
The Annals of Statistics
2019, Vol. 47, No. 4, 2286–2319
https://doi.org/10.1214/18-AOS1748
© Institute of Mathematical Statistics, 2019

CONVERGENCE RATES OF LEAST SQUARES REGRESSION
ESTIMATORS WITH HEAVY-TAILED ERRORS

BY QIYANG HAN AND JON A. WELLNER1

University of Washington

We study the performance of the least squares estimator (LSE) in a gen-
eral nonparametric regression model, when the errors are independent of the
covariates but may only have a pth moment (p ≥ 1). In such a heavy-tailed
regression setting, we show that if the model satisfies a standard “entropy
condition” with exponent α ∈ (0,2), then the L2 loss of the LSE converges
at a rate

OP
(
n
− 1

2+α ∨ n
− 1

2 + 1
2p

)
.

Such a rate cannot be improved under the entropy condition alone.
This rate quantifies both some positive and negative aspects of the LSE in

a heavy-tailed regression setting. On the positive side, as long as the errors
have p ≥ 1 + 2/α moments, the L2 loss of the LSE converges at the same
rate as if the errors are Gaussian. On the negative side, if p < 1 + 2/α, there
are (many) hard models at any entropy level α for which the L2 loss of the
LSE converges at a strictly slower rate than other robust estimators.

The validity of the above rate relies crucially on the independence of the
covariates and the errors. In fact, the L2 loss of the LSE can converge arbi-
trarily slowly when the independence fails.

The key technical ingredient is a new multiplier inequality that gives sharp
bounds for the “multiplier empirical process” associated with the LSE. We
further give an application to the sparse linear regression model with heavy-
tailed covariates and errors to demonstrate the scope of this new inequality.

1. Introduction.

1.1. Motivation and problems. Consider the classical setting of nonparametric
regression: suppose that

Yi = f0(Xi) + ξi for i = 1, . . . , n,(1.1)

where f0 ∈ F , a class of possible regression functions f where f : X → R,
X1, . . . ,Xn are i.i.d. P on (X ,A), and ξ1, . . . , ξn are i.i.d. “errors” independent of
X1, . . . ,Xn. We observe the pairs {(Xi, Yi) : 1 ≤ i ≤ n} and want to estimate f0.
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While there are many approaches to this problem, the most classical approach
has been to study the least squares estimator (or LSE) f̂n defined by

f̂n = argmin
f ∈F

1

n

n∑
i=1

(
Yi − f (Xi)

)2
.(1.2)

The LSE is well known to have nice properties (e.g., rate-optimality) when:

(E) the errors {ξi} are sub-Gaussian or at least subexponential;
(F) the class F of regression functions satisfies a condition slightly stronger

than a Donsker condition: namely, either a uniform entropy condition or a brack-
eting entropy condition with exponent α ∈ (0,2):

sup
Q

logN
(
ε‖F‖L2(Q),F,L2(Q)

)
� ε−α,

where the supremum is over all finitely discrete measures Q on (X ,A), or

logN[ ]
(
ε,F,L2(P )

)
� ε−α.

See, for example, [10] and [64], Chapter 9, and Section 1.2 for notation. In spite of
a very large literature, there remains a lack of clear understanding of the properties
of f̂n in terms of assumptions concerning the heaviness of the tails of the errors
and the massiveness or “size” of the class F .

Our interest here is in developing further tools and methods to study properties
of f̂n, especially its convergence rate when the error condition (E) is replaced by:

(E′) the errors {ξi} have only a p-moment for some 1 ≤ p < ∞.

This leads to our first question.

QUESTION 1. What determines the convergence rate bn of f̂n with respect to
some risk or loss functions? When is this rate bn determined by p (and hence the
tail behavior of the ξi ’s), and when is it determined by α (and hence the size of
F )?

There are a variety of measures of loss and risk in this setting. Two of the most
common are:

(a) Empirical L2 loss: ‖f̂n − f0‖L2(Pn),2 and the corresponding risk E‖f̂n −
f0‖L2(Pn).

(b) Population (or prediction) L2 loss ‖f̂n − f0‖L2(P ), and the corresponding
risk E‖f̂n − f0‖L2(P ).

2We write Pn for the empirical measure of the (Xi,Yi) pairs: Pn = n−1 ∑n
i=1 δ(Xi ,Yi ).
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Here, we will mainly focus on measuring loss or risk in the sense of the predic-
tion loss (b) since it corresponds to the usual choice in the language of empirical
risk minimization; see, for example, [8–10, 30, 31, 42, 61, 64, 66]. Thus we will
(usually) measure loss or risk in L2(P ), and hence study rates of convergence of

‖f̂n − f0‖L2(P ) =
[∫

X

∣∣f̂n

(
x; (X1, Y1), . . . , (Xn,Yn)

) − f0(x)
∣∣2 dP(x)

]1/2
,

or, in somewhat more compact notation,

E‖f̂n − f0‖L2(P ) = E

[∫
X

∣∣f̂n(x) − f0(x)
∣∣2 dP(x)

]1/2
.

As we will see in Section 3, the rate of convergence of the LSE f̂n under conditions
(E′) and (F) is

‖f̂n − f0‖L2(P ) = OP
(
n− 1

2+α ∨ n
− 1

2 + 1
2p

)
.(1.3)

So, the dividing line between p and α in determining the rate of convergence of
the LSE is given by

p = 1 + 2/α

in the following sense:

(Rα) If p ≥ 1 + 2/α, then for any function class with entropy exponent α, the
rate of convergence of the LSE is OP(n−1/(2+α)).

(Rp) If p < 1 + 2/α, then there exist model classes F with entropy exponent
α such that the rate of convergence of the LSE is OP(n−1/2+1/(2p)).

These rates in Rα and Rp indicate both some positive and negative aspects of the
LSE in a heavy-tailed regression setting:

• If p ≥ 1 + 2/α, then the heaviness of the tails of the errors (E′) does not play
a role in the rate of convergence of the LSE, since the rate in Rα coincides
with the usual rate under the light-tailed error assumption (E) and the entropy
condition (F).

• If p < 1 + 2/α, there exist (many) hard models at any entropy level α for which
the LSE converges only at a slower rate OP(n−1/2+1/(2p)) compared with the
faster (optimal) rate OP(n−1/(2+α))—a rate that can be achieved by other robust
estimation procedures. See Section 3 for examples and more details.

It should be noted that the assumption of independence of the errors ξi ’s and the
Xi’s in the regression model (1.1) is crucial for the above results to hold. In fact,
when the errors ξi ’s can be dependent on the Xi’s, there is no longer any universal
moment condition on the ξi ’s alone that guarantees the rate-optimality of the LSE,
as opposed to (Rα) (cf. Proposition 3).
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To briefly introduce the main new tool we develop in Section 2 below, we first
recall the classical methods used to prove consistency and rates of convergence of
the LSE (and many other contrast-type estimators). These methods are based on
a “basic inequality” which lead naturally to a multiplier empirical process. This
is well known to experts in the area, but we will briefly review the basic facts
here. Since f̂n minimizes the functional f 
→ Pn(Y − f (X))2 = n−1 ∑n

i=1(Yi −
f (Xi))

2, it follows that

Pn

(
Y − f̂n(X)

)2 ≤ Pn

(
Y − f0(X)

)2
.

Adding and subtracting f0 on the left-hand side, some algebra yields

Pn

(
Y − f0(X)

)2 + 2Pn(Y − f0)(f0 − f̂n) + Pn(f0 − f̂n)
2 ≤ Pn

(
Y − f0(X)

)2
.

Since ξi = Yi − f0(Xi) under the model given by (1.1) we conclude that

Pn

(
f̂n(X) − f0(X)

)2 ≤ 2Pn

(
ξ
(
f̂n(X) − f0(X)

))
≤ 2 sup

f ∈F
Pn

(
ξ
(
f (X) − f0(X)

))
,

(1.4)

where the process

f 
→ n(Pn − P)
(
ξf (X)

) = nPn

(
ξf (X)

) =
n∑

i=1

ξif (Xi)(1.5)

is a multiplier empirical process. This is exactly as in Section 4.3 of [64]. When
the ξi ’s are Gaussian, the process in (1.5) is even a Gaussian process conditionally
on the Xi’s, and is relatively easy to analyze. If the {ξi}’s are integrable and F
is a Glivenko–Cantelli class of functions, then the inequality (1.4) leads easily to
consistency of the LSE in the sense of the loss and risk measures (a); see, for
example, [64].

To obtain rates of convergence, we need to consider localized versions of the
processes in (1.4), much as in Section 3.4.3 of [66]. As in Section 3.4.3 of [66],
(but replacing their θ ∈ � and ε by our f ∈ F and ξ ) we consider

Mn(f ) = 2Pnξ(f − f0) − Pn(f − f0)
2,

and note that f̂n maximizes Mn(f ) over F . Since the errors have zero mean and
are independent of the Xi’s, this process has mean M(f ) ≡ −P(f − f0)

2. Since
Mn(f0) = 0 = M(f0), centering then yields the process

f 
→ Zn(f ) ≡ Mn(f ) −Mn(f0) − (
M(f ) − M(f0)

)
= 2Pnξ(f − f0) − (Pn − P)(f − f0)

2.

Establishing rates of convergence for f̂n then boils down to bounding

E sup
f ∈F :P(f −f0)

2≤δ2
Zn(f )
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as a function of n and δ; see, for example, [66] Theorem 3.4.1, pages 322–323. It
is clear at least for F ⊂ L∞ that this can be accomplished if we have good bounds
for the multiplier empirical process (1.5) in terms of the empirical process itself

(1.6) f 
→ n(Pn − P)
(
f (X)

) =
n∑

i=1

(
f (Xi) − Pf

)
,

or, in view of standard symmetrization inequalities (as in Section 2.3 of [66]), its
symmetrized equivalent,

(1.7) f 
→
n∑

i=1

εif (Xi),

where the εi are i.i.d. Rademacher random variables P(εi = ±1) = 1/2 indepen-
dent of the Xi ’s. This leads naturally to the following.

