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Variational Inference for Count Response
Semiparametric Regression

J. Luts∗ and M. P. Wand†

Abstract. Fast variational approximate algorithms are developed for Bayesian
semiparametric regression when the response variable is a count, i.e., a non-
negative integer. We treat both the Poisson and Negative Binomial families as
models for the response variable. Our approach utilizes recently developed method-
ology known as non-conjugate variational message passing. For concreteness, we
focus on generalized additive mixed models, although our variational approxima-
tion approach extends to a wide class of semiparametric regression models such
as those containing interactions and elaborate random effect structure.

Keywords: approximate Bayesian inference, generalized additive mixed models,
mean field variational Bayes, penalized splines, real-time semiparametric
regression.

1 Introduction

A pervasive theme impacting Statistics in the mid-2010s is the increasing prevalence
of data that are big in terms of volume and/or velocity. One of many relevant articles
is Michalak et al. (2012), where the need for systems that perform real-time streaming
data analyses is described. The analysis of high volume data and velocity data requires
approaches that put a premium on speed, possibly at the cost of accuracy. Within this
context, we develop methodology for fast, and possibly online, semiparametric regression
analyses in the case of count response data.

Semiparametric regression, as defined in Ruppert et al. (2009), is a fusion between
parametric and nonparametic regression that integrates low-rank penalized splines and
wavelets, mixed models and Bayesian inference methodology. In Luts et al. (2014), we
developed semiparametric regression algorithms for high volume and velocity data using
a mean field variational Bayes (MFVB) approach (e.g., Wainwright and Jordan, 2008).
It was argued there that MFVB, or similar methodology, is necessary for fast batch
and online semiparametric regression analyses, and that more traditional methods such
as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo are not feasible.
However, the methodology of Luts et al. (2014) was restricted to fitting Gaussian and
Bernoulli response models. Extension to various other response distributions, such as
t, Skew Normal and Generalized Extreme Value is relatively straightforward using ap-
proaches described in Wand et al. (2011). However, count response distributions such
as the Poisson and Negative Binomial distribution have received little attention in the
MFVB literature. Recently Tan and Nott (2013) used an extension of MFVB, known
as non-conjugate variational message passing, to handle Poisson mixed models for lon-
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gitudinal data and their lead is followed here for more general classes of count response
semiparametric regression models. The Poisson response models treated here are more
general than those of Tan and Nott (2013) in that they include, for example, Poisson
mixed models, additive models, varying coefficient models, additive mixed models and
geoadditive models as special cases. Our MFVB methodology for Negative Binomial
semiparametric regression is unprecedented.

In generalized response regression, the Poisson distribution is often bracketed with
the Bernoulli distribution since both are members of the one-parameter exponential fam-
ily. However, variational approximations for Poisson response models are not as forth-
coming as those with Bernoulli responses. Jaakkola and Jordan (2000) derived a lower
bound on the Bayesian logistic regression marginal likelihood that leads to tractable ap-
proximate variational inference. As explained in Girolami and Rogers (2006) and Con-
sonni and Marin (2007), the Albert and Chib (1993) auxiliary variable representation of
Bayesian probit regression leads to a different type of variational approximation method
for binary response regression. There do not appear to be analogues of these approaches
for Bayesian Poisson regression and different routes are needed. In the MCMC litera-
ture, novel strategies for handling the Poisson case include the introduction of auxiliary
variables that convert the MCMC problem into one that involves sampling from Trun-
cated Normal distributions (Damien et al., 1999) and Finite Normal Mixture density
approximations of the Log-Gamma family of density functions (Frühwirth-Schnatter
et al., 2009). An effective solution in the variational approximation case is afforded by
an extension of MFVB, due to Knowles and Minka (2011), known as non-conjugate
variational message passing. The Negative Binomial distribution can also be handled
using non-conjugate variational message passing, via its well-known representation as
a Poisson–Gamma mixture (e.g., Lawless, 1987). We adopt such an approach here and
develop MFVB algorithms for both Poisson and Negative Binomial semiparametric re-
gression models. For ease of presentation, we restrict attention to the special case of
generalized additive mixed models, but extension to other semiparametric regression
models is straightforward.

Section 2 contains general discussion on statistical methodological development in
this era of high volume/velocity data becoming more prevalent. Section 3 describes the
count response semiparametric regression models to be treated. The article’s centerpiece
is Section 4, which is where the variational inference algorithms for count response
semiparametric regression are presented. In Section 5, we describe real-time fitting of
such models. Numerical illustrations are given in Section 6, and concluding remarks are
made in Section 7. Appendix A lays down required notation and distributional results. It
also provides a brief synopsis of non-conjugate mean field variational Bayes. Appendix B
contains derivations of the aforementioned variational algorithms.

2 Statistical Methodology and High Volume/Velocity
Data

As high volume/velocity data become more prevalent in the mid-2010s and beyond
it is worthwhile to reflect on how advanced statistical methodology might adapt. Even
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though the current article is concerned with semiparametric regression analysis when the
response data are counts, it is a substantial statistical problem that is representative of
ongoing methodological research. Before describing our new approach geared towards
high volume/velocity situations we will, in this section, make some general remarks
about statistical methodological development in the current era.

For most of its history statistical methodological development has concentrated on
“batch” analysis of small to moderately-sized data sets. In many areas of application,
such as demography and epidemiology, it is typical that the amount of effort required
to collect the data greatly exceeds that required for its analysis. Computationally inten-
sive methods such as bootstrapping and MCMC often provide satisfactory analyses in a
fraction of the collection time. However, the applicability of computationally intensive
methods to very large data sets and models arising in the 2010s is not clear-cut and
involves trade-offs between factors such as the size of the problem, amount of available
computing power and the time frame for actionable results. The article that introduced
the bootstrap (Efron, 1979) contains a single illustration via a regression data set with
2 variables and 9 observations. As mentioned in Mittal et al. (2013), regression data
sets with “hundreds of thousands of variables and even millions of observations” are
now commonplace in genomics. Michalak et al. (2012) describe radio astronomy data
that are so big and fast that it is “prohibitively expensive or impossible to save all of
it for later analysis” and “data of interest must be identified quickly”. In such circum-
stances, computationally intensive methods are not viable. The analyses of Michalak
et al. (2012) involve computationally frugal methods such as M-estimation and expo-
nentially weighted moving average filtering.

It is difficult to forecast the types of high volume/velocity applications that will
emerge in the upcoming decades. However, trends in the first two decades of the 21st
Century indicate such applications becoming increasingly prevalent. As data become
cheaper, bigger and faster, we believe that some of the traditional mindsets of statistical
methodologists need to change. Computationally intensive methods such as MCMC
and sequential Monte Carlo will always have a place in Bayesian statistical analyses.
However, “lightweight” alternatives, such as integrated nested Laplace approximation
(Rue et al., 2009) are likely to have an increasingly important role.

The approach taken in this article is based on recent trends and developments in ma-
chine learning research. Bishop (2008) describes a “new framework for machine learning”
that is “built on three key ideas: (i) the adoption of a Bayesian viewpoint, (ii) the use of
probabilistic graphical models, and (iii) the application of fast, deterministic inference
algorithms”. In this article we focus on the most popular fast deterministic inference al-
gorithm, mean field variational Bayes (MFVB). Expectation propagation (Minka, 2001)
is another algorithm of this type. Some advantages of the MFVB approach to fitting
and inference for high volume/velocity data are:

• It results in iterative algorithms with updates that are often closed form algebraic
expressions that are easy to implement, fast to compute, parallelize and modify
for real-time processing (Luts et al., 2014);
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• The iterative updates required for a parameter in a large graphical model are
localized around the parameter’s node on the graph, which implies that MFVB
methodology developed for smaller models is readily transferrable to larger more
general models.

These aspects are illustrated in Sections 4 and 5. Our MFVB procedure for Poisson
semiparametric regression, within Algorithm 1, requires only algebraic manipulations,
some of which are identical to the more general Negative Binomial model. Algorithm 2
represents a relatively straightforward extension to real-time fitting and inference.

3 Model Descriptions

Count responses are most commonly modeled according to the Poisson and Negative
Binomial distributions. The latter may be viewed as an extension of the former through
the introduction of an additional parameter.

The model descriptions depend on distributional definitions and results given in Ap-

pendix A. Throughout this section we use
ind.∼ to denote “independently distributed as”.

