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Abstract

In this paper, we introduce the new notions of φ-biflatness, φ-biprojectivity,
φ-Johnson amenability and φ-Johnson contractibility for Banach algebras,
where φ is a non-zero homomorphism from a Banach algebra A into C. We
show that a Banach algebra A is φ-Johnson amenable if and only if it is φ-
inner amenable and φ-biflat. Also we show that φ-Johnson amenability is
equivalent with the existence of left and right φ-means for A. We give some
examples to show differences between these new notions and the classical
ones. Finally, we show that L1(G) is φ-biflat if and only if G is an amenable
group and A(G) is φ-biprojective if and only if G is a discrete group.

1 Introduction

For the background theory of amenability of Banach algebras, see B. E. Johnson
[11]. A Banach algebra A is amenable (contractible) if every continuous deriva-
tion from A into a dual Banach A-module X∗ (Banach A-module X) is inner, for
every Banach A-module X. Also in [12], Johnson showed that a Banach alge-
bra A is amenable if and only if A has a virtual diagonal, that is, there exists an
m ∈ (A ⊗p A)∗∗ such that a · m = m · a and π∗∗(m)a = a for every a ∈ A, where
π : A ⊗p A → A is the product morphism, specified by π(a ⊗ b) = ab.

There are some important homological notions which have direct relation
with amenability and contractibility, such as biflatness and biprojectivity. Indeed,
A is called biflat (biprojective), if there exists a bounded A-module morphism
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ρ : A → (A ⊗p A)∗∗ (ρ : A → A ⊗p A) such that π∗∗ ◦ ρ is the canonical embed-
ding of A into A∗∗ (ρ is a right inverse for π), see [17]. In fact, a Banach algebra A
is amenable if and only if A is biflat and has a bounded approximate identity.

Recently E. Kaniuth et al. in [13] have introduced and studied the notion of
φ-amenability for Banach algebras. For a multiplicative linear functional φ on
A, A is called φ-amenable if every continuous derivation from A into the dual
Banach A-module X∗ is inner, for every Banach A-module X such that a · x =
φ(a)x. They showed that φ-amenability of A is equivalent with the existence
of a bounded net (aα)α∈I in A such that aaα − φ(a)aα → 0 and φ(aα) → 1, for
every a ∈ A. Later on, this notion even has been generalized in [9], [14] and [15].
Motivated by these considerations, A. Jabbari et al. in [10], have introduced the φ-
version of inner amenability, which is equivalent with the existence of a bounded
net (aα)α∈I in A such that aaα − aαa → 0 and φ(aα) = 1, for every a ∈ A.

The content of this paper is as follows. After recalling some background no-
tations and definitions, we will define new notions of φ-Johnson amenability,
φ-biflatness and φ-biprojectivity for Banach algebras and with some character-
izations and some examples, we will show the differences between these new
notions and the classical ones. It will be shown that A is φ-Johnson amenable if
and only if A is φ-biflat and φ-inner amenable. Also, it will be shown that L1(G)
is φ-biflat if and only if G is an amenable group. Also we will show that A(G) is
φ-biprojective if and only if G is a discrete group. The paper concludes with some
examples about semigroup algebras.

We recall that if X is a Banach A-module, then with the following actions X∗

is also a Banach A-module:

< a · f , x >=< f , x · a >, < f · a, x >=< f , x · a > (a ∈ A, x ∈ X, f ∈ A∗).

The projective tensor product of A by A is denoted by A ⊗p A. The Banach alge-
bra A ⊗p A is a Banach A-module with the following actions

a · (b ⊗ c) = ab ⊗ c, (b ⊗ c) · a = b ⊗ ca (a, b, c ∈ A).

Throughout this paper, ∆(A) denotes the character space of A, that is, all non-
zero multiplicative linear functionals on A. Let φ ∈ ∆(A). Then φ has a unique
extension on A∗∗ denoted by φ̃ and defined by φ̃(F) = F(φ) for every F ∈ A∗∗.
Clearly this extension remains to be a character on A∗∗.

Now we will give the definition of our new notions.

Definition 1.1. A Banach algebra A is called φ-Johnson amenable, if there exists an
element m ∈ (A ⊗p A)∗∗ such that a · m = m · a and φ̃ ◦ π∗∗(m) = 1, for every
a ∈ A, where φ̃ is defined as above. Also, A is called a φ-Johnson contractible
Banach algebra, if there exists an element m ∈ A ⊗p A such that a · m = m · a and
φ ◦ π(m) = 1, for every a ∈ A.