QUESTION 2. Under what moment conditions on the ξi ’s can we assert that
the multiplier empirical process (1.5) has (roughly) the same “size” as the em-
pirical process (1.6) (or equivalently the symmetrized empirical process (1.7) for
(nearly) all function classes F in a nonasymptotic manner?

In Section 2 below, we provide simple moment conditions on the ξi ’s which
yield a positive answer to Question 2, when the ξi’s are independent from the Xi’s.
We then give some comparisons to the existing multiplier inequalities which illus-
trate the improvement possible via the new bounds in nonasymptotic settings, and
show that our bounds also yield the asymptotic equivalence required for multiplier
CLT’s (cf. Section 2.9 of [66]). Further impossibility results are demonstrated,
showing that there is no positive solution to Question 2 when the ξi ’s and the Xi’s
can be dependent.

In Section 3, we address Question 1 by applying the new multiplier inequality
to derive the convergence rate of the LSE (1.3) in the context of the nonparametric
regression model (1.1), and indicate in greater detail both the positive and negative
aspects of the LSE due to this rate. We further show that no solution to Question 1
exists when the errors ξi ’s and the covariates Xi’s can be dependent.

Not surprisingly, the new bounds for the multiplier empirical process have ap-
plications to many settings in which the least squares criterion plays a role, for
example, the Lasso in the sparse linear regression model. In Section 4, we give
an application of the new bounds in a Lasso setting with both heavy-tailed errors
and heavy-tailed covariates. Most detailed proofs are given in Section 5 and the
Supplementary Material [26].
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1.2. Notation. For a real-valued random variable ξ and 1 ≤ p < ∞, let
‖ξ‖p ≡ (E|ξ |p)1/p denote the ordinary p-norm. The Lp,1 norm for a random vari-
able ξ is defined by

‖ξ‖p,1 ≡
∫ ∞

0
P
(|ξ | > t

)1/p dt.

It is well known that Lp+ε ⊂ Lp,1 ⊂ Lp holds for any underlying probability mea-
sure, and hence a finite Lp,1 condition requires slightly more than a pth moment,
but no more than any p + ε moment; see Chapter 10 of [37].

For a real-valued measurable function f defined on (X ,A,P ), ‖f ‖Lp(P ) ≡
‖f ‖P,p ≡ (P |f |p)1/p denotes the usual Lp-norm under P , and ‖f ‖∞ ≡
supx∈X |f (x)|. f is said to be P -centered if Pf = 0, and F is P -centered if all
f ∈F are P -centered. Lp(g,B) denotes the Lp(P )-ball centered at g with radius
B . For simplicity, we write Lp(B) ≡ Lp(0,B). To avoid unnecessary measura-
bility digressions, we will assume that F is countable throughout the article. As
usual, for any φ : F →R, we write ‖φ(f )‖F for supf ∈F |φ(f )|.

Let (F,‖·‖) be a subset of the normed space of real functions f : X → R. For
ε > 0 let N (ε,F,‖·‖) be the ε-covering number of F , and let N[ ](ε,F,‖·‖) be
the ε-bracketing number of F ; see page 83 of [66] for more details.

Throughout the article, ε1, . . . , εn will be i.i.d. Rademacher random variables
independent of all other random variables. Cx will denote a generic constant that
depends only on x, whose numeric value may change from line to line unless
otherwise specified. a �x b and a �x b mean a ≤ Cxb and a ≥ Cxb, respectively,
and a 
x b means a �x b and a �x b (a � b means a ≤ Cb for some absolute
constant C). For two real numbers a, b, a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}.
OP and oP denote the usual big and small O notation in probability.

2. The multiplier inequality. Multiplier inequalities have a long history in
the theory of empirical processes. Our new multiplier inequality in this section
is closest in spirit to the classical multiplier inequality (cf. Section 2.9 of [66]
or [23]), but strictly improves the classical one in a nonasymptotic setting (see
Section 2.3).

Our work here is also related to [45], who derived bounds for the multiplier
empirical process, assuming: (i) ξi ’s have a 2 + ε moment, and (ii) {(ξi,Xi)} are
i.i.d. (i.e., ξi need not be independent from Xi). The bounds in [45] use techniques
from generic chaining [58], and work particularly well for “sub-Gaussian classes”
(defined in [45]). Our setting here will be different: we assume that: (i) ξi ’s have a
Lp,1 (p ≥ 1) moment and (ii) ξi ’s are independent from Xi’s, but the ξi ’s need not
be independent from each other.

We make this choice in view of a negative result of Alexander [1], stating that
there is no universal moment condition on ξi’s for a multiplier CLT to hold when
ξi ’s need not be independent from Xi’s, while a L2,1 moment condition is known
to be universal in the independent case [23, 37, 66]. The complication here makes
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it more hopeful to work in the independent case for a precise understanding of the
multiplier empirical process. In fact:

• In the independent case, we are able to quantify the exact structural interplay
between the moment of the multipliers and the complexity of the indexing func-
tion class in the size of the multiplier empirical process (cf. Theorems 1–2),
thereby giving a satisfactory answer to Question 2;

• Such an interplay fails when the Xi’s may not be independent from the ξi ’s.
Moreover, no simple moment condition on the ξi ’s alone can lead to a solution
to Question 2 in the dependent case (cf. Proposition 1).

2.1. Upper bound. We first state the assumptions.

ASSUMPTION A. Suppose that ξ1, . . . , ξn are independent of the random vari-
ables X1, . . . ,Xn, and either of the following conditions holds:

(A1) X1, . . . ,Xn are i.i.d. with law P on (X ,A), and F is P -centered.
(A2) X1, . . . ,Xn are permutation invariant, and ξ1, . . . , ξn are independent

mean-zero random variables.

THEOREM 1. Suppose Assumption A holds. Let {Fk}nk=1 be a sequence of
function classes such that Fk ⊃ Fn for any 1 ≤ k ≤ n. Assume further that there
exists a nondecreasing concave function ψn : R≥0 → R≥0 with ψn(0) = 0 such
that

E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
Fk

≤ ψn(k)(2.1)

holds for all 1 ≤ k ≤ n. Then

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
Fn

≤ 4
∫ ∞

0
ψn

(
n∑

i=1

P
(|ξi | > t

))
dt.(2.2)

The primary application of Theorem 1 to nonparametric regression problems in
Section 3 involves a nonincreasing sequence of function classes F1 ⊃ · · · ⊃ Fn. It
is also possible to use Theorem 1 for the case F1 = · · · = Fn; see Section 4 for an
application to the sparse linear regression model.

The following corollary provides a canonical concrete application of Theo-
rem 1.

COROLLARY 1. Consider the same assumptions as in Theorem 1. Assume for
simplicity that ξi ’s have the same marginal distributions. Suppose that for some
γ ≥ 1, and some constant κ0 > 0,

E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
Fk

≤ κ0 · k1/γ(2.3)
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holds for all 1 ≤ k ≤ n. Then for any p ≥ 1 such that ‖ξ1‖p,1 < ∞,

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
Fn

≤ 4κ0 · nmax{1/γ,1/p}‖ξ1‖min{γ,p},1.

PROOF. First, consider γ ≤ p. In this case, letting ψn(t) ≡ κ0t
1/γ in Theo-

rem 1, we see that E‖∑n
i=1 ξif (Xi)‖Fn ≤ 4κ0 · n1/γ ‖ξ1‖γ,1. On the other hand,

if γ > p, we can take ψn(t) ≡ κ0t
1/p to conclude that E‖∑n

i=1 ξif (Xi)‖Fn ≤
4κ0 · n1/p‖ξ1‖p,1. Note that γ ≥ 1 ensures the concavity of ψn. �

Corollary 1 says that the upper bound for the multiplier empirical process has
two components: one part comes from the growth rate of the empirical process;
another part comes from the moment barrier of the multipliers ξi ’s.

REMARK 1. One particular case for application of Theorem 1 and Corollary 1
is the following. Let δ1 ≥ · · · ≥ δn ≥ 0 be a sequence of nonincreasing nonnega-
tive real numbers, and F be an arbitrary function class. Let Fk ≡ F(δk) ≡ {f ∈
F : Pf 2 < δ2

k } be the “local” set of F with L2-radius at most δk . There exists a
large literature on controlling such localized empirical processes; a classical device
suited for applications in nonparametric problems is to use local maximal inequal-
ities under either the uniform or bracketing entropy conditions (cf. Proposition 4).

An important choice in statistical applications for δk is given by

E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
F(δk)

� kδ2
k .(2.4)

As will be seen in Section 3, the above choice {δk} corresponds to the rate of
convergence of the LSE in the nonparametric regression model (1.1).

In this case, Theorem 1 and Corollary 1 yield that

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
F(δn)

� nδ2
n(2.5)

given sufficient moments of the ξi’s.

REMARK 2. Choosing γ ≥ 2 in Corollary 1 corresponds to the bounded
Donsker regime3 for the empirical process. In this case, we only need ‖ξ1‖2,1 < ∞
to ensure the multiplier empirical process to also be bounded Donsker. This mo-
ment condition is generally unimprovable in view of [36]. On the other hand, such
a choice of γ can fail due to: (i) failure of integrability of the envelope functions
of the classes {Fk}, or (ii) failure of the classes {Fk} to be bounded Donsker. (i)

3F is said to be bounded Donsker if supn∈NE supf ∈F | 1√
n

∑n
i=1 εif (Xi)| < ∞.
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is related to the classical Marcinkiewicz–Zygmund strong laws of large numbers
and the generalizations of those to empirical measures; see [2, 41, 43]. For (ii),
some examples in this regard can be found in [57], Chapter 11 of [19]; see also
Proposition 17.3.7 of [55].