3.1 Poisson Additive Mixed Model

We work with the following class of Bayesian Poisson additive mixed models:

yi|β,u ind.∼ Poisson[ exp{(Xβ +Zu)i}], 1 ≤ i ≤ n,

u|σ2
1 , . . . , σ

2
r ∼ N(0, blockdiag(σ2

1 IK1 , . . . , σ
2
r IKr )),

β ∼ N(0, σ2
βIp), and σ�

ind.∼ Half-Cauchy(A�), 1 ≤ � ≤ r.

(1)

Here yi is the ith response measurement, β is a p×1 vector of fixed effects, u is a vector
of random effects, X and Z are corresponding design matrices, and σ2

1 , . . . , σ
2
r are vari-

ance parameters corresponding to sub-blocks of u of size K1, . . . ,Kr. All distributional
definitions are given in Table 2.

In model (1), the random effects component is

Zu =

r∑
�=1

Z� u�

where the design matrix Z� has dimension n × K� and its corresponding coefficient
vector u� ∼ N(0, σ2

rI) has length K�. In additive mixed models, the Z� either contain
indicators of group membership, as is common in classical longitudinal and multilevel
models, or spline basis functions of a continuous predictor variable. Wand and Ormerod
(2008) describe appropriate spline bases which correspond to low-rank cubic smoothing
splines, based on results given in O’Sullivan (1986), and dub them O’Sullivan splines.
We recommend O’Sullivan splines as a default basis, with interior knots placed at the
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sample quantiles of the unique predictor data, and they are used in the examples in
Section 6. There remains the choice of the number of basis functions, corresponding
to the K� for which Z� contains splines. For most functions arising in applications,
including all of those in the examples of Section 6, K� = 25 is sufficient. However, for
complicated functional effects, such as those with very many oscillations, larger spline
bases may be needed.

In (1) note that the response measurements have a single subscript even though
one or more of the Z�s may induce grouping structure. For example, if r = 1 and
Z1 = blockdiag1≤i≤m(1ni), where 1ni is the ni× 1 vector of ones, then it is common to
label the response variables using double subscripts: that is, yij denotes the jth response
measurement within the ith group, 1 ≤ j ≤ ni, 1 ≤ i ≤ m. Whilst we use this double
subscript convention in particular examples involving grouped data, we use the single
subscript version here since it better handles general additive mixed models – which
may or may not have grouping structure.

Result 2 of Appendix A.2 allows us to replace σ�
ind.∼ Half-Cauchy(A�) with

σ2
� | a�

ind.∼ Inverse-Gamma(12 , 1/a�), a�
ind.∼ Inverse-Gamma(12 , 1/A

2
�), 1 ≤ � ≤ r,

which is more amenable to variational inference.

Note that the r = 1 version of (1) is treated in Wand (2014).

3.2 Negative Binomial Additive Mixed Model

The Negative Binomial distribution is an extension of the Poisson distribution in that
the former approaches a version of the latter as the shape parameter κ → ∞ (see Ta-
ble 2). The Negative Binomial shape parameter allows for a wider range of dependencies
of the variance on the mean and can better handle over-dispersed count data.

The Bayesian Negative Binomial additive mixed model treated here is

yi|β,u, κ ind.∼ Negative-Binomial[ exp{(Xβ +Zu)i}, κ], 1 ≤ i ≤ n,

u|σ2
1 , . . . , σ

2
r ∼ N(0, blockdiag(σ2

1 IK1 , . . . , σ
2
r IKr )), β ∼ N(0, σ2

βIp),

σ�
ind.∼ Half-Cauchy(A�), 1 ≤ � ≤ r, and κ ∼ F1,1(Mκ).

(2)

Courtesy of Result 1, given in Appendix A.2,

yi|β,u, κ ind.∼ Negative-Binomial[ exp{(Xβ +Zu)i}, κ], 1 ≤ i ≤ n,

can be replaced by

yi|gi ind.∼ Poisson (gi) , gi|β,u, κ ind.∼ Gamma (κ, κ exp{−(Xβ +Zu)i}) , 1 ≤ i ≤ n,

where g is the n× 1 vector containing the gi, 1 ≤ i ≤ n.
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The prior distribution on κ is a scaled F1,1 distribution, defined in Table 2. The
scale parameter of the F1,1 distribution coincides with the median, so we denote it
by Mκ. This prior on κ is skewed towards zero and corresponds to a prior belief of
overdispersion for lower values of Mκ. As explained in Section 3 of Marley and Wand
(2010) this corresponds to the coefficient of variation of the latent Gamma variables
(the gis) having a Half Cauchy prior, and is in keeping with the advice of Gelman (2006)
regarding noninformative priors for strictly positive parameters. Specifically,

κ ∼ F1,1(Mκ) if and only if
√
Var(gi)/E(gi) = κ−1/2 ∼ Half-Cauchy(M−1/2

κ ).

If we invoke Result 2 of Appendix A.2 then we can write the prior on κ as

κ−1| aκ ∼ Inverse-Gamma(12 , 1/aκ), aκ ∼ Inverse-Gamma(12 ,Mκ). (3)

As with the a�, the introduction of the auxiliary variable aκ simplifies the MFVB cal-
culations.

The Negative Binomial response model (1) is richer than the Poisson response model
(2) for semiparametric regression since it allows for the variance function to differ from
the mean function. In the Poisson case, these two functions are constrained to equal
each other. We elaborate on this point in the case of count response nonparametric
regression via mixed model-based penalized splines. Suppose that the data are (xi, yi),
1 ≤ i ≤ n, where the xis are continuous and the yis are non-negative integers. A Poisson
nonparametric regression model is

yi |xi,β,u
ind.∼ Poisson[exp{f(xi)}], 1 ≤ i ≤ n, (4)

where

f(x) ≡ β0 + β1 x+

K∑
k=1

uk zk(x), uk|σ2 ind.∼ N(0, σ2)

corresponding to an r = 1 version of (1). Figure 10 in Section 6.3 depicts an example
of (4). In (4), properties of the Poisson distribution imply that

E(yi |xi,β,u) = Var(yi |xi,β,u) = exp{f(xi)}, 1 ≤ i ≤ n,

where β ≡ (β0, β1) and u ≡ (u1, . . . , uK). The Negative Binomial alternative:

yi |xi,β,u
ind.∼ Negative Binomial[exp{f(xi)}], 1 ≤ i ≤ n,

is such that

E(yi |xi,β,u) = exp{f(xi)}
and Var(yi |xi,β,u) = exp{f(xi)}+ exp{2f(xi)}/κ > E(yi |xi,β,u)

(5)

(e.g., Lawless, 1987) which allows better handling of the situation where count data are
highly dispersed about a nonlinear signal. It is also apparent from (5) that the Negative
Binomial distribution can capture overdispersion, but not underdispersion.
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There are other versions of (1) where overdispersion is handled via marginalization.
A simple example is the Poisson mixed model

yij |β0, Ui
ind.∼ Poisson{exp(β0 + Ui)}, Ui|σ2 ind.∼ N(0, σ2), (6)

where 1 ≤ j ≤ ni, 1 ≤ i ≤ m. The conditional mean and variance are

E(yij |β0, Ui) = Var(yij |β0, Ui) = exp(β0 + Ui)

but the marginal mean and variance (given the fixed effect and variance parameter) are

E(yij |β0, σ
2) = exp(β0 + σ2/2)

and Var(yij |β0, σ
2) = exp(β0 + σ2/2)[1 + exp(β0 + σ2/2){exp(σ2)− 1}]

> E(yij |σ2).

The essential difference between (4) and (6) is that the conditional mean and variance
are of intrinsic interest in the former, whereas the marginal mean and variance may
matter in the latter.

3.3 Directed Acyclic Graph Representations

Figure 1 provides a directed acyclic graph representation of models (1) and (2). Observed
data are indicated by the shaded node while parameters, random effects and auxiliary
variables are so-called hidden nodes. This visual representation shows that the Poisson
model and Negative Binomial model have parts of their graphs in common. The locality
property of MFVB (e.g., Section 2 of Wand et al., 2011) means that the variational
inference algorithms for the two models share some of the updates. We take advantage
of this in Section 4.

Figure 1: Directed acyclic graph corresponding to the models (1) and (2). The shaded
node corresponds to the observed data. The color key at the top of the figure denotes
the components of the graph corresponding to each model.

