pemantle, R. and Peres, Y. (1995) Conceptual proofs of LlogL criteria for mean behaviour of branching processes, *Ann. Probab.*, **23**, 1125–1138.
- Rogers, L.G.C. and Williams, D. (1994) *Diffusions, Markov Processes and Martingales*, 2nd edn, Vol. 1. Chichester: Wiley.
- Waymire, E.C. and Williams, S.C. (1996) A cascade decomposition theory with applications to Markov and exchangeable cascades, *Trans. Amer. Math. Soc.*, **348**, 585–632.

Received May 1997 and revised February 1999