Definition 1.2. Let A be a Banach algebra and φ ∈ ∆(A). A is called φ-biprojective,
if there exists a bounded A-module morphism ρ : A → A ⊗p A such that φ ◦ π ◦
ρ = φ. Also A is called φ-biflat if there exists a bounded A-module morphism
ρ : A → (A ⊗p A)∗∗ such that φ̃ ◦ π∗∗ ◦ ρ = φ.
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2 Elementary properties

In this section, we prove some elementary lemmas to characterize the φ-Johnson
amenability, the φ-biflatness and the φ-biprojectivity of Banach algebras.

Lemma 2.1. Let A be a Banach algebra and φ ∈ ∆(A). The Banach algebra A is
φ-Johnson amenable if and only if there exists a bounded net (mα)α∈I in A ⊗p A such
that a · mα − mα · a → 0 and φ ◦ π(mα) → 1, for every a ∈ A.

Proof. Let A be φ-Johnson amenable. Then there exists an m ∈ (A ⊗p A)∗∗ such
that a · m = m · a and φ̃ ◦ π∗∗(m) = 1. So by Goldstine’s theorem m is a w∗-
accumulation point of a bounded net (mα)α∈I ⊆ A⊗p A. Since π∗∗ is w∗-continu-

ous, hence π(mα)
w∗

−→ π∗∗(m), π(mα)(φ) → φ̃ ◦ π∗∗(m), therefore φ ◦π(mα) → 1.

Since mα
w∗

−→ m, for every ψ ∈ (A ⊗p A)∗, we have mα(a · ψ) → m(a · ψ) and

mα(ψ · a) → m(ψ · a). Therefore mα · a(ψ) → m · a(ψ), that is, mα · a
w∗

−→ m · a.

Similarly, one can show that a · mα
w∗

−→ a · m. It is easy to verify that a · mα − mα ·

a
w
−→ 0. Consequently, one can assume that by Mazur’s theorem, this limit holds

even in the norm topology.
Conversely, let (mα)α∈I ⊆ A⊗p A be a bounded net such that a ·mα −mα · a →

0 and φ ◦ π(mα) → 1, for every a ∈ A. After passing to a subnet if necessary, let

m ∈ (A ⊗p A)∗∗ be a w∗-cluster point of the net (mα)α∈I . Since a · mα − mα · a
w∗

−→
0, one can easily show that a · m = m · a, for every a ∈ A. Also the w∗-continuity
of π∗∗, reveals that φ̃ ◦ π∗∗(m) = 1 and the proof is complete.

Recall that A is a left (right) φ-amenable Banach algebra, if there exists a
bounded net (mα)α∈I in A, such that ||amα − φ(a)mα || → 0 (||mαa − φ(a)mα || →
0), respectively and φ(mα) = 1. For further details see [13].

Proposition 2.2. Suppose that A is a Banach algebra and φ ∈ ∆(A). A is left and right
φ-amenable if and only if A is φ-Johnson amenable.

Proof. Suppose that (mα)α∈I and (mβ)β∈J are bounded nets in A such that φ(mα) =
φ(mβ) = 1, which satisfy ||amα − φ(a)mα|| → 0 and ||mβa − φ(a)mβ|| → 0,
respectively, for every a ∈ A. Define mα

β = mα ⊗ mβ ⊆ A ⊗p A, therefore

φ ◦ π(mα
β) = φ(mαmβ) = φ(mα)φ(mβ) = 1. On the other hand, for every a ∈ A,

we have
||a · (mα ⊗ mβ)− (mα ⊗ mβ) · a|| → 0.

To see this, by using the boundedness of (mα)α∈I and (mβ)β∈J , we obtain

||a · m
β
α − m

β
α · a|| = ||a · (mα ⊗ mβ)− (mα ⊗ mβ) · a||

≤ ||amα ⊗ mβ − φ(a)mα ⊗ mβ||+ ||mα ⊗ mβφ(a)− (mα ⊗ mβ)a||

≤ ||amα − φ(a)mα|| ||mβ||+ ||mα|| ||mβa − φ(a)mβ || → 0.

So by Lemma 2.1, A is φ-Johnson amenable.
For converse, suppose that (mα)α∈I is a bounded net in A ⊗p A such that

a · mα − mα · a → 0 and φ ◦ π(mα) → 1. One can easily show that, there exists a
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bounded linear map T : A ⊗p A → A defined by T(a ⊗ b) = φ(b)a, for every a
and b in A. It is easy to see that T(a · m) = a · T(m) and T(m · a) = φ(a)T(m),
where m ∈ A ⊗p A. Now, consider the following

||T(a · mα − mα · a)|| ≤ ||T|| ||a · mα − mα · a||,

therefore one can easily see that

||aT(mα)− φ(a)T(mα)|| = ||T(a · mα − mα · a)|| → 0.

Replacing mα with φ(T(mα))−1mα and using the fact φ(T(mα)) = φ ◦ π(mα) = 1,
we obtain a bounded net (T(mα))α in A, which satisfies the hypotheses of [13,
Theorem 1-4], hence A is left φ-amenable. Similarly, one can show that A is right
φ-amenable.