3.4 Extension to Unstructured Covariance Matrices for Random
Effects

Section 2.3 of Luts et al. (2014) describes the extension to semiparametric models con-
taining unstructured covariance matrices. Such extensions arise in the case of random
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intercept and slope models. A simple example of such a model having count responses
is

yij |β0, β1, Ui, Vi
ind.∼ Poisson{exp(β0 + Ui + (β1 + Vi)xij)}, 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

and

[
Ui

Vi

] ∣∣∣Σ ∼ N(0,Σ), where Σ ≡
[

σ2
u ρuv σu σv

ρuv σu σv σ2
v

]
.

The advice given in Section 2.3 of Luts et al. (2014) concerning such extensions applies
here as well.

4 Variational Inference Scheme

We are now in a position to derive a variational inference scheme for fitting the Poisson
and Negative Binomial additive mixed models described in Section 3 and displayed in
Figure 1. In this section we work toward a variational inference algorithm that treats
both models by taking advantage of their commonalities, but also recognizing the dif-
ferences. The algorithm, which we call Algorithm 1, is given in Section 4.3.

4.1 Poisson Case

We first treat the Poisson additive mixed model (1). Ordinary MFVB begins with a
product restriction such as

p(β,u, σ2
1 , . . . , σ

2
r , a1, . . . , ar|y) ≈ q(β,u, a1, . . . , ar) q(σ

2
1 , . . . , σ

2
r). (7)

Under (7), the optimal posterior density function of (β,u) is

q∗(β,u) ∝ exp[E−(β,u){log p(β,u|rest)}],

where E−(β,u) denotes expectation with respect to the density function q(a1, . . . , ar)×
q(σ2

1 , . . . , σ
2
r) and ‘rest’ denotes all random variables in the model other than (β,u).

However, evaluation of q∗(β,u) involves multivariate integrals that are not available in
closed form. A non-conjugate variational message passing solution is one that instead
works with

p(β,u, σ2
1 , . . . , σ

2
r , a1, . . . , ar|y) ≈
q(β,u;μq(β,u),Σq(β,u)) q(σ

2
1 , . . . , σ

2
r) q(a1, . . . , ar)

(8)

where

q(β,u;μq(β,u),Σq(β,u)) is the N
(
μq(β,u),Σq(β,u)

)
density function. (9)

In Appendix B, we show that the optimal posterior densities for the variance and
auxiliary parameters are:
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q∗(σ2
1 , . . . , σ

2
r) is the product of

Inverse-Gamma
(

K�+1
2 , μq(1/a�) +

1
2

{
‖μq(u�)

‖2 + tr
(
Σq(u�)

)})
density functions, and

q∗(a1, . . . , ar) is the product of

Inverse-Gamma
(
1, μq(1/σ2

� )
+A−2

�

)
density functions, 1 ≤ � ≤ r,

(10)

where μq(1/σ2
� )

≡
∫∞
0

(1/σ2
� )q(σ

2
� ) dσ

2
� , μq(1/a�) is defined analogously,

μq(u�)
≡ sub-vector of μq(β,u) corresponding to u�

and
Σq(u�) ≡ sub-matrix of Σq(β,u) corresponding to u�.

The interdependencies between the parameters in these optimal density functions, com-
bined with the updates for μq(β,u) and Σq(β,u) given by (20) in Appendix A, give rise
to an iterative scheme for their solution, and is encompassed in Algorithm 1.

Algorithm 1 also uses the variational lower bound on the marginal log-likelihood.
For model (1) and restriction (8), it has the explicit expression

log p(y; q) = P
2 − r log(π)− p

2 log(σ
2
β) +

1
2 log |Σq(β,u)| − 1T log(y!)

− 1
2σ2

β
{‖μq(β)‖2 + tr(Σq(β))}+

∑r
�=1

[
μq(1/a�)μq(1/σ2

� )

− log(A�)− log(μq(1/σ2
� )

+A−2
� ) + log

{
Γ
(
K�+1

2

)}
−K�+1

2 log(μq(1/a�) +
1
2{‖μq(u�)

‖2 + tr(Σq(u�))}
]

+yTCμq(β,u) − 1T exp
{
Cμq(β,u) +

1
2diagonal(CΣq(β,u)C

T )
}
.

Here and elsewhere,

diagonal(M) ≡ vector of diagonal entries of M

for any square matrix M . Also,

C ≡ [X Z] and P ≡ number of columns in C = p+

r∑
�=1

K�.

4.2 Negative Binomial Case

We now turn our attention to the Negative Binomial response semiparametric regression
model (2) and posterior density function approximations of the form

p(β,u, g, κ, σ2
1 , . . . , σ

2
r , a1, . . . , ar|y)

≈ q(β,u;μq(β,u),Σq(β,u)) q(g) q(κ) q(σ
2
1 , . . . , σ

2
r) q(a1, . . . , ar)
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with q(β,u;μq(β,u),Σq(β,u)) given by (9).

The optimal q-density functions for σ2
1 , . . . , σ

2
r and a1, . . . , ar are given by (10). With

ci denoting the ith row of C, the optimal densities for g and κ are:

q∗(g) is the product of

Gamma
(
μq(κ) + yi, 1 + μq(κ) exp

(
−cTi μq(β,u) +

1
2c

T
i Σq(β,u)ci

))
density functions over 1 ≤ i ≤ n and

q∗(κ) =
exp[n {κ log (κ)− log (Γ (κ))} − C1κ]

κ1/2 H(−1
2 , 0, 1, n, C1)

, κ > 0,

(11)

where

H(p, q, r, s, t) ≡
∫ ∞

0

xp log(1 + rx)q{xx/Γ(x)}s exp(−tx) dx, (12)

for p ∈ {−1
2 ,

1
2}, q ∈ {0, 1} and r, s, t > 0. Also,

C1 ≡ 1T
{
Cμq(β,u) − μq(log(g))

}
+μT

q(g) exp
{
−Cμq(β,u) +

1
2 diagonal(CΣq(β,u)C

T )
}
+ μq(1/aκ).

(13)

Details on the derivation of (11) are given in Appendix B.

Algorithm 1 provides an iterative scheme for obtaining all q-density parameters. The
marginal log-likelihood lower bound for the Negative Binomial case is

log p(y; q) = P
2 − r log(π)− p

2 log(σ
2
β) +

1
2 log |Σq(β,u)| − 1

2σ2
β

{
‖μq(β)‖2 + tr

(
Σq(β)

)}

+
∑r

l=1

(
μq(1/a�)μq(1/σ2

� )
− log (A�)− log

{
μq(1/σ2

� )
+A−2

�

}

−K�+1
2 log

[
μq(1/a�) +

1
2

{
‖μq(u�)

‖2 + tr(Σq(u�))
}]

+ log
{
Γ
(
K�+1

2

)})

+1T log
{
Γ
(
μq(κ)1+ y

)}
− μq(κ)1

Tμq(log(g)) − 1T log(y!)

−(y + μq(κ)1)
T

× log
[
1+ μq(κ) exp

{
−Cμq(β,u) +

1
2 diagonal(CΣq(β,u)C

T )
}]

+μq(κ)μ
T
q(g) exp

{
−Cμq(β,u) +

1
2 diagonal(CΣq(β,u)C

T )
}

−1
2 log(Mκ)− log(π)− {H(−1

2 , 1, 1/Mκ, n, C1)/H(−1
2 , 0, 1, n, C1)}

+ log
{
H(−1

2 , 0, 1, n, C1)
}
.

4.3 Algorithm

We now present Algorithm 1. Note that A�B denotes the element-wise product of two
equal-sized matricesA andB. Function evaluation is also interpreted in an element-wise
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fashion. For example,

Γ

⎛
⎝
⎡
⎣ 7

3
9

⎤
⎦
⎞
⎠ ≡

⎡
⎣ Γ(7)

Γ(3)
Γ(9)

⎤
⎦ .

The digamma function is given by digamma(x) ≡ d
dx log{Γ(x)}. Most of the updates in

Algorithm 1 require standard arithmetic. The exception is the function H defined by
(12), and its logarithm is evaluated using efficient quadrature strategies as described in
Appendix B of Wand et al. (2011).

An effective stopping rule for Algorithm 1 is when the absolute relative change in
log{p(y; q)} falls below a small tolerance threshold such as 10−10. Menictas and Wand
(2015) conducted extensive checks on this strategy for similar non-conjugate MFVB
algorithms and found it to have excellent performance in terms of convergence to the
global maximum of p(y; q).

