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Abstract

In this present work, we continue studying the Bernstein-Walsh type esti-
mations for complex algebraic polynomials in the bounded and unbounded
regions with quasiconformal boundary.

1 Introduction and Definitions

In many areas of research in mathematics (in approximation theory, embedding
theory and etc.), one can be faced with two important problems given in the
following: a) Determining how to undergo a change of (semi)norm of the holo-
morphic function when the given region expands; b) Determining the relation-
ships between different (semi)norms of analytic functions in a given finite Jordan
region on the complex plane in the various (semi)normed space

We will consider this problems for algebraic polynomials of complex variables
in the well known Bergman space, and investigate the following problems: eval-
uating the increase of the modulus of polynomials in the exterior of the given
region with respect to the norm of the polynomial in the this region; determining
a change of (semi)norm of polynomials for the given region and, finally, combin-
ing obtained estimations for the modulus of polynomials, we will get the estima-
tion modulus of polynomials in whole complex plane.

The first classical results of the first type belongs to Bernstein [13], Faber [15]
and Walsh [28]. We will give this result in the right to our future arguments.
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Let G ⊂ C be a bounded region with 0 ∈ G and the boundary L := ∂G being a
closed Jordan curve, Ω := C \ G , where C := C ∪ {∞}; ∆ := {w : |w| > 1}. Let
w = Φ(z) be the univalent conformal mapping of Ω onto ∆ such that Φ(∞) =

∞, limz→∞
Φ(z)

z > 0 and for R > 1, we’ve LR := {z : |Φ(z)| = R} , GR := intLR ,
ΩR := extLR.

Let ℘n denote the class of all complex algebraic polynomials Pn(z) of degree
at most n, n ∈ N := {1, 2, ...} . According to Bernstein-Walsh lemma [28], for any
z ∈ Ω we have

‖Pn‖C(GR)
≤ |Φ(z)|n ‖Pn‖C(G) , (1.1)

where
‖Pn‖C(G) := max

z∈G
|Pn(z)| , (1.2)

and consequently, for z ∈ GR:

‖Pn‖C(GR)
≤ Rn ‖Pn‖C(G) . (1.3)

By taking R = 1 + const.
n , we fund that, the norm ‖Pn‖C(G) increases no more than

a constant, when the domain G is expanded to GR.
Let h (z) be the weight function, which is defined in GR, for some R > 1. For

any p > 0 we introduce:

‖Pn‖Ap(h,G) : =



∫∫

G

h(z) |Pn(z)|p dσz




1/p

< ∞, (1.4)

‖Pn‖Ap(G) : = ‖Pn‖Ap(1,G) ,

where σz is the two-dimensional Lebesgue measure and

‖Pn‖Lp(h,L) : =



∫

L

h(z) |Pn(z)|p |dz|




1/p

< ∞, (1.5)

‖Pn‖Lp(L) : = ‖Pn‖Lp(1,L) ,

if L is rectifiable. The same effect, analogously to (1.3), is observed for the ‖Pn‖Lp(L)

according to the following estimate [16]:

‖Pn‖Lp(LR)
≤ R

n+ 1
p ‖Pn‖Lp(L) , p > 0. (1.6)

Let the function ϕ maps G conformally and univalently onto B := {w :
|w| < 1} which is normalized by ϕ(0) = 0, ϕ′(0) > 0, and ψ := ϕ−1.

Definition 1. [22, p.286]A bounded Jordan region G is called a k -quasidisk, 0 ≤ k <

1, if any conformal mapping ψ can be extended to a K−quasiconformal, K = 1+k
1−k ,

homeomorphism of the plane C on the C. In that case the curve L := ∂G is called a
k-quasicircle. The region G (curve L ) is called a quasidisk (quasicircle), if it is
k-quasidisk ( k-quasicircle) with some 0 ≤ k < 1.



Uniform and pointwise Bernstein-Walsh-type inequalities 287

It is well known that quasicircle may not even be locally rectifiable [17, p.104].
The Bernstein-Walsh type estimation in the Ap(h, G) for quasidisks and for

some weight function h(z), was proved in [3] (see: Part 2, Lemma 23). In particu-
lar, for h(z) ≡ 1,

‖Pn‖
Ap(GR)

≤ c1 [1 + c2(R − 1)]
n+ 1

p ‖Pn‖
Ap(G)

, p > 0, (1.7)

where c1 = c1(G, p, c2) > 0 and c2(G, p) > 0 are constants independent of R and
n.

So, taking R = 1 + const.
n , from (1.7) we see that ‖Pn‖Ap(GR)

and ‖Pn‖Ap(G) are

equivalent.
N. Stylianopoulos [24] replaced the norm ‖Pn‖C(G)with norm ‖Pn‖A2(G) on

the right-hand side of (1.1) and, introduced a new version of the Bernstein-Walsh
lemma as following the type: Assume that L is quasicircle and rectifiable. Then there
exists a constant c = c(L) = const. > 0 such that, for any n ∈ N and Pn ∈ ℘n

|Pn(z)| ≤ c

√
n

d(z, L)
‖Pn‖A2(G) |Φ(z)|n+1 , z ∈ Ω, (1.8)

where d(z, L) := dist(z, L) := inf {|z − ζ| : ζ ∈ L} .
Second problem which we will investigate in this work, is the following:

‖Pn‖C(G) ≤ νn ‖Pn‖Ap(G) , (1.9)

where νn := νn(G, p) → ∞, n → ∞, depending on the geometrical properties of
the region G. Inequalities analogously to (1.9) in the literature are often found
under the ”Nikol’skii-type inequality”.

Examples of inequalities type of (1.8) and (1.9) for the polynomials we can
indicate the investigations by Nikol’skii [21], Mamedhanov [19], Milovanovic et
al.[20], Abdullayev et al. [3]-[7], Andrievskii [11], Stylianopoulos [24], [25] and
others.

2 Main Results

Throughout this paper, we will denote by c, c0,c1, c2, ... which are positive con-
stants and by ε0, ε1, ε2, ... sufficiently which are small positive constants (in gen-
eral, different in different relations) that depends on G in general and on param-
eters inessential for the argument; otherwise, such dependence will be explicitly
stated.

First of all we note that, for any p > 0, according to mean value theorem, there
exists a constant c4 = c4(G) > 0, independent from n and z, such that for any
Jordan region G and Pn ∈ ℘n, the following is true:

|Pn(z)| ≤ c4

(
1

d(z, L)

) 2
p

‖Pn‖Ap(G) , z ∈ G. (2.1)
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Combining (1.8) and (2.1), we obtain an estimation on the growth of |Pn(z)| in
G and Ω as the following: if L is quasicircle and rectifiable, then for any Pn ∈ ℘n, n ∈
N,

|Pn(z)| ≤
c5

d(z, L)
‖Pn‖A2(G)

{
1, z ∈ G,√

n |Φ(z)|n+1 , z ∈ Ω.
(2.2)

It shows that, if we know the behavior of the |Pn(z)| for z ∈ L = ∂G, then we
can find the estimation for the |Pn(z)| in the whole complex plane. In particular,
according to [5], we have the following:

Theorem A. Assume that G is a k−quasidisk. Then there exists a constant
c6 = c6(G, p) > 0 such that, for any n ∈ N and Pn ∈ ℘n the following is true:

|Pn(z)| ≤ c6n
2(1+k)

p ‖Pn‖Ap(G) , z ∈ G. (2.3)

Therefore, combining the estimation (2.3) with (1.8), we obtain an estimation
on the growth of |Pn(z)| in the whole complex plane:

Corollary B. Let L be a k−quasicircle for some 0 ≤ k < 1 and rectifiable. Then for
any n ∈ N and Pn ∈ ℘n

|Pn(z)| ≤ c
′
6 ‖Pn‖A2(G)

{
n1+k, z ∈ G,√

n
d(z,L)

|Φ(z)|n+1 , z ∈ Ω,
(2.4)

where c
′
6 = max {c, c6} .

