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ROBUST COVARIANCE AND SCATTER MATRIX ESTIMATION
UNDER HUBER’S CONTAMINATION MODEL
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Covariance matrix estimation is one of the most important problems in
statistics. To accommodate the complexity of modern datasets, it is desired
to have estimation procedures that not only can incorporate the structural
assumptions of covariance matrices, but are also robust to outliers from ar-
bitrary sources. In this paper, we define a new concept called matrix depth
and then propose a robust covariance matrix estimator by maximizing the
empirical depth function. The proposed estimator is shown to achieve min-
imax optimal rate under Huber’s ε-contamination model for estimating co-
variance/scatter matrices with various structures including bandedness and
sparsity.

1. Introduction. Covariance matrix estimation is one of the most important
problems in statistics. The last decade has witnessed the rapid development of sta-
tistical theory for covariance matrix estimation under high dimensional settings.
Starting from the seminal works of Bickel and Levina [1, 2], covariance matrices
with a list of different structures can be estimated with optimal theoretical guar-
antees. Examples include the bandable matrix [9], sparse matrix [10, 34], Toeplitz
matrix [7] and spiked matrix [3, 6]. For a recent comprehensive review on this
topic, see [8]. However, these works do not take into account the heavy-tailedness
of data and the possible presence of outliers. All these methods are based on sam-
ple covariance matrix, which is shown to have a 1/(n + 1) breakdown point [25].
This means that even if there exists only one arbitrary outlier in the whole dataset,
the statistical performance of the estimator can be totally compromised. In this
paper, we attempt to tackle the problems of robust covariance matrix estimation
under high-dimensional settings.

To be more specific, we consider the distribution (1 − ε)N(0,�) + εQ, where
Q is an arbitrary distribution that models the outliers and ε is the proportion of
contamination. Given i.i.d. observations X1, . . . ,Xn from this distribution, there
are approximately nε of them distributed according to Q, which can influence the
performance of an estimator without robustness property. This setting is called the
ε-contamination model, first proposed in a path-breaking paper by Huber [30].
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In this paper, Huber proposed a robust location estimator and proved its mini-
max optimality under the ε-contamination model. His work suggests an estimator
that is optimal under the ε-contamination model must achieve statistical efficiency
and resistance to outliers simultaneously. Therefore, we view the ε-contamination
model as a natural framework to develop theories of robust estimation of covari-
ance matrices. The goal of this paper is to propose an estimator of � that achieves
the minimax rate under Huber’s ε-contamination model.

To obtain a robust covariance matrix estimator, we propose a new concept called
the matrix depth. For a p-variate distribution X ∼ P, the matrix depth of a positive
semidefinite � ∈ Rp×p with respect to P is defined as

(1) D(�,P) = inf‖u‖=1
min

{
P

{∣∣uT X
∣∣2 ≤ uT �u

}
,P

{∣∣uT X
∣∣2 ≥ uT �u

}}
.

We will show that for P = N(0,�), the deepest matrix is β� for some con-
stant multiplier β > 0. Thus, a natural estimator for � is �̂/β with �̂ =
arg max��0 D(�,Pn). Here, we use the notation Pn to denote the empirical dis-
tribution.