Recall that, A is a φ-inner amenable Banach algebra, if A has a bounded net
(aα)α∈I such that φ(aα) → 1 and aaα − aαa → 0, see [10, Theorem 2-1].

Lemma 2.3. Let A be a Banach algebra and φ ∈ ∆(A). Suppose that A is φ-Johnson
amenable. Then A is φ-inner amenable.

Proof. Let (mα)α∈I ⊆ A ⊗p A be a bounded net such that a · mα − mα · a → 0 and
φ ◦ π(mα) → 1. Now if we consider the net (π(mα))α and since π is A-module
morphism, then clearly,

aπ(mα)− π(mα)a = π(a · mα − mα · a) → 0

and φ ◦ π(mα) → 1. Hence, A is a φ-inner amenable Banach algebra.

Now, we want to give an example which is φ-inner amenable but is not
φ-Johnson amenable. Moreover, we give another example which is φ-biprojective,
hence is φ-biflat but is not φ-Johnson amenable. Let I be a closed ideal of the Ba-
nach algebra A which φ|I 6= 0. Then I is left and right φ-amenable whenever A is
left and right φ-amenable, see [13].

Example 2.4. Let A be a Banach algebra with dim(A) > 1 such that ab = φ(a)b for
every a, b ∈ A, where φ ∈ ∆(A). Then A is weakly amenable, but not amenable
[2, Proposition 2.13]. Also A is not a φ-inner amenable Banach algebra [5, Ex-
ample 2-3]. Note that A♯ = A ⊕ C, the unitization of A, is a φe-inner amenable
Banach algebra, where φe(a + λ) = φ(a) + λ, for every a ∈ A and λ ∈ C.

We claim that, this algebra is not φe-Johnson amenable. We go toward a con-
tradiction and suppose that A♯ is φe-Johnson amenable, where dim A > 1 . Since
A is a closed ideal of A♯ and φe|A 6= 0, A is φ-Johnson amenable. Hence, A is
φ-inner amenable. So by [5, Example 2-3], dim(A) = 1 which is a contradiction.

Furthermore, we show that A♯ is not even a pseudo-amenable Banach algebra.
To see this we go toward a contradiction, suppose that A♯ is pseudo-amenable.
Let a0 ∈ A be such that φ(a0) = 1. By [7, Theorem 3-1], clearly A is approximately
amenable. Therefore A has an approximate identity say (eα)α∈I . Consider

a0 = lim
α

a0eα = lim
α

φ(a0)eα = lim
α

eα,
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in other words, a0 is a unit element for A. Then by the above considerations, one
can easily see that

a = lim aeα = a lim eα = φ(a)a0

so dim(A) = 1, which is a contradiction.
Note that, since aa0 = φ(a)a0 and φ(a0) = 1, A is a left φ-amenable Banach

algebra, so by [13, Lemma 3-2] A♯ is left φe-amenable. Therefore by this example
we have a Banach algebra which is φe-amenable and φe-inner amenable but is not
φe-Johnson amenable.

We want to give an example which reveals differences of φ-biflatness and
φ-biprojectivity with φ-Johnson amenability. Let A be a Banach algebra with
dim(A) > 1 such that ab = φ(b)a, where φ ∈ ∆(A). By [5, Example 2-3] A is
not φ-inner amenable, so by previous lemma A is not φ-Johnson amenable. But
we show that, A is φ-biprojective. Indeed, let x0 ∈ A be such that φ(x0) = 1.
Define ρ : A → A ⊗p A by ρ(a) = a ⊗ x0. One can easily see that ρ is a bounded
A-module morphism and φ ◦ π ◦ ρ = φ. Then we have an example which is
φ-biprojective and hence φ-biflat but is not φ-Johnson amenable.

Example 2.5. Let A =

{(

0 a
0 b

)

|a, b ∈ C

}

and φ(

(

0 a
0 b

)

) = b. It is easy

to see that φ is a character on A. By [18, page 3241] A is a biprojective Ba-
nach algebra, hence is φ-biprojective, therefore is φ-biflat. On the other hand, by
[5, Example 2-3], this algebra is not φ-inner amenable, then by previous Lemma
A is not φ-Johnson amenable.

3 Characterization of φ-biflatness and φ-biprojectivity

Lemma 3.1. Let A be a Banach algebra and φ ∈ ∆(A). If A is φ-Johnson amenable,
then A is φ-biflat.

Proof. Let m ∈ (A ⊗p A)∗∗ be such that a · m = m · a and φ̃ ◦ π∗∗(m) = 1. Define
a map ρ : A → (A ⊗p A)∗∗ by ρ(a) = a · m. Then ρ is an A-module morphism,
since

b · ρ(a) = b · (a · m) = ba · m = ρ(ba), ρ(a) · b = (a · m) · b = ab · m = ρ(ab).