In this work, we study a similar problem to (1.8), (2.2) and (2.4) with respect
to ‖Pn‖Ap(G), p > 0, for regions with quasiconformal boundary (not necessarily

rectifiable!).
Now, we start to formulate the new results.

Theorem 2. Assume that G is quasidisk; Pn ∈ ℘n, n ∈ N , and R1 = 1+ ε1
n . Then, for

any p > 0

|Pn(z)| ≤ c7

( √
n

d(z, LR1
)

) 2
p

‖Pn‖Ap(G) |Φ(z)|n+1 , z ∈ ΩR1
, (2.5)

where c7 = c7(G, p) > 0.

If we use a similar estimation to (2.1), but rewriting for points z ∈ GR, then
according (2.5), we obtain:

Corollary 3. Let G be a quasidisk; Pn ∈ ℘n, n ∈ N, and R1 = 1 + ε1
n . Then for any

p > 0

|Pn(z)| ≤ c8

(
1

d(z, LR1
)

) 2
p

‖Pn‖Ap(G)

{
1, z ∈ GR1

,√
n |Φ(z)|n+1 , z ∈ ΩR1

,
(2.6)

where c8 = c8(G, p) > 0.

Now, combining (2.3) and Theorem 2, by (1.3) we have:
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Corollary 4. Let G be a k−quasidisk for some 0 ≤ k < 1; Pn ∈ ℘n, n ∈ N , and
R1 := 1 + ε1

n . Then, for p > 0

|Pn(z)| ≤ c9 ‖Pn‖Ap(G)





n
2(1+k)

p , z ∈ GR1
,

( √
n

d(z,LR1
)

) 2
p

|Φ(z)|n+1 , z ∈ ΩR1
,

(2.7)

where c9 = c9(G, p) > 0.

Thus, Corollaries 3 and 4 are provide an opportunity to observe the growth of
|Pn(z)| on the whole complex plane. From the conditions of the theorem we see
that it holds for k−quasidisks with 0 ≤ k < 1. But as we know, calculating the
coefficient of quasiconformality for some curves is not an easy task. Therefore,
we define a more general class of regions with another characteristics. One of
them is the following definition.

Definition 5. [4]We say that G ∈ Qα, 0 < α ≤ 1, if
i) L = ∂G is quasicircle,
ii) Φ ∈ Hα(Ω) for some 0 < α ≤ 1.

For G ∈ Qα we have the following result.

Theorem 6. Assume that G ∈ Qα for some 1
2 ≤ α ≤ 1; Pn ∈ ℘n, n ∈ N , and

R1 := 1 + ε1
n . Then, for any p ≥ 1

|Pn(z)| ≤ c10

(
n

1
α

d(z, LR1
)

) 1
p

‖Pn‖Ap(G) |Φ(z)|n+1 , z ∈ ΩR1
, (2.8)

where c10 = c10(G, p) > 0.

Analogous to (2.3), for G ∈ Qα , 1
2 ≤ α ≤ 1, we can find (see, for example,

[5, Th.5.2]) a constant c11 = c11(G, α, p) > 0 such that for any Pn ∈ ℘n, n ∈ N and
p > 1, the following is true:

|Pn(z)| ≤ c11n
2
pα ‖Pn‖Ap(G) , z ∈ G. (2.9)

In this case, combining Theorem 6 and (2.9), we obtain an estimate for |Pn(z)| on
the whole complex plane.

Corollary 7. Let G ∈ Qα for some 1
2 ≤ α ≤ 1; Pn ∈ ℘n, n ∈ N, and R1 := 1 + ε1

n .
Then, for any p > 1

|Pn(z)| ≤ c12 ‖Pn‖Ap(G)





n
2
pα , z ∈ GR1

,
(

n
1
α

d(z,LR1
)

) 1
p

|Φ(z)|n+1 , z ∈ ΩR1
,

(2.10)

where c12 = c12(G, α, p) > 0.
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Theorem 6 holds for all p ≥ 1. If we exclude the case p = 1, then the right
hand side of (2.8) can be improved for 1

2 ≤ α ≤ 1 and p > 1. For this reason, we
give the following definition.

Definition 8. We say that G ∈ Q
β
α , if G ∈ Qα for some 0 < α ≤ 1 and Ψ ∈ Hβ(|w| ≥

1) for some 0 < β ≤ 1.

For G ∈ Q
β
α we get :

Theorem 9. Assume that G ∈ Q
β
α for some 1

2 ≤ α ≤ 1 and 0 < β ≤ 1; Pn ∈ ℘n,
n ∈ N, and R1 := 1 + ε1

n . Then, for any p > 1

|Pn(z)| ≤
c13 ‖Pn‖Ap(G) |Φ(z)|n+1

d(z, LR1
)





n
1
α (

2
p−1)

, 2 − α < p < 2,√
n, p = 2,

n
(1−β)(1− 2

p ), p > 2,

z ∈ ΩR1
,

(2.11)
where c13 = c13(G, α, β, p) > 0.

Clearly, we see that the estimate (2.11) is better than (2.8) for any 2 − α < p ≤
2 + 1

αβ .

Remark 10. We note, that the class Q
β
α is sufficiently large. For example,

a) If L =: ∂G is a smooth curve having continuous tangent line, then G ∈ Q
β
α for

all 0 < α, β < 1.
b) If G is ”L-shaped” region, then Φ ∈ Lip 2

3 and Ψ ∈ Lip 1
2 .

c) If L is quasismooth (in the sense of Lavrentiev), that is, for every pair z1, z2 ∈ L, if
s(z1, z2) represents the smallest of the lengths of the arcs joining z1 to z2 on L, there
exists a constant c > 1 such that s(z1, z2) ≤ c |z1 − z2| , then Φ ∈ Lip α for
α = 1

2(1 − 1
π arcsin 1

c )
−1 and Ψ ∈ Lip β for β = 2

(1+c)2 [26], [27].

d) If L is ”c-quasiconformal” (see, for example, [18]), then Φ ∈ Lip α for

α = π
2(π−arcsin 1

c )
and Ψ ∈ Lip β for β =

2(arcsin 1
c )

2

π(π−arcsin 1
c )

. Also, if L is an asymptotic

conformal curve, then Φ ∈ Lip α and Ψ ∈ Lip β for all 0 < α, β < 1 [18].

Therefore, we can calculate α and β in the right parts of estimates (2.8)-(2.11)
for each case, respectively.

In case p = 2, for the quasidisks, we have the following general result.

Theorem 11. Assume that G is quasidisk; Pn ∈ ℘n, n ∈ N. Then, there exists a
constant c14 = c14(G) > 0 such that for any R > 1 we have

|Pn(z)| ≤ c14

√
n

d(z, LR)
‖Pn‖A2(GR)

|Φ(z)|n+1 , z ∈ ΩR. (2.12)

Now, combining estimation (1.3) and (2.3) with Theorem 11, we also get a
result in Corollary 4.