Our definition of matrix depth is parallel to Tukey’s depth function [46] for
a location parameter. The deepest vector according to Tukey’s depth is a natural
extension of median in the multivariate setting, and thus can be used as a robust
location estimator. Zuo and Serfling [59] advocated the notion of statistical depth
function that satisfies the four properties in [35] and verified that Tukey’s depth
indeed satisfies all these properties while many other depth functions [35, 42, 43,
51] do not. The multivariate median defined by Tukey’s depth was shown to have
a high breakdown point [14, 15, 17]. The original proposal of the depth function
in [46] not only provides a way for robust location estimation, but also gives a
general way to summarize multivariate data. For example, the depth function can
be used to define an index of scatteredness of data [60]. Based on the concept of
data depth, a data peeling procedure has been proposed to estimate the covariance
matrix. Specifically, one may trim the data points according to their depths and use
the remaining ones to estimate the covariance [15, 36]. One may also estimate the
covariance through a weighted average with weights that are functions of depths
[58]. Though the notion of Tukey’s depth is closely related to covariance matrix
estimation, depth functions that are directly defined on positive semipositive ma-
trices are not well explored in the literature. The need for such a concept has been
mentioned in [44] based on a general framework of location depth functions by
[40, 41]. A proposal that is close in spirit to ours is [57], which also uses the
projection idea in Tukey’s location depth. The matrix depth defined in (1) offers
another option. Later, we will also define several variants of the matrix depth that
take into account the high-dimensional structures such as bandedness and sparsity.
Those matrix depth functions are powerful tools for robust estimation of structured
covariance matrices.
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We apply the proposed robust matrix estimator to the problems of estimat-
ing banded covariance matrices, bandable covariance matrices, sparse covariance
matrices and sparse principal components. We show that in all of these cases,
the estimators defined by the matrix depth functions achieve the minimax rates
of the corresponding ε-contamination models under the operator norm. There-
fore, the new estimators enjoy both rate optimality and property of resistance
to outliers. Interestingly, the minimax rates have a unified expression. That is,
M(ε) 	 max{M(0),ω(ε,F)}, where M(ε) is the minimax rate for the proba-
bility class of distributions (1 − ε)N(0,�) + εQ ranging over � ∈ F for some
covariance matrix class F and all probability distributions Q. The first part M(0)

is the classical minimax rate without contamination. The second part is determined
by the quantity ω(ε,F) called the modulus of continuity. Its definition goes back
to the fundamental works of Donoho and Liu [18] and Donoho [16]. A high level
interpretation is that the least favorable contamination distribution Q can be cho-
sen in a way that the parameters within ω(ε,F) under a given loss cannot be
distinguished from each other. We establish this phenomenon rigorously through
a general lower bound argument for all ε-contamination models.

Besides ε-contamination models with Gaussian distributions, we show that our
proposed estimators also work for general elliptical distributions. To be specific,
the setting (1 − ε)P� + εQ is also considered, where � is the scatter matrix under
the canonical representation of an elliptical distribution. In fact, a characteristic
property of the scatter matrix � of an elliptical distribution is D(�,P�) = 1/2. This
property allows the depth function to combine naturally with the elliptical family.
The resulting estimators are also shown to achieve the optimal convergence rates.
To this end, we can claim that the proposed estimator by matrix depth have two
extra robustness properties besides its rate optimality: resistance to outliers and
insensitivity to heavy-tailedness. In fact, there are many works in the literature on
scatter matrix estimation for elliptical distributions, including [38, 48] in classical
settings and [22, 26–29, 39, 54–56] in high-dimensional settings. However, it still
remains open whether these estimators can achieve the minimax rates of the ε-
contamination models.

The ε-contamination model is a setting where a successful estimator should
achieve a good convergence rate and robustness simultaneously. By considering a
population variation of the breakdown point which we term as δ-breakdown point,
we show in Section 6.3 that for a given estimator that has convergence rate δ un-
der the ε-contamination model, its δ-breakdown point is at least ε. This suggests
convergence under Huber’s ε-contamination model is a more general notion of
robustness than the breakdown point and it provides a unified way to study the
statistical convergence rate and robustness jointly.

The main contribution of the paper is the derivation of the minimax rates for
robust covariance matrix estimation under Huber’s ε-contamination model, which
can be achieved by optimizing over the proposed matrix depth function. We would
like to clarify that, in high dimensional settings, the proposed estimators based on
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matrix depth are challenging to compute, hence are mainly of theoretical inter-
est. It is interesting and urgent to investigate in the future whether the minimax
rates of covariance matrix estimation under Huber’s ε-contamination model can
be achieved by a provable polynomial-time algorithm. For unstructured covari-
ance matrices under low or moderate dimensions (up to p = 10), the proposed
depth-based estimators can be used in practice. We provide an algorithm and per-
form some numerical studies in the Supplementary Material [11]. An R package
is available on the Github at https://github.com/ChenMengjie/DepthDescent.