Theorem 1 and Corollary 1 only concern the first moment of the suprema of
the multiplier empirical process. For higher moments, we may use the following
Hoffmann–Jørgensen/Talagrand-type inequality relating the qth moment estimate
with the first moment estimate.

LEMMA 1 (Proposition 3.1 of [22]). Let q ≥ 1. Suppose X1, . . . ,Xn are i.i.d.
with law P and ξ1, . . . , ξn are i.i.d. with ‖ξ1‖2∨q < ∞. Let F be a class of func-
tions with supf ∈F Pf 2 ≤ σ 2 such that either F is P -centered, or ξ1 is centered.
Then

E sup
f ∈F

∣∣∣∣∣
n∑

i=1

ξif (Xi)

∣∣∣∣∣
q

≤ Kq

[(
E sup

f ∈F

∣∣∣∣∣
n∑

i=1

ξif (Xi)

∣∣∣∣∣
)q

+ qq/2(√n‖ξ1‖2σ
)q + qq

E max
1≤i≤n

|ξi |q sup
f ∈F

∣∣f (Xi)
∣∣q].

Here, K > 0 is a universal constant.

2.2. Lower bound. Theorem 1 and Corollary 1 do not require any structural
assumptions on the function class F . [45] showed that for a “sub-Gaussian” class,
a 2 + ε moment on i.i.d. ξi ’s suffices to conclude that the multiplier empirical
process behaves like the canonical Gaussian process. One may therefore wonder
if the moment barrier for the multipliers in Corollary 1 is due to an artifact of
the proof. Below in Theorem 2, we show that this barrier is intrinsic for general
classes F .

THEOREM 2. Let X = [0,1] and P be a probability measure on X with
Lebesgue density bounded away from 0 and ∞. Let ξ1, . . . , ξn be i.i.d. random
variables such that Emax1≤i≤n|ξi | ≥ κ0n

1/p for some p > 1 and some constant κ0
independent of ξ1. Then for any γ > 2, there exists a sequence of function classes
{Fk}nk=1 defined on X with Fk ⊃ Fn for any 1 ≤ k ≤ n such that for n sufficiently
large,

E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
Fk

≤ κ1 · k1/γ ,

holds for all 1 ≤ k ≤ n, and that

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
Fn

≥ κ−1
1 nmax{1/γ,1/p}.

Here, κ1 is a constant depending on κ0, γ and P .
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REMARK 3. The condition on the ξi ’s will be satisfied, for example, if the ξi ’s
are i.i.d. with the tail condition P(|ξi | > t) ≥ κ ′

0/(1 + tp) for t > 0.

Combined with Corollary 1, it is seen that the growth rate nmax{1/γ,1/p} of the
multiplier empirical process cannot be improved in general. This suggests an in-
teresting phase transition phenomenon from a worst-case perspective: if the com-
plexity of the function class dominates the effect of the tail of the multipliers, then
the multiplier empirical process essentially behaves as the empirical process coun-
terpart; otherwise, the tail of the multipliers governs the growth of the multiplier
empirical process.

REMARK 4. The function class we constructed that witnesses the moment
barrier rate n1/p in Theorem 2 can be simply taken to be the class of indicators
over closed intervals on [0,1]. Although being the “simplest” function class in the
theory of empirical processes, this class serves as an important running example
that achieves the bad rate n1/p .

2.3. Comparison of Theorem 1 with the multiplier inequality in [66]. In this
section, we compare the classical multiplier inequality in Theorem 1 with the one
in Section 2.9 of [66], which originates from [24, 25, 36]; see also [23]: for i.i.d.
mean-zero ξi ’s and i.i.d. Xi’s, and for any 1 ≤ n0 ≤ n,

E

∥∥∥∥∥ 1√
n

n∑
i=1

ξif (Xi)

∥∥∥∥∥
F

� (n0 − 1)E
∥∥f (X1)

∥∥
F
Emax1≤i≤n|ξi |√

n

+ ‖ξ1‖2,1 max
n0≤k≤n

E

∥∥∥∥∥ 1√
k

k∑
i=1

εif (Xi)

∥∥∥∥∥
F

.

(2.6)

2.3.1. Nonasymptotic setting. The major drawback of (2.6) is that it is not
sharp in a nonasymptotic setting. For an illustration, let ξ1, . . . , ξn be i.i.d. multi-
pliers with ‖ξ1‖p,1 < ∞ (p ≥ 2), Xi ’s be i.i.d. uniformly distributed on [0,1], and
F be a uniformly bounded function class on [0,1] satisfying the entropy condition
(F) with α ∈ (0,2). We apply (2.6) with F(n−1/(2+α)) (note that n−1/(2+α) is the
usual local radius for 1/α-smooth problems) and local maximal inequalities for
the empirical process (Proposition 4 in Section 5 below) to see that

E

∥∥∥∥∥ 1√
n

n∑
i=1

ξif (Xi)

∥∥∥∥∥
F(n−1/(2+α))

� inf
1≤n0≤n

n0 · n−1/2+1/p + n
− (2−α)

2(2+α)

0


 n
− 2−α

6+α
( 1

2 − 1
p
) ≡ n−δ1(α,p).

(2.7)

On the other hand, Corollary 1 gives the rate

E

∥∥∥∥∥ 1√
n

n∑
i=1

ξif (Xi)

∥∥∥∥∥
F(n−1/(2+α))

� n
−min{ 2−α

2(2+α)
,1/2−1/p} ≡ n−δ2(α,p).(2.8)
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In the above inequalities, we used the following bound for the symmetrized em-
pirical process (for illustration we only consider bracketing entropy):

E

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥
F(n−1/(2+α))

� J[ ]
(
n−1/(2+α),F,L2(P )

)(
1 + J[ ](n−1/(2+α),F,L2(P ))√

n · n−2/(2+α)

)
� n

2−α
2(2+α) ,

where in the last line of the above display we used

J[ ]
(
n−1/(2+α),F,L2(P )

) =
∫ n−1/(2+α)

0

√
1 + logN[ ]

(
ε,F,L2(P )

)
dε � n

2−α
2(2+α) .

It is easily seen that the bound (2.7) calculated from (2.6) is worse than (2.8)
because δ1(α,p) < δ2(α,p) for all α ∈ (0,2) and p ≥ 2. Moreover, if p ≥ 1+2/α,

the bound (2.8) becomes n
− 2−α

2(2+α) , which matches the rate for the symmetrized
empirical process E‖n−1/2 ∑n

i=1 εif (Xi)‖F(n−1/(2+α)).

2.3.2. Asymptotic setting. The primary application of (2.6) rests in studying
asymptotic equicontinuity of the multiplier empirical process in the following
sense. Suppose that F is Donsker. Then by the integrability of the empirical pro-
cess (see Lemma 2.3.11 of [66]),4 E‖n−1/2 ∑n

i=1 εif (Xi)‖Fδ → 0 as n → ∞
followed by δ → 0. Now apply (2.6) via n → ∞, n0 → ∞ followed by δ → 0
we see that E‖n−1/2 ∑n

i=1 ξif (Xi)‖Fδ → 0 as n → ∞ followed by δ → 0 if
‖ξ1‖2,1 < ∞. This shows that (n−1/2 ∑n

i=1 ξif (Xi))f ∈F satisfies a CLT in 
∞(F)

if F is Donsker and the ξi ’s are i.i.d. with ‖ξ1‖2,1 < ∞.
Our new multiplier inequality, Theorem 1, can also be used to study asymptotic

equicontinuity of the multiplier empirical process with the help of the following
lemma.

LEMMA 2. Fix a concave function ϕ : R≥0 → R≥0, such that ϕ(x) → ∞ as
x → ∞. Let {an} ⊂ R≥0 be such that an → 0 as n → ∞, and ψ : R≥0 → R≥0 be
the least concave majorant of {(n, anϕ(n))}∞n=0. Then ψ(t)/ϕ(t) → 0 as t → ∞.

The proof of this lemma can be found in Appendix C in [26]. Take any se-
quence δn → 0 and let an ≡ E‖n−1/2 ∑n

i=1 εif (Xi)‖Fδn
. By Lemma 2, the least

concave majorant function ψ : R≥0 → R≥0 of the map n 
→ ann
1/2 (n ≥ 0) satis-

fies ψ(t)/t1/2 → 0 as t → ∞. Now an application of Theorem 1 and the domi-
nated convergence theorem shows that

E

∥∥∥∥∥ 1√
n

n∑
i=1

ξif (Xi)

∥∥∥∥∥
Fδn

≤ 4
∫ ∞

0

ψ(nP(|ξ1| > t))√
nP(|ξ1| > t)

·
√
P
(|ξ1| > t

)
dt → 0

as n → ∞.

4Here, Fδ ≡ {f − g : f,g ∈F ,‖f − g‖L2(P ) ≤ δ}.
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We note that the moment conditions of Theorems 1 and 2 have a small gap: in
essence we require an Lp,1 moment in Theorem 1, while an Lp moment is required
in Theorem 2. In the context of multiplier CLTs discussed above, [36] showed that
the L2,1 moment condition is sharp—there exists a construction of a Banach space
of X on which a multiplier CLT fails for ξX if ‖ξ1‖2,1 = ∞. It remains open in
our setting if Lp,1 (or Lp) is the exact moment requirement.

2.4. An impossibility result. In this section, we formally prove an impossibil-
ity result, showing that the independence assumption between the Xi’s and the ξi ’s
is crucial for Theorem 1 and Corollary 1 to hold.