Thus, to estimation the quantity |Pn(z)| in G1+ c
n
, we need to know a similar

estimate for |Pn(z)| in G, and by using (1.3), we get the desired estimation. There-
fore, (2.12) is meaningful for z ∈ Ω such that ”not too close” to the boundary. In
this regard, we give the following result.
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Corollary 12. For any compact subset F ⋐ Ω and Pn ∈ ℘n, n ∈ N, we have

|Pn(z)| ≤ c15

√
n

d(z, L)
‖Pn‖A2(G) |Φ(z)|n+1 , z ∈ F ⋐ Ω, (2.13)

where c15 = c15(G, F) > 0.

Theorems 2, 6, 9 and their corollaries can be formulated for the point
z ∈ Ω. For this reasion we need the following notation.

Let L be a K−quasiconformal and y(.) be a regular quasiconformal reflection
across L (for details see Part 2). For any R > 1, we put L∗ := y(LR), G∗ :=
intL∗, Ω∗ := extL∗; denote by ΦR the conformal mapping of Ω∗ onto ∆ with the

normalization ΦR(∞) = ∞, limz→∞
ΦR(z)

z > 0, and let ΨR := Φ−1
R .

Now, we assume that the point z ∈ Ω is arbitrarily close to the bound of L.
In this case, we will replace the function Φ(z) with ΦR(z), which is shown in the
following theorem.

Theorem 13. Assume that G is a quasidisk; R = 1+ 1
n and Pn ∈ ℘n, n ∈ N. Then, for

any p > 0

|Pn(z)| ≤ c16

( √
n

d(z, L)

) 2
p

‖Pn‖Ap(G) |ΦR(z)|n+1 , z ∈ Ω, (2.14)

where c16 = c16(G, p) > 0.

Using (2.3), analogously to Corollary 4, we have:

Corollary 14. Let G be a k−quasidisk for some 0 ≤ k < 1, then for any Pn ∈ ℘n,
n ∈ N,

|Pn(z)| ≤ c17 ‖Pn‖A2(G)

{
n(1+k), z ∈ G,√

n
d(z,L)

|ΦR(z)|n+1 , z ∈ Ω,
(2.15)

where c17 = c17(G) > 0.

Analogous, for the regions G ∈ Qα and G ∈ Q
β
α we get:

Theorem 15. Assume that G ∈ Qα for 1
2 ≤ α ≤ 1; R = 1 + 1

n and Pn ∈ ℘n, n ∈ N.
Then, for any p ≥ 1

|Pn(z)| ≤ c18

(
n

1
α

d(z, L)

) 1
p

‖Pn‖Ap(G) |ΦR(z)|n+1 , z ∈ Ω, (2.16)

where c18 = c18(G, α, p) > 0.

Theorem 16. Assume that G ∈ Q
β
α for some 1

2 ≤ α ≤ 1 and 0 < β ≤ 1; R = 1 + 1
n ,

and Pn ∈ ℘n, n ∈ N. Then, for any p > 1

|Pn(z)| ≤
c19 ‖Pn‖Ap(G) |ΦR(z)|n+1

d(z, L)





n
1
α (

2
p−1)

, 2 − α < p < 2,√
n, p = 2,

n
(1−β)(1− 2

p ), p > 2,

z ∈ Ω,

(2.17)
where c19 = c19(G, α, β, p) > 0.
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2.1 Sharpness of estimates

The sharpness of the estimations (2.3)-(2.17) can be discussed by comparing them
with the following result.

Theorem 17. a) For any n ∈ N there exist a polynomial Q∗
n ∈ ℘n, region G∗

1 ⊂ C and

constant c20 = c20(G
∗
1 ) > 0 such that for all z ∈ G

∗
1

|Q∗
n(z)| ≥ c20n ‖Q∗

n‖A2(G
∗
1 )

; (2.18)

b) For any n ∈ N there exist a polynomial P∗
n ∈ ℘n, region G∗

2 ⊂ C compact

F∗
⋐ Ω\G

∗
2 and constant c21 = c21(G

∗
2 , F∗) > 0 such that

|P∗
n (z)| ≥ c21

√
n

d(z, L)
‖P∗

n‖A2(G
∗
2 )

|Φ(z)|n+1 , z ∈ F ⋐ Ω\G
∗
2 . (2.19)

3 Some auxiliary results

The following definitions of quasiconformal curves are well known, see, for
example, [8], [17, p.97] and [23]:

Definition 18. The Jordan arc (or curve) L is called K−quasiconformal (K ≥ 1), if there
is a K−quasiconformal mapping f of the region D ⊃ L such that f (L) is a line segment
(or circle).

We denote by F(L) the set of all sense preserving plane homeomorphisms f of the
region D ⊃ L such that f (L) is a line segment (or circle) and let

KL := inf {K( f ) : f ∈ F(L)} ,

where K( f ) is the maximal dilatation of a such mapping f L is a quasiconformal curve,
if KL < ∞, and L is a K−quasiconformal curve, if KL ≤ K.

Remark 19. It is well known that when we are not interested in the coefficients of qua-
siconformality of the curve L, then the definition of ”quasicircle” and ”quasiconformal
curve” are equivalent. When we are interested with coefficients of quasiconformality of
the given curve, then we will consider that if the curve L is K−quasiconformal, then L is

k−quasicircle with k = K2−1
K2+1

.

According to Remark 19, we will use both terms, depending on the situation.
Throughout this paper, for a > 0 and b > 0, we use the expression “a � b”

(order inequality), if a ≤ cb. The expression “a ≍ b” means that “a � b” and
“b � a” simultaneously.

We give some facts from the theory of quasi-conformal mapping, which will
be used throughout of all proof below.

Let L be a K−quasiconformal curve, then [8], there exists a quasiconformal
reflection y(.) across L such that y(G) = Ω, y(Ω) = G and y(.) is fixed the points
of L. The quasiconformal reflection of y(.) satisfies the following condition [8],
[10, p.26]:
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|y(ζ)− z| ≍ |ζ − z| , z ∈ L, ε < |ζ| < 1

ε
, (3.1)

∣∣∣yζ

∣∣∣ ≍
∣∣yζ

∣∣ ≍ 1, ε < |ζ| < 1

ε
,

∣∣∣yζ

∣∣∣ ≍ |y(ζ)|2 , |ζ| < ε,
∣∣∣yζ

∣∣∣ ≍ |ζ|−2 , |ζ| > 1

ε
,

and for the Jacobian Jy = |yz|2 − |yz|2 of y(.) the relation
∣∣∣yζ

∣∣∣
2
≤ 1

1−k2 Jy is hold,

where k = K2−1
K2+1

.

For any R > 1 and t > 1, we set L∗ := y(LR), L∗
t := {z : |ΦR(z)| = t} ,

G∗
t := intL∗

t , Ω∗
t := extL∗

t . According to [9], for all z ∈ L∗ and t ∈ L such that
|z − t| = d(z, L), we have

d(z, L) ≍ d(t, LR) ≍ d(z, L∗
R). (3.2)

|ΦR(z)| ≤ |ΦR(t)| ≤ 1 + c(R − 1).

Lemma 20. [1] Let L be a K−quasiconformal curve, z1 ∈ L, z2, z3 ∈ Ω∩{z : |z − z1| ≤
d(z1, Lr0)}; wj = Φ(zj), j = 1, 2, 3. Then

a) The statements |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| are equivalent.

So are |z1 − z2| ≍ |z1 − z3| and |w1 − w2| ≍ |w1 − w3| .

b) If |z1 − z2| � |z1 − z3| , then

∣∣∣∣
w1 − w3

w1 − w2

∣∣∣∣
ε

�
∣∣∣∣
z1 − z3

z1 − z2

∣∣∣∣ �
∣∣∣∣
w1 − w3

w1 − w2

∣∣∣∣
c

,

where ε < 1, c > 1; Lr0 := {ζ : |ϕ(ζ)| = r0, 0 < r0 < 1} and r0 := r0(G) is a
constant, depending on G.