On the other hand

φ̃ ◦ π∗∗ ◦ ρ(a) = φ̃ ◦ π∗∗(a · m) = φ̃(aπ∗∗(m)) = φ(a)φ̃ ◦ π∗∗(m) = φ(a).

Therefore A is a φ-biflat Banach algebra.

Lemma 3.2. Let A be a Banach algebra and φ ∈ ∆(A). If A is φ-Johnson contractible,
then A is φ-biprojective. The converse holds, whenever A is either unital or a commuta-
tive Banach algebra.

Proof. Let m ∈ A ⊗p A be such that a · m = m · a and φ(π(m)) = 1. Define
ρ : A → A⊗p A by ρ(a) = a ·m. Then clearly ρ is a bounded A-module morphism
and we have

φ ◦ π ◦ ρ(a) = φ(aπ(m)) = φ(a)φ(π(m)) = φ(a).
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So A is φ-biprojective.
Conversely, suppose that A is a φ-biprojective Banach algebra. Let ρ : A →

A ⊗p A be a bounded A-module morphism and e is an unit for A. Thus, ρ(e) ∈
A ⊗p A and a · ρ(e) = ρ(e) · a and φ ◦ π ◦ ρ(e) = φ(e) = 1. Therefore A is
φ-Johnson contractible. In the commutative case, let x0 ∈ A be such that φ(x0) =
1. For ρ(x0) ∈ A⊗p A, we have a · ρ(x0) = ρ(x0) · a and φ ◦π ◦ ρ(x0) = φ(x0) = 1,
for every a ∈ A. Then the proof is complete.

Proposition 3.3. Let A be a Banach algebra and φ ∈ ∆(A). If A is φ-biflat and φ-inner
amenable, then A is φ-Johnson amenable.

Proof. Since A is a φ-biflat Banach algebra, there exists a bounded A-module mor-
phism ρ : A → (A ⊗p A)∗∗ such that φ̃ ◦ π∗∗ ◦ ρ = φ. Suppose that (aα)α∈I is a
bounded net in A such that for each a ∈ A, aaα − aαa → 0 and φ(aα) → 1. Thus,
we have

||a · ρ(aα)− ρ(aα) · a|| → 0

and
φ̃ ◦ π∗∗ ◦ ρ(aα) → 1.

We construct a bounded net (bλ) ⊆ A ⊗p A such that φ ◦ π(bλ) → 1 and
||a · bλ − bλ · a|| → 0. Let ǫ > 0, pick finite sets F ⊆ A and Φ ⊆ (A ⊗p A)∗.
Let

K = {a · ξ|a ∈ F, ξ ∈ Φ} ∪ {ξ · a|a ∈ F, ξ ∈ Φ}.

Hence, there exists v = v(ǫ, F, Φ) such that for every a ∈ F

||a · ρ(av)− ρ(av) · a|| <
ǫ

3K0

and
|φ̃ ◦ π∗∗ ◦ ρ(av)− 1| < ǫ,

where K0 = max{||ξ|| : ξ ∈ Φ}. By Goldstine’s theorem, there exists a bounded
net (bλ) ⊆ A ⊗p A such that converges to ρ(av) in the w∗-topology. Since π∗∗ is

w∗-continuous, π(bλ)
w∗

−→ π∗∗(ρ(av)). Hence, there exists λ0 = λ0(ǫ, F, Φ) such
that

|ψ(bλ0
)− ρ(av)(ψ)| <

ǫ

3
and

|φ ◦ π(bλ0
)− φ̃ ◦ π∗∗ ◦ ρ(av)| < ǫ,

for all ψ ∈ K. Therefore for some c ∈ R, we have

|φ ◦ π(bλ0
)− 1| = |φ ◦ π(bλ0

)− φ̃ ◦ π∗∗ ◦ ρ(av) + φ̃ ◦ π∗∗ ◦ ρ(av)− 1| < cǫ.

Since |ψ(bλ0
)− ρ(av)(ψ)| <

ǫ
3 ,

|ξ(a · bλ0
− bλ0

· a)| ≤ |ξ(a · bλ0
)− a · ρ(av)(ξ)| + |a · ρ(av)(ξ) − ρ(av) · a(ξ)|+

|ρ(av) · a(ξ) − ξ(bλ0
· a)| < ǫ.

Hence, we have a · bλ − bλ · a → 0 in the w-topology. By Mazur’s theorem, one
can assume that a · bλ − bλ · a → 0, with respect to the norm topology, as we
desired.
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Lemma 3.4. Let A be a Banach algebra and φ ∈ ∆(A). Let I be a closed ideal of A such
that φ|I 6= 0. If A is φ-biprojective, then I is φ|I-biprojective.