4.4 Limitations of the Variational Inference Scheme

Mean field restrictions such as (8) impose limitations on inferential accuracy since the
posterior dependencies between parameters appearing in different q-density factors are
ignored, and replaced by posterior independencies for convenience. For example, in the
Bayesian Poisson mixed model

yij |β0, Ui
ind.∼ Poisson{exp(β0 + Ui)}, Ui|σ2 ind.∼ N(0, σ2),

the overdispersion in yij compared with the Poisson regression model is the variance
ratio

exp(σ2/2) + exp(β0 + σ2) {exp(σ2)− 1},

a function of both β0 and σ2. Variational inference for this quantity will be adversely
affected by restriction (8) since it imposes, for example, covq(β0, σ

2 |y) = 0 while the
actual posterior correlation is non-zero. The practical effects of ignoring such posterior
dependencies can be assessed via simulation studies, with MCMC as a benchmark. Such
studies are described in Section 6 and show that accuracy of the inference produced by
Algorithm 1 is good to excellent for the quantities of primary interest in semiparametric
regression.

5 Real-Time Count Response Semiparametric
Regression

An advantage of MFVB approaches to approximate inference is their adaptability to
real-time processing. As discussed in Section 1, this is important for both high volume
and/or velocity data. Here we briefly present an adaptation of the Poisson component
of Algorithm 1 that permits a version of real-time count response semiparametric re-
gression.
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Algorithm 1 Non-conjugate MFVB algorithm for approximate inference in either the
Poisson response model (1) or the Negative Binomial response model (2).

Initialize: μq(1/σ2
� )

> 0 (1 ≤ � ≤ r), μq(κ) > 0, μq(aκ) > 0,μq(β,u) a P × 1 vector
and Σq(β,u) a P × P symmetric positive definite matrix.
Cycle:

M q(1/σ2) ← blockdiag(σ−2
β Ip, μq(1/σ2

1)
IK1 , . . . , μq(1/σ2

r)
IKr )

If fitting the Poisson response model (1):

wq(β,u) ← exp{Cμq(β,u) +
1
2diagonal(CΣq(β,u)C

T )}

Σq(β,u) ←
{
CTdiag(wq(β,u))C +M q(1/σ2)

}−1

μq(β,u) ← μq(β,u) +Σq(β,u)

{
CT

(
y −wq(β,u)

)
−M q(1/σ2)μq(β,u)

}
If fitting the Negative Binomial response model (2):

wq(β,u) ← exp{−Cμq(β,u) +
1
2diagonal(CΣq(β,u)C

T )}
μq(g) ← (μq(κ)1+ y)/(1+ μq(κ)wq(β,u))

Σq(β,u) ←
{
μq(κ)C

Tdiag(μq(g) �wq(β,u))C +M q(1/σ2)

}−1

μq(β,u) ← μq(β,u) +Σq(β,u)

{
μq(κ)C

T
(
μq(g) �wq(β,u) − 1

)
−M q(1/σ2)μq(β,u)

}
μq(log(g)) ← digamma(1μq(κ) + y)− log(1+ μq(κ)wq(β,u))

C1 ← 1TCμq(β,u) − 1Tμq(log(g)) + μT
q(g)wq(β,u) + μq(1/aκ)

μq(κ) ← exp
[
log
{
H( 12 , 0, 1, n, C1)

}
− log

{
H(−1

2 , 0, 1, n, C1)
}]

μq(1/aκ) ← 1/(μq(κ) +Mκ)

For � = 1, . . . , r :

μq(1/a�) ← 1/(μq(1/σ2
� )
+A−2

� )

μq(1/σ2
� )

← K� + 1

2μq(1/a�) + ‖μq(u�)
‖2 + tr(Σq(u�))

until the absolute relative change in log{p(y; q)} is negligible.

Despite the switch to real-time processing in this section, we are not modifying
our semiparametric regression models and the model parameters are assumed to remain
fixed. The extension to scenarios where the model parameters drift over time is certainly
worth investigating, but not within the scope of the current article.

Rather than processing y and C in batch, as done by Algorithm 1, Algorithm 2
processes each new entry of y, denoted by ynew, and its corresponding row of C, denoted
by cnew, sequentially in real time. Algorithm 2 is partially online in comparison with
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the real-time semiparametric regression algorithms in Luts et al. (2014). It shares the
advantage of the Luts et al. (2014) algorithms of not requiring any iteration in Step 3
whenever a new observation arrives. However, it does involve full passes through the full
current predictor data to compute wq(β,u), C

Twq(β,u) and CTdiag(wq(β,u))C. Storage
of C is also required. Alleviation of these aspects for Poisson semiparametric regression
remains an open problem.

Luts et al. (2014) stress the importance of batch runs for determination of start-
ing values for real-time semiparametric regression procedures and their Algorithm 2’
formalized such a strategy and this is reflected in Algorithm 2.

Algorithm 2 Online non-conjugate variational message passing algorithm for real-time
approximate inference in the Poisson response model (1).

1. Use Algorithm 1 to perform batch-based tuning runs, analogous to those de-
scribed in Algorithm 2’ of Luts et al. (2014), and determine a warm-up sample
size nwarm for which convergence is validated.

2. Set μq(β,u), Σq(β,u) and μq(1/σ2
1)
, . . . , μq(1/σ2

r)
to be the values for these quantities

obtained in the batch-based tuning run with sample size nwarm. Then set ywarm

and Cwarm to be the response vector and design matrix based on the first nwarm

observations. Put CT y ← CT
warm ywarm and n ← nwarm.

3. Cycle:

Read in ynew (1× 1) and cnew (P × 1) ; n ← n+ 1

M q(1/σ2) ← blockdiag(σ−2
β Ip, μq(1/σ2

1)
IK1 , . . . , μq(1/σ2

r)
IKr )

CTy ← CTy + cnewynew ; C ← [CT cnew]
T

wq(β,u) ← exp{Cμq(β,u) +
1
2diagonal(CΣq(β,u)C

T )}

μq(β,u) ← μq(β,u) +Σq(β,u)

{
CTy −CTwq(β,u) −M q(1/σ2)μq(β,u)

}
Σq(β,u) ←

{
CTdiag(wq(β,u))C +M q(1/σ2)

}−1

For � = 1, . . . , r :

μq(1/a�) ← 1/{μq(1/σ2
� )
+A−2

� }

μq(1/σ2
� )

← K� + 1

2μq(1/a�) + ‖μq(u�)
‖2 + tr(Σq(u�))

until data no longer available or analysis terminated.

An illustration of Algorithm 2 and assessment of its efficacy is described in Sec-
tion 6.3.

Semiparametric regression for streaming data is a new area of research and the
MFVB approach is one of several approaches that could be contemplated. Some com-
parative advantages of the MFVB approach are described in Section 4 of Luts et al.
(2014). Sequential Monte Carlo is an alternative Bayesian inference approach that is
amenable to real-time fitting and inference (e.g., Chopin, Jacob, and Papaspiliopoulos
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(2013)). In the case of batch fitting, Fan, Leslie, and Wand (2008) explored the use of
sequential Monte Carlo for generalized response semiparametric regression models but
found them difficult to tune. Our experiences to date point to MFVB being the most
promising approach for effective real-time semiparametric regression.

6 Numerical Results

Algorithms 1 and 2 have been tested on various synthetic and actual data-sets. We first
describe the results of a simulation study that allows us to make some summaries of
the accuracy of MFVB in this context. This is followed by some applications. Lastly, we
describe an illustration of Algorithm 2 that takes the form of a movie on our real-time
semiparametric regression web-site.

6.1 Simulation Study

We ran a simulation study involving the true mean function

f(x1, x2) ≡ exp{f1(x1) + f2(x2)}

where

f1(x) ≡ cos(4πx) + 2x,

f2(x) ≡ 0.4φ(x; 0.38, 0.08)− 1.02x+ 0.018x2 + 0.08φ(x; 0.75, 0.03)

and φ(x;μ, σ) denotes the value of the Normal density function with mean μ and stan-
dard deviation σ evaluated at x. Next, we generated 100 data-sets, each having 500
triplets (yi, x1i, x2i), using the Poisson response model

yi
ind.∼ Poisson{f(x1i, x2i)}, 1 ≤ i ≤ 500, (14)

and the Negative Binomial response model

yi
ind.∼ Negative-Binomial{f(x1i, x2i), 3.8}, 1 ≤ i ≤ 500, (15)

where x1i, x2i
ind.∼ Uniform(0, 1). We model f1(x1) + f2(x2) using mixed model-based

penalized splines (e.g., Ruppert et al., 2003):

β0 + β1 x1 + β2 x2 +
∑K1

k=1 u1k z1k(x1) +
∑K2

k=1 u2k z2k(x2),

u1k|σ2
1

ind.∼ N(0, σ2
1), u2k|σ2

2
ind.∼ N(0, σ2

2),
(16)

where z1k and z2k represent O’Sullivan splines (Wand and Ormerod, 2008). After group-
ing β = [β0 β1 β2]

T , u = [u11, . . . , u1K1 , u21, . . . , u2K2 ]
T and creating the corresponding

design matrices X and Z, Algorithm 1 is used for MFVB inference. We set the number
of spline basis functions to be K1 = K2 = 17. The MFVB iterations were terminated
when the relative change in log p(y; q) was less than 10−10.
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The MCMC analyses involved generation of samples of size 10,000 and then the first
5,000 values being discarded as burn-in. Thinning with a factor of 5 was applied to the
remaining samples, which resulted in MCMC samples of size 1,000 being retained for
inference. All MCMC sampling was performed using BUGS (Spiegelhalter et al., 2003).

