On ϕ-biflat and ϕ-biprojective Banach algebras

A. Sahami
A. Pourabbas

Abstract

In this paper, we introduce the new notions of ϕ-biflatness, ϕ-biprojectivity, ϕ-Johnson amenability and ϕ-Johnson contractibility for Banach algebras, where ϕ is a non-zero homomorphism from a Banach algebra A into \mathbb{C}. We show that a Banach algebra A is ϕ-Johnson amenable if and only if it is ϕ inner amenable and ϕ-biflat. Also we show that ϕ-Johnson amenability is equivalent with the existence of left and right ϕ-means for A. We give some examples to show differences between these new notions and the classical ones. Finally, we show that $L^{1}(G)$ is ϕ-biflat if and only if G is an amenable group and $A(G)$ is ϕ-biprojective if and only if G is a discrete group.

1 Introduction

For the background theory of amenability of Banach algebras, see B. E. Johnson [11]. A Banach algebra A is amenable (contractible) if every continuous derivation from A into a dual Banach A-module X^{*} (Banach A-module X) is inner, for every Banach A-module X. Also in [12], Johnson showed that a Banach algebra A is amenable if and only if A has a virtual diagonal, that is, there exists an $m \in\left(A \otimes_{p} A\right)^{* *}$ such that $a \cdot m=m \cdot a$ and $\pi^{* *}(m) a=a$ for every $a \in A$, where $\pi: A \otimes_{p} A \rightarrow A$ is the product morphism, specified by $\pi(a \otimes b)=a b$.

There are some important homological notions which have direct relation with amenability and contractibility, such as biflatness and biprojectivity. Indeed, A is called biflat (biprojective), if there exists a bounded A-module morphism

[^0]$\rho: A \rightarrow\left(A \otimes_{p} A\right)^{* *}\left(\rho: A \rightarrow A \otimes_{p} A\right)$ such that $\pi^{* *} \circ \rho$ is the canonical embedding of A into $A^{* *}$ (ρ is a right inverse for π), see [17]. In fact, a Banach algebra A is amenable if and only if A is biflat and has a bounded approximate identity.

Recently E. Kaniuth et al. in [13] have introduced and studied the notion of ϕ-amenability for Banach algebras. For a multiplicative linear functional ϕ on A, A is called ϕ-amenable if every continuous derivation from A into the dual Banach A-module X^{*} is inner, for every Banach A-module X such that $a \cdot x=$ $\phi(a) x$. They showed that ϕ-amenability of A is equivalent with the existence of a bounded net $\left(a_{\alpha}\right)_{\alpha \in I}$ in A such that $a a_{\alpha}-\phi(a) a_{\alpha} \rightarrow 0$ and $\phi\left(a_{\alpha}\right) \rightarrow 1$, for every $a \in A$. Later on, this notion even has been generalized in [9], [14] and [15]. Motivated by these considerations, A. Jabbari et al. in [10], have introduced the ϕ version of inner amenability, which is equivalent with the existence of a bounded net $\left(a_{\alpha}\right)_{\alpha \in I}$ in A such that $a a_{\alpha}-a_{\alpha} a \rightarrow 0$ and $\phi\left(a_{\alpha}\right)=1$, for every $a \in A$.

The content of this paper is as follows. After recalling some background notations and definitions, we will define new notions of ϕ-Johnson amenability, ϕ-biflatness and ϕ-biprojectivity for Banach algebras and with some characterizations and some examples, we will show the differences between these new notions and the classical ones. It will be shown that A is ϕ-Johnson amenable if and only if A is ϕ-biflat and ϕ-inner amenable. Also, it will be shown that $L^{1}(G)$ is ϕ-biflat if and only if G is an amenable group. Also we will show that $A(G)$ is ϕ-biprojective if and only if G is a discrete group. The paper concludes with some examples about semigroup algebras.

We recall that if X is a Banach A-module, then with the following actions X^{*} is also a Banach A-module:

$$
<a \cdot f, x>=<f, x \cdot a>, \quad<f \cdot a, x>=<f, x \cdot a>\quad\left(a \in A, x \in X, f \in A^{*}\right)
$$

The projective tensor product of A by A is denoted by $A \otimes_{p} A$. The Banach algebra $A \otimes_{p} A$ is a Banach A-module with the following actions

$$
a \cdot(b \otimes c)=a b \otimes c, \quad(b \otimes c) \cdot a=b \otimes c a \quad(a, b, c \in A)
$$

Throughout this paper, $\Delta(A)$ denotes the character space of A, that is, all nonzero multiplicative linear functionals on A. Let $\phi \in \Delta(A)$. Then ϕ has a unique extension on $A^{* *}$ denoted by $\tilde{\phi}$ and defined by $\tilde{\phi}(F)=F(\phi)$ for every $F \in A^{* *}$. Clearly this extension remains to be a character on $A^{* *}$.

Now we will give the definition of our new notions.
Definition 1.1. A Banach algebra A is called ϕ-Johnson amenable, if there exists an element $m \in\left(A \otimes_{p} A\right)^{* *}$ such that $a \cdot m=m \cdot a$ and $\tilde{\phi} \circ \pi^{* *}(m)=1$, for every $a \in A$, where $\tilde{\phi}$ is defined as above. Also, A is called a ϕ-Johnson contractible Banach algebra, if there exists an element $m \in A \otimes_{p} A$ such that $a \cdot m=m \cdot a$ and $\phi \circ \pi(m)=1$, for every $a \in A$.
Definition 1.2. Let A be a Banach algebra and $\phi \in \Delta(A)$. A is called ϕ-biprojective, if there exists a bounded A-module morphism $\rho: A \rightarrow A \otimes_{p} A$ such that $\phi \circ \pi \circ$ $\rho=\phi$. Also A is called ϕ-biflat if there exists a bounded A-module morphism $\rho: A \rightarrow\left(A \otimes_{p} A\right)^{* *}$ such that $\tilde{\phi} \circ \pi^{* *} \circ \rho=\phi$.

2 Elementary properties

In this section, we prove some elementary lemmas to characterize the ϕ-Johnson amenability, the ϕ-biflatness and the ϕ-biprojectivity of Banach algebras.

Lemma 2.1. Let A be a Banach algebra and $\phi \in \Delta(A)$. The Banach algebra A is ϕ-Johnson amenable if and only if there exists a bounded net $\left(m_{\alpha}\right)_{\alpha \in I}$ in $A \otimes_{p} A$ such that $a \cdot m_{\alpha}-m_{\alpha} \cdot a \rightarrow 0$ and $\phi \circ \pi\left(m_{\alpha}\right) \rightarrow 1$, for every $a \in A$.