The paper is organized as follows. First, we revisit Tukey’s location depth in
Section 2 and discuss the convergence rate of the associated multivariate median.
The matrix depth is introduced in Section 3 and we use it as a tool to solve various
robust structured covariance matrix estimation problems. In Section 4, we discuss
the relationship between matrix depth and elliptical distributions. Results of co-
variance matrix estimation are extended to scatter matrix estimation for elliptical
distributions. Section 5 presents a general result on minimax lower bound for the ε-
contamination model. In Section 6, we discuss some related topics on robust statis-
tics including the connection between breakdown point and the ε-contamination
model as well as an extension of our notion of matrix depth function to the setting
with noncentered observations. All proofs of the theoretical results are given in
Section 7 and the Supplementary Material [11]. The Supplementary Material [11]
also include some numerical studies of the proposed estimators for unstructured
covariance matrices when the dimension is low or moderate.

We close this section by introducing some notation. Throughout the paper, we
assume the covariance or scatter matrix of interest is not a zero matrix. Given
an integer d , we use [d] to denote the set {1,2, . . . , d}. For a vector u = (ui),

‖u‖ =
√∑

i u
2
i denotes the �2 norm. For a matrix A = (Aij ), we use sk(A) to

denote its kth singular value. The largest and the smallest singular values are de-
noted as smax(A) and smin(A), respectively. The operator norm of A is denoted by

‖A‖op = smax(A) and the Frobenius norm by ‖A‖F =
√∑

ij A2
ij . When A = AT ∈

Rp×p is symmetric, diag(A) means the diagonal matrix whose (i, i)th entry is Aii .
Given a subset J ⊂ [p], AJJ is an |J |× |J | submatrix, where |J | means the cardi-
nality of J . The set Sp−1 = {u ∈ Rp : ‖u‖ = 1} is the unit sphere in Rp . Given two
numbers a, b ∈ R, we use a ∨ b = max(a, b) and a ∧ b = min(a, b). For two posi-
tive sequences {an}, {bn}, an � bn means an ≤ Cbn for some constant C > 0 inde-
pendent of n, and an 	 bn means an � bn and bn � an. Given two probability dis-
tributions P,Q, the total variation distance is defined by supB |P(B) −Q(B)|, and
the Kullback–Leibler divergence is defined by D(P ‖Q) = ∫

log dP
dQ

dP. Through-
out the paper, C,c and their variants denote generic constants that do not depend
on n. Their values may change from line to line.

2. Prologue: Robust location estimation. We start by the problem of ro-
bust location estimation. Consider i.i.d. observations X1, . . . ,Xn ∼ P(ε,θ,Q) =

https://github.com/ChenMengjie/DepthDescent
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(1 − ε)Pθ + εQ, where Pθ = N(θ, Ip). The goal is to estimate the location pa-
rameter θ from the contaminated data {Xi}ni=1. It is known that the sample average
is not robust because of its sensitivity to outliers. We consider Tukey’s median
([45, 46], see [47] as well) as a robust estimator of the location θ . First, we need to
introduce Tukey’s depth function. For any η ∈ Rp and a distribution P on Rp , the
Tukey’s depth of η with respect to P is defined as

D(η,P) = inf
u∈Sp−1

P
{
uT X ≤ uT η

}
where X ∼ P.

Given i.i.d. observations {Xi}ni=1, the Tukey’s depth of η with respect to the obser-
vations {Xi}ni=1 is defined as

D
(
η, {Xi}ni=1

) = D(η,Pn) = min
u∈Sp−1

1

n

n∑
i=1

I
{
uT Xi ≤ uT η

}
,

where Pn = 1
n

∑n
i=1 δXi

is the empirical distribution. Then Tukey’s median is de-
fined to be the deepest point with respect to the observations, that is,

(2) θ̂ = arg max
η∈Rp

D
(
η, {Xi}ni=1

)
.