Accuracy Assessment

Figure 2 displays side-by-side boxplots of the accuracy scores for the parameters in the
Poisson response simulation study. For a generic parameter θ, the accuracy score is
defined by

accuracy(q∗) = 100

(
1− 1

2

∫ ∞

−∞
| q∗(θ)− p(θ|y)| dθ

)
%.

Note that a kernel density estimate based on the MCMC samples is used to estimate
the posterior density function p(θ|y).

Figure 2: Side-by-side boxplots of accuracy values for MFVB against an MCMC bench-
mark for the Poisson response model (14).

The parameters on the horizontal axis of Figure 2 represent the estimated approx-
imate posterior density functions for f , evaluated at the sample quartiles of the x1is
and the x2is. We use Q1, Q2 and Q3, generically, to denote these sample quartiles. For
example, f(Q1, Q2) denotes f evaluated at the first sample quartile of the x1is and the
second sample quartile of the x2is. Also shown are the estimated approximate posterior
density functions for σ2

1 and σ2
2 . The boxplots indicate that the accuracies for f(x1, x2)

are around 95%, while accuracies between 80% and 85% are obtained for the variance
parameters.

Figure 3 shows the MFVB-based approximate posterior density functions against
the MCMC result for a single replicated data-set. The accuracy of MFVB is excellent
for the f(x1, x2) approximate posterior density functions.

Figure 4 displays side-by-side boxplots of the accuracies for the 100 data-sets gener-
ated according to the Negative Binomial response model (15). The parameters on the
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Figure 3: Approximate posterior density functions for the Poisson response model (14).
Vertical lines indicate the true values.

horizontal axis in Figure 4 have similar meanings as in Figure 2, but the result for the

approximate posterior density function of κ is also included. Compared to the results

for the Poisson case, the accuracies for the Negative Binomial response model are lower,

but still attain good performance for f(x1, x2) with approximately values between 70

and 90%. The majority of the accuracies for the variances σ2
1 and σ2

2 is around 70%,

while lower accuracies are obtained for κ.

Finally, Figure 5 compares the approximate posterior density functions obtained

using MFVB inference and the MCMC result for a single replicated data-set. MFVB

attains particularly good accuracies for the f(x1, x2) approximate posterior density

functions.



J. Luts and M. P. Wand 1007

Figure 4: Side-by-side boxplots of accuracy values for MFVB against an MCMC bench-
mark for Negative Binomial response model (15).

Function Estimation Accuracy and Spline Basis Sensitivity

Next we investigate the accuracy of the MFVB estimates of f1 and f2, both in terms of
closeness to the MCMC estimates, and the true functions. We also conduct a sensitivity
check on the number of spline basis functions.

Figure 6 shows the functions

f1(x1) + f2(x2) versus x1 and f1(x1) + f2(x2) versus x2

where x1 is the sample mean of the x1is and x2 is the sample mean of the x2is. Also
shown are MFVB and MCMC Bayes estimates of these functions and corresponding
95% pointwise credible sets for the first three replications of the Poisson additive model
simulation study. These estimates were obtained for both K1 = K2 = 17, as in the
simulation study, and then again with K1 = K2 = 34. All estimates and corresponding
credible sets are displayed in Figure 6.

Firstly, we see that there is very close correspondence between the MFVB and
MCMC estimates and credible sets, showing very high accuracy of MFVB in these
cases. Also, estimation of f1 and f2 is shown to be very good. Lastly, there is very low
sensitivity to the number of spline basis functions for penalized splines in this example,
with K1 = K2 = 17 shown to be adequate. Theoretical underpinning for this last aspect
is given in Li and Ruppert (2008).

Computational Cost

Table 1 summarizes the computation times for MCMC and MFVB fitting in case of
the Poisson and Negative Binomial simulation study as run using an Intel Core i7 2.66
GHz processor with 4 GB of random access memory. Full details of the MCMC fitting
are given in Section 6.1. The MFVB fitting was done in R (R Development Core Team,
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Figure 5: Approximate posterior density functions for Negative Binomial response
model (15). Vertical lines indicate the true values.

MCMC MFVB

Poisson response model 180.23 (15.76) 0.96 (0.58)
Negative Binomial response model 224.95 (13.7) 5.55 (1.30)

Table 1: Average (standard deviation) times in seconds for MCMC and MFVB inference
based on the simulation study described in Section 6.1.

2015). Timing comparisons between MCMC and MFVB are inherently difficult due

to differences in stopping rules and, in this case, programming languages. Despite this

difficulty, Table 1 is meaningful in that it allows appreciation and comparison of the time
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Figure 6: Function estimation accuracy and spline basis sensitivity analyses for the
Poisson additive model simulation study. The upper panels show f1(x1) + f2(x2) ver-
sus x1, its MFVB-based and MCMC-based Bayes estimates (solid curves) and corre-
sponding 95% credible sets for two spline bases, one with 17 basis functions and the
other with 34 basis functions, for data from the first three replications of the simu-
lation study. The lower panels are analogous, but for estimation of f1(x1) + f2(x2)
versus x2.

taken for an existing popular Bayes computing approach with a new one implemented

in the most common statistical programming language. The average computing time

for MFVB is considerably lower than that of MCMC. Nevertheless, the speed gains of

MFVB need to be traded off against accuracy losses as shown in Figures 2 and 4.
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6.2 Applications

We now present some applications involving each of models (1) and (2) in turn.

North African Conflict Data

We fitted the Poisson response model (1) using Algorithm 1 to a data-set extracted
from the Global Database of Events, Language and Tone (Leetaru and Schrodt, 2013).
This database contains more than 200 million geo-located events, obtained from news
reports, with global coverage between early 1979 and June 2012. For this example we
extracted the daily number of material conflicts for each African country for the period
September 2010 to June 2012. Our model is

conflictsij |β,u1, Ui
ind.∼ Poisson[exp{β0 + f1(timej) + Ui}],

with conflictsij the number of news reports about material conflicts for country i
on date j, timej the time in days for date j starting from September 1, 2010 and Ui

the random intercept for country i, 1 ≤ i ≤ 54. The total number of observations for
all African countries is n = 36, 126. Note that 20 spline basis functions were used for
modeling f1.

Figure 7 shows the estimate for exp{β0 + f1(timej)} and corresponding 95% point-
wise credible sets. The strong increase, starting around December 2010, in number of
news reports about material conflicts coincides with the Arab Spring demonstrations
and civil wars which took place in several African countries as Mauritania, Western
Sahara, Morocco, Algeria, Tunisia, Libya, Egypt, Sudan, Djibouti and the related crisis
in Mali. In addition, 95% credible sets for the estimates of exp(Ui) are plotted for the
15 countries with the largest random intercept estimates, i.e., showing larger numbers
of material conflict-related news reports. Despite the size of the data set and model,
fitting via Algorithm 1 took about 3 minutes.

Adduct Data

Illustrations of Negative Binomial semiparametric regression models have previously
been given in Thurston et al. (2000) and Marley and Wand (2010) using data on adduct
counts, which are carcinogen-DNA complexes, and smoking variables for 78 former
smokers in the lung cancer study (Wiencke et al., 1999). Here we use Algorithm 1 to
fit a version of the Bayesian penalized model that Marley and Wand (2010) fitted via
MCMC.