Proof. Let A be ϕ-Johnson amenable. Then there exists an $m \in\left(A \otimes_{p} A\right)^{* *}$ such that $a \cdot m=m \cdot a$ and $\tilde{\phi} \circ \pi^{* *}(m)=1$. So by Goldstine's theorem m is a w^{*} accumulation point of a bounded net $\left(m_{\alpha}\right)_{\alpha \in I} \subseteq A \otimes_{p} A$. Since $\pi^{* *}$ is w^{*}-continuous, hence $\pi\left(m_{\alpha}\right) \xrightarrow{w^{*}} \pi^{* *}(m), \pi\left(m_{\alpha}\right)(\phi) \rightarrow \tilde{\phi} \circ \pi^{* *}(m)$, therefore $\phi \circ \pi\left(m_{\alpha}\right) \rightarrow 1$. Since $m_{\alpha} \xrightarrow{w^{*}} m$, for every $\psi \in\left(A \otimes_{p} A\right)^{*}$, we have $m_{\alpha}(a \cdot \psi) \rightarrow m(a \cdot \psi)$ and $m_{\alpha}(\psi \cdot a) \rightarrow m(\psi \cdot a)$. Therefore $m_{\alpha} \cdot a(\psi) \rightarrow m \cdot a(\psi)$, that is, $m_{\alpha} \cdot a \xrightarrow{w^{*}} m \cdot a$. Similarly, one can show that $a \cdot m_{\alpha} \xrightarrow{w^{*}} a \cdot m$. It is easy to verify that $a \cdot m_{\alpha}-m_{\alpha}$. $a \xrightarrow{w} 0$. Consequently, one can assume that by Mazur's theorem, this limit holds even in the norm topology.

Conversely, let $\left(m_{\alpha}\right)_{\alpha \in I} \subseteq A \otimes_{p} A$ be a bounded net such that $a \cdot m_{\alpha}-m_{\alpha} \cdot a \rightarrow$ 0 and $\phi \circ \pi\left(m_{\alpha}\right) \rightarrow 1$, for every $a \in A$. After passing to a subnet if necessary, let $m \in\left(A \otimes_{p} A\right)^{* *}$ be a w^{*}-cluster point of the net $\left(m_{\alpha}\right)_{\alpha \in I}$. Since $a \cdot m_{\alpha}-m_{\alpha} \cdot a \xrightarrow{w^{*}}$ 0 , one can easily show that $a \cdot m=m \cdot a$, for every $a \in A$. Also the w^{*}-continuity of $\pi^{* *}$, reveals that $\tilde{\phi} \circ \pi^{* *}(m)=1$ and the proof is complete.

Recall that A is a left (right) ϕ-amenable Banach algebra, if there exists a bounded net $\left(m_{\alpha}\right)_{\alpha \in I}$ in A, such that $\left\|a m_{\alpha}-\phi(a) m_{\alpha}\right\| \rightarrow 0\left(\left\|m_{\alpha} a-\phi(a) m_{\alpha}\right\| \rightarrow\right.$ $0)$, respectively and $\phi\left(m_{\alpha}\right)=1$. For further details see [13].

Proposition 2.2. Suppose that A is a Banach algebra and $\phi \in \Delta(A)$. A is left and right ϕ-amenable if and only if A is ϕ-Johnson amenable.

Proof. Suppose that $\left(m_{\alpha}\right)_{\alpha \in I}$ and $\left(m_{\beta}\right)_{\beta \in J}$ are bounded nets in A such that $\phi\left(m_{\alpha}\right)=$ $\phi\left(m_{\beta}\right)=1$, which satisfy $\left\|a m_{\alpha}-\phi(a) m_{\alpha}\right\| \rightarrow 0$ and $\left\|m_{\beta} a-\phi(a) m_{\beta}\right\| \rightarrow 0$, respectively, for every $a \in A$. Define $m_{\beta}^{\alpha}=m_{\alpha} \otimes m_{\beta} \subseteq A \otimes_{p} A$, therefore $\phi \circ \pi\left(m_{\beta}^{\alpha}\right)=\phi\left(m_{\alpha} m_{\beta}\right)=\phi\left(m_{\alpha}\right) \phi\left(m_{\beta}\right)=1$. On the other hand, for every $a \in A$, we have

$$
\left\|a \cdot\left(m_{\alpha} \otimes m_{\beta}\right)-\left(m_{\alpha} \otimes m_{\beta}\right) \cdot a\right\| \rightarrow 0 .
$$

To see this, by using the boundedness of $\left(m_{\alpha}\right)_{\alpha \in I}$ and $\left(m_{\beta}\right)_{\beta \in J}$, we obtain

$$
\begin{aligned}
\left\|a \cdot m_{\alpha}^{\beta}-m_{\alpha}^{\beta} \cdot a\right\| & =\left\|a \cdot\left(m_{\alpha} \otimes m_{\beta}\right)-\left(m_{\alpha} \otimes m_{\beta}\right) \cdot a\right\| \\
& \leq\left\|a m_{\alpha} \otimes m_{\beta}-\phi(a) m_{\alpha} \otimes m_{\beta}\right\|+\left\|m_{\alpha} \otimes m_{\beta} \phi(a)-\left(m_{\alpha} \otimes m_{\beta}\right) a\right\| \\
& \leq\left\|a m_{\alpha}-\phi(a) m_{\alpha}\right\|\left\|m_{\beta}\right\|+\left\|m_{\alpha}\right\|\left\|m_{\beta} a-\phi(a) m_{\beta}\right\| \rightarrow 0 .
\end{aligned}
$$

So by Lemma 2.1, A is ϕ-Johnson amenable.
For converse, suppose that $\left(m_{\alpha}\right)_{\alpha \in I}$ is a bounded net in $A \otimes_{p} A$ such that $a \cdot m_{\alpha}-m_{\alpha} \cdot a \rightarrow 0$ and $\phi \circ \pi\left(m_{\alpha}\right) \rightarrow 1$. One can easily show that, there exists a
bounded linear map $T: A \otimes_{p} A \rightarrow A$ defined by $T(a \otimes b)=\phi(b) a$, for every a and b in A. It is easy to see that $T(a \cdot m)=a \cdot T(m)$ and $T(m \cdot a)=\phi(a) T(m)$, where $m \in A \otimes_{p} A$. Now, consider the following

$$
\left\|T\left(a \cdot m_{\alpha}-m_{\alpha} \cdot a\right)\right\| \leq\|T\|\left\|a \cdot m_{\alpha}-m_{\alpha} \cdot a\right\|
$$

therefore one can easily see that

$$
\left\|a T\left(m_{\alpha}\right)-\phi(a) T\left(m_{\alpha}\right)\right\|=\left\|T\left(a \cdot m_{\alpha}-m_{\alpha} \cdot a\right)\right\| \rightarrow 0 .
$$

Replacing m_{α} with $\phi\left(T\left(m_{\alpha}\right)\right)^{-1} m_{\alpha}$ and using the fact $\phi\left(T\left(m_{\alpha}\right)\right)=\phi \circ \pi\left(m_{\alpha}\right)=1$, we obtain a bounded net $\left(T\left(m_{\alpha}\right)\right)_{\alpha}$ in A, which satisfies the hypotheses of [13, Theorem 1-4], hence A is left ϕ-amenable. Similarly, one can show that A is right ϕ-amenable.

Recall that, A is a ϕ-inner amenable Banach algebra, if A has a bounded net $\left(a_{\alpha}\right)_{\alpha \in I}$ such that $\phi\left(a_{\alpha}\right) \rightarrow 1$ and $a a_{\alpha}-a_{\alpha} a \rightarrow 0$, see [10, Theorem 2-1].