Lemma 21. Let G be a k -quasidisk for some 0 ≤ k < 1. Then

|Ψ(w1)− Ψ(w2)| � |w1 − w2|1+k ,

for all w1, w2 ∈ Ω
′
.

This fact is derived to appropriate the results for the estimation |Ψ′(τ)| (see,
[22, p. 287, Lemma 9.9] and [10, Th.2.8]).

The following two Lemmas 22 and 24 we use to prove Theorems 13-16.

Lemma 22. Let L be a K-quasiconformal curve. For arbitrary R > 1, there exist a
numbers ρ1, ρ2 : ρ1 < ρ2, and ρ3, ρ4 : ρ3 < ρ4 such that the following conditions are
satisfied:

1) G
∗
ρ1

⊆ G, G ⊆ G
∗
ρ2

and G
∗
ρ3

⊆ GR, GR ⊆ G
∗
ρ3

,
2) ρ1 − 1 ≍ ρ2 − 1 ≍ ρ3 − 1 ≍ ρ4 − 1 ≍ R − 1.
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Proof. We consider the four numbers ρ1, ρ2, ρ3, ρ4 where ρ1 < ρ2, ρ3 < ρ4 such
that

G
∗
ρ1

⊆ G, GR ⊆ G
∗
ρ4

, (3.3)

G ⊆ G
∗
ρ2

, G
∗
ρ3

⊆ GR, (3.4)

and we show that the numbers ρ1, ρ2, ρ3, ρ4 can be chosen to satisfy the following
conditions:

ρ1 − 1 ≍ ρ4 − 1 ≍ R − 1; (3.5)

ρ2 − 1 ≍ ρ3 − 1 ≍ R − 1. (3.6)

The validity of the relation (3.3) with (3.5) was proved in [3]. We verify the
validity of the relation (3.4) with (3.6). Let ρ2 be an arbitrary number satisfying
(3.4) and let z ∈ L∗, z̃ = y(z). For ρ2 > 1, ρ3 > 1 and R > 1, define points z1 ∈ L,
z2 ∈ L∗

ρ2
, z3 ∈ L∗

ρ3
and zR ∈ LR as follows: d(z, L) = |z − z1| , d(z, L∗

ρ2
) = |z − z2|,

d(z, L∗
ρ3
) = |z − z3| and d(z, LR) = |z − zR| , respectively. According to (3.2), there

exists c1, c2, independent from z and R, such that

c1d(z1, LR) ≤ d(z, L) ≤ c2d(z1, LR); (3.7)

c1d(z, L∗
ρ2
) ≤ d(z, L) ≤ c2d(z, L∗

ρ2
).

Since L∗ is a quasiconformal, applying Lemma 20 to the function ΦR we
obtain:

∣∣∣∣
z − z2

z − z1

∣∣∣∣ ≥ c3

∣∣∣∣
ΦR(z)− ΦR(z2)

ΦR(z)− ΦR(z1)

∣∣∣∣
ε1

≥ c4

(
ρ2 − 1

|ΦR(z)− ΦR(z2)|

)ε1

,

and we get:

|z − z1| ≤ c−1
4

( |ΦR(z)− ΦR(z2)|
ρ2 − 1

)ε1

|z − z2| . (3.8)

On the other hand, we can extend the function ΦR to a quasiconformal mapping

Φ̃R of the whole complex plane onto itself. Then, using the D−property of the

Φ̃R [12, p.18] and (3.7) we have:

|z − z2| ≤ c5 |z − z1| ≤ c5 · c2 |z − zR| , zR ∈ LR.

According to Lemma 20 (written for ΦR), we get:

|ΦR(z)− ΦR(z2)| ≤ c6 |ΦR(z)− ΦR(zR)| ≤ c7(R − 1).

Then, from (3.8), we obtain:

|z − z1| ≤ c−1
4

(
c7(R − 1)

ρ2 − 1

)ε1

|z − z2| .

By taking:
ρ2 = 1 + c8(R − 1) (3.9)

with c8 = 2c7 · c
−ε−1

1
4 , which leads to (3.4) and (3.6).
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Now, we will define ρ3. Applying Lemma 20 to ΦR we get:

∣∣∣∣
z − zR

z − z3

∣∣∣∣ ≥ c9

∣∣∣∣
ΦR(z)− ΦR(zR)

ΦR(z)− ΦR(z3)

∣∣∣∣
ε1

≥ c10

∣∣∣∣
ΦR(z)− ΦR(zR)

ρ3 − 1

∣∣∣∣
ε1

,

and we obtain:

|z − z3| ≤ c−1
10

(
ρ3 − 1

|ΦR(z)− ΦR(zR)|

)ε1

|z − zR| . (3.10)

Since |z − zR| ≥ d(L, LR) =: d(ẑ, LR), where ẑ ∈ L, then |ΦR(z)− ΦR(zR)| ≥
c11 |ΦR(ẑ)− ΦR(zR)| ≥ c12(R − 1), and from (3.10) we have:

|z − z3| ≤ c−1
10

(
ρ3 − 1

c12(R − 1)

)ε1

|z − zR| .

By choosing

ρ3 = 1 + c13(R − 1) (3.11)

with c13 = 1
2c12 · c

ε−1
1

10 , we see the second part of (3.4) and (3.6) are also satisfied.

Let
{

zj

}m

j=1
be a fixed system of the points on L and the weight function h (z)

is defined as the following:

h (z) =
m

∏
j=1

∣∣z − zj

∣∣γj , γj > −2, j = 1, m, z ∈ GR. (3.12)

Lemma 23. [3] Let L be a K−quasiconformal curve; h(z) is defined as in (3.12). Then,
for arbitrary Pn(z) ∈ ℘n, any R > 1 and n ∈ N, we have

‖Pn‖Ap(h,GR)
� [1 + c(R − 1)]

n+ 1
p ‖Pn‖Ap(h,G) , p > 0. (3.13)

Lemma 24. Let L be a K−quasiconformal curve; L∗ := y(LR), R = 1 + 1
n ;

ρ := 1+ c1(R− 1). Then, for any fixed ε ∈ (0, 1) there exists level curve L∗
1+ε(ρ−1) such

that for Pn(z) ∈ ℘n , n ∈ N, we have

‖Pn‖
Lp

(∣∣∣Φ′
R

∣∣∣
−1

, L∗
1+ε(ρ−1)

) � n
1
p ‖Pn‖Ap(G) , p > 0. (3.14)

Proof. Case 1.

For arbitrary fixed R > 1, let ρ1 := sup
{

ρ = 1 + c1(R − 1) : G
∗
ρ ⊆ G

}
, and,

without loss of generality, we may take ε = 1
2 ant R1 := 1 +

ρ1−1
2 . Let us set:

fn (w) := Pn (ΨR (w)) · (Ψ′
R(w))

2
p .
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Then,

J
p
R1

: =
∫

L∗
R1

|Pn(z)|p |dz|∣∣Φ′
R(z)

∣∣ (3.15)

=
∫

|w|=R1

∣∣∣Pn(ΨR(w))(Ψ
′
R(w))

2
p

∣∣∣
p
|dw|

=
∫

|w|=R1

∣∣ fn,p(w)
∣∣p |dw| ,

where fn,p(w) := Pn(ΨR(w))(Ψ
′
R(w))

2
p , |w| = R1. Now, we separate the circle

|t| = R1 to n equal parts δn with mes δn = 2πR1
n and by applying the mean value

theorem to the integral A1
n, we get:

J
p
R1

=
∫

|t|=R1

| fn (w)|p |dw|

=
n

∑
k=1

∫

δk

| fn (w)|p |dw| =
n

∑
k=1

∣∣∣ fn

(
t
′
k

)∣∣∣
p

mesδk, t′k ∈ δk.