When (2) has multiple maxima, θ̂ is understood as any vector that attains the deep-
est level. The convergence rate of θ̂ is stated in the following theorem.

THEOREM 2.1. Consider Tukey’s median θ̂ . Assume that ε < 1/5. Then
there exist absolute constants C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying
C1(

p
n

+ log(1/δ)
n

) < 1, we have

‖θ̂ − θ‖2 ≤ C

((
p

n
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,θ,Q)-probability at least 1 − 2δ uniformly over all θ and Q.

REMARK 2.1. By scrutinizing the proof of Theorem 2.1, the result can hold
for any ε < 1/3 − c′ for an arbitrarily small constant c′. The critical threshold
1/3 has a meaning of the highest breakdown point for Tukey’s median [15, 17].
Further discussion on the connection between the breakdown point and the ε-
contamination model is given in Section 6.

REMARK 2.2. Theorem 2.1 is valid for identity covariance matrix. For a more
general case Pθ = N(θ,�), as long as smax(�) ≤ M with some absolute constant
M > 0, the result remains valid. In addition, the result can also be extended to the
class of elliptical distributions considered in Section 4.



ROBUST COVARIANCE AND SCATTER MATRIX ESTIMATION 1937

To the best of our knowledge, Theorem 2.1 is the first result in the literature that
gives an error bound for Tukey’s median under Huber’s ε-contamination model. It
says that the convergence rate of Tukey’s median is p/n in terms of the squared �2
loss when ε2 � p/n. Otherwise, the rate is ε2. Therefore, as long as the number of
outliers from Q is at the order of nε = O(

√
np), the convergence rate of Tukey’s

median is identical to the case when ε = 0. The next theorem shows that Tukey’s
median is optimal under the ε-contamination model in a minimax sense.

THEOREM 2.2. There exist some absolute constants C,c > 0 such that

inf
θ̂

sup
θ,Q

P(ε,θ,Q)

{
‖θ̂ − θ‖2 ≥ C

(
p

n
∨ ε2

)}
≥ c,

for any ε ∈ [0,1].
Theorem 2.2 provides a minimax lower bound for the ε-contamination model.

It implies that as long as ε2 � p/n, the usual minimax rate p/n for estimating
θ is no longer achievable. It also justifies the optimality of Tukey’s median from
a minimax perspective. To summarize, Theorems 2.1 and 2.2 jointly provide a
framework for robust statistics that characterize both rate optimality and resistance
to outliers simultaneously.

Another natural robust estimator for location is the componentwise median, de-
fined as θ̂ = (θ̂1, . . . , θ̂p)T with θ̂j = Median({Xij }ni=1). We show that the compo-
nentwise median has an inferior convergence rate via the following proposition.

PROPOSITION 2.1. Consider the componentwise median θ̂ . There exist abso-
lute constants C,c > 0 such that

sup
θ,Q

P(ε,θ,Q)

{
‖θ̂ − θ‖2 ≥ Cp

(
1

n
∨ ε2

)}
≥ c,

for any ε ∈ [0,1].
Obviously, p(n−1 ∨ ε2) is also the upper bound for θ̂ by applying Theorem 2.1

to each coordinate. Since p/n∨ ε2 � p(n−1 ∨ ε2) when ε2 � 1/n, the componen-
twise median has a slower convergence rate. It achieves the rate p/n only when
nε = O(

√
n). Therefore, to preserve the rate p/n, the componentwise median can

tolerate at most O(
√

n) number of outliers, whereas Tukey’s median can tolerate
O(

√
pn).