PROPOSITION 1. Let X ≡ R. For every triple (δ, γ,p) such that δ ∈ (0,1/2),
2 < γ < 1 + 1/(2δ) and 2 ≤ p < min{4/δ,2γ /(1 + γ δ)}, there exist Xi ’s and
ξi ’s satisfying: (i) {(Xi, ξi)}’s are i.i.d.; (ii) ξi is not independent from Xi but
E[ξ1|X1] = 0, ‖ξ1‖p,1 < ∞, and a sequence of function classes {Fk}nk=1 defined
on X with Fk ⊃ Fn for any 1 ≤ k ≤ n, such that

E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
Fk

� k1/γ ,

holds for all 1 ≤ k ≤ n, and that

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
Fn

�p ω(n),

where ω(n) ≥ nβ ·nmax{1/γ,1/p} for some β = β(δ, γ,p) > 0. In other words, ω(n)

grows faster than nmax{1/γ,1/p} (= the upper bound in Theorem 1 and Corollary 1)
by a positive power of n.

Proposition 1 is a negative result for the multiplier empirical processes in the
similar vein as in [1], but more quantitatively: there is no universal moment con-
dition for the multipliers that yield a positive solution to Question 2 when the Xi’s
and the ξi ’s are allowed to be dependent.

REMARK 5. The basic trouble for removing the independence assumption
between the Xi’s and the ξi’s can be seen by the following example. Let Xi’s
be i.i.d. mean-zero random variables with a finite second moment. Then clearly∑n

i=1 Xi grows at a rate OP(n1/2) by the CLT. On the other hand, let ξi = εiXi

where εi’s are independent Rademacher random variables. Then the multiplier sum∑n
i=1 ξiXi = ∑n

i=1 εiX
2
i may grow at a rate as fast as OP(n1−δ), if ε1X

2
1 is in the

domain of attraction of a symmetric stable law with index close to 1.



2298 Q. HAN AND J. A. WELLNER

3. Nonparametric regression: Least squares estimation. In this section, we
apply our new multiplier inequalities in Section 2 to study the least squares esti-
mator (LSE) (1.2) in the nonparametric regression model (1.1) when the errors ξi ’s
are heavy-tailed (E′), independent of the Xi’s (but need not be independent of each
other), and the model satisfies the entropy condition (F).

Our results here are related to the recent ground-breaking work of Mendelson
and his coauthors [35, 44, 46, 47]. These papers proved rate-optimality of ERM
procedures under a 2 + ε moment condition on the errors, in a general structured
learning framework that contains models satisfying sub-Gaussian/small-ball con-
ditions. Their framework also allows arbitrary dependence between the errors ξi ’s
and the Xi’s. See [48] for some recent development. Here, the reasons for our
focus on the different structure—models with entropy conditions, are twofold:

• Entropy is a standard and well-understood notion for the complexity of a large
class of models; see examples in [23, 66].

• The moment condition on the errors needed to guarantee rate-optimality of the
LSE in our setting is no longer a 2 + ε moment. In fact, as we will show, p ≥
1 + 2/α (cf. Theorems 3–4) moments are needed for such a guarantee.

The reason that we work with independent errors is more fundamental: when the
errors ξi ’s are allowed to be dependent on the Xi’s, there is no universal mo-
ment condition on the ξi ’s alone that guarantees the rate-optimality of the LSE
(cf. Proposition 3). In fact, even in the family of one-dimensional linear regression
models with heteroscedastic errors of any finite pth moment, the convergence rate
of the LSE can be as slow as specified (cf. Remark 10).

3.1. Upper bound for the convergence rates of the LSE.

THEOREM 3. Suppose that ξ1, . . . , ξn are mean-zero errors independent of
X1, . . . ,Xn with the same marginal distributions, and ‖ξ1‖p,1 < ∞ for some p ≥
1. Further suppose that F is a P -centered function class (if the ξi ’s are i.i.d. F
need not be P -centered) such that F − f0 ⊂ L∞(1) satisfies the entropy condition
(F) with some α ∈ (0,2). Then the LSE f̂n in (1.2) satisfies

‖f̂n − f0‖L2(P ) = OP
(
n− 1

2+α ∨ n
− 1

2 + 1
2p

)
.(3.1)

Furthermore, if ξi ’s are i.i.d. and p ≥ 2, then (3.1) holds in expectation:

E‖f̂n − f0‖L2(P ) =O
(
n− 1

2+α ∨ n
− 1

2 + 1
2p

)
.(3.2)

One interesting consequence of Theorem 3 is a convergence rate of the LSE
when the errors only have a Lp,1 moment (1 < p ≤ 2).

COROLLARY 2. Suppose the assumptions in Theorem 3 hold with p ∈ (1,2].
Then

‖f̂n − f0‖L2(P ) = OP
(
n

− 1
2 + 1

2p
) = oP(1).
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Consistency of the LSE has been a classical topic; see, for example, [60, 63] for
sufficient and necessary conditions in this regard under a second moment assump-
tion on the errors. Here, Theorem 3 provides a quantitative rate of convergence
of the LSE when the errors may not even have a second moment (under stronger
conditions on F ).

The connection between the proof of Theorem 3 and the new multiplier inequal-
ity in Section 2 is the following reduction scheme.

PROPOSITION 2. Suppose that ξ1, . . . , ξn are mean-zero random variables in-
dependent of X1, . . . ,Xn, and F − f0 ⊂ L∞(1). Further assume that

E sup
f ∈F :‖f −f0‖L2(P )≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

ξi(f − f0)(Xi)

∣∣∣∣∣ � φn(δ)(3.3)

and

E sup
f ∈F :‖f −f0‖L2(P )≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

εi(f − f0)(Xi)

∣∣∣∣∣ � φn(δ)(3.4)

hold for some φn such that δ 
→ φn(δ)/δ is nonincreasing. Then ‖f̂n − f0‖L2(P ) =
OP(δn) holds for any δn such that φn(δn) ≤ √

nδ2
n. Furthermore, if ξ1, . . . , ξn are

i.i.d. mean-zero with ‖ξ1‖p < ∞ for some p ≥ 2, then E‖f̂n − f0‖L2(P ) = O(δn)

for any δn ≥ n
− 1

2 + 1
2p such that φn(δn) ≤ √

nδ2
n.

The remaining task in the proof of Theorem 3 is a calculation of the modulus
of continuity of the (multiplier) empirical process involved in (3.3) and (3.4) using
Theorem 1 and local maximal inequalities for the empirical process (see Proposi-
tion 4).

REMARK 6. Some remarks on the assumptions on F .

1. The entropy condition (F) is standard in nonparametric statistics literature.
The condition α ∈ (0,2) additionally requires F to be a Donsker class. Although
the proof applies to non-Donsker function classes with α ≥ 2, the first term in (3.1)
becomes suboptimal in general; see [10].

2. F is assumed to be P -centered when the errors ξi ’s have an arbitrary depen-
dence structure. It is known from [67] (see Theorem 1, p. 638) that for a centered
function class, the minimax risk of estimating a regression function under arbi-
trary errors with second moments uniformly bounded, is no worse than that for
i.i.d. Gaussian errors. If the errors are i.i.d., then F need not be P -centered (as
stated in the theorem).

3. The uniform boundedness assumption on F , including many classical ex-
amples (cf. Section 9.3 of [64]), should be primarily viewed as a method of proof :
all that we need is ‖f̂n‖∞ = OP(1). In subsequent work of the authors [27], this
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method is applied to shape-restricted regression problems in a heavy-tailed regres-
sion setting.

REMARK 7. Here, in Theorem 3 we focus on the regression model (1.1) with
errors ξi ’s independent from Xi’s. This is crucial: we show below in Proposition 3
that the independence assumption between the Xi ’s and ξi ’s cannot be relaxed for
the rate in Theorem 3 to hold.

On the other hand, our Theorem 3 is useful in handling centered models with
arbitrarily dependent errors in the regression model. This complements Mendel-
son’s work [35, 44, 46, 47, 49] that allows arbitrary dependence between ξi and
Xi’s with independent observations in a learning framework.

REMARK 8. In Theorem 3, the results are “in probability” and “in expecta-
tion” statements. It is easy to see from the proof that a tail estimate can be obtained
for ‖f̂n − f0‖L2(P ): if ‖ξ1‖p,1 < ∞ for some p ≥ 2, then

P
(
δ−1
n ‖f̂n − f0‖L2(P ) > t

) ≤ Ct−p,

where δn ≡ n− 1
2+α ∨n

− 1
2 + 1

2p . Constructing estimators other than the LSE that give
rise to exponential tail bound under a heavy-tailed regression setting is also of
significant interest. We refer the readers to, for example, [18, 38, 40] and references
therein for this line of research.

3.2. Lower bound for the convergence rates of the LSE. At this point, (3.1)
only serves as an upper bound for the convergence rates of the LSE. Since the

rate n− 1
2+α corresponds to the optimal rate in the Gaussian regression case [68], it

is natural to conjecture that this rate cannot be improved. On the other hand, the

“noise” rate n
− 1

2 + 1
2p is due to the reduction scheme in Proposition 2, which relates

the convergence rate of the LSE to the size of the multiplier empirical process
involved. It is natural to wonder if this “noise rate” is a proof artifact due to some
possible deficiency in Proposition 2.

THEOREM 4. Let X = [0,1] and P be a probability measure on X with
Lebesgue density bounded away from 0 and ∞, and ξi ’s are i.i.d. mean-zero er-
rors independent of Xi’s. Then for each α ∈ (0,2) and 2∨√

logn ≤ p ≤ (logn)1−δ

with some δ ∈ (0,1/2), there exists a function class F ≡ Fn, and some f0 ∈F with
F − f0 satisfying the entropy condition (F), such that the following holds: there
exists some law for the error ξ1 with ‖ξ1‖p,1 � logn, such that for n sufficiently
large, there exists some least squares estimator f ∗

n over Fn satisfying

E
∥∥f ∗

n − f0
∥∥
L2(P ) ≥ ρ · (n− 1

2+α ∨ n
− 1

2 + 1
2p

)
(logn)−2.