On the other hand, by applying mean value estimation

∣∣∣ fn

(
t
′
k

)∣∣∣
p
≤ 1

π
(∣∣t′k

∣∣− 1
)2

∫∫

∣∣∣ξ−t
′
k

∣∣∣<
∣∣∣t′k
∣∣∣−1

| fn (ξ)|p dσξ ,

we obtain:

J
p
R1

�
n

∑
k=1

mes δk

π
(∣∣t′k

∣∣− 1
)2

∫∫

∣∣∣ξ−t
′
k

∣∣∣<
∣∣∣t′k
∣∣∣−1

| fn (ξ)|p dσξ , t′k ∈ δk.

By taking into account, at most two of the discs with origin at the points t′k are
intersecting, we have:

J
p
R1

� mesδ1(∣∣t′1
∣∣− 1

)2

∫∫

1<|ξ|<ρ1

| fn (ξ)|p dσξ � n ·
∫∫

1<|ξ|<ρ1

| fn (ξ)|2 dσξ .

According to (23), for J
p
R1

, we get:

J
p
R1

� n
∫∫

G∗
ρ1
\G∗

|Pn (z)|p dσz � n · ‖Pn‖p

Ap(G)
. (3.16)
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Case 2. Let us now take R2 := 1+
ρ2−1

2 , where ρ2 := sup {ρ = 1+ c2(R− 1)) :

G∗
ρ ⊆ GR}, similarly to the previous case, we obtain:

J
p
R2

: =
∫

L∗
R2

|Pn(z)|p |dz|∣∣Φ′
R(z)

∣∣

� n
∫∫

G∗
ρ2
\G∗

|Pn (z)|p dσz � n ‖Pn‖p

Ap(GR)
.

Setting R = 1 + 1
n and applying Lemma 23 for h(z) ≡ 1, we have:

J
p
R2

� n ‖Pn‖p

Ap(G)
. (3.17)

Combining (3.15)-(3.17), we have proved the estimation (3.14):
∥∥∥∥∥

Pn

Φ
′
R

∥∥∥∥∥
Lp(L∗

1+ε(ρ1−1)
)

� n
1
p ‖Pn‖Ap(G) .

4 Proof of Theorems

4.1 Proof of Theorem A

Proof. For the arbitrary polynomials Pn ∈ ℘n and in particular, for Bergman poly-
nomials (i.e. orthonormal polynomials over the region K n(z) : ‖Kn‖A2(h,G) = 1)

in [5, Th.2.1 and Th.5.1] the following is proved:
Theorem. Let G be bounded by k−quasidisk for some 0 ≤ k < 1 and let the weight

function h(z) be defined by (3.12). Then, for any Pn ∈ ℘n, n ∈ N, and every point
zj ∈ L, j = 1, 2, ..., m,

∣∣Pn(zj)
∣∣ � n

(2+γj)(1+k)

p ‖Pn‖Ap(h,G) .

Putting h(z) ≡ 1, i.e. γj = 0, j = 1, 2, ..., m, we obtain the proof.

4.2 Proof of Theorem 2

Proof. Let R = 1 + 1
n . For the sufficiently small ε1 > 0, let us set: R1 := 1 + ε1

(R − 1). Let
{

ζ j

}
, 1 ≤ j ≤ m ≤ n, zeros of Pn(z) lying on Ω and let

B(z) :=
m

∏
j=1

Bj(z) =
m

∏
j=1

Φ(z) − Φ(ζ j)

1 − Φ(ζ j)Φ(z)

denote a Blashke function with respect of zeros of Pn(z). For any p > 0 and
z ∈ Ω let us set:

F̃n,p (z) :=

(
Pn (z)

B(z) Φn+1(z)

) p
2

. (4.1)
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Cauchy integral representation for a region Ω is given as:

F̃n,p (z) = − 1

2πi

∫

LR1

F̃n,p (ζ)
dζ

ζ − z
, z ∈ ΩR1

.

Since |B(ζ)| = 1, for ζ ∈ L, then, for arbitrary ε, 0 < ε < ε1, there exists a circle
|w| = 1 + ε

n , such that for any j = 1, 2, ..., m the following is satisfied:

∣∣Bj(ΨR(w)
∣∣ > 1 − ε.

Then, |B(ζ)| > (1 − ε)m � 1. On the other hand, |Φ(ζ)| = R1 > 1, for ζ ∈ LR1
.

Therefore, for any z ∈ ΩR1
we have:

∣∣∣F̃n,p (z)
∣∣∣ = 1

2π

∫

LR1

∣∣∣F̃n,p (ζ)
∣∣∣ |dζ|
|ζ − z| �

1

d(z, L)

∫

LR1

|Pn (ζ)|
p
2 |dζ| . (4.2)

By applying the Hölder inequality from Lemma 24, we get:

∫

LR1

|Pn (ζ)|
p
2 |dζ| =

∫

|w|=R1

|Pn (Ψ(w))|
p
2
∣∣Ψ′(w)

∣∣ |dw|

≤
√

2πR1




∫

|w|=R1

|Pn (Ψ(w))|p
∣∣Ψ′(w)

∣∣2 |dw|




1
2

�
(

n ‖Pn‖p

Ap(G)

) 1
2

.

Then, 

∫

LR1

|Pn (ζ)|
p
2 |dζ|




2
p

� n
1
p ‖Pn‖Ap(G) . (4.3)

From (4.2) and (4.3), we obtain:

|Pn (z)| � n
1
p

d
2
p (z, LR1

)
|B(z)| | Φ(z)|n+1 ‖Pn‖Ap(G)

=

( √
n

d(z, LR1
)

) 2
p

|B(z)| ‖Pn‖Ap(G) | Φ(z)|n+1 , z ∈ ΩR1
.

The function B(z) is analytic in Ω, continuous on Ω and |B(z)| = 1 on L. Then,
according to the maximum modulus principle, we get

|B(z)| < 1, z ∈ ΩR1
,

and, then the proof is complete.
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4.3 Proof of Theorem 6

Proof. Let R1 = 1 + 1
2n . For any p ≥ 1 and z ∈ ΩR1

let us set:

Gn,p (z) :=

(
Pn (z)

Φn+1(z)

)p

. (4.4)

The Cauchy integral representation for unbounded region ΩR1
gives

Gn,p (z) = − 1

2πi

∫

LR1

Gn,p (ζ)
dζ

ζ − z
, z ∈ ΩR1

.