Lemma 2.3. Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that A is ϕ-Johnson amenable. Then A is ϕ-inner amenable.

Proof. Let $\left(m_{\alpha}\right)_{\alpha \in I} \subseteq A \otimes_{p} A$ be a bounded net such that $a \cdot m_{\alpha}-m_{\alpha} \cdot a \rightarrow 0$ and $\phi \circ \pi\left(m_{\alpha}\right) \rightarrow 1$. Now if we consider the net $\left(\pi\left(m_{\alpha}\right)\right)_{\alpha}$ and since π is A-module morphism, then clearly,

$$
a \pi\left(m_{\alpha}\right)-\pi\left(m_{\alpha}\right) a=\pi\left(a \cdot m_{\alpha}-m_{\alpha} \cdot a\right) \rightarrow 0
$$

and $\phi \circ \pi\left(m_{\alpha}\right) \rightarrow 1$. Hence, A is a ϕ-inner amenable Banach algebra.
Now, we want to give an example which is ϕ-inner amenable but is not ϕ-Johnson amenable. Moreover, we give another example which is ϕ-biprojective, hence is ϕ-biflat but is not ϕ-Johnson amenable. Let I be a closed ideal of the Banach algebra A which $\left.\phi\right|_{I} \neq 0$. Then I is left and right ϕ-amenable whenever A is left and right ϕ-amenable, see [13].
Example 2.4. Let A be a Banach algebra with $\operatorname{dim}(A)>1$ such that $a b=\phi(a) b$ for every $a, b \in A$, where $\phi \in \Delta(A)$. Then A is weakly amenable, but not amenable [2, Proposition 2.13]. Also A is not a ϕ-inner amenable Banach algebra [5, Example 2-3]. Note that $A^{\sharp}=A \oplus \mathbb{C}$, the unitization of A, is a ϕ_{e}-inner amenable Banach algebra, where $\phi_{e}(a+\lambda)=\phi(a)+\lambda$, for every $a \in A$ and $\lambda \in \mathbb{C}$.

We claim that, this algebra is not ϕ_{e}-Johnson amenable. We go toward a contradiction and suppose that A^{\sharp} is ϕ_{e}-Johnson amenable, where $\operatorname{dim} A>1$. Since A is a closed ideal of A^{\sharp} and $\left.\phi_{e}\right|_{A} \neq 0, A$ is ϕ-Johnson amenable. Hence, A is ϕ-inner amenable. So by [5, Example 2-3], $\operatorname{dim}(A)=1$ which is a contradiction.

Furthermore, we show that A^{\sharp} is not even a pseudo-amenable Banach algebra. To see this we go toward a contradiction, suppose that A^{\sharp} is pseudo-amenable. Let $a_{0} \in A$ be such that $\phi\left(a_{0}\right)=1$. By [7, Theorem 3-1], clearly A is approximately amenable. Therefore A has an approximate identity say $\left(e_{\alpha}\right)_{\alpha \in I}$. Consider

$$
a_{0}=\lim _{\alpha} a_{0} e_{\alpha}=\lim _{\alpha} \phi\left(a_{0}\right) e_{\alpha}=\lim _{\alpha} e_{\alpha}
$$

in other words, a_{0} is a unit element for A. Then by the above considerations, one can easily see that

$$
a=\lim a e_{\alpha}=a \lim e_{\alpha}=\phi(a) a_{0}
$$

so $\operatorname{dim}(A)=1$, which is a contradiction.
Note that, since $a a_{0}=\phi(a) a_{0}$ and $\phi\left(a_{0}\right)=1, A$ is a left ϕ-amenable Banach algebra, so by [13, Lemma 3-2] A^{\sharp} is left ϕ_{e}-amenable. Therefore by this example we have a Banach algebra which is ϕ_{e}-amenable and ϕ_{e}-inner amenable but is not ϕ_{e}-Johnson amenable.

We want to give an example which reveals differences of ϕ-biflatness and ϕ-biprojectivity with ϕ-Johnson amenability. Let A be a Banach algebra with $\operatorname{dim}(A)>1$ such that $a b=\phi(b) a$, where $\phi \in \Delta(A)$. By [5, Example 2-3] A is not ϕ-inner amenable, so by previous lemma A is not ϕ-Johnson amenable. But we show that, A is ϕ-biprojective. Indeed, let $x_{0} \in A$ be such that $\phi\left(x_{0}\right)=1$. Define $\rho: A \rightarrow A \otimes_{p} A$ by $\rho(a)=a \otimes x_{0}$. One can easily see that ρ is a bounded A-module morphism and $\phi \circ \pi \circ \rho=\phi$. Then we have an example which is ϕ-biprojective and hence ϕ-biflat but is not ϕ-Johnson amenable.
Example 2.5. Let $A=\left\{\left.\left(\begin{array}{cc}0 & a \\ 0 & b\end{array}\right) \right\rvert\, a, b \in \mathbb{C}\right\}$ and $\phi\left(\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right)\right)=b$. It is easy to see that ϕ is a character on A. By [18, page 3241] A is a biprojective Banach algebra, hence is ϕ-biprojective, therefore is ϕ-biflat. On the other hand, by [5, Example 2-3], this algebra is not ϕ-inner amenable, then by previous Lemma A is not ϕ-Johnson amenable.

3 Characterization of ϕ-biflatness and ϕ-biprojectivity

Lemma 3.1. Let A be a Banach algebra and $\phi \in \Delta(A)$. If A is ϕ-Johnson amenable, then A is ϕ-biflat.

Proof. Let $m \in\left(A \otimes_{p} A\right)^{* *}$ be such that $a \cdot m=m \cdot a$ and $\tilde{\phi} \circ \pi^{* *}(m)=1$. Define a map $\rho: A \rightarrow\left(A \otimes_{p} A\right)^{* *}$ by $\rho(a)=a \cdot m$. Then ρ is an A-module morphism, since

$$
b \cdot \rho(a)=b \cdot(a \cdot m)=b a \cdot m=\rho(b a), \quad \rho(a) \cdot b=(a \cdot m) \cdot b=a b \cdot m=\rho(a b) .
$$

On the other hand

$$
\tilde{\phi} \circ \pi^{* *} \circ \rho(a)=\tilde{\phi} \circ \pi^{* *}(a \cdot m)=\tilde{\phi}\left(a \pi^{* *}(m)\right)=\phi(a) \tilde{\phi} \circ \pi^{* *}(m)=\phi(a) .
$$

Therefore A is a ϕ-biflat Banach algebra.
Lemma 3.2. Let A be a Banach algebra and $\phi \in \Delta(A)$. If A is ϕ-Johnson contractible, then A is ϕ-biprojective. The converse holds, whenever A is either unital or a commutative Banach algebra.