Here, ρ > 0 is a (small) constant independent of n.
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Theorem 4 has two claims. The first claim justifies the heuristic conjecture that
the convergence rate for the LSE with heavy-tailed errors under entropy condi-
tions, should be no better than the optimal rate in the Gaussian regression setting.
Although here we give an existence statement, the proof is constructive: in fact,
we use (essentially) a Hölder class. Other function classes are also possible if we
can handle the Poisson (small-sample) domain of the empirical process indexed by
these classes.

The second claim asserts that for any entropy level α ∈ (0,2), there exist “hard
models” for which the noise level dominates the risk for the least squares estimator.
Here are some examples for these hard models.

EXAMPLE 1. A benchmark model witnessing the worst case rate O(n
− 1

2 + 1
2p )

(up to logarithmic factors) is (almost) the one we used in Theorem 2, that is, the
class of indicators5 over closed intervals in [0,1].

EXAMPLE 2. Consider more general classes5

Fk ≡
{

k∑
i=1

ci1[xi−1,xi ] : |ci | ≤ 1,

0 ≤ x0 < x1 < · · · < xk−1 < xk ≤ 1

}
, k ≥ 1.

The classes Fk also witness the worst case rate O(n
− 1

2 + 1
2p ) (up to logarithmic

factors) since they contain all indicators over closed intervals on [0,1], and are
closely related to problems in the change-point estimation/detection literature. For
instance, the case k = 1 is of particular importance in epidemic and signal pro-
cessing applications; see [3, 69] from a testing perspective of the problem. From
an estimation viewpoint, [11] proposed an 
0-type penalized LSE for estimating
regression functions in Fk , where a (nearly) parametric rate is obtained under a
sub-Gaussian condition on the errors. Our results here suggest that such least-
squares type estimators may not work well for estimating step functions with mul-
tiple change-points if the errors are heavy-tailed.

EXAMPLE 3. Yet another class is given by the regression problem involving
image restoration (or edge estimation); see, for example, [32, 33] or Example 9.3.7
of [64] (but we consider a random design). In particular, the class C ≡ {1C : C ⊂
[0,1]d is convex}6 also witnesses the lower bound O(n

− 1
2 + 1

2p ) (up to logarithmic
factors) since it contains all indicators over hypercubes on [0,1]d .

5Excluding the indicators indexed by intervals that are too short.
6Excluding the indicators indexed by sets with too small volume.
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FIG. 1. Tradeoff between the complexity of the function class and the noise level of the errors in
the convergence rates for the LSE. The critical curve (purple): p = 1 + 2/α.

3.3. Some positive and negative implications for the LSE. Combining Theo-
rems 3 and 4, we see that the tradeoff in the size of the multiplier empirical process
between the complexity of the function class and the heaviness of the tail of the
errors (multipliers) translates into the convergence rate of the LSE (cf. Figure 1).
In particular, Theorems 3 and 4 indicate both some positive and negative aspects
of the LSE in a heavy-tailed regression setting.

(Positive implications for the LSE): If p ≥ 1 + 2/α, then ‖f̂n − f0‖L2(P ) =
OP(n− 1

2+α ). In this case, the noise level is “small” compared with the complexity
of the function class so that the LSE achieves the optimal rate as in the case for
i.i.d. Gaussian errors (see [68]).

(Negative implications for the LSE): If p < 1 + 2/α, then ‖f̂n − f0‖L2(P ) =
OP(n

− 1
2 + 1

2p ). In this case, the noise is so heavy-tailed that the worst-case rate of
convergence of the LSE is governed by this noise rate (see above for examples).
The negative aspect of the LSE is that this noise rate reflects a genuine deficiency
of the LSE as an estimation procedure, rather than the difficulty due to the “hard
model” in such a heavy-tailed regression setting. In fact, we can design simple
robust procedures to outperform the LSE in terms of the rate of convergence.

To see this, consider the least-absolute-deviation (LAD) estimator f̃n (see, e.g.,
[20, 52, 53], or p. 336 of [66]) defined by f̃n = arg minf ∈F 1

n

∑n
i=1|Yi − f (Xi)|.

It follows from a minor modification of the proof7 in page 336 of [66] that as long
as the errors ξi ≡ Mηi’s for some ηi admitting a smooth enough density, median
zero and a first moment, and M > 0 not too small, then under the same conditions

7More specifically, we can proceed by replacing the empirical measure Pn by P , slightly restricting

the suprema of the empirical process to 1/n � P(f − f0)2 < δ2 in the third display on page 336 of
[66], and noting that Theorem 3.4.1 of [66] can be strengthened to an expectation since the empirical
processes involved are bounded.
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as in Theorem 3, the LAD estimator f̃n satisfies

sup
f0∈F

Ef0‖f̃n − f0‖L2(P ) ≤O
(
n− 1

2+α
)
,

where clearly the noise rate O(n
− 1

2 + 1
2p ) induced by the moment of the errors does

not occur. For statistically optimal procedures that do not even require a first mo-
ment on the errors, we refer the reader to [7].

It is worthwhile to note that the shortcomings of the LSE quantified here also
rigorously justify the motivation of developing other robust procedures (cf. [4, 12,
13, 15, 16, 18, 28, 29, 38–40, 50]).

REMARK 9. Our Theorems 3 and 4 show that the moment condition

p ≥ 1 + 2/α

that guarantees the LSE to converge at the optimal rate (as in the case for Gaussian
errors), is the best one can hope under entropy conditions alone. On the other
hand, this condition may be further improved if additional structure is available.
For instance, in the isotonic regression case (α = 1), our theory requires p ≥ 3 to
guarantee an optimal n−1/3 rate for the isotonic LSE, while it is known (cf. [70])
that a second moment assumption on the errors (p = 2) suffices. The benefits of
this extra structure due to shape constraints are investigated in further work by the
authors [27].

3.4. An impossibility result. In this section, dual to the impossibility result
in Proposition 1 for the multiplier empirical process, we formally prove that the
independence assumption between the Xi ’s and the ξi ’s is necessary for the rate in
Theorems 3 and 4 to hold.

PROPOSITION 3. Consider the regression model (1.1) without assuming inde-
pendence between the Xi ’s and the ξi ’s. Let X ≡ R. For every triple (δ,α,p) such
that δ ∈ (0,1/2), 4δ < α < 2 and 2 ≤ p < min{4/δ, (2 + 4/α)/(1 + (1 + 2/α)δ)},
there exist:

• Xi ’s and ξi ’s satisfying: (i) {(Xi, ξi)}’s are i.i.d.; (ii) ξi is not independent from
Xi but E[ξ1|X1] = 0, ‖ξ1‖p,1 < ∞;

• a function class F ≡ Fn, and some f0 ∈ F with F − f0 satisfying the entropy
condition (F),

such that the following holds: for n sufficiently large, there exists some least
squares estimator f ∗

n over Fn satisfying

E
∥∥f ∗

n − f0
∥∥
L2(P ) ≥ δn,

where δn ≥ nβ · (n−1/(2+α) ∨ n−1/2+1/(2p)) for some β = β(δ,α,p) > 0. In other
words, δn shrinks to 0 slower than n−1/(2+α) ∨n−1/2+1/(2p) (= the rate of the LSE
in Theorems 3 and 4) by a positive power of n.
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Proposition 3 is a negative result on the LSE: there is no universal moment
condition on ξi ’s that guarantees the rate-optimality of the LSE when the errors
ξi ’s can be dependent on the Xi’s.

REMARK 10. One basic model underlying the construction of Proposition 3
is the following: consider the (one-dimensional) linear regression model with het-
eroscedastic errors

Yi = α0Xi + ξi, i = 1, . . . , n,

where ξi = εiXi for some independent Rademacher random variables εi ’s. Clearly,
E[ξi |Xi] = 0, but ξi is (highly) dependent on Xi . The least squares estimator α̂n ≡
arg minα∈R n−1 ∑n

i=1(Yi − αXi)
2 has a closed form:

α̂n ≡
∑n

i=1 XiYi∑n
i=1 X2

i

= α0 +
∑n

i=1 εiX
2
i∑n

i=1 X2
i

.

Suppose Xi’s have a finite second moment, then by the SLLN, α̂n → α0 a.s.,
but the convergence rate of ‖f̂n − f0‖L2(P ) = |α̂n − α0|‖X1‖2 can be as slow as
any n−δ : note that

∑n
i=1 X2

i = O(n) under the assumed second moment condition
on Xi ’s, while the sum of the centered random variables

∑n
i=1 εiX

2
i may have a

growth rate O(n1−δ) if ε1X
2
1 is in the domain of attraction of a symmetric stable

law with index close to 1 (recall Remark 5).
A simple modification of the construction along the lines of the proof of Propo-

sition 1 allows the situation where ξi ’s have a finite pth moment (p ≥ 2), while the
convergence rate of the LSE can be as slow as n−δ .

So in order to derive the rate-optimality of the LSE under any universal moment
condition on the errors ξi ’s, in a framework that allows arbitrary dependence be-
tween the ξi ’s and the Xi’s, it is necessary to impose conditions on the model F to
exclude the counterexamples (as in [35, 44, 46, 47, 49]).

4. Sparse linear regression: Lasso revisited. In this section, we consider the
sparse linear regression model:

Y = Xθ0 + ξ,(4.1)

where X ∈ R
n×d is a (random) design matrix and ξ = (ξ1, . . . , ξn) is a mean-zero

noise vector independent of X. When the true signal θ0 ∈ R
d is sparse, one popular

estimator is the Lasso [59]:

θ̂ (λ) ≡ arg min
θ∈Rd

(
1

n
‖Y − Xθ‖2

2 + λ‖θ‖1

)
.(4.2)

The lasso estimator has been thoroughly studied in an already vast literature; we
refer readers to the monograph [14] for a comprehensive overview.
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Our main interest here concerns the following question: under what moment
conditions on the distributions of X and ξ can the lasso estimator enjoy the optimal
rate of convergence? In particular, neither X nor ξ need be light tailed a priori
(i.e., not sub-Gaussian), and the components ξ1, . . . , ξn of the vector ξ need not be
independent.