Then

∣∣Gn,p (z)
∣∣ = 1

2π

∫

LR1

∣∣Gn,p (ζ)
∣∣ |dζ|
|ζ − z| ≤

1

2πd(z, LR1
)

∫

LR1

|Pn (ζ)|p |dζ| . (4.5)

By applying the Hölder inequality, we get:

∣∣Gn,p (z)
∣∣ � 1

d(z, LR1
)

∫

LR1

|Pn (ζ)|p |dζ| (4.6)

=
1

d(z, LR1
)

∫

|w|=R1

∣∣∣∣Pn (Ψ (w)) ·
(
Ψ′ (w)

) 2
p

∣∣∣∣
p |dw|
|Ψ′ (w)|

≤ 1

d(z, LR1
)
· sup
|w|=R1

1

|Ψ′ (w)|
∫

|w|=R1

∣∣ fn,p(w)
∣∣p |dw| ,

where fn,p(w) := Pn(Ψ(w))(Ψ(w))
2
p . Thus, taking into account that the estima-

tion for the |Ψ′| (see, for instance, [10, Th.2.8]) and by applying Lemma 24, we
get

∣∣Gn,p (z)
∣∣ � 1

d(z, LR1
)
· sup
|w|=R1

|w| − 1

d(Ψ (w) , L)
· n ‖Pn‖p

Ap(G)
.

Now, since G ∈ Q̃α, we get

d(Ψ (w) , L) � (|w| − 1)
1
α . (4.7)

Hence, we have:

∣∣Gn,p (z)
∣∣ � 1

d(z, LR1
)
· sup
|w|=R1

1

(|w| − 1)
1
α−1

· n ‖Pn‖p

Ap(G)

� n
1
α

d(z, LR1
)
‖Pn‖p

Ap(G)
.

By (4.4), we obtain:

|Pn (z)| �
(

n
1
α

d(z, LR1
)

) 1
p

‖Pn‖Ap(G)

∣∣∣Φn+1(z)
∣∣∣ , z ∈ ΩR1

, p ≥ 1.
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4.4 Proof of Theorem 9

Proof. The proof of the Theorem 9 is identical to the proof of the Theorem 6. In
this case, we consider the following:

Gn,1 (z) :=
Pn (z)

Φn+1(z)
. (4.8)

The Cauchy integral representation is given as

Gn,1 (z) = − 1

2πi

∫

LR1

Gn,1 (ζ)
dζ

ζ − z
, z ∈ ΩR1

.

Then, analogously to (4.5) and (4.7), we have:

|Gn,1 (z)| �
1

d(z, LR1
)

∫

LR1

|Pn (ζ)| |dζ| (4.9)

=
1

d(z, LR1
)

∫

|w|=R1

∣∣∣∣Pn (Ψ (w))
(
Ψ′ (w)

) 2
p

∣∣∣∣
|dw|

|Ψ′ (w)|
2
p−1

≤ 1

d(z, LR1
)




∫

|w|=R1

∣∣ fn,p(w)
∣∣p |dw|




1
p

·




∫

|w|=R1

∣∣Ψ′ (w)
∣∣(1− 2

p )q |dw|




1
q

,

where fn,p(w) := Pn(Ψ(w))(Ψ(w))
2
p and 1

p +
1
q = 1. Since (1 − 2

p)q = 2 − q, then,

for any p > 1, we get:

|Gn,1 (z)| � 1

d(z, LR1
)




∫

|w|=R1

∣∣ fn,p(w)
∣∣p |dw|




1
p



∫

|w|=R1

∣∣Ψ′ (w)
∣∣2−q |dw|




1
q

= : An,p · Bn,q. (4.10)

For the integral An,p, from the Lemma 24, we obtain:

An,p � n
1
p ‖Pn‖Ap(G) . (4.11)

For the integral Bn,q, by taking into account of the estimation for the |Ψ′|
( [10, Th.2.8]), we get:

B
q
n,q :=

∫

|w|=R1

∣∣Ψ′ (w)
∣∣2−q |dw| ≍

∫

|w|=R1

(
d(Ψ (w) , L)

|w| − 1

)2−q

|dw| . (4.12)

Let 1 < q < 2. Since G ∈ Q
β
α , for z∗ ∈ L such that d(Ψ (w) , L) = |Ψ (w)− z∗|

and w∗ = Φ (z∗) , we have:

d(Ψ (w) , L) � |w − w∗|β � (|w| − 1)β .
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Then, according to Lemma 20, from (4.12), we obtain:

B
q
n,q �

∫

|w|=R1

(
(|w| − 1)β

|w| − 1

)2−q

|dw| �
∫

|w|=R1

|dw|
(|w| − 1)(1−β)(2−q)

� 1

(R1 − 1)(1−β)(2−q)
.

Since R1 := 1 + 1
2n , in this case, from Lemma 22 we have:

Bn,q � n
(1−β)(2−q)

q . (4.13)

Let q > 2. Let us put d(ΨR (w) , L) := |z̃ − z∗| , z̃ ∈ LR1
and w̃ := Φ (z̃) . Since

G ∈ Q
β
α , according to (4.7), we get |z̃ − z∗| � |w̃ − w∗|

1
α . In this case, from (4.12)

we obtain:

B
q
n,q ≍

∫

|w|=R1

( |w| − 1

d(Ψ (w) , L)

)q−2

|dw| �
∫

|w|=R1

(
|w| − 1

|w̃ − w∗|
1
α

)q−2

|dw|

�
∫

|w|=R1

|dw|
|w̃ − w∗|(

1
α−1)(q−2)

� n( 1
α−1)(q−2)−1, (

1

α
− 1)(q − 2) < 1.

Then,

Bn,q � n
( 1

α −1)(q−2)−1
q , q < 1 +

1

1 − α
. (4.14)

By combining (4.9)-(4.14), we obtain:

|Pn (z)| �
|Φ(z)|n+1

d(z, LR1
)
‖Pn‖Ap(G)





n
1
α (

2
p−1)

, 2 − α < p < 2√
n, p = 2,

n
(1−β)(1− 2

p ) β > 0, p > 2,

, z ∈ ΩR1
.

4.5 Proof of Theorem 11

Proof. Since L is a quasiconformal, we conclude that any LR, R > 1, is also qua-
siconformal. Therefore, we construct the c1 (K)-quasiconformal reflection yR (z) ,
yR (0) = ∞, across LR such that yR (GR) = ΩR, yR (ΩR) = GR and yR(.) fixes
the points of LR that satisfies conditions (3.1) described for yR (z) . By using this
constructed yR (z), we write the following integral representations for Gn,1 (z) :

Gn,1 (z) = − 1

2πi

∫

LR

Gn,1 (ζ)
dζ

ζ − z
(4.15)

= − 1

2πi

∫

LR

g(ζ)dζ

Φn+1(yR (ζ))
, z ∈ ΩR,
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where g(ζ) := Pn(ζ)
ζ−z . The Green formula is given as:

Gn,1 (z) = − 1

π

∫∫

GR

[
g(ζ)

Φn+1(yR (ζ))

]

ζ

dσζ (4.16)

=
n + 1

π

∫∫

GR

g(ζ)
Φ

′
(yR (ζ))

Φn+2(yR (ζ))
yR,ζ dσζ .

Hence, by applying the Hölder inequality, we get:

|Gn,1 (z)|2 ≤
(

n + 1

π

)2 ∫∫

GR

|g(ζ)|2 dσζ ·
∫∫

GR

∣∣∣∣∣
Φ

′
(yR (ζ))

Φn+2(yR (ζ))
yR,ζ

∣∣∣∣∣

2

dσζ

=: J1 · J2, z ∈ ΩR. (4.17)

Since z ∈ ΩR, then for the integral J1 we have:

J1 : =
∫∫

GR

|g(ζ)|2 dσζ (4.18)

=
∫∫

GR

∣∣∣∣
Pn (ζ)

ζ − z

∣∣∣∣
2

dσζ ≤ 1

d2(z, LR)

∫∫

GR

|Pn (ζ)|2 dσζ .