Proof. Let $m \in A \otimes_{p} A$ be such that $a \cdot m=m \cdot a$ and $\phi(\pi(m))=1$. Define $\rho: A \rightarrow A \otimes_{p} A$ by $\rho(a)=a \cdot m$. Then clearly ρ is a bounded A-module morphism and we have

$$
\phi \circ \pi \circ \rho(a)=\phi(a \pi(m))=\phi(a) \phi(\pi(m))=\phi(a) .
$$

So A is ϕ-biprojective.
Conversely, suppose that A is a ϕ-biprojective Banach algebra. Let $\rho: A \rightarrow$ $A \otimes_{p} A$ be a bounded A-module morphism and e is an unit for A. Thus, $\rho(e) \in$ $A \otimes_{p} A$ and $a \cdot \rho(e)=\rho(e) \cdot a$ and $\phi \circ \pi \circ \rho(e)=\phi(e)=1$. Therefore A is ϕ-Johnson contractible. In the commutative case, let $x_{0} \in A$ be such that $\phi\left(x_{0}\right)=$ 1. For $\rho\left(x_{0}\right) \in A \otimes_{p} A$, we have $a \cdot \rho\left(x_{0}\right)=\rho\left(x_{0}\right) \cdot a$ and $\phi \circ \pi \circ \rho\left(x_{0}\right)=\phi\left(x_{0}\right)=1$, for every $a \in A$. Then the proof is complete.
Proposition 3.3. Let A be a Banach algebra and $\phi \in \Delta(A)$. If A is ϕ-biflat and ϕ-inner amenable, then A is ϕ-Johnson amenable.

Proof. Since A is a ϕ-biflat Banach algebra, there exists a bounded A-module morphism $\rho: A \rightarrow\left(A \otimes_{p} A\right)^{* *}$ such that $\tilde{\phi} \circ \pi^{* *} \circ \rho=\phi$. Suppose that $\left(a_{\alpha}\right)_{\alpha \in I}$ is a bounded net in A such that for each $a \in A, a a_{\alpha}-a_{\alpha} a \rightarrow 0$ and $\phi\left(a_{\alpha}\right) \rightarrow 1$. Thus, we have

$$
\left\|a \cdot \rho\left(a_{\alpha}\right)-\rho\left(a_{\alpha}\right) \cdot a\right\| \rightarrow 0
$$

and

$$
\tilde{\phi} \circ \pi^{* *} \circ \rho\left(a_{\alpha}\right) \rightarrow 1 .
$$

We construct a bounded net $\left(b_{\lambda}\right) \subseteq A \otimes_{p} A$ such that $\phi \circ \pi\left(b_{\lambda}\right) \rightarrow 1$ and $\left\|a \cdot b_{\lambda}-b_{\lambda} \cdot a\right\| \rightarrow 0$. Let $\epsilon>0$, pick finite sets $F \subseteq A$ and $\Phi \subseteq\left(A \otimes_{p} A\right)^{*}$. Let

$$
K=\{a \cdot \xi \mid a \in F, \xi \in \Phi\} \cup\{\xi \cdot a \mid a \in F, \xi \in \Phi\} .
$$

Hence, there exists $v=v(\epsilon, F, \Phi)$ such that for every $a \in F$

$$
\left\|a \cdot \rho\left(a_{v}\right)-\rho\left(a_{v}\right) \cdot a\right\|<\frac{\epsilon}{3 K_{0}}
$$

and

$$
\left|\tilde{\phi} \circ \pi^{* *} \circ \rho\left(a_{v}\right)-1\right|<\epsilon,
$$

where $K_{0}=\max \{\|\xi\|: \xi \in \Phi\}$. By Goldstine's theorem, there exists a bounded net $\left(b_{\lambda}\right) \subseteq A \otimes_{p} A$ such that converges to $\rho\left(a_{v}\right)$ in the w^{*}-topology. Since $\pi^{* *}$ is w^{*}-continuous, $\pi\left(b_{\lambda}\right) \xrightarrow{w^{*}} \pi^{* *}\left(\rho\left(a_{v}\right)\right)$. Hence, there exists $\lambda_{0}=\lambda_{0}(\epsilon, F, \Phi)$ such that

$$
\left|\psi\left(b_{\lambda_{0}}\right)-\rho\left(a_{v}\right)(\psi)\right|<\frac{\epsilon}{3}
$$

and

$$
\left|\phi \circ \pi\left(b_{\lambda_{0}}\right)-\tilde{\phi} \circ \pi^{* *} \circ \rho\left(a_{v}\right)\right|<\epsilon,
$$

for all $\psi \in K$. Therefore for some $c \in \mathbb{R}$, we have

$$
\left|\phi \circ \pi\left(b_{\lambda_{0}}\right)-1\right|=\left|\phi \circ \pi\left(b_{\lambda_{0}}\right)-\tilde{\phi} \circ \pi^{* *} \circ \rho\left(a_{v}\right)+\tilde{\phi} \circ \pi^{* *} \circ \rho\left(a_{v}\right)-1\right|<c \epsilon .
$$

Since $\left|\psi\left(b_{\lambda_{0}}\right)-\rho\left(a_{v}\right)(\psi)\right|<\frac{\epsilon}{3}$,

$$
\begin{aligned}
\left|\xi\left(a \cdot b_{\lambda_{0}}-b_{\lambda_{0}} \cdot a\right)\right| \leq & \left|\xi\left(a \cdot b_{\lambda_{0}}\right)-a \cdot \rho\left(a_{v}\right)(\xi)\right|+\left|a \cdot \rho\left(a_{v}\right)(\xi)-\rho\left(a_{v}\right) \cdot a(\xi)\right|+ \\
& \left|\rho\left(a_{v}\right) \cdot a(\xi)-\xi\left(b_{\lambda_{0}} \cdot a\right)\right|<\epsilon .
\end{aligned}
$$

Hence, we have $a \cdot b_{\lambda}-b_{\lambda} \cdot a \rightarrow 0$ in the w-topology. By Mazur's theorem, one can assume that $a \cdot b_{\lambda}-b_{\lambda} \cdot a \rightarrow 0$, with respect to the norm topology, as we desired.

Lemma 3.4. Let A be a Banach algebra and $\phi \in \Delta(A)$. Let I be a closed ideal of A such that $\left.\phi\right|_{I} \neq 0$. If A is ϕ-biprojective, then I is $\left.\phi\right|_{I}$-biprojective.

Proof. Let $\rho: A \rightarrow A \otimes_{p} A$ be an A-module morphism such that $\phi \circ \pi \circ \rho=\phi$. Suppose that $i_{0} \in I$ is such that $\phi\left(i_{0}\right)=1$. Define $\eta: A \otimes_{p} A \rightarrow I \otimes_{p} I$ by $\eta(a \otimes b)=a i_{0} \otimes i_{0} b$ for every a and b in A. Since η is an A-module morphism, $\eta \circ \rho: A \rightarrow I \otimes_{p} I$ is an A-module morphism. Define $\hat{\rho}=\left.\eta \circ \rho\right|_{I}$ which is an I-module morphism. It is easy to see that $\phi \circ \pi \circ \hat{\rho}(i)=\phi(i)$ for every $i \in I$. Then the proof is complete.

Similarly, one can see that the above lemma is also true for the ϕ-biflat case.
Lemma 3.5. Let A be a Banach algebra and $\phi \in \Delta(A)$. If $A^{* *}$ is $\tilde{\phi}$-biprojective, then A is ϕ-biflat.