3. Robust covariance matrix estimation. In this section, we consider esti-
mating covariance matrices under the ε-contamination model. The model is repre-
sented as P(ε,�,Q) = (1 − ε)P� + εQ, where P� = N(0,�) and Q is any distri-
bution. Motivated by Tukey’s depth function for location parameters, we introduce
a new concept called matrix depth. The robust matrix estimator is defined as the
deepest covariance matrix with respect to the observations. This estimator achieves
minimax optimal rates under the ε-contamination model.
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3.1. Matrix depth. The main idea of Tukey’s median is to project multivariate
data onto all one-dimensional subspaces and obtain the deepest point by evaluating
depths in those one-dimensional subspaces. Such an idea can be used to estimate
covariance matrices. Formally speaking, for X ∼ N(0,�), the population median
of |uT X|2 is βuT �u for every u ∈ Sp−1 with some absolute constant β defined
later. Thus, an estimator of � can be obtained by estimating variance on every
direction.

Inspired by the above idea, we define the matrix depth of a positive semidefinite
� ∈ Rp×p with respect to a distribution P as

D(�,P) = inf
u∈Sp−1

min
{
P

{∣∣uT X
∣∣2 ≤ uT �u

}
,P

{∣∣uT X
∣∣2 ≥ uT �u

}}
,

where X ∼ P. To adapt to various structure constraints in high-dimensional set-
tings, it is also helpful to define matrix depth by a subset of the directions Sp−1.
Given a subset U ⊂ Sp−1, the matrix depth of � with respect to a distribution P

relative to U is defined as

DU (�,P) = inf
u∈U min

{
P

{∣∣uT X
∣∣2 ≤ uT �u

}
,P

{∣∣uT X
∣∣2 ≥ uT �u

}}
,

where X ∼ P. We adopt the notation DSp−1(�,P) = D(�,P), and when U is a
singleton set, we use Du(�,P) instead of D{u}(�,P). At the population level, the
following proposition shows that the true covariance matrix, multiplied by a scalar,
is the deepest positive semidefinite matrix.

PROPOSITION 3.1. Define β through the equation

(3) �(
√

β) = 3

4
,

where � is the cumulative distribution function of N(0,1). Then, for any U ⊂
Sp−1, we have DU (β�,P�) = 1

2 .

Given i.i.d. observations {Xi}ni=1 from P, the matrix depth of � with respect to
{Xi}ni=1 is defined as

DU
(
�, {Xi}ni=1

) = min
u∈U min

{
1

n

n∑
i=1

I
{∣∣uT Xi

∣∣2 ≤ uT �u
}
,

(4)
1

n

n∑
i=1

I
{∣∣uT Xi

∣∣2 ≥ uT �u
}}

.

Note that there are only n + 1 possible values for 1
n

∑n
i=1 I{|uT Xi |2 ≤ uT �u},

which allows us to use minimum rather than infimum when defining the em-
pirical matrix depth function in (4). We adopt the notation DSp−1(�, {Xi}ni=1) =
D(�, {Xi}ni=1). A general estimator for β� is given by

(5) �̂ = arg max
�∈F DU

(
�, {Xi}ni=1

)
,
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where F is some matrix class to be specified later. One can either use F to im-
pose various structure constraints in high-dimensional settings or use it to promote
positive-definiteness of the estimator. The estimator of � is

(6) �̂ = �̂/β,

where β is defined through (3).

3.2. General covariance matrix. Consider the following covariance matrix
class with bounded spectra:

F(M) = {
� = �T ∈ Rp×p : � � 0, smax(�) ≤ M

}
,

where � � 0 means � is positive semidefinite and M > 0 is some absolute con-
stant that does not scale with p or n.

To define an estimator, it is natural to pick U = Sp−1. Recall we adopt the
notation DSp−1(�, {Xi}ni=1) = D(�, {Xi}ni=1). Define

(7) �̂ = arg max
��0

D
(
�, {Xi}ni=1

)
.

When (7) has multiple maxima, �̂ is understood as any positive semidefinite matrix
that attains the deepest level. A final estimator of � is defined by �̂ = �̂/β as in
(6). The error bound of �̂ is stated in the following theorem.