For the estimation of the integral J2, we note that if JyR :=
∣∣yR,ζ

∣∣2 −
∣∣∣yR,ζ

∣∣∣
2

is Jaco-

bian of the reflection yR(ζ), which satisfies the conditions (3.1) and is described
for yR (z) . ∣∣∣yR,ζ

∣∣∣
2
≤ JyR

1 − k2
1

,

where k1 := c1(K)−1
c1(K)+1

< 1 and c1(K) is a coefficient of quasiconformality of the

reflection yR(ζ). Then, after changing of the variable t = y∗s (ζ) and w = Φ(z), we
find

J2 :=
∫∫

GR

∣∣∣∣∣
Φ

′
(yR (ζ))

Φn+2(yR (ζ))
yR,ζ

∣∣∣∣∣

2

dσζ (4.19)

≤ 1

1 − k2
1

∫∫

GR

∣∣∣∣∣
Φ

′
(yR (ζ))

Φn+2(yR (ζ))

∣∣∣∣∣

2

JyR dσζ =
1

1 − k2
1

∫∫

ΩR

∣∣∣∣∣
Φ

′
(t)

Φn+2(t)

∣∣∣∣∣

2

dσt

=
1

1 − k2
1

∫∫

|w|>R

dσw

|w|2n+4
=

π

n + 1
· 1

1 − k2
1

· 1

R2n+2
≤ π

n + 1
· 1

1 − k2
1

.

By combining (4.17)-(4.19), we get:

|Pn (z)| ≤
√

n + 1

π(1 − k2
1)

1

d(z, L)
‖Pn‖A2(GR)

∣∣∣Φn+1(z)
∣∣∣ , R > 1, z ∈ ΩR. (4.20)
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4.6 Proof of Corollary 12.

Proof. Let z ∈ F ⋐ Ω be a arbitrary fixed point. Let us set: d(z, L1+ 1
n
) := |z − ζn| ,

ζn ∈ L1+ 1
n
, d(z, L) := |z − ζ| , ζ ∈ L and w := Φ(z), tn := Φ(ζn), t := Φ(ζ).

Obviously, ζn → ζ, at n → ∞. Hence, |t − tn| ≤ εn |w − t| , where εn → 0 at
n → ∞. Then, we find

|w − tn| ≥ |w − t| − |t − tn| ≥ |w − t| − εn |w − t|

= (1 − εn) |w − t| ≥ 1

2
|w − t| .

According to Lemma 20, we obtain d(z, L1+ 1
n
) � d(z, L). Consequently, from

(4.20), we get:

|Pn (z)| �
√

n

d(z, L)
‖Pn‖A2(G)

∣∣∣Φn+1(z)
∣∣∣ , z ∈ F ⋐ Ω.

4.7 Proof of Theorem 13

Proof. For arbitrary fixed s > 1, let L∗
s = {z : |ΦR(z)| = s} . According to Lemma

22, we choose s > 1 such that L∗
s ⊂ G. Then, G∗

s ⊂ G and Ω ⊂ Ω∗
s .

The function

TR,n (z) :=
Pn (z)

Φn+1
R (z)

is analytic in Ω
∗

and TR,n (∞) = 0.

Let y∗s (z) , yR (0) = ∞, is a c2 (K)−quasiconformal reflection (c2 (K) > 1)
across L∗

s such that y∗s (G
∗
s ) = Ω∗

s , y∗s (Ω
∗
s ) = G∗

s and ys(.) fixed the points of L∗
s

that satisfies the conditions (3.1) which are rewritten for y∗s (z) . If J∗ys
=
∣∣y∗s, z

∣∣2 −
∣∣∣y∗s, z

∣∣∣
2

is the Jacobian of y∗s (.), then the relation

∣∣y∗s, z

∣∣2 ≤ 1

1 − k2
2

J∗ys
(4.21)

is hold, where k2 = c2(K)2−1
c2(K)2+1

< 1.

The Cauchy integral representation for Ω
∗

is given as:

TR,n (z) = − 1

2πi

∫

L∗
s

TR,n (ζ)
dζ

ζ − z
(4.22)

= − 1

2πi

∫

L∗
s

g (ζ)
dζ

Φn+1
R (y∗s (ζ))

, z ∈ Ω,
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where g(ζ) := Pn(ζ)
ζ−z . Green formula gives

TR,n (z) = − 1

π

∫∫

G∗
s

[
g(ζ)

Φn+1
R (yR (ζ))

]

ζ

dσζ

=
n + 1

π

∫∫

G∗
s

g(ζ)
Φ

′
R(y

∗
s (ζ)) · y∗s ,ζ

Φn+2
R (y∗s (ζ))

dσζ .

Hence, by applying the Hölder inequality, we get:

|TR,n (z)|2 ≤
(

n + 1

π

)2 ∫∫

G∗
s

|g(ζ)|2 dσζ (4.23)

×
∫∫

G∗
s

∣∣∣∣∣
Φ

′
R(y

∗
s (ζ)) · y∗s ,ζ

Φn+2
R (y∗s (ζ))

∣∣∣∣∣

2

dσζ = : J̃1 · J̃2, z ∈ Ω.

For the integral J̃1, we obtain:

J̃1
2

: =
∫∫

G∗
s

|g(ζ)|2 dσζ (4.24)

≤ 1

d(z, L∗
s )

∫∫

G∗
s

|Pn(ζ)|2 dσζ ≤ 1

d(z, L)

∫∫

G

|Pn(ζ)|2 dσζ .

According to (4.21), after changing of the variable t = y∗s (ζ) and w = ΦR(z), for

integral J̃2 we find

J̃2
2

: =
∫∫

G∗
s

∣∣∣∣∣
Φ

′
R(y

∗
s (ζ)) · y∗s ,ζ

Φn+2
R (y∗s (ζ))

∣∣∣∣∣

2

dσζ ≤ 1

1 − k2
2

∫∫

G∗
s

∣∣∣∣∣
Φ

′
R(y

∗
s (ζ))

Φn+2
R (y∗s (ζ))

∣∣∣∣∣

2

J∗ys
dσζ

=
1

1 − k2
2

∫∫

Ω∗
s

∣∣∣∣∣
Φ

′
R(t)

Φn+2
R (t)

∣∣∣∣∣

2

dσt =
1

1 − k2
2

∫∫

|w|>s

dστ

τ2n+4
=

1

1 − k2
2

π

n + 1

1

s2n+2
.

Since s > 1, then

J̃2 ≤
√

1

1 − k2
2

π

n + 1
. (4.25)

By combining (4.23)-(4.25), we get:

|Pn (z)| ≤
√

n + 1

π(1 − k2
2)

1

d(z, L)
‖Pn‖A2(G) |ΦR(z)|n+1 , z ∈ Ω.

The proof of Theorem 13 is completed.
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4.8 Proofs of Theorems 13 (in case of p 6= 2), 15 and 16

Proof. The proof of Theorems 13 (in case of p 6= 2), 15 and 16 are similar to the
proof of Theorems 2, 6 and 9 respectively. For their proofs, we proceed as follows:

For the arbitrary fixed R = 1 + 1
n , let us set L∗ := y(LR). According to Lemma

22, the number ρ1 := 1+ c1(R − 1) can be chosen as G
∗
ρ1

⊆ G. Let R1 := 1+ ρ1−1
2 .

Analogously to the proof of Theorem 2, we define:

B∗
n(z) :=

m

∏
j=1

B∗
j (z) =

m

∏
j=1

ΦR(z)− ΦR(zj)

1 − ΦR(zj)ΦR(z)
,

F̃∗
n,p (z) :=

(
Pn (z)

B∗
m(z) Φn+1

R (z)

) p
2

.