Proof. Let $\rho: A^{* *} \rightarrow A^{* *} \otimes_{p} A^{* *}$ be an $A^{* *}$-module morphism such that $\tilde{\phi} \circ \pi_{A^{* *}} \circ$ $\rho=\phi$. Define $\rho_{0}=\left.\rho\right|_{A}: A \rightarrow A^{* *} \otimes_{p} A^{* *}$. There exists a bounded linear map $\psi: A^{* *} \otimes_{p} A^{* *} \rightarrow\left(A \otimes_{p} A\right)^{* *}$ such that for $a, b \in A$ and $m \in A^{* *} \otimes_{p} A^{* *}$, the following holds;
(i) $\psi(a \otimes b)=a \otimes b$,
(ii) $\psi(m) \cdot a=\psi(m \cdot a), \quad a \cdot \psi(m)=\psi(a \cdot m)$,
(iii) $\pi_{A}^{* *}(\psi(m))=\pi_{A^{* *}}(m)$,
see [6, Lemma 1-7]. Clearly one can see that $\psi \circ \rho_{0}$ is an A-module morphism and $\tilde{\phi} \circ \pi_{A}^{* *} \circ \psi \circ \rho_{0}=\tilde{\phi} \circ \pi_{A^{* *}} \circ \rho_{0}=\phi$, the proof is complete.

The analogous result of [16, Proposition 2-4] holds for ϕ-biprojectivity.
Proposition 3.6. Let A and B be Banach algebras and $\phi \in \Delta(A), \psi \in \Delta(B)$. Suppose that A and B are ϕ-biprojective and ψ-biprojective, respectively. Then $A \otimes_{p} B$ is $\phi \otimes \psi$ biprojective.

Proof. Let $\rho_{0}: A \rightarrow A \otimes_{p} A$ and $\rho_{1}: B \rightarrow B \otimes_{p} B$ be such that $\phi \circ \pi_{A} \circ \rho_{0}=\phi$ and $\psi \circ \pi_{B} \circ \rho_{1}=\psi$. Define $\theta:\left(A \otimes_{p} A\right) \otimes_{p}\left(B \otimes_{p} B\right) \rightarrow\left(A \otimes_{p} B\right) \otimes_{p}\left(A \otimes_{p} B\right)$ by

$$
\left(a_{1} \otimes a_{2}\right) \otimes\left(b_{1} \otimes b_{2}\right) \mapsto\left(a_{1} \otimes b_{1}\right) \otimes\left(a_{2} \otimes b_{2}\right)
$$

where $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. Set $\rho=\theta \circ\left(\rho_{0} \otimes \rho_{1}\right)$, for $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$, we have
$\pi_{A \otimes_{p} B} \circ \theta\left(a_{1} \otimes a_{2} \otimes b_{1} \otimes b_{2}\right)=\pi_{A \otimes_{p} B}\left(a_{1} \otimes b_{1} \otimes a_{2} \otimes b_{2}\right)=\pi_{A}\left(a_{1} \otimes a_{2}\right) \pi_{B}\left(b_{1} \otimes b_{2}\right)$, then clearly one can show that $\pi_{A \otimes_{p} B} \circ \theta=\pi_{A} \otimes \pi_{B}$. Hence, $\pi_{A \otimes_{p} B} \circ \theta\left(\rho_{0}(a) \otimes\right.$ $\left.\rho_{1}(b)\right)=\pi_{A} \circ \rho_{0}(a) \otimes \pi_{B} \circ \rho_{1}(b)$ and it is easy to see that

$$
\phi \otimes \psi \circ \pi_{A \otimes_{p} B} \circ \theta\left(\rho_{0} \otimes \rho_{1}\right)(a \otimes b)=\phi \otimes \psi(a \otimes b),
$$

the proof is complete.
We now prove a partial converse to Proposition 3.6.

Proposition 3.7. Let A and B be Banach algebras, $\phi \in \Delta(A)$ and $\psi \in \Delta(B)$. Suppose that A is unital with unit e_{A} and B containing a non-zero idempotent x_{0} such that $\psi\left(x_{0}\right)=1$. If $A \otimes_{p} B$ is $\phi \otimes \psi$-biprojective, then A is ϕ-biprojective.

Proof. Let A and B be Banach algebras. Then $A \otimes_{p} B$ becomes a Banach A-module with the actions given by

$$
a_{1} \cdot\left(a_{2} \otimes b\right)=a_{1} a_{2} \otimes b, \quad a_{2} \otimes b \cdot a_{1}=a_{2} a_{1} \otimes b, \quad\left(a_{1}, a_{2} \in A, b \in B\right)
$$

Suppose that $A \otimes_{p} B$ is $\phi \otimes \psi$-biprojective. Then there exists a bounded $A \otimes_{p}$ B-module morphism $\rho_{1}: A \otimes_{p} B \rightarrow\left(A \otimes_{p} B\right) \otimes_{p}\left(A \otimes_{p} B\right)$ such that $(\phi \otimes \psi) \circ$ $\pi_{A \otimes_{p} B} \circ \rho_{1}=\phi \otimes \psi$. By the above considerations, we have

$$
\begin{aligned}
\rho_{1}\left(a_{1} a_{2} \otimes x_{0}\right)=\rho_{1}\left(\left(a_{1} \otimes x_{0}\right) \otimes\left(a_{2} \otimes x_{0}\right)\right) & =a_{1} \otimes x_{0} \cdot \rho_{1}\left(a_{2} \otimes x_{0}\right) \\
& =a_{1} \cdot\left(e_{A} \otimes x_{0}\right) \rho_{1}\left(a_{2} \otimes x_{0}\right) \\
& =a_{1} \rho_{1}\left(a_{2} \otimes b_{0}\right) .
\end{aligned}
$$

Similarly one can show that $\rho_{1}\left(a_{2} a_{1} \otimes x_{0}\right)=\rho_{1}\left(a_{2} \otimes x_{0}\right) \cdot a_{1}$.
Define $T:\left(A \otimes_{p} B\right) \otimes_{p}\left(A \otimes_{p} B\right) \rightarrow A \otimes_{p} A$ by $T((a \otimes b) \otimes(c \otimes d))=$ $\psi(b d) a \otimes c$, where $a, c \in A$ and $b, d \in B$. Clearly T is a bounded linear operator and $\pi_{A} \circ T=\left(i d_{A} \otimes \psi\right) \circ \pi_{A \otimes_{p} B}$ and also $\phi \circ\left(i d_{A} \otimes \psi\right)=\phi \otimes \psi$, where $i d_{A} \otimes \psi(a \otimes b)=\psi(b) a$ for $a \in A$ and $b \in B$.

Obviously the map $\rho: A \rightarrow A \otimes_{p} A$ defined by $\rho(a)=T \circ \rho_{1}\left(a \otimes x_{0}\right)$ is a bounded A-module morphism. Since $\psi\left(x_{0}\right)=1$, we have

$$
\begin{aligned}
\phi \circ \pi_{A} \circ T \circ \rho(a)=\phi \circ \pi_{A} \circ T \circ \rho_{1}\left(a \otimes x_{0}\right) & =\phi \circ\left(i d_{A} \otimes \psi\right) \circ \pi_{A \otimes_{p} B} \circ \rho_{1}\left(a \otimes x_{0}\right) \\
& =(\phi \otimes \psi) \circ \pi_{A \otimes_{p} B} \circ \rho_{1}\left(a \otimes x_{0}\right) \\
& =\phi(a)
\end{aligned}
$$

for all $a \in A$ and this completes the proof.