Previous work guaranteeing rate-optimality of the Lasso estimator typically as-
sumes that both X and ξ are sub-Gaussian; see [14, 51, 62]. Relaxing the sub-
Gaussian conditions in the Lasso problem is challenging: [35] showed how to
remove the sub-Gaussian assumption on ξ in the case X is sub-Gaussian. The
problem is even more challenging if we relax the sub-Gaussian assumption on the
design matrix X. Our goal in this section is to demonstrate how the new multiplier
inequality in Theorem 1, combined with (essentially) existing techniques, can be
used to give a systematic treatment to the above question, in a rather straightfor-
ward fashion.

Before stating the result, we need some notion of the compatibility condition:
For any L > 0 and S ⊂ {1, . . . , d}, define

φ(L,S) = √|S|min
{

1√
n
‖XθS − XθSc‖2 : ‖θS‖1 = 1,‖θSc‖1 ≤ L

}
.

Here, for any θ = (θi) ∈ R
d , θS ≡ (θi1i∈S) and θSc ≡ (θi1i /∈S). Let B0(s) be the

set of s-sparse vectors in R
d , that is, θ ∈ B0(s) if and only if |{i : θi �= 0}| ≤ s.

Further let � = E�̂ where �̂ = X�X/n is the sample covariance matrix, and
σd = σmin(�) and σ̄d = σmax(�) be the smallest and largest singular value of the
population covariance matrix, respectively. Here, d = dn and s = sn can either stay
bounded or blow up to infinity in asymptotic statements.

THEOREM 5. Let X be a design matrix with i.i.d. mean-zero rows, and 0 <

lim infσd ≤ lim sup σ̄d < ∞. Suppose that

min|S|≤s
φ(3, S) ≥ c0(4.3)

holds for some c0 > 0 with probability tending to 1 as n → ∞, and that for some
1/4 ≤ α ≤ 1/2,

lim sup
n→∞

logd · (M4(X) ∨ log2 d)

n2−4α
< ∞,(4.4)

where M4(X) ≡ Emax1≤j≤d |X1j |4. Then for θ̂L ≡ θ̂ (2L‖ξn‖1/α,1
√

logd/n),

lim
L→∞ lim sup

n→∞
sup

θ0∈B0(s)

Pθ0

(
1

n

∥∥X(
θ̂L − θ0

)∥∥2
2 >

16L2‖ξn‖2
1/α,1

c2
0

· s logd

n

)
(4.5)

= 0.

Here, ‖ξn‖1/α,1 ≡ ∫ ∞
0 ( 1

n

∑n
i=1 P(|ξi | > t))α dt .



2306 Q. HAN AND J. A. WELLNER

The rate
√

s logd/n in the above theorem is well known to be (nearly) minimax
optimal for prediction in the sparse linear regression model (e.g., [54]). The quan-
tity ‖ξn‖1/α,1 should be thought as the “noise level” of the regression problem. For
instance, if the ξi ’s are i.i.d., and α = 1/2, then ‖ξn‖1/α,1 = ‖ξ1‖2,1.

Although in Theorem 5 we only consider prediction error, the estimation error
‖θ̂L − θ0‖1 can be obtained using completely similar arguments by noting that
Lemma 3 below also holds for estimation error.

REMARK 11. Two technical remarks.

1. As in Theorem 3, we assume in Theorem 5 that the rows of X have zero-
mean as vectors in R

d so that arbitrary dependence structure among ξi ’s can be
allowed. For i.i.d. errors, the zero-mean assumption is not needed.

2. (4.5) is of an asymptotic nature mainly due to the weak asymptotic assump-
tions made in (4.3) and (4.4). It is clear from the proof that concrete probability
estimates can be obtained if a probability estimate for (4.3) is available.

As an illustration of the scope of Theorem 5, we consider several different scal-
ing regimes for the parameter space (d, n, s). For simplicity of discussion, we as-
sume that the errors ξ1, . . . , ξn have the same marginal distributions and the design
matrix X has i.i.d. entries such that X11 has a Lebesgue density bounded away
from ∞ and EX2

11 = 1.

EXAMPLE 4. Consider the scaling regime d/n → λ ∈ (0,1). We claim that
E|X11|4+ε ∨ ‖ξ‖4,1 < ∞ for some ε > 0 guarantees the validity of (4.5). First,
(4.3) holds under the finite fourth moment condition; see [6]. Second, (4.4) holds
under the assumed moment conditions. Note that a fourth moment condition on
X11 is necessary: if EX4

11 = ∞, then lim sup σ̄d = ∞ a.s.; see [5]. This corollary
of Theorem 5 appears to be a new result; [38] considered a different “tournament”
Lasso estimator with best tradeoff between confidence statement and convergence
rate under heavy-tailed designs and errors.

EXAMPLE 5. If ‖X11‖p � pβ for some β ≥ 1/2 and all p � logn, then
Theorem E of [34] showed that the compatibility condition (4.3) holds under
n � s logd ∨ (logd)(4β−1). Condition (4.4) is satisfied if ‖ξ‖2+ε < ∞ and logd �
logn.

The condition logd � logn requires polynomial growth of d with n; this
can be improved if X11 is light tailed. In particular, if E exp(μ|X11|γ ) < ∞
for some μ,γ > 0, then we can take β = 1/γ so that (4.3) holds under n �
s logd ∨ (logd)(4/γ )−1, while (4.4) is satisfied if ‖ξ‖2+ε < ∞ and d ≤ exp(ncε,γ )

for some constant cε,γ > 0. Different choices of γ lead to:

• If the entries of X have subexponential tails, then we may take γ = 1. In
this case, (4.5) is valid under ‖ξ‖2+ε < ∞ subject to n � s logd ∨ log3 d and
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d ≤ exp(ncε,1) for some constant cε,1 > 0. This seems to be a new result; the
recent result of [56] considered the similar tail condition on X along with a
subexponential tail for the errors ξi ’s, while their rates come with additional
logarithmic factors.

• If the entries of X have sub-Gaussian tails, then we may take γ = 2. In this case,
(4.5) is valid under ‖ξ‖2+ε < ∞ subject to n � s logd and d ≤ exp(ncε,2) for
some constant cε,2 > 0. This recovers a recent result of [35] in the case where
X and ξ are independent (up to the mild dimension constraint on d).

Now we prove Theorem 5. The following reduction (basic inequality) is well
known; cf. Theorem 6.1 of [14].

LEMMA 3. On the event EL ≡ {max1≤j≤d | 2
n

∑n
i=1 ξiXij | ≤ L

√
logd/n},

with tuning parameter λ ≡ 2L
√

logd/n, it holds that n−1‖X(θ̂L − θ0)‖2
2 ≤

16L2φ−2(3, S0) · s0 logd/n where S0 = {i : (θ0)i �= 0} and s0 = |S0|.
The difficulty involved here is that both X and ξ can be heavy tailed. By The-

orem 1, to account for the effect of the ξi ’s, we only need to track the size of
Emax1≤j≤d |∑k

i=1 εiXij | at each scale k ≤ n. This is the content of the following
Gaussian approximation lemma.

LEMMA 4. Let X1, . . . ,Xn be i.i.d. random vectors in R
d with covariance

matrix �. If supd σmax(�) < ∞, then for all k, d ∈ N,

E max
1≤j≤d

∣∣∣∣∣
k∑

i=1

εiXij

∣∣∣∣∣ � (
k log3 d · (M4(X) ∨ log2 d

))1/4 + (k logd)1/2.

The proof of the lemma is inspired by the recent work [17] who considered
Gaussian approximation of the maxima of high-dimensional random vectors by
exploiting second moment information for the Xi’s. We modify their method by
taking into account the third moment information of Xi ’s induced by the sym-
metric Rademacher εi ’s; such a modification proves useful in identifying certain
sharp moment conditions considered in the examples (in particular Example 4).
See Appendix C.2 in [26] for a detailed proof.

PROOF OF THEOREM 5. By Lemma 3 and the assumption on the compat-
ibility condition (4.3), we see that with the choice for tuning parameter λ ≡
2L‖ξn‖1/α,1

√
logd/n, the left-hand side of (4.5) can be bounded by

Pθ0

(
1

n

∥∥X(
θ̂L − θ0

)∥∥2
2 >

16L2‖ξn‖2
1/α,1

φ2(3, S0)
· s logd

n

)
+ o(1)

≤ P

(
max

1≤j≤d

∣∣∣∣∣2

n

n∑
i=1

ξiXij

∣∣∣∣∣ > L‖ξn‖1/α,1

√
logd

n

)
+ o(1).

(4.6)
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By Lemma 4, we can apply Theorem 1 with F1 = · · · = Fn ≡ {πj : Rd → R, j =
1, . . . , d} where πj (x) = xj for any x = (xl)

d
l=1 ∈R

d , and

ψn(k) ≡ C
(
kα(

log3 d · (M4 ∨ log2 d
))1/4 + k1/2

√
logd

)
for any 1/4 ≤ α ≤ 1/2 such that (4.4) holds and ‖ξn‖1/α,1 < ∞, to conclude that

E max
1≤j≤d

∣∣∣∣∣
n∑

i=1

ξiXij

∣∣∣∣∣ � nα(
log3 d · (M4 ∨ log2 d

))1/4‖ξn‖1/α,1 + n1/2
√

logd‖ξn‖2,1

�
(
nα(

log3 d · (M4 ∨ log2 d
))1/4 + n1/2

√
logd

)‖ξn‖1/α,1.

By Markov’s inequality, (4.6) can be further bounded (up to constants) by

1

L

(
logd · (M4 ∨ log2 d)

n2−4α
∨ 1

)1/4
+ o(1).