Proof. Let ρ : A → A ⊗p A be an A-module morphism such that φ ◦ π ◦ ρ = φ.
Suppose that i0 ∈ I is such that φ(i0) = 1. Define η : A ⊗p A → I ⊗p I by
η(a ⊗ b) = ai0 ⊗ i0b for every a and b in A. Since η is an A-module morphism,
η ◦ ρ : A → I ⊗p I is an A-module morphism. Define ρ̂ = η ◦ ρ|I which is an
I-module morphism. It is easy to see that φ ◦ π ◦ ρ̂(i) = φ(i) for every i ∈ I. Then
the proof is complete.

Similarly, one can see that the above lemma is also true for the φ-biflat case.

Lemma 3.5. Let A be a Banach algebra and φ ∈ ∆(A). If A∗∗ is φ̃-biprojective, then A
is φ-biflat.

Proof. Let ρ : A∗∗ → A∗∗⊗p A∗∗ be an A∗∗-module morphism such that φ̃ ◦πA∗∗ ◦
ρ = φ. Define ρ0 = ρ|A : A → A∗∗ ⊗p A∗∗. There exists a bounded linear map
ψ : A∗∗ ⊗p A∗∗ → (A ⊗p A)∗∗ such that for a, b ∈ A and m ∈ A∗∗ ⊗p A∗∗, the
following holds;

(i) ψ(a ⊗ b) = a ⊗ b,

(ii) ψ(m) · a = ψ(m · a), a · ψ(m) = ψ(a · m),

(iii) π∗∗
A (ψ(m)) = πA∗∗(m),

see [6, Lemma 1-7]. Clearly one can see that ψ ◦ ρ0 is an A-module morphism and
φ̃ ◦ π∗∗

A ◦ ψ ◦ ρ0 = φ̃ ◦ πA∗∗ ◦ ρ0 = φ, the proof is complete.

The analogous result of [16, Proposition 2-4] holds for φ-biprojectivity.

Proposition 3.6. Let A and B be Banach algebras and φ ∈ ∆(A), ψ ∈ ∆(B). Suppose
that A and B are φ-biprojective and ψ-biprojective, respectively. Then A ⊗p B is φ ⊗ ψ-
biprojective.

Proof. Let ρ0 : A → A ⊗p A and ρ1 : B → B ⊗p B be such that φ ◦ πA ◦ ρ0 = φ and
ψ ◦ πB ◦ ρ1 = ψ. Define θ : (A ⊗p A)⊗p (B ⊗p B) → (A ⊗p B)⊗p (A ⊗p B) by

(a1 ⊗ a2)⊗ (b1 ⊗ b2) 7→ (a1 ⊗ b1)⊗ (a2 ⊗ b2),

where a1, a2 ∈ A and b1, b2 ∈ B. Set ρ = θ ◦ (ρ0 ⊗ ρ1), for a1, a2 ∈ A and b1, b2 ∈ B,
we have

πA⊗pB ◦ θ(a1 ⊗ a2 ⊗ b1 ⊗ b2) = πA⊗pB(a1 ⊗ b1 ⊗ a2 ⊗ b2) = πA(a1 ⊗ a2)πB(b1 ⊗ b2),

then clearly one can show that πA⊗pB ◦ θ = πA ⊗ πB. Hence, πA⊗pB ◦ θ(ρ0(a) ⊗

ρ1(b)) = πA ◦ ρ0(a)⊗ πB ◦ ρ1(b) and it is easy to see that

φ ⊗ ψ ◦ πA⊗pB ◦ θ(ρ0 ⊗ ρ1)(a ⊗ b) = φ ⊗ ψ(a ⊗ b),

the proof is complete.

We now prove a partial converse to Proposition 3.6.
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Proposition 3.7. Let A and B be Banach algebras, φ ∈ ∆(A) and ψ ∈ ∆(B). Sup-
pose that A is unital with unit eA and B containing a non-zero idempotent x0 such that
ψ(x0) = 1. If A ⊗p B is φ ⊗ ψ-biprojective, then A is φ-biprojective.

Proof. Let A and B be Banach algebras. Then A⊗p B becomes a Banach A-module
with the actions given by

a1 · (a2 ⊗ b) = a1a2 ⊗ b, a2 ⊗ b · a1 = a2a1 ⊗ b, (a1, a2 ∈ A, b ∈ B).