4 Application to group algebras and Fourier algebras

Let G be a locally compact group and let \hat{G} be its dual group, which consists of all non-zero continuous homomorphism $\zeta: G \rightarrow \mathbb{T}$. It is well-known that $\Delta\left(L^{1}(G)\right)=\left\{\phi_{\zeta}: \zeta \in \hat{G}\right\}$, where $\phi_{\zeta}(f)=\int_{G} \overline{\zeta(x)} f(x) d x$ and $d x$ is a left Haar measure on G, for more details, see [8, Theorem 23-7].

Lemma 4.1. For a locally compact group $G, L^{1}(G)$ is ϕ_{ζ}-biflat if and only if G is amenable.

Proof. Let $L^{1}(G)$ be ϕ_{ζ}-biflat. Since $L^{1}(G)$ has a bounded approximate identity, then by Proposition 3.3 $L^{1}(G)$ is ϕ_{ζ}-Johnson amenable, hence by Proposition 2.2 $L^{1}(G)$ is left ϕ_{ζ}-amenable. Therefore by [1, Corollary 3-4] G is amenable.

Lemma 4.2. Let G be an infinite abelian discrete group. Then $\ell^{1}(G)$ is ϕ_{ζ}-biflat, but it is not ϕ_{ζ}-biprojective.
Proof. Let G be an infinite abelian discrete group and let $\ell^{1}(G)$ be ϕ_{ζ}-biprojective. Since $\ell^{1}(G)$ is unital, Lemma 3.2 implies that $\ell^{1}(G)$ is $\phi_{\zeta^{-}}$-Johnson contractible. Using the same argument as in the proof of Proposition 2.2, we can show that $\ell^{1}(G)$ is ϕ_{ζ}-contractible, now by applying [15, Theorem 6-1] we see that G is compact which is a contradiction, so $\ell^{1}(G)$ is not ϕ_{ζ}-biprojective. But since an abelian group G is amenable, its group algebra $\ell^{1}(G)$ is amenable and so is ϕ_{ζ}-Johnson amenable. Thus by Lemma 3.1 $\ell^{1}(G)$ is ϕ_{ζ}-biflat.

Lemma 4.3. Let G be a compact group and $\phi_{\zeta} \in \Delta\left(L^{1}(G)\right)$. Then $L^{1}(G)^{* *}$ is $\tilde{\phi}_{\zeta^{-}}$ biprojective. If converse holds, then G is amenable.

Proof. Since G is a compact group, then $\hat{G} \subseteq L^{1}(G)$. Suppose that $\phi_{\zeta} \in \Delta\left(L^{1}(G)\right)$ where $\zeta \in \hat{G}$. Then ϕ_{ζ} has an extension to $L^{1}(G)^{* *}$, which denoted by $\tilde{\phi}_{\zeta}$. Let $m=$ $\zeta \otimes \zeta$. It is clear that $m \in L^{1}(G)^{* *} \otimes_{p} L^{1}(G)^{* *}$. We claim that, m is a $\tilde{\phi}_{\zeta}$-Johnson contraction for $L^{1}(G)^{* *}$. Let $h \in L^{1}(G)^{* *}$. Then there exists a net $\left(h_{\alpha}\right)_{\alpha \in I} \subseteq L^{1}(G)$ such that $h_{\alpha} \xrightarrow{w^{*}} h$. It is easy to verify that

$$
h_{\alpha} \cdot \zeta \otimes \zeta=\tilde{\phi}_{\zeta}\left(h_{\alpha}\right) \zeta \otimes \zeta=\zeta \otimes \zeta \tilde{\phi}_{\zeta}\left(h_{\alpha}\right)=\zeta \otimes \zeta \cdot h_{\alpha} .
$$

Since $h_{\alpha} \xrightarrow{w^{*}} h$,

$$
\tilde{\phi}_{\zeta}\left(h_{\alpha}\right) \zeta \otimes \zeta \rightarrow \tilde{\phi}_{\zeta}(h) \zeta \otimes \zeta
$$

and

$$
\zeta \otimes \zeta \tilde{\phi}_{\zeta}\left(h_{\alpha}\right) \rightarrow \zeta \otimes \zeta \tilde{\phi}_{\zeta}(h) .
$$

Hence, it is clear that $\zeta \otimes \zeta \cdot h=h \cdot \zeta \otimes \zeta$ for $h \in L^{1}(G)^{* *}$. Plainly one can show that $\tilde{\phi}_{\zeta}(\pi(\zeta \otimes \zeta))=1$, then m is a $\tilde{\phi}_{\zeta^{-}}$-Johnson contraction for $L^{1}(G)^{* *}$, then $L^{1}(G)^{* *}$ is $\phi_{\zeta^{-}}$-Johnson contractible, so by Lemma 3.2, it is $\tilde{\phi}_{\zeta}$-biprojective.

For converse, let $L^{1}(G)^{* *}$ be ϕ_{ζ}-biprojective. Then by Lemma $3.5, L^{1}(G)$ is ϕ_{ζ}-biflat. Hence Lemma 4.1 implies the amenability of G.

Let A be a Banach algebra with norm $\|\cdot\|_{A}$. We recall that a Banach algebra B with norm $\|\cdot\|_{B}$ is called an abstract Segal algebra with respect to A if
(i) B is a dense left ideal in A,
(ii) there exists $M>0$ such that $\|b\|_{A} \leq M| | b \|_{B}$ for every $b \in B$,
(iii) there exists $C>0$ such that $\|a b\|_{B} \leq C\|a\|_{A}\|b\|_{B}$ for every $a \in A$ and $b \in B$.

Let G be a locally compact group and let $A(G)$ be its Fourier algebra. Then $\Delta(A(G))$ consists of all point evaluations $\phi_{x}(x \in G)$ defined by $\phi_{x}(f)=f(x)$ for all $f \in A(G)$.

Lemma 4.4. Let $A(G)$ be the Fourier algebra on a locally compact group G and let $S A(G)$ be an abstract Segal algebra with respect to $A(G)$. Suppose that $\phi_{x} \in \Delta(A(G))$ for some $x \in G$. Then $S A(G)$ is ϕ_{x}-biprojective if and only if G is a discrete group

Proof. Suppose that $S A(G)$ is ϕ_{x}-biprojective. Since $S A(G)$ is a commutative Banach algebra, Lemma 3.2 implies that $S A(G)$ is ϕ_{x}-Johnson contractible. Hence, by similar arguments as in the proof of Proposition $2.2, S A(G)$ is ϕ_{x}-contractible, then G is discrete, see [1, Theorem 3-5].

For the converse, use the same argument as in the proof of [1, Theorem 35].

Corollary 1. $A(G)$ is ϕ_{x}-biprojective for some $x \in G$ if and only if G is a discrete group.
Corollary 2. Let G be any non-discrete locally compact group and $\phi_{x} \in \Delta(A(G))$ for every $x \in G$. Then $A(G)$ is ϕ_{x}-biflat, but is not ϕ_{x}-biprojective.