Thurston et al. (2000) and Marley and Wand (2010) considered Negative Binomial
additive models of the form:

adductsi|β,u1,u2,u3,u4, κ
ind.∼ Negative-Binomial(exp{β0 + f1(ageIniti)

+f2(yearsSmokingi)

+f3(yearsSinceQuiti)

+f4(cigsPerDayi)}, κ),

(17)
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Figure 7: Poisson regression result using MFVB inference for global data on events,
location and tone database. The solid curve in the top panel corresponds to the posterior
means of the response, given the value of the time variable, and the dashed curves are
pointwise 95% credible sets. The lower panel shows 95% credible sets for the estimates
of exp(Ui) for the 15 countries with highest posterior means.

with ageIniti the age of smoking initiation, yearsSmokingi the number of years of
smoking, yearsSinceQuiti the number of years since quitting and cigsPerDayi the
number of cigarettes smoked per day for subject i. The f�, 1 ≤ � ≤ 4, are modeled using
mixed-model based penalized splines as in (16), with 20 basis functions each.

Figure 8 displays the fitted functions for model (17). Marley and Wand (2010) re-
ported slow MCMC convergence for this model, so we used burn-in size of 100,000, a
retained sample size of 50,000, and a thinning factor of 50. The MCMC-based fits are
added as a reference to Figure 8.

Fitting of (17) via Algorithm 1 took 2 minutes whilst MCMC fitting in BUGS took
1 hour and 28 minutes. As indicated by Figure 8, the much faster MFVB estimates are
quite close to the more accurate MCMC estimates.

We investigated the sensitivity of the hyperparameter Mκ for this example. The
analysis summarized in Figure 8 was re-run with

Mκ taking values in {0.01, 0.1, 1, 10, 100}. (18)
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Figure 8: Negative Binomial additive model fits, using MFVB and MCMC inference,
for the adduct data. Solid curves are posterior means for fitted functions while dashed
curves are corresponding pointwise 95% credible sets.

We kept track of the posterior means and 95% credible sets for fj(Q1), fj(Q2) and
fj(Q3), 1 ≤ j ≤ 4, obtained from Algorithm 1. Figure 9 compares the results across the
hyperparameter values (18). Very low sensitivity is apparent.

6.3 Real-Time Poisson Nonparametric Regression Movie

The web-site realtime-semiparametric-regression.net contains a movie that illus-
trates Algorithm 2 in the special case of Poisson nonparametric regression with r = 1.
The spline basis functions set-up is analogous to that given in (16).

The data are simulated according to

xnew ∼ Uniform(0, 1), ynew|xnew ∼ Poisson[exp{cos(4πxnew) + 2xnew}]

and the warm-up sample size is nwarm = 100. The movie is under the link titled Poisson

nonparametric regression and shows the efficacy of Algorithm 2 for recovery of the
underlying mean function in real time.

realtime-semiparametric-regression.net
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Figure 9: Sensitivity analysis of the hyperparameter Mκ for the Negative Binomial
additive model analysis of the adduct data with the prior median of p(κ) taking values
in {0.01, 0.1, 1, 10, 100}. The parameters are fj(Q1), fj(Q2) and fj(Q3), 1 ≤ j ≤ 4. The
line segments correspond to approximate 95% credible sets and the points correspond
to posterior means.

Figure 10: Verification that the fits in the real-time Poisson nonparametric regression
movie are close to those obtained via batch fitting. In each panel, the fits from the
real-time Algorithm 2 are compared with those by feeding the same data into the batch
counterpart Algorithm 1, for four different sample sizes.
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Figure 10 indicates excellent correspondence between the fits produced by the real-
time Algorithm 2 and its batch counterpart, Algorithm 1. We re-ran this test over
several random seeds and found this excellence correspondence to persist.

7 Conclusion

Our MFVB algorithms, based on non-conjugate variational message passing, have been
demonstrated to result in good to excellent inference for parameters of interest in count
response semiparametric regression. MCMC is more accurate, but does not scale as well
to high volume/velocity data. Depending on the application, both approaches are likely
to have a place in future analyses. The new MFVB approach is an option when MCMC
becomes infeasible.

Appendix A: Background Material

The specification of the models and their fitting via variational algorithms requires
several definitions and results, and are provided in this section.

A.1 Distributional Definitions

Table 2 lists all distributions used in this article. In particular, the parametrizations of
the corresponding density functions and probability functions are provided.

A.2 Distributional Results

The variational inference algorithms given in Section 4 make use of the following dis-
tributional results:

Result 1. Let x and a be random variables such that

x| a ∼ Poisson(a) and a ∼ Gamma(κ, κ/μ).

Then x ∼ Negative-Binomial(μ, κ).

Result 2. Let x and a be random variables such that

x| a ∼ Inverse-Gamma(1/2, 1/a) and a ∼ Inverse-Gamma(12 , 1/A
2).

Then
√
x ∼ Half-Cauchy(A).

Result 1 is a relatively well-known distribution-theoretic result (e.g., Lawless, 1987).
Result 2 is related to established results concerning the F distribution family, and this
particular version is taken from Wand et al. (2011).
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distribution density/probability function in x abbreviation

Poisson λx e−λ/x!; x = 0, 1, . . . Poisson(λ)

Negative
κκΓ(x+ κ)μx

Γ(κ)(κ+ μ)Γ(x+ 1)
; x = 0, 1 . . . Negative-Binomial(μ, κ)

Binomial κ, μ > 0

Uniform 1/(b− a); a < x < b Uniform(a, b)

Multivariate |2πΣ|−1/2 exp{−1
2 (x− μ)T N(μ,Σ)

Normal ×Σ−1(x− μ)}

Gamma
BA xA−1e−B x

Γ(A)
; x > 0; A,B > 0 Gamma(A,B)

Inverse-Gamma
BA x−A−1e−B/x

Γ(A)
; x > 0; A,B > 0 Inverse-Gamma(A,B)

Half-Cauchy
2

πσ((x/σ)2 + 1)
; x > 0; σ > 0 Half-Cauchy(σ)

F1,1
1

πσ
√

x/σ(1 + x/σ)
; x > 0; σ > 0 F1,1(σ)

Table 2: Distributions used in this article and their corresponding density/probability
functions.

A.3 Non-conjugate Variational Message Passing

Non-conjugate variational message passing (Knowles and Minka, 2011) is an extension

of MFVB. It can yield tractable variational approximate inference in situations where

ordinary MFVB is intractable and is a variant of earlier contributions of the same type

by Barber and Bishop (1998) and Honkela et al. (2010). The Knowles and Minka (2011)

approach yields particularly simple updates, based on fixed-point iteration, so we focus

on their version here.

MFVB relies on approximating the joint posterior density function p(θ|y) by a prod-

uct form q(θ) =
∏d

i=1 q(θi), where θ corresponds to the hidden nodes in Figure 1. The

optimal q-density functions, denoted by q∗(θi), are those that minimize the Kullback–

Leibler divergence

∫
q(θ) log

{
q(θ)

p(θ|y)

}
dθ.
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An equivalent optimization problem represents maximizing the lower bound on the
marginal likelihood p(y):

p(y; q) ≡ exp

[∫
q(θ) log

{
p(θ,y)

q(θ)

}
dθ

]
.

The optimal q-density functions can be shown to satisfy

q∗(θi) ∝ exp [E−θi {log p(θi|rest)}] , 1 ≤ i ≤ d,

where E−θi denotes expectation with respect to the density
∏

j �=i qj(θj) and ‘rest’
denotes all random variables in the model other than θi.

In the event that one of the E−θi{log p(θi|rest)} is not tractable, say the one cor-
responding to q(θj) for some j ∈ {1, . . . , d}, non-conjugate variational message passing
offers a way out (Knowles and Minka, 2011). It first postulates that q(θj) is an expo-
nential family density function with natural parameter vector ηj and natural statistic
T (θj). The optimal parameters are then obtained via updates of the form

ηj ← {var (T (θj))}−1 [DηjEθ {log p(θ,y)}
]
, (19)

where Dxf is the derivative vector of f with respect to x and var(v) denotes the
covariance matrix of random vector v (Magnus and Neudecker, 1999). Wand (2014)
derived fully simplified expressions for (19) in case q(θj) has a Multivariate Normal
density with mean μq(θj) and covariance matrix Σq(θj). These are:

Σq(θj) ←
{
−2 vec−1

([
Dvec(Σ)Eθ {log p(θ,y)}

]T)}−1

,

μq(θj) ← μq(θj) +Σq(θj) [DμEθ {log p(θ,y)}]T .