The claim of Theorem 5 therefore follows from the assumption (4.4). �

5. Proofs for the main results: Main steps. In this section, we outline the
main steps for the proofs of our main theorems. Proofs for many technical lemmas
will be deferred to later sections.

5.1. Preliminaries. Let

J (δ,F,L2) ≡
∫ δ

0
sup
Q

√
1 + logN

(
ε‖F‖Q,2,F,L2(Q)

)
dε(5.1)

denote the uniform entropy integral, where the supremum is taken over all discrete
probability measures, and

J[ ]
(
δ,F,‖·‖) ≡

∫ δ

0

√
1 + logN[ ]

(
ε,F,‖·‖)

dε(5.2)

denote the bracketing entropy integral. The following local maximal inequalities
for the empirical process play a key role throughout the proof.

PROPOSITION 4. Suppose that F ⊂ L∞(1), and X1, . . . ,Xn’s are i.i.d. ran-
dom variables with law P . Then with F(δ) ≡ {f ∈F : Pf 2 < δ2},
1. If the uniform entropy integral (5.1) converges, then

E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F(δ)

�
√

nJ (δ,F,L2)

(
1 + J (δ,F,L2)√

nδ2‖F‖P,2

)
‖F‖P,2.(5.3)

2. If the bracketing entropy integral (5.2) converges, then

E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F(δ)

�
√

nJ[ ]
(
δ,F,L2(P )

)(
1 + J[ ](δ,F,L2(P ))√

nδ2

)
.(5.4)
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PROOF. (5.3) follows from [65]; see also Section 3 of [21], or Theorem 3.5.4
of [23]. (5.4) follows from Lemma 3.4.2 of [66]. �

We will primarily work with F ≡ 1 in the above inequalities. A two-sided es-
timate for the empirical process will be important for proving lower bounds in
Theorems 2 and 4. The following definition is from [21], page 1167.

DEFINITION 1. A function class F is α-full (0 < α < 2) if and only if there
exists some constant K1,K2 > 1 such that both

logN
(
ε‖F‖L2(Pn),F,L2(Pn)

) ≤ K1ε
−α, a.s.

for all ε > 0, n ∈ N, and

logN
(
σ‖F‖L2(P )/K2,F,L2(P )

) ≥ K−1
2 σ−α

hold. Here, σ 2 ≡ supf ∈F Pf 2, F denotes the envelope function for F , and Pn is
the empirical measure for i.i.d. samples X1, . . . ,Xn with law P .

The following lemma, giving a sharp two-sized control for the empirical process
under the α-full assumption, is proved in Theorem 3.4 of [21].

LEMMA 5. Suppose that F ⊂ L∞(1) is α-full with σ 2 ≡ supf ∈F Pf 2. If

nσ 2 �α 1 and
√

nσ(
‖F‖L2(P )

σ
)α/2 �α 1, then there exists some constant K > 0

depending only on α,K1,K2 such that

K−1√nσ

(‖F‖L2(P )

σ

)α/2
≤ E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≤ K
√

nσ

(‖F‖L2(P )

σ

)α/2
.

Note that the right-hand side of the inequality can also be derived from (5.3)
[taking supremum over all finitely discrete probability measures only serves to get
rid of the random entropy induced by L2(Pn) norm therein].

The following lemma guarantees the existence of a particular type of α-full
class that serves as the basis of the construction in the proof of Theorems 2 and 4.
The proof can be found in Appendix D in [26].

LEMMA 6. Let X ,P be as in Theorem 2. Then for each α > 0, there exists
some function class F defined on X which is α-full and contains G ≡ {1[a,b] : 0 ≤
a ≤ b ≤ 1}.

5.2. Proof of Theorem 1. The key ingredient in the proof of Theorem 1 is the
following, which may be of independent interest.
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PROPOSITION 5. Suppose Assumption A holds. For any function class F ,

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
F

≤ E

[
n∑

k=1

(|η(k)| − |η(k+1)|)E
∥∥∥∥∥

k∑
i=1

εif (Xi)

∥∥∥∥∥
F

]
,(5.5)

where |η(1)| ≥ · · · ≥ |η(n)| ≥ |η(n+1)| ≡ 0 are the reversed order statistics for:
(i) [under (A1)] {2|ξi |}ni=1, (ii) [under (A2)] {|ξi − ξ ′

i |}ni=1 with {ξ ′
i } being an inde-

pendent copy of {ξi}.

PROOF. We drop F from the notation for supremum norm over F and write
‖·‖ for ‖·‖F . We first consider the condition (A1). Note that for (X′

1, . . . ,X
′
n)

being an independent copy of (X1, . . . ,Xn), we have

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥ = Eξ ,X

∥∥∥∥∥
n∑

i=1

ξi

(
f (Xi) −EX′f

(
X′

i

))∥∥∥∥∥
≤ E

∥∥∥∥∥
n∑

i=1

ξi

(
f (Xi) − f

(
X′

i

))∥∥∥∥∥.

Here in the first equality we used the centeredness assumption on the func-
tion class F in (A1). Now conditional on ξ , for fixed ε1, . . . , εn, the map
(X1, . . . ,Xn,X

′
1, . . . ,X

′
n) 
→ ‖∑n

i=1 ξiεi(f (Xi)−f (X′
i))‖ is a permutation of the

original map (without εi ’s). Since (X1, . . . ,Xn,X
′
1, . . . ,X

′
n) is the coordinate pro-

jection of a product measure, it follows by taking expectation over ε1, . . . , εn that

EX,X′

∥∥∥∥∥
n∑

i=1

ξi

(
f (Xi) − f

(
X′

i

))∥∥∥∥∥
= Eε,X,X′

∥∥∥∥∥
n∑

i=1

ξiεi

(
f (Xi) − f

(
X′

i

))∥∥∥∥∥.

(5.6)

This entails that

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥ ≤ 2Eξ ,ε,X

∥∥∥∥∥
n∑

i=1

|ξi | sgn(ξi)εif (Xi)

∥∥∥∥∥
= 2E

∥∥∥∥∥
n∑

i=1

|ξi |εif (Xi)

∥∥∥∥∥,

(5.7)

where the equality follows since the random vector (sgn(ξ1)ε1, . . . , sgn(ξn)εn) has
the same distribution as that of (ε1, . . . , εn) and is independent of ξ1, . . . , ξn. We
will simply write |ξi | without the absolute value in the sequel for notational con-
venience. Let π be a permutation over {1, . . . , n} such that ξi = ξ(π(i)). Then the
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right-hand side of (5.7) equals

E

∥∥∥∥∥
n∑

i=1

ξ(π(i))εif (Xi)

∥∥∥∥∥
= E

∥∥∥∥∥
n∑

i=1

ξ(i)επ−1(i)f (Xπ−1(i))

∥∥∥∥∥ (by relabeling)(5.8)

= E

∥∥∥∥∥
n∑

i=1

ξ(i)εif (Xi)

∥∥∥∥∥ (
by invariance of (PX ⊗ Pε)

n).
Now write ξ(i) = ∑

k≥i(ξ(k) − ξ(k+1)) where ξ(n+1) ≡ 0. The above display can be
rewritten as

(5.9) E

∥∥∥∥∥
n∑

i=1

n∑
k=i

(ξ(k) − ξ(k+1))εif (Xi)

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

k=1

(ξ(k) − ξ(k+1))

k∑
i=1

εif (Xi)

∥∥∥∥∥.

The claim under (A1) follows by combining (5.7)–(5.9). For (A2), let ξ ′
i ’s be an

independent copy of ξi ’s. Then the analogy of (5.7) becomes

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

i=1

(
ξi −Eξ ′

i

)
f (Xi)

∥∥∥∥∥ ≤ E

∥∥∥∥∥
n∑

i=1

(
ξi − ξ ′

i

)
f (Xi)

∥∥∥∥∥
= E

∥∥∥∥∥
n∑

i=1

εi

∣∣ξi − ξ ′
i

∣∣f (Xi)

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

i=1

εi |ηi |f (Xi)

∥∥∥∥∥,

where ηi ≡ ξi − ξ ′
i . The claim for (A2) follows by repeating the arguments in (5.8)

and (5.9). �

PROOF OF THEOREM 1. First, consider (A1). Using Proposition 5, we see
that

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
Fn

≤ 2E

[
n∑

k=1

(|ξ(k)| − |ξ(k+1)|)E
∥∥∥∥∥

k∑
i=1

εif (Xi)

∥∥∥∥∥
Fn

]
.(5.10)

By the assumption that Fk ⊃ Fn for any 1 ≤ k ≤ n,

E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
Fn

≤ E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
Fk

≤ ψn(k).(5.11)

Collecting (5.10)–(5.11), we see that

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
Fn

≤ 2E

[
n∑

k=1

(|ξ(k)| − |ξ(k+1)|)ψn(k)

]

= 2E
n∑

k=1

∫ |ξ(k)|
|ξ(k+1)|

ψn(k)dt
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≤ 2E
∫ ∞

0
ψn

(∣∣{i : |ξi | ≥ t
}∣∣)dt

≤ 2
∫ ∞

0
ψn

(
n∑

i=1

P
(|ξi | > t

))
dt,

where the last inequality follows from Fubini’s theorem and Jensen’s inequality,
completing the proof for the upper bound for (A1). For (A2), mimicking the above
proof, we have

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
Fn

≤
∫ ∞

0
ψn

(
n∑

i=1

P
(∣∣ξi − ξ ′

i

∣∣ ≥ t
))

dt

≤
∫ ∞

0
ψn

(
n∑

i=1

P
(|ξi | ≥ t/2

) + P
(∣∣ξ ′

i

∣∣ ≥ t/2
))

dt

=
∫ ∞

0
ψn

(
2

n∑
i=1

P
(|ξi | ≥ t/2

))
dt

= 2
∫ ∞

0
ψn

(
2

n∑
i=1

P
(|ξi | > t

))
dt.