Suppose that A ⊗p B is φ ⊗ ψ-biprojective. Then there exists a bounded A ⊗p

B-module morphism ρ1 : A ⊗p B → (A ⊗p B) ⊗p (A ⊗p B) such that (φ ⊗ ψ) ◦
πA⊗pB ◦ ρ1 = φ ⊗ ψ. By the above considerations, we have

ρ1(a1a2 ⊗ x0) = ρ1((a1 ⊗ x0)⊗ (a2 ⊗ x0)) = a1 ⊗ x0 · ρ1(a2 ⊗ x0)

= a1 · (eA ⊗ x0)ρ1(a2 ⊗ x0)

= a1ρ1(a2 ⊗ b0).

Similarly one can show that ρ1(a2a1 ⊗ x0) = ρ1(a2 ⊗ x0) · a1.
Define T : (A ⊗p B) ⊗p (A ⊗p B) → A ⊗p A by T((a ⊗ b) ⊗ (c ⊗ d)) =

ψ(bd)a ⊗ c, where a, c ∈ A and b, d ∈ B. Clearly T is a bounded linear oper-
ator and πA ◦ T = (idA ⊗ ψ) ◦ πA⊗pB and also φ ◦ (idA ⊗ ψ) = φ ⊗ ψ, where

idA ⊗ ψ(a ⊗ b) = ψ(b)a for a ∈ A and b ∈ B.
Obviously the map ρ : A → A ⊗p A defined by ρ(a) = T ◦ ρ1(a ⊗ x0) is a

bounded A-module morphism. Since ψ(x0) = 1, we have

φ ◦ πA ◦ T ◦ ρ(a) = φ ◦ πA ◦ T ◦ ρ1(a ⊗ x0) = φ ◦ (idA ⊗ ψ) ◦ πA⊗pB ◦ ρ1(a ⊗ x0)

= (φ ⊗ ψ) ◦ πA⊗pB ◦ ρ1(a ⊗ x0)

= φ(a)

for all a ∈ A and this completes the proof.

4 Application to group algebras and Fourier algebras

Let G be a locally compact group and let Ĝ be its dual group, which consists
of all non-zero continuous homomorphism ζ : G → T. It is well-known that

∆(L1(G)) = {φζ : ζ ∈ Ĝ}, where φζ( f ) =
∫

G ζ(x) f (x)dx and dx is a left Haar
measure on G, for more details, see [8, Theorem 23-7].

Lemma 4.1. For a locally compact group G, L1(G) is φζ-biflat if and only if G is
amenable.

Proof. Let L1(G) be φζ-biflat. Since L1(G) has a bounded approximate identity,

then by Proposition 3.3 L1(G) is φζ-Johnson amenable, hence by Proposition 2.2

L1(G) is left φζ-amenable. Therefore by [1, Corollary 3-4] G is amenable.
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Lemma 4.2. Let G be an infinite abelian discrete group. Then ℓ1(G) is φζ-biflat, but it
is not φζ-biprojective.

Proof. Let G be an infinite abelian discrete group and let ℓ1(G) be φζ-biprojective.

Since ℓ1(G) is unital, Lemma 3.2 implies that ℓ1(G) is φζ-Johnson contractible.
Using the same argument as in the proof of Proposition 2.2, we can show that
ℓ1(G) is φζ-contractible, now by applying [15, Theorem 6-1] we see that G is com-

pact which is a contradiction, so ℓ1(G) is not φζ-biprojective. But since an abelian

group G is amenable, its group algebra ℓ1(G) is amenable and so is φζ-Johnson

amenable. Thus by Lemma 3.1 ℓ1(G) is φζ-biflat.

Lemma 4.3. Let G be a compact group and φζ ∈ ∆(L1(G)). Then L1(G)
∗∗

is φ̃ζ-
biprojective. If converse holds, then G is amenable.

Proof. Since G is a compact group, then Ĝ ⊆ L1(G). Suppose that φζ ∈ ∆(L1(G))

where ζ ∈ Ĝ. Then φζ has an extension to L1(G)∗∗, which denoted by φ̃ζ . Let m =

ζ ⊗ ζ. It is clear that m ∈ L1(G)∗∗ ⊗p L1(G)∗∗. We claim that, m is a φ̃ζ-Johnson

contraction for L1(G)∗∗. Let h ∈ L1(G)∗∗. Then there exists a net (hα)α∈I ⊆ L1(G)

such that hα
w∗

−→ h. It is easy to verify that

hα · ζ ⊗ ζ = φ̃ζ(hα)ζ ⊗ ζ = ζ ⊗ ζφ̃ζ(hα) = ζ ⊗ ζ · hα.

Since hα
w∗

−→ h,
φ̃ζ(hα)ζ ⊗ ζ → φ̃ζ(h)ζ ⊗ ζ

and
ζ ⊗ ζφ̃ζ(hα) → ζ ⊗ ζφ̃ζ(h).