(20)

Here vec(A) denotes a vector formed by stacking the columns of matrix A underneath
each other in order from left to right and vec−1(a) is a d × d matrix formed from
listing the entries of the d2 × 1 vector a in a column-wise fashion in order from left to
right.

Appendix B: Derivation of q∗ Density Functions

B.1 Derivation of q∗(a�) and q∗(σ2
� ) for the Poisson and Negative

Binomial Response Model

Standard manipulations lead to the following full conditional distributions:

a�|rest ind.∼ Inverse-Gamma(1, σ−2
� +A−2

� ) and

σ2
� |rest

ind.∼ Inverse-Gamma(1/2 (K� + 1), a−1
� + 1/2 ‖u�‖2).
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B.2 Derivation of the (μq(β,u),Σq(β,u)) Updates for the Poisson
Response Model

Adaptation of the derivations in Appendix A.3 of Wand (2014) leads to

Eq

[
log p(y,β,u, σ2

1 , . . . , σ
2
r , a1, . . . , ar)

]
= Eq

[
log p(y|β,u) + log p(β,u|σ2

1 , . . . , σ
2
r)

+

r∑
�=1

log p(σ2
� |a�) +

r∑
�=1

log p(a�)

]

= S + terms not involving μq(β,u) or Σq(β,u)

where

S ≡ yTCμq(β,u) − 1T exp
{
Cμq(β,u) +

1
2diagonal(CΣq(β,u)C

T )
}

− 1
2 tr
(
blockdiag(σ−2

β Ip, μq(1/σ2
1)
IK1 , . . . , μq(1/σ2

r)
IKr){μq(β,u)μ

T
q(β,u) +Σq(β,u)}

)

− 1
2P log(2π)− 1

2 p log(σ
2
β)− 1

2

r∑
�=1

K� Eq{log(σ2
� )} − 1T log(y!).

Then,

dμq(β,u)
S =

( [
y − exp{Cμq(β,u) +

1
2diagonal(CΣq(β,u)C

T )}
]T

C

−μT
q(β,u)blockdiag(σ

−2
β Ip, μq(1/σ2

1)
IK1 , . . . , μq(1/σ2

r)
IKr )

)
dμq(β,u)

and by Theorem 6, Chapter 5, of Magnus and Neudecker (1999),

{Dμq(β,u)
S}T = CT

[
y − exp{Cμq(β,u) +

1
2diagonal(CΣq(β,u)C

T )}
]

−blockdiag(σ−2
β Ip, μq(1/σ2

1)
IK1 , . . . , μq(1/σ2

r)
IKr )μq(β,u).

Next,

dvec(Σq(β,u)) S = −1
2vec

(
CTdiag[exp{Cμq(β,u) +

1
2diagonal(CΣq(β,u)C

T )}]C

+blockdiag(σ−2
β Ip, μq(1/σ2

1)
IK1 , . . . , μq(1/σ2

r)
IKr )

)T
d vec(Σq(β,u))

and

vec−1
(
(Dvec(Σq(β,u)) S)

T
)
= − 1

2 (C
Tdiag[ exp{Cμq(β,u)

+ 1
2diagonal(CΣq(β,u)C

T )}]C
+ blockdiag(σ−2

β Ip, μq(1/σ2
1)
IK1 , . . . , μq(1/σ2

r)
IKr )).

The final result follows from plugging in {Dμq(β,u)
S}T and vec−1((Dvec(Σq(β,u)) S)

T ) in

the updating formulas (20).
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B.3 Derivation of q∗(gi) and q∗(κ) for the Negative Binomial
Response Model

Standard manipulations lead to the following full conditional distribution

gi|rest ind.∼ Gamma(κ+ yi, 1 + κ exp{−cTi [β
T uT ]T })

such that q∗(gi) is the Gamma density function specified in (11). In addition, standard
distributional results for the Gamma density function lead to

μq(log(g)) = digamma(1μq(κ) + y)

− log
[
1+ μq(κ) exp

{
−Cμq(β,u) +

1
2 diagonal(CΣq(β,u)C

T )
}]

.

To derive q∗(κ), we define ω ≡ κ−1/2 and first obtain q∗(ω2). The full conditional
density function of ω2 is

p(ω2|rest) = p(ω2|g,β,u, aκ) ∝ p(g|β,u, ω2) p(ω2|aκ).

Hence

log{p(ω2|rest)} = log{p(g|β,u, ω2)}+ log{p(ω2| aκ)}+ const

=

[
n∑

i=1

log{p(gi|β,u, ω2)}
]
+ log{p(ω2| aκ)}+ const

=
[ n∑

i=1

log
{ (ω−2 exp{−(Xβ +Zu)i})1/ω

2

Γ(1/ω2)
g
1/ω2−1
i

× exp[−gi/(ω
2 exp{(Xβ +Zu)i})]

}]
+ log

{
(ω2)−3/2 exp{−1/(ω2aκ)}

}

= −n
{
ω−2 log(ω2) + log Γ(1/ω2)

}
− 3/2 log(ω2)

+

∑n
i=1[log gi − (Xβ +Zu)i − gi exp{−(Xβ +Zu)i}]− 1

aκ

ω2

+const.

It follows that

log q(ω2) = −n
{
ω−2 log(ω2) + log Γ(1/ω2)

}
− 3

2 log(ω
2)

+

∑n
i=1

(
μq(log gi) − (Cμq(β,u))i + μq(gi) Eq[exp{−(Xβ +Zu)i}]

)
− μq(1/aκ)

ω2

+const.
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This leads to

q∗(ω2) ∝
{
(1/ω2)1/ω

2

Γ(1/ω2)

}n

(ω2)−3/2 exp(−C1/ω
2), ω2 > 0,

where C1 is defined at (13). The change of variable κ = 1/ω2 leads to the expression
for q∗(κ) given at (11). It immediately follows that

μq(κ) =
H( 12 , 0, 1, n, C1)

H(−1
2 , 0, 1, n, C1)

= exp[log{H( 12 , 0, 1, n, C1)} − log{H(−1
2 , 0, 1, n, C1)}].

In practice, the second expression is preferable since it helps avoid underflow and over-
flow problems.

B.4 Derivation of the (μq(β,u),Σq(β,u)) Updates for the Negative
Binomial Response Model

Note that

Eq[log p(y, g,β,u, κ, σ
2
1 , . . . , σ

2
r , a1, . . . , ar)]

= Eq

[
log p(y|g) + log p(g|β,u, κ) + log p(β,u|σ2

1 , . . . , σ
2
r) + log p(κ)

+

r∑
�=1

log p(σ2
� |a�) +

r∑
�=1

log p(a�)

]

= S+terms not involving μq(β,u) orΣq(β,u)

where

S ≡ nEq[κ log (κ)]− μq(κ)1
TCμq(β,u) − nEq[log (Γ(κ))] + (μq(κ) − 1)1TEq[log (g)]

−μq(κ)μ
T
q(g) exp{−Cμq(β,u) +

1
2diagonal(CΣq(β,u)C

T )}

−1
2 tr
(
blockdiag(σ−2

β Ip, μq(1/σ2
1)
IK1 , . . . , μq(1/σ2

r)
IKr){μq(β,u)μ

T
q(β,u) +Σq(β,u)}

)
−1

2P log(2π)− 1
2 p log(σ

2
β)− 1

2

∑r
�=1 K� Eq{log(σ2

� )}.

Then,

{Dμq(β,u)
S}T = μq(κ)C

T
[
μq(g) � exp{−Cμq(β,u) +

1
2diagonal(CΣq(β,u)C

T )} − 1
]

−blockdiag(σ−2
β Ip, μq(1/σ2

1)
IK1 , . . . , μq(1/σ2

r)
IKr)μq(β,u)

and
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dvec(Σq(β,u)) S = −1
2vec

(
μq(κ)C

Tdiag[μq(g) � exp{−Cμq(β,u)

+1
2diagonal(CΣq(β,u)C

T )}]C

+blockdiag(σ−2
β Ip, μq(1/σ2

1)
IK1 , . . . , μq(1/σ2

r)
IKr )

)T
d vec(Σq(β,u))

such that

vec−1
(
(Dvec(Σq(β,u)) S)

T
)

= −1
2 (μq(κ)C

Tdiag[μq(g) � exp{−Cμq(β,u)

+1
2diagonal(CΣq(β,u)C

T )}]C
+blockdiag(σ−2

β Ip, μq(1/σ2
1)
IK1 , . . . , μq(1/σ2

r)
IKr )).