Proof. Let G be a locally compact group. By [13, Example 2-6] $A(G)$ is left ϕ_{x}-amenable for every $x \in G$. Since $A(G)$ is commutative, then $A(G)$ is right ϕ_{x}-amenable. Hence by Proposition $2.2 A(G)$ is ϕ_{x}-Johnson amenable. Then by Lemma 3.1 $A(G)$ is ϕ_{x}-biflat for every locally compact group G. But by the above corollary $A(G)$ is not ϕ_{x}-biprojective.

5 Example

Remark 5.1. Our standard reference for the following examples is [3]. Consider the semigroup \mathbb{N}_{\wedge}, with the semigroup operation $m \wedge n=\min \{m, n\}$, where m and n are in $\mathbb{N} . \Delta\left(\ell^{1}\left(\mathbb{N}_{\wedge}\right)\right)$ consists precisely of the all functions $\phi_{n}: \ell^{1}\left(\mathbb{N}_{\wedge}\right) \rightarrow \mathbb{C}$ defined by $\phi_{n}\left(\sum_{i=1}^{\infty} \alpha_{i} \delta_{i}\right)=\sum_{i=n}^{\infty} \alpha_{i}$ for every $n \in \mathbb{N}$. It has been shown that \mathbb{N}_{\wedge} is not a uniformly locally finite semigroup (see [16]).
Example 5.2. Let \mathbb{N}_{\wedge} be as in the Remark 5.1. Since \mathbb{N}_{\wedge} is not uniformly locally finite, $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$ is neither biprojective nor biflat [16, Theorem 3-7]. But if we take $\phi_{1} \in \Delta\left(\ell^{1}\left(\mathbb{N}_{\wedge}\right)\right)$ and $m=\delta_{1} \otimes \delta_{1}$, then we have $\phi_{1}(\pi(m))=\phi_{1}\left(\pi\left(\delta_{1} \otimes \delta_{1}\right)\right)=$ $\phi_{1}\left(\delta_{1}\right)=1$ and $a \cdot m=m \cdot a$, for every $a \in \ell^{1}\left(\mathbb{N}_{\wedge}\right)$. Therefore $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$ is a ϕ_{1}-Johnson contractible Banach algebra. By Lemma 3.2, $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$ is ϕ_{1}-biprojective and hence ϕ_{1}-biflat.
Example 5.3. Again let \mathbb{N}_{\wedge} be as in the Remark 5.1 and let $\phi \in \Delta\left(\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}\right)$. Since $\left(\delta_{n}\right)_{n \in \mathbb{N}}$ is a bounded approximate identity for $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$ see [3, Proposition 3-3-1], $\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$ has a right unit E, which is a w^{*}-limit point of $\left(\delta_{n}\right)_{n \in \mathbb{N}}$. Since $\phi(E)=1$, $\phi\left(\delta_{n}\right) \neq 0$ for sufficiently large n, hence $\left.\phi\right|_{\ell^{1}\left(\mathbb{N}_{\wedge}\right)} \neq\{0\}$. So $\left.\phi\right|_{\ell^{1}\left(\mathbb{N}_{\wedge}\right)}$ is a character on $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$, by Remark 5.1 it has a form ϕ_{n} for some $n \in \mathbb{N}$, but every character ϕ_{n} on $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$ has an unique extension $\tilde{\phi}_{n}$ on $\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$, that is, for some $n \in \mathbb{N}$ we have $\phi=\tilde{\phi_{n}}$.

Now if $\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$ is amenable, then by [6, Theorem 1-8] $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$ is amenable, so by $[4$, Theorem 2$] \mathbb{N}_{\wedge}$ has a finite number of idempotents, which is impossible. Thus $\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$ is not amenable but we claim that it is $\tilde{\phi}_{1}$-Johnson contractible. To see this, let $a \in \ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$. Then there exists a net $\left(a_{\alpha}\right)_{\alpha \in I}$ in $\ell^{1}\left(\mathbb{N}_{\wedge}\right)$ such that $a_{\alpha} \xrightarrow{w^{*}} a$. Hence,

$$
a \cdot \delta_{1} \otimes \delta_{1}=w^{*}-\lim a_{\alpha} \delta_{1} \otimes \delta_{1}=\lim \phi_{1}\left(a_{\alpha}\right) \delta_{1} \otimes \delta_{1}=\tilde{\phi}_{1}(a) \delta_{1} \otimes \delta_{1}
$$

and similarly $\delta_{1} \otimes \delta_{1} \cdot a=\tilde{\phi}_{1}(a) \delta_{1} \otimes \delta_{1}$. Moreover $\tilde{\phi}_{1}\left(\pi^{* *}\left(\delta_{1} \otimes \delta_{1}\right)\right)=\phi_{1}\left(\delta_{1}\right)=1$, so $m=\delta_{1} \otimes \delta_{1} \in \ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *} \otimes_{p} \ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$ is a $\tilde{\phi}_{1}$-Johnson contraction for $\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$, that is, $\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$ is $\tilde{\phi}_{1}$-Johnson contractible. So by Lemma 3.2 it is $\tilde{\phi}_{1}$-biprojective. In the general case, for every $n>1$, take $m=\left(\delta_{n}-\delta_{n-1}\right) \otimes\left(\delta_{n}-\delta_{n-1}\right)$, it is easy to see that m is a $\tilde{\phi}_{n}$-Johnson contraction for $\ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$. Hence, by Lemma 3.2 for every $n \in \mathbb{N}, \ell^{1}\left(\mathbb{N}_{\wedge}\right)^{* *}$ is $\tilde{\phi_{n}}$-biprojective.
Remark 5.4. Consider the semigroup \mathbb{N}_{\vee}, with semigroup operation $m \vee n=$ $\max \{m, n\}$, where m and n are in \mathbb{N}. The character space $\Delta\left(\ell^{1}\left(\mathbb{N}_{\vee}\right)\right)$ precisely consists of the all functions $\phi_{n}: \ell^{1}\left(\mathbb{N}_{\vee}\right) \rightarrow \mathbb{C}$ defined by $\phi_{n}\left(\sum_{i=1}^{\infty} \alpha_{i} \delta_{i}\right)=\sum_{i=1}^{n} \alpha_{i}$ for every $n \in \mathbb{N} \cup\{\infty\}$.
Example 5.5. Let \mathbb{N}_{\vee} be as in the Remark 5.4 and let $\phi_{n} \in \Delta\left(\ell^{1}\left(\mathbb{N}_{\vee}\right)\right)$ where $n \in$ $\mathbb{N} \cup\{\infty\}$. We claim that $\ell^{1}\left(\mathbb{N}_{\vee}\right)$ is ϕ_{n}-biflat, for every n in $\mathbb{N} \cup\{\infty\}$. To see this, for every $n \in \mathbb{N}$, set $m=\left(\delta_{n}-\delta_{n+1}\right) \otimes\left(\delta_{n}-\delta_{n+1}\right)$, then it is easy to see that $a \cdot m=m \cdot a$ and $\tilde{\phi_{n}}(\pi(m))=1$, where $a \in \ell^{1}\left(\mathbb{N}_{\vee}\right)$. In the case $n=\infty$, set $m=w^{*}-\lim \delta_{k} \otimes \delta_{k}$, then by the w^{*}-continuity of $\pi^{* *}$, we have

$$
\begin{aligned}
\tilde{\phi_{\infty}}\left(\pi^{* *}(m)\right) & =\tilde{\phi_{\infty}}\left(\pi^{* *}\left(w^{*}-\lim \delta_{k} \otimes \delta_{k}\right)\right) \\
& =\tilde{\phi_{\infty}}\left(w^{*}-\lim \pi^{* *}\left(\delta_{k} \otimes \delta_{k}\right)\right) \\
& =\tilde{\phi_{\infty}}\left(w^{*}-\lim \delta_{k}\right)=\lim \phi_{\infty}\left(\delta_{k}\right)=1 .
\end{aligned}
$$