Hence, it is clear that ζ ⊗ ζ · h = h · ζ ⊗ ζ for h ∈ L1(G)∗∗. Plainly one can
show that φ̃ζ(π(ζ ⊗ ζ)) = 1, then m is a φ̃ζ-Johnson contraction for L1(G)∗∗, then

L1(G)∗∗ is φζ-Johnson contractible, so by Lemma 3.2, it is φ̃ζ-biprojective.

For converse, let L1(G)∗∗ be φζ-biprojective. Then by Lemma 3.5, L1(G) is
φζ-biflat. Hence Lemma 4.1 implies the amenability of G.

Let A be a Banach algebra with norm || · ||A. We recall that a Banach algebra
B with norm || · ||B is called an abstract Segal algebra with respect to A if

(i) B is a dense left ideal in A,

(ii) there exists M > 0 such that ||b||A ≤ M||b||B for every b ∈ B,

(iii) there exists C > 0 such that ||ab||B ≤ C||a||A ||b||B for every a ∈ A and
b ∈ B.

Let G be a locally compact group and let A(G) be its Fourier algebra. Then
∆(A(G)) consists of all point evaluations φx (x ∈ G) defined by φx( f ) = f (x)
for all f ∈ A(G).

Lemma 4.4. Let A(G) be the Fourier algebra on a locally compact group G and let
SA(G) be an abstract Segal algebra with respect to A(G). Suppose that φx ∈ ∆(A(G))
for some x ∈ G. Then SA(G) is φx-biprojective if and only if G is a discrete group
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Proof. Suppose that SA(G) is φx-biprojective. Since SA(G) is a commutative Ba-
nach algebra, Lemma 3.2 implies that SA(G) is φx-Johnson contractible. Hence,
by similar arguments as in the proof of Proposition 2.2, SA(G) is φx-contractible,
then G is discrete, see [1, Theorem 3-5].

For the converse, use the same argument as in the proof of [1, Theorem 3-
5].

Corollary 1. A(G) is φx-biprojective for some x ∈ G if and only if G is a discrete group.

Corollary 2. Let G be any non-discrete locally compact group and φx ∈ ∆(A(G)) for
every x ∈ G. Then A(G) is φx-biflat, but is not φx-biprojective.

Proof. Let G be a locally compact group. By [13, Example 2-6] A(G) is left
φx-amenable for every x ∈ G. Since A(G) is commutative, then A(G) is right
φx-amenable. Hence by Proposition 2.2 A(G) is φx-Johnson amenable. Then by
Lemma 3.1 A(G) is φx-biflat for every locally compact group G. But by the above
corollary A(G) is not φx-biprojective.

5 Example

Remark 5.1. Our standard reference for the following examples is [3]. Consider
the semigroup N∧, with the semigroup operation m ∧ n = min{m, n}, where m
and n are in N. ∆(ℓ1(N∧)) consists precisely of the all functions φn : ℓ1(N∧) → C

defined by φn(∑
∞
i=1 αiδi) = ∑

∞
i=n αi for every n ∈ N. It has been shown that N∧

is not a uniformly locally finite semigroup (see [16]).

Example 5.2. Let N∧ be as in the Remark 5.1. Since N∧ is not uniformly locally
finite, ℓ1(N∧) is neither biprojective nor biflat [16, Theorem 3-7]. But if we take
φ1 ∈ ∆(ℓ1(N∧)) and m = δ1 ⊗ δ1, then we have φ1(π(m)) = φ1(π(δ1 ⊗ δ1)) =
φ1(δ1) = 1 and a · m = m · a, for every a ∈ ℓ1(N∧). Therefore ℓ1(N∧) is a
φ1-Johnson contractible Banach algebra. By Lemma 3.2, ℓ1(N∧) is φ1-biprojective
and hence φ1-biflat.

Example 5.3. Again let N∧ be as in the Remark 5.1 and let φ ∈ ∆(ℓ1(N∧)∗∗). Since
(δn)n∈N is a bounded approximate identity for ℓ1(N∧) see [3, Proposition 3-3-1],

ℓ1(N∧)
∗∗

has a right unit E, which is a w∗-limit point of (δn)n∈N. Since φ(E) = 1,
φ(δn) 6= 0 for sufficiently large n, hence φ|ℓ1(N∧)

6= {0}. So φ|ℓ1(N∧)
is a character

on ℓ1(N∧), by Remark 5.1 it has a form φn for some n ∈ N, but every character
φn on ℓ1(N∧) has an unique extension φ̃n on ℓ1(N∧)∗∗, that is, for some n ∈ N

we have φ = φ̃n.

Now if ℓ1(N∧)
∗∗

is amenable, then by [6, Theorem 1-8] ℓ1(N∧) is amenable,
so by [4, Theorem 2] N∧ has a finite number of idempotents, which is impossible.
Thus ℓ1(N∧)∗∗ is not amenable but we claim that it is φ̃1-Johnson contractible.