The final result follows from plugging in these expressions in the updating formulas
given at (20).
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Frühwirth-Schnatter, S., Frühwirth, R., Held, L., and Rue, H. (2009). “Improved
auxiliary mixture sampling for hierarchical models of non-Gaussian data.” Statis-
tics and Computing , 19: 479–492. MR2565319. doi: http://dx.doi.org/10.1007/
s11222-008-9109-4. 992

Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.”
Bayesian Analysis, 1: 515–533. doi: http://dx.doi.org/10.1214/06-BA107A. 996

Girolami, M. and Rogers, S. (2006). “Variational Bayesian multinomial probit regres-
sion.” Neural Computation, 18: 1790–1817. MR2230854. doi: http://dx.doi.org/
10.1162/neco.2006.18.8.1790. 992

Honkela, A., Raiko, T., Kuusela, M., Tornio, M. and Karhunen, J. (2010). “Approximate
Riemannian conjugate gradient learning for fixed-form variational Bayes.” Journal of
Machine Learning Research, 11: 3235–3268. 1015

Jaakkola, T. S. and Jordan, M. I. (2000). “Bayesian parameter estimation via variational
methods.” Statistics and Computing , 10: 25–37. doi: http://dx.doi.org/10.1023/
A:1008932416310. 992

Knowles, D. A. and Minka, T. P. (2011). “Non-conjugate message passing for multi-
nomial and binary regression.” In: Shawe-Taylor, J., Zamel, R. S., Bartlett, P.,
Pereira, F., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing
Systems 24 , 1701–1709. 992, 1015, 1016

Lawless, J. F. (1987). “Negative Binomial and mixed Poisson regression.” Canadian
Journal of Statistics, 15: 209–225. MR0926553. doi: http://dx.doi.org/10.2307/
3314912. 992, 996, 1014

Leetaru, K. H. and Schrodt, P. A. (2013). “A 30-year georeferenced global event
database: The Global Database of Events, Language, and Tone (GDELT).” In: In-
ternational Studies Association Conference. San Francisco, USA. 1010

Li, Y. and Ruppert, D. (2008). “On the asymptotics of penalized splines.” Biometrika,
95: 415–436. MR2521591. doi: http://dx.doi.org/10.1093/biomet/asn010.
1007

Luts, J., Broderick, T., and Wand, M. P. (2014). “Real-time semiparametric regres-
sion.” Journal of Computational and Graphical Statistics, 23: 589–615. MR3224647.
doi: http://dx.doi.org/10.1080/10618600.2013.810150. 991, 993, 997, 998,
1003

Magnus, J. R. and Neudecker, H. (1999). Matrix Differential Calculus with Applications
in Statistics and Econometrics, Revised Edition. Chichester UK: Wiley. MR1698873.
1016, 1017

Marley, J. K. and Wand, M. P. (2010). “Non-standard semiparametric regression via
BRugs.” Journal of Statistical Software, 37: 1–30. 996, 1010, 1011

http://dx.doi.org/10.1214/07-EJS158
http://www.ams.org/mathscinet-getitem?mr=2565319
http://dx.doi.org/10.1007/s11222-008-9109-4
http://dx.doi.org/10.1007/s11222-008-9109-4
http://dx.doi.org/10.1214/06-BA107A
http://www.ams.org/mathscinet-getitem?mr=2230854
http://dx.doi.org/10.1162/neco.2006.18.8.1790
http://dx.doi.org/10.1162/neco.2006.18.8.1790
http://dx.doi.org/10.1023/A:1008932416310
http://dx.doi.org/10.1023/A:1008932416310
http://www.ams.org/mathscinet-getitem?mr=0926553
http://dx.doi.org/10.2307/3314912
http://dx.doi.org/10.2307/3314912
http://www.ams.org/mathscinet-getitem?mr=2521591
http://dx.doi.org/10.1093/biomet/asn010
http://www.ams.org/mathscinet-getitem?mr=3224647
http://dx.doi.org/10.1080/10618600.2013.810150
http://www.ams.org/mathscinet-getitem?mr=1698873


1022 Variational Inference for Count Response Semiparametric Regression

Menictas, M. and Wand, M. P. (2015). “Variational inference for heteroscedastic semi-
parametric regression.” Australian and New Zealand Journal of Statistics, 57: in
press. 1001

Michalak, S., DuBois, A., DuBois, D., Vander Wiel, S., and Hogden, J. (2012). “De-
veloping systems for real-time streaming analysis.” Journal of Computational and
Graphical Statistics, 21: 561–580. MR2970908. doi: http://dx.doi.org/10.1080/
10618600.2012.657144. 991, 993

Minka, T. P. (2001). “Expectation propagation for approximate Bayesian inference.”
In: Proceedings of Conference on Uncertainty in Artificial Intelligence, 362–369. 993

Mittal, S., Madigan, D., Burd, R. S., and Suchard, M. A. (2013). “High-dimensional,
massive sample-size Cox proportional hazards regression for survival analysis.” Bio-
statistics, 15: 287–294. 993

O’Sullivan, F. (1986). “A statistical perspective on ill-posed inverse problems (with
discussion).” Statistical Science, 1: 502–527. MR0874480. 994

R Development Core Team (2015). R: A Language and Environment for Sta-
tistical Computing . R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/. 1007

Rue, H., Martino, S., and Chopin, N. (2009). “Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations (with discus-
sion).” Journal of the Royal Statistical Society, Series B , 71: 319–392. MR2649602.
doi: http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x. 993

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. New
York: Cambridge University Press. MR1998720. doi: http://dx.doi.org/10.1017/
CBO9780511755453. 1004

— (2009). “Semiparametric regression during 2003–2007.” Electronic Journal of Statis-
tics, 3: 1193–1256. MR2566186. doi: http://dx.doi.org/10.1214/09-EJS525.
991

Spiegelhalter, D. J., Thomas, A., Best, N. G., Gilks, W. R., and Lunn, D. (2003). BUGS:
Bayesian inference using Gibbs sampling . Medical Research Council Biostatistics
Unit, Cambridge, UK. http://www.mrc-bsu.cam.ac.uk/bugs 1005

Tan, L. S. L. and Nott, D. J. (2013). “Variational inference for generalized linear mixed
models using partially noncentred parametrizations.” Statistical Science, 28: 168–188.
MR3112404. doi: http://dx.doi.org/10.1214/13-STS418. 991, 992

Thurston, S. W., Wand, M. P., and Weincke, J. K. (2000). “Negative binomial addi-
tive models.” Biometrics, 56: 139–144. doi: http://dx.doi.org/10.1111/j.0006-
341X.2000.00139.x. 1010

Wainwright, M. J. and Jordan, M. I. (2008). “Graphical models, exponential families,
and variational inference.” Foundation and Trends in Machine Learning , 1: 1–305.
doi: http://dx.doi.org/10.1561/2200000001. 991

http://www.ams.org/mathscinet-getitem?mr=2970908
http://dx.doi.org/10.1080/10618600.2012.657144
http://dx.doi.org/10.1080/10618600.2012.657144
http://www.ams.org/mathscinet-getitem?mr=0874480
http://www.R-project.org/
http://www.ams.org/mathscinet-getitem?mr=2649602
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
http://www.ams.org/mathscinet-getitem?mr=1998720
http://dx.doi.org/10.1017/CBO9780511755453
http://dx.doi.org/10.1017/CBO9780511755453
http://www.ams.org/mathscinet-getitem?mr=2566186
http://dx.doi.org/10.1214/09-EJS525
http://www.mrc-bsu.cam.ac.uk/bugs
http://www.ams.org/mathscinet-getitem?mr=3112404
http://dx.doi.org/10.1214/13-STS418
http://dx.doi.org/10.1111/j.0006-341X.2000.00139.x
http://dx.doi.org/10.1111/j.0006-341X.2000.00139.x
http://dx.doi.org/10.1561/2200000001


J. Luts and M. P. Wand 1023

Wand, M. P. (2014). “Fully simplified Multivariate Normal updates in non-conjugate
variational message passing.” Journal of Machine Learning Research, 15: 1351–1369.
MR3214787. 995, 1016, 1017

Wand, M. P. and Ormerod, J. T. (2008). “On O’Sullivan penalised splines and semipara-
metric regression.” Australian and New Zealand Journal of Statistics, 50: 179–198.
MR2431193. doi: http://dx.doi.org/10.1111/j.1467-842X.2008.00507.x. 994,
1004

Wand, M. P., Ormerod, J. T., Padoan, S. A., and Frühwirth, R. (2011). “Mean
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