The proof of the claim for (A2) is completed by noting that ψn(2x) ≤ 2ψn(x) due
to the concavity of ψn and ψn(0) = 0. �

5.3. Proof of Theorem 2. We need the following lemma.

LEMMA 7. Suppose that ξ1, . . . , ξn are i.i.d. mean-zero random variables in-
dependent of i.i.d. X1, . . . ,Xn. Then

‖ξ1‖1E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≤ 2E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
F

.

PROOF. The proof follows that of the left-hand side inequality in Lemma 2.9.1
of [66], so we omit the details. �

LEMMA 8. Let X1, . . . ,Xn be i.i.d. random variables distributed on [0,1]
with a probability law P admitting a Lebesgue density bounded away from ∞. Let
{Ii}ni=1 be a partition of [0,1] such that Ii ∩ Ij = ∅ for i �= j and

⋃n
i=1 Ii = [0,1],

and L−1n−1 ≤ |Ii | ≤ Ln−1 for some absolute value L > 0. Then there exists some
τ ≡ τL,P ∈ (0,1) such that for n sufficiently large,

P
(
X1, . . . ,Xn lie in at most τn intervals among {Ii}ni=1

) ≤ 0.5n−1.
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The proof of Lemma 8 can be found in Appendix D in [26]. Now we are in
position to prove Theorem 2.

PROOF OF THEOREM 2. The proof will proceed in two steps. The first step
aims at establishing a lower bound for the multiplier empirical process on the order
of n1/γ .

Let α = 2/(γ − 1), and F̃ be an α-full class on X in Lemma 6. Further let δk =
k−1/(2+α) and F̃k ≡ F̃(δk) = {f ∈ F̃ : Pf 2 < δ2

k }. Then it follows from Lemma 5
that there exists some constant K > 0,

K−1kα/(2+α) ≤ E

∥∥∥∥∥
k∑

i=1

εif (Xi)

∥∥∥∥∥
F̃k

≤ Kkα/(2+α).

Lemma 7 now guarantees that E‖∑n
i=1 ξif (Xi)‖F̃n

can be bounded from below

by a constant multiple of nα/(2+α) = n1/γ where the constant depends on ‖ξ1‖1.
This completes the first step of the proof.

In the second step, we aim at establishing a lower bound of order n1/p . To this
end, let {Ij }nj=1 be a partition of X such that L−1n−1 ≤ |Ij | ≤ Ln−1. On the other

hand, let fj ≡ 1Ij
∈ F̃n for 1 ≤ j ≤ n (increase δn by constant factors if necessary),

and En denote the event that X1, . . . ,Xn lie in N ≥ τn sets among {Ij }nj=1. Then
Lemma 8 entails that P(En) ≥ 1−0.5n ≥ 1/2 for n sufficiently large. Furthermore,
let Ij ≡ {i : Xi ∈ Ij } and pick any Xι(j) ∈ Ij . Note that Ij ’s are disjoint, and hence
conditionally on X we have

E max
1≤j≤τn

|ξj | ≤ E max
1≤j≤N

|ξι(j)| (
by i.i.d. assumption on ξi’s

)

≤ E max
1≤j≤N

∣∣∣∣ξι(j) +E

∑
i∈Ij\ι(j)

ξi

∣∣∣∣ (
Ij ’s are disjoint and Eξi = 0

)

≤ E max
1≤j≤N

∣∣∣∣∑
i∈Ij

ξi

∣∣∣∣ (
by Jensen’s inequality

)
.

Then

E

∥∥∥∥∥
n∑

i=1

ξif (Xi)

∥∥∥∥∥
F̃n

≥ E

[
max

1≤j≤n

∣∣∣∣∣
n∑

i=1

ξifj (Xi)

∣∣∣∣∣
]

≥ EX

[
Eξ max

1≤j≤N

∣∣∣∣∑
i∈Ij

ξi

∣∣∣∣1En

]

≥ EX

[
Eξ max

1≤j≤τn
|ξj |1En

]
≥ 1

2
Eξ max

1≤j≤τn
|ξj |

for n sufficiently large. Now the second step follows from the assumption, and
hence completing the proof. �
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5.4. Proof of Theorem 3. We first prove Proposition 2.

PROOF OF PROPOSITION 2. Let Mnf ≡ 2
n

∑n
i=1(f − f0)(Xi)ξi −

1
n

∑n
i=1(f − f0)

2(Xi), and Mf ≡ E[Mn(f )] = −P(f − f0)
2. Here, we used the

fact that Eξi = 0 and the independence assumption between {ξi} and {Xi}. Then it
is easy to see that

∣∣Mnf −Mnf0 − (Mf − Mf0)
∣∣ ≤

∣∣∣∣∣2

n

n∑
i=1

(f − f0)(Xi)ξi

∣∣∣∣∣ + ∣∣(Pn − P)(f − f0)
2∣∣.

The first claim (i.e., convergence rate in probability) follows by standard sym-
metrization and contraction principle for the empirical process indexed by a uni-
formly bounded function class, followed by an application of Theorem 3.2.5
of [66].

Now assume that ξ1, . . . , ξn are i.i.d. mean-zero errors with ‖ξ1‖p < ∞ for
some p ≥ 2. Fix t ≥ 1. For j ∈ N, let Fj ≡ {f ∈ F : 2j−1tδn ≤ ‖f − f0‖L2(P ) <

2j tδn}. Then by a standard peeling argument, we have

P
(‖f̂n − f0‖L2(P ) ≥ tδn

) ≤ ∑
j≥1

P

(
sup

f ∈Fj

(
Mn(f ) −Mn(f0)

) ≥ 0
)
.

Each probability term in the above display can be further bounded by

P

(
sup

f ∈Fj

(
Mn(f ) −Mn(f0) − (Mf − Mf0)

) ≥ 22j−2t2δ2
n

)

≤ P

(
sup

f ∈F−f0:‖f ‖L2(P )≤2j tδn

∣∣∣∣∣ 1√
n

n∑
i=1

ξif (Xi)

∣∣∣∣∣ ≥ 22j−4t2√nδ2
n

)

+ P

(
sup

f ∈F−f0:‖f ‖L2(P )≤2j tδn

∣∣∣∣∣ 1√
n

n∑
i=1

(
f 2(Xi) − Pf 2)∣∣∣∣∣ ≥ 22j−3t2√nδ2

n

)
.

By the contraction principle and moment inequality for the empirical process
(Lemma 1), we have

E

(
sup

f ∈F−f0:
‖f ‖L2(P )≤2j tδn

∣∣∣∣∣ 1√
n

n∑
i=1

ξif (Xi)

∣∣∣∣∣
2)

∨E

(
sup

f ∈F−f0:
‖f ‖L2(P )≤2j tδn

∣∣∣∣∣ 1√
n

n∑
i=1

εif
2(Xi)

∣∣∣∣∣
2)

�
[
φn

(
2j tδn

)]2 + (
1 ∨ ‖ξ1‖2

)222j t2δ2
n + (

1 ∨ ‖ξ1‖p

)2
n−1+2/p.

In the above calculation, we used the fact that Emax1≤i≤n|ξi |2 ≤ ‖ξ1‖2
pn2/p under

‖ξ1‖p < ∞. By Chebyshev’s inequality,

P
(‖f̂n − f0‖L2(P ) ≥ tδn

)
≤ Cξ

∑
j≥1

[(
φn(2j tδn)

22j t2
√

nδ2
n

)2
∨ 1

22j t2nδ2
n

∨ 1

24j t4n2−2/pδ4
n

]
.
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Under the assumption that δn ≥ n
− 1

2 + 1
2p , and noting that φn(2j tδn) ≤ 2j tφn(δn) by

the assumption that δ 
→ φn(δ)/δ is nonincreasing, the right-hand side of the above
display can be further bounded up to a constant by

∑
j≥1(

φn(δn)

2j t
√

nδ2
n
)2 + 1

t2 � 1
t2 for

t ≥ 1. The expectation bound follows by integrating the tail estimate. �

The following lemma calculates an upper bound for the multiplier empirical
process at the target rate in Theorem 3. The proof can be found in Appendix D in
[26].

LEMMA 9. Suppose that Assumption A holds with i.i.d. X1, . . . ,Xn’s with
law P , and F ⊂ L∞(1) satisfies the entropy condition (F) with α ∈ (0,2). Further
assume for simplicity that ξi ’s have the same marginal distributions with ‖ξ1‖p,1 <

∞. Then with δn ≡ n− 1
2+α ∨ n

− 1
2 + 1

2p we have

E sup
Pf 2≤ρ2δ2

n

∣∣∣∣∣
n∑

i=1

ξif (Xi)

∣∣∣∣∣ ∨E sup
Pf 2≤ρ2δ2

n

∣∣∣∣∣
n∑

i=1

εif (Xi)

∣∣∣∣∣
≤ K̄α

(
ρ1−α/2 ∨ ρ−α)⎧⎨⎩n

α
2+α

(
1 ∨ ‖ξ1‖1+2/α,1

)
, p ≥ 1 + 2/α,

n
1
p
(
1 ∨ ‖ξ1‖p,1

)
, 1 ≤ p < 1 + 2/α.

PROOF OF THEOREM 3. The claim follows immediately from Lemma 9 by
noting that the rate δn chosen therein corresponds to the condition (3.3) in Propo-
sition 2, along with Proposition 4 handling (3.4). �
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SUPPLEMENTARY MATERIAL

Supplement: Additional proofs (DOI: 10.1214/18-AOS1748SUPP; .pdf). In
the supplement [26], we provide detailed proofs for (i) Theorem 4, (ii) the impos-
sibility results Propositions 1 and 3 and (iii) all remaining lemmas.
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