To see this, let a ∈ ℓ1(N∧)
∗∗

. Then there exists a net (aα)α∈I in ℓ1(N∧) such that

aα
w∗

−→ a. Hence,

a · δ1 ⊗ δ1 = w∗ − lim aαδ1 ⊗ δ1 = lim φ1(aα)δ1 ⊗ δ1 = φ̃1(a)δ1 ⊗ δ1
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and similarly δ1 ⊗ δ1 · a = φ̃1(a)δ1 ⊗ δ1. Moreover φ̃1(π
∗∗(δ1 ⊗ δ1)) = φ1(δ1) = 1,

so m = δ1 ⊗ δ1 ∈ ℓ1(N∧)
∗∗
⊗p ℓ

1(N∧)
∗∗

is a φ̃1-Johnson contraction for ℓ1(N∧)
∗∗

,

that is, ℓ1(N∧)
∗∗

is φ̃1-Johnson contractible. So by Lemma 3.2 it is φ̃1-biprojective.
In the general case, for every n > 1, take m = (δn − δn−1)⊗ (δn − δn−1), it is easy

to see that m is a φ̃n-Johnson contraction for ℓ1(N∧)
∗∗

. Hence, by Lemma 3.2 for

every n ∈ N, ℓ1(N∧)
∗∗

is φ̃n-biprojective.

Remark 5.4. Consider the semigroup N∨, with semigroup operation m ∨ n =
max{m, n}, where m and n are in N. The character space ∆(ℓ1(N∨)) precisely
consists of the all functions φn : ℓ1(N∨) → C defined by φn(∑

∞
i=1 αiδi) = ∑

n
i=1 αi

for every n ∈ N ∪ {∞}.

Example 5.5. Let N∨ be as in the Remark 5.4 and let φn ∈ ∆(ℓ1(N∨)) where n ∈
N ∪ {∞}. We claim that ℓ1(N∨) is φn-biflat, for every n in N ∪ {∞}. To see this,
for every n ∈ N, set m = (δn − δn+1) ⊗ (δn − δn+1), then it is easy to see that
a · m = m · a and φ̃n(π(m)) = 1, where a ∈ ℓ1(N∨). In the case n = ∞, set
m = w∗ − lim δk ⊗ δk, then by the w∗-continuity of π∗∗, we have

φ̃∞(π∗∗(m)) = φ̃∞(π∗∗(w∗ − lim δk ⊗ δk))

= φ̃∞(w∗ − lim π∗∗(δk ⊗ δk))

= φ̃∞(w∗ − lim δk) = lim φ∞(δk) = 1.

For ǫ > 0 and each a = ∑
∞
i=1 αiδi in ℓ1(N∨), pick n0 ∈ N such that ∑

∞
i=n0

|αi| < ǫ.
Then for k ≥ n0, we have

||(
∞

∑
i=k

αiδi)⊗ δk − δk ⊗ (
∞

∑
i=k

αiδi)|| ≤ 2
∞

∑
i=k

|αi| < 2ǫ.

Then clearly

(
∞

∑
i=k

αiδi)⊗ δk − δk ⊗ (
∞

∑
i=k

αiδi)
w∗

−→ 0. (5.1)

Now consider

a · m − m · a = w∗ − lim(aδk ⊗ δk − δk ⊗ δka)

= w∗ − lim((
∞

∑
i=1

αiδiδk)⊗ δk − δk ⊗ (δk

∞

∑
i=1

αiδi))

= w∗ − lim((
k

∑
i=1

αiδiδk)⊗ δk + (
∞

∑
i=k+1

αiδiδk)⊗ δk

− δk ⊗ (δk

k

∑
i=1

αiδi)− δk ⊗ (δk

∞

∑
i=k+1

αiδi))

= w∗ − lim(φk(a)δk ⊗ δk +
∞

∑
i=k+1

αiδi ⊗ δk

− δk ⊗ δkφk(a)− δk ⊗
∞

∑
i=k+1

αiδi).

= w∗ − lim(
∞

∑
i=k+1

αiδi)⊗ δk − δk ⊗ (
∞

∑
i=k+1

αiδi).

(5.2)
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Then by (5.1) and (5.2), we have a · m = m · a. Therefore ℓ1(N∨) is φn-Johnson
amenable for every n ∈ N ∪ {∞}. Hence by Lemma 3.1 ℓ1(N∨) is φn-biflat for
every n ∈ N ∪ {∞}.

Moreover, let ℓ1(N∨) be biflat. Then since ℓ1(N∨) is unital with unit δ1, so by
[17, Exercise 4-3-15] ℓ1(N∨) is amenable. Hence by [4, Theorem 2] N∨ has a finite
number of idempotents which is impossible. Hence ℓ1(N∨) is not a biflat Banach
algebra.
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