For $\epsilon>0$ and each $a=\sum_{i=1}^{\infty} \alpha_{i} \delta_{i}$ in $\ell^{1}\left(\mathbb{N}_{\vee}\right)$, pick $n_{0} \in \mathbb{N}$ such that $\sum_{i=n_{0}}^{\infty}\left|\alpha_{i}\right|<\epsilon$. Then for $k \geq n_{0}$, we have

$$
\left\|\left(\sum_{i=k}^{\infty} \alpha_{i} \delta_{i}\right) \otimes \delta_{k}-\delta_{k} \otimes\left(\sum_{i=k}^{\infty} \alpha_{i} \delta_{i}\right)\right\| \leq 2 \sum_{i=k}^{\infty}\left|\alpha_{i}\right|<2 \epsilon .
$$

Then clearly

$$
\begin{equation*}
\left(\sum_{i=k}^{\infty} \alpha_{i} \delta_{i}\right) \otimes \delta_{k}-\delta_{k} \otimes\left(\sum_{i=k}^{\infty} \alpha_{i} \delta_{i}\right) \xrightarrow{w^{*}} 0 . \tag{5.1}
\end{equation*}
$$

Now consider

$$
\begin{align*}
a \cdot m-m \cdot a= & w^{*}-\lim \left(a \delta_{k} \otimes \delta_{k}-\delta_{k} \otimes \delta_{k} a\right) \\
= & w^{*}-\lim \left(\left(\sum_{i=1}^{\infty} \alpha_{i} \delta_{i} \delta_{k}\right) \otimes \delta_{k}-\delta_{k} \otimes\left(\delta_{k} \sum_{i=1}^{\infty} \alpha_{i} \delta_{i}\right)\right) \\
= & w^{*}-\lim \left(\left(\sum_{i=1}^{k} \alpha_{i} \delta_{i} \delta_{k}\right) \otimes \delta_{k}+\left(\sum_{i=k+1}^{\infty} \alpha_{i} \delta_{i} \delta_{k}\right) \otimes \delta_{k}\right. \\
& \left.-\delta_{k} \otimes\left(\delta_{k} \sum_{i=1}^{k} \alpha_{i} \delta_{i}\right)-\delta_{k} \otimes\left(\delta_{k} \sum_{i=k+1}^{\infty} \alpha_{i} \delta_{i}\right)\right) \tag{5.2}\\
= & w^{*}-\lim \left(\phi_{k}(a) \delta_{k} \otimes \delta_{k}+\sum_{i=k+1}^{\infty} \alpha_{i} \delta_{i} \otimes \delta_{k}\right. \\
& \left.-\delta_{k} \otimes \delta_{k} \phi_{k}(a)-\delta_{k} \otimes \sum_{i=k+1}^{\infty} \alpha_{i} \delta_{i}\right) \\
= & w^{*}-\lim \left(\sum_{i=k+1}^{\infty} \alpha_{i} \delta_{i}\right) \otimes \delta_{k}-\delta_{k} \otimes\left(\sum_{i=k+1}^{\infty} \alpha_{i} \delta_{i}\right)
\end{align*}
$$

Then by (5.1) and (5.2), we have $a \cdot m=m \cdot a$. Therefore $\ell^{1}\left(\mathbb{N}_{\vee}\right)$ is ϕ_{n}-Johnson amenable for every $n \in \mathbb{N} \cup\{\infty\}$. Hence by Lemma $3.1 \ell^{1}\left(\mathbb{N}_{V}\right)$ is ϕ_{n}-biflat for every $n \in \mathbb{N} \cup\{\infty\}$.

Moreover, let $\ell^{1}\left(\mathbb{N}_{\vee}\right)$ be biflat. Then since $\ell^{1}\left(\mathbb{N}_{V}\right)$ is unital with unit δ_{1}, so by [17, Exercise 4-3-15] $\ell^{1}\left(\mathbb{N}_{\vee}\right)$ is amenable. Hence by [4, Theorem 2] \mathbb{N}_{\vee} has a finite number of idempotents which is impossible. Hence $\ell^{1}\left(\mathbb{N}_{\vee}\right)$ is not a biflat Banach algebra.

Acknowledgements The authors are grateful to the referee for useful comments which improved the manuscript and for pointing out a number of misprints.

References

[1] M. Alaghmandan, R. Nasr Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc, 82 (2010) 274281.
[2] H. G. Dales, A.T.-M. Lau and D. Strauss, Banach algebras on semigroups and on their compactifications Mem. Amer. Math. Soc. 205, (2010).
[3] H. G. Dales and R. J. Loy, Approximate amenability of semigroup algebras and Segal algebras, Dissertationes Math. (Rozprawy Mat.) 474 (2010).
[4] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup algebras, Math. Scand. 66 (1990) 141-146.
[5] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of certain Banach algebras, Colloq. Math. 122 (2011) 225-232.
[6] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489-1497.
[7] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Camb. Philos. Soc. 142 (2007) 111-123.
[8] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin, (1963).
[9] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (2009) 53-78.
[10] A. Jabbari, T. Mehdi Abad and M. Zaman Abadi, On ф-inner amenable Banach algebras, Colloq. Math. vol 122 (2011) 1-10.
[11] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
[12] -, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685-698.
[13] E. Kaniuth, A. T. Lau and J. Pym, On ф-amenability of Banach algebras, Math. Proc. Camb. Philos. Soc. 144 (2008) 85-96.
[14] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Philos. Soc. 144 (2008) 697-706.
[15] R. Nasr Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (3) (2011) 205-225.
[16] P. Ramsden, Biflatness of semigroup algebras. Semigroup Forum 79, (2009) 515530.
[17] V. Runde, Lectures on amenability, (Springer, New York, 2002).
[18] Y. Zhang; Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. 127 (11) (1999), 3237-3242.

Faculty of Mathematics and Computer Science,
Amirkabir University of Technology,
424 Hafez Avenue, 15914 Tehran, Iran.
email: amir.sahami@aut.ac.ir, arpabbas@aut.ac.ir

[^0]: Received by the editors in July 2012 - In revised form in December 2012.
 Communicated by A. Valette.
 2010 Mathematics Subject Classification : Primary 43A07, 43A20, Secondary 46H05.
 Key words and phrases : Banach algebra, ϕ-biflatness, ϕ-biprojectivity, ϕ-amenability, ϕ-inner amenability.