Then, by the Cauchy integral formula for a region Ω∗
R1

, we have:

F̃∗
n,p (z) = − 1

2πi

∫

L∗
R1

F̃∗
n,p (ζ)

dζ

ζ − z
, z ∈ Ω∗

R1
.

By repeating the same reasoning as the proof of Theorem 2, we find:

|Pn (z)| �
( √

n

d(z, L∗
R1
)

) 2
p

‖Pn‖Ap(G) | Φ(z)|n+1 , z ∈ Ω∗
R1

.

Since
d(z, L∗

R1
) � d(z, L) for z ∈ Ω, (4.26)

then, we have:

|Pn (z)| �
( √

n

d(z, L)

) 2
p

‖Pn‖Ap(G) | Φ(z)|n+1 , z ∈ Ω.

4.9 Proof of Theorem 15

Proof. In this case, for same R, ρ1, R1 and any p ≥ 1 set:

Gn,p (z) :=

(
Pn (z)

Φn+1(z)

)p

, z ∈ Ω∗.

From the Cauchy integral formula, we have:

Gn,p (z) = − 1

2πi

∫

L∗
R1

Gn,p (ζ)
dζ

ζ − z
, z ∈ Ω∗

R1
.

Then ∣∣Gn,p (z)
∣∣ � 1

d(z, L∗
R1
)

∫

L∗
R1

|Pn (ζ)|p |dζ| ,
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and, by repeating the same reasoning as the proof of Theorem 6, we obtain:

|Pn (z)| �
(

n
1
α

d(z, L∗
R1
)

) 1
p

‖Pn‖Ap(G)

∣∣∣Φn+1(z)
∣∣∣ , z ∈ Ω∗

R1
, p ≥ 1.

According to (4.26), we complete the proof.

4.10 Proof of Theorem 16

Proof. Analogously to prove of the Theorem 9, according to the Cauchy integral
representation, we have:

Gn,1 (z) = − 1

2πi

∫

L∗
R1

Gn,1 (ζ)
dζ

ζ − z
, z ∈ Ω∗

R1
.

Then, by the proof of Theorem 9, we get:

|Gn,1 (z)| �
1

d(z, L∗
R1
)

∫

L∗
R1

|Pn (ζ)| |dζ| (4.27)

≤ 1

d(z, L∗
R1
)




∫

|w|=R1

∣∣ fn,p(w)
∣∣p |dw|




1
p

·




∫

|w|=R1

∣∣Ψ′
R (w)

∣∣(1− 2
p )q |dw|




1
q

� 1

d(z, L∗
R1
)




∫

|w|=R1

∣∣ fn,p(w)
∣∣p |dw|




1
p

·




∫

|w|=R1

∣∣Ψ′
R (w)

∣∣2−q |dw|




1
q

=: An,p · Bn,q,

where fn,p(w) := Pn(ΨR(w))(ΨR(w))
2
p and 1

p + 1
q = 1. From the Lemma 24, we

have:

An,p � n
1
p ‖Pn‖Ap(G) .

On the other hand, according to the estimation for |Ψ′
R| ( [10, Th.2.8]), we get:

B
q
n,q ≍

∫

|w|=R1

(
d(ΨR (w) , L∗)

|w| − 1

)2−q

|dw| . (4.28)

Let 1 < q < 2. Since G ∈ Q
β
α , for z∗ ∈ L∗ such that d(ΨR (w) , L∗) =

|ΨR (w)− z∗| and w∗ := ΦR (z∗) , we have:

d(ΨR (w) , L∗) � |w − w∗|β � (|w| − 1)β .
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Then, from Lemma 20 and (4.28), we obtain:

B
q
n,q �

∫

|w|=R1

(
(|w| − 1)β

|w| − 1

)2−q

|dw| �
∫

|w|=R1

|dw|
(|w| − 1)(1−β)(2−q)

(4.29)

� 1

(R1 − 1)(1−β)(2−q)
� n(1−β)(2−q).

Let q > 2. Let us put d(ΨR (w) , L∗) := |z̃ − z∗| , z̃ ∈ L∗
R1

and w̃ := ΦR (z̃) ,

w∗ := ΦR (z∗) . According to (4.7), we get |z̃ − z∗| � |w̃ − w∗|
1
α . Then,

B
q
n,q ≍

∫

|w|=R1

( |w| − 1

d(ΨR (w) , L∗)

)q−2

|dw| (4.30)

�
∫

|w|=R1

(
|w| − 1

|w̃ − w∗|
1
α

)q−2

|dw| �
∫

|w|=R1

|dw|
|w̃ − w∗|(

1
α−1)(q−2)

� n( 1
α−1)(q−2)−1, (

1

α
− 1)(q − 2) < 1.

By combining (4.27)-(4.30), we obtain:

|Pn (z)| �
|Φ(z)|n+1

d(z, L∗
R1
)
‖Pn‖Ap(G)





n
1
α (

2
p−1)

, 2 − α < p < 2√
n, p = 2,

n
(1−β)(1− 2

p ) β > 0, p > 2,

z ∈ Ω∗
R1

.

According to (4.26), we complete the proof.

4.11 Proof of Theorem 17.

Proof. a) Let Q∗
n(z) :=

n

∑
j=0

(j + 1)zj, G∗
1 = B and p = 2. In this case,

‖Q∗
n‖C(G) =

(n + 1)(n + 2)

2
; ‖Q∗

n‖A2(G) =

√
π(n + 1)(n + 2)

2
.

Then, we have

‖Q∗
n‖C(G) ≥

1√
2π

n ‖Q∗
n‖A2(G) .

b) Let the region G∗
2 ⊂ C bounded by smooth curve L = ∂G ∈ Cθ . According

to the ”three-point” criterion [17, p.100] the curve L is quasiconformal. Denote
by {Kn(z)} , deg Kn = n, n = 0, 1, 2, ..., the system of Bergman polynomials for
region G, i.e. Kn(z) := αnzn + αn−1zn−1 + ... + α0, αn > 0 and

∫∫

G

Kn(z)Km(z)dσz = δn,m,
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where δn,m is the symbol Kronecker. Let G∗
2 be a closure of convex hull of G∗

2 and

F := CG∗
2 . It is well known [14, p.245], that zeros of Bergman polynomials Kn(z)

are contained in G∗
2 . According to [2], for arbitrary quasidisks we have:

Kn(z) = αnρn+1Φn(z)Φ
′
(z)An(z), z ∈ F ⋐ Ω,

where √
n + 1

π
≤ αnρn+1 ≤ c1

√
n + 1

π
,

for some c1 = c1(G) > 1 and

c2 ≤ |An(z)| ≤ 1 +
c3√

|Φ(z)| − 1
,

for some ci = ci(G) > 0, i = 2, 3. Therefore, since ‖Kn‖A2(G) = 1, we have

|Kn(z)| ≥ c2

√
n + 1

π
|Φ(z)|n |Φ(z)| − 1

d(z, L)

≥ c3

√
n

d(z, L)
|Φ(z)|n+1

(
1 − 1

|Φ(z)|

)

≥ c4

√
n

d(z, L)
|Φ(z)|n+1 ‖Kn‖A2(G) .
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[16] Hille E., Szegö G., Tamarkin J.D., On some generalization of a theorem of
A.Markoff , Duke Math., 1937, 3, p. 729-739.

[17] Lehto O., Virtanen K.I., Quasiconformal Mapping in the Plane, Springer Verlag,
Berlin, 1973.
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