THEOREM 3.1. Assume that ε < 1/5. Then there exist absolute constants
C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying C1

p+log(1/δ)
n

< 1, we have

‖�̂ − �‖2
op ≤ C

((
p

n
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈F(M).

The convergence rate for the deepest covariance is (p/n)∨ε2 under the squared
operator norm. A matching lower bound is given by the following theorem.

THEOREM 3.2. There exist some absolute constants C,c > 0 such that

inf
�̂

sup
�∈F(M)

sup
Q

P(ε,�,Q)

{
‖�̂ − �‖2

op ≥ C

(
p

n
∨ ε2

)}
≥ c,

for any ε ∈ [0,1].

Theorems 3.1 and 3.2 show that the minimax rate for estimating a covariance
matrix under Huber’s ε-contamination model is (p/n) ∨ ε2. The part p/n is the
classical parametric rate [12] for estimating a covariance matrix without contami-
nation under the squared spectral norm.



1940 M. CHEN, C. GAO AND Z. REN

3.3. Bandable covariance matrix. In many high-dimensional applications
such as time series data in finance, the covariates of data are collected in an or-
dered fashion. This leads to a natural banded estimator of the covariance matrix
[2, 9]. Define the class of covariance matrices with a banded structure by

Fk = {
� = (σij ) � 0 : σij = 0 if |i − j | > k

}
.

Next, we propose a notion of matrix depth function relative to some subset Uk ⊂
Sp−1 defined particularly for the class Fk . For any l1, l2 ∈ [p], define V[l1,l2] =
{u = (ui) ∈ Sp−1 : ui = 0 if i /∈ [l1, l2]}. Then V[l1,l2] is equivalent to Sl2−l1 on the
coordinates {l1, . . . , l2}. The depth function is defined relatively to the following
subset:

Uk =
p+1−2k⋃

l=1

V[l,l+2k−1] if 2k ≤ p and Uk = V[1,p] = Sp−1 if 2k > p.

Then a robust covariance matrix estimator with banded structure is defined as

(8) �̂ = arg max
�∈Fk

DUk

(
�, {Xi}ni=1

)
.

An estimator for � is �̂ = �̂/β as in (6).
To study the convergence rate of �̂, we consider the class Fk(M) = Fk ∩F(M).

The convergence rate of �̂ under the ε-contamination model is stated in the fol-
lowing theorem.

THEOREM 3.3. Assume that ε < 1/5. Then there exist absolute constants
C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying C1(

k+logp
n

+ log(1/δ)
n

) < 1,
we have

‖�̂ − �‖2
op ≤ C

((
k + logp

n
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈ Fk(M).

Theorem 3.3 states that the convergence rate for �̂ under the class Fk(M)

is k+logp
n

∨ ε2. When ε2 � k+logp
n

, this is exactly the minimax rate in [9].
Therefore, Theorem 3.3 extends the result of [9] to a robust setting. If the rate
k+logp

n
is pursued, then the maximum number of outliers that �̂ can tolerate is

O(
√

n(k + logp)).
Besides matrices with exact banded structure, we also consider the following

class of bandable matrices, in which the variables Xi and Xj become less corre-
lated for larger |i − j |. That is,

Fα(M,M0,Mmin) =
{
� = (σij ) ∈ F(M) : max

j

∑
{i:|i−j |>k}

|σij | ≤ M0k
−α,

smin(�) > Mmin

}
,
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where M0 > 0 and 0 < Mmin < M are some absolute constants that do not scale
with p or n. This covariance class is mainly motivated by many scientific appli-
cations such as climatology and spectroscopy. See, for example, [24] and [52].
The parameter α specifies how fast the magnitude of σij decays to zero along the
off-diagonal direction.

THEOREM 3.4. Consider the robust banded estimator �̂ in Theorem 3.3
with k = �n 1

2α+1 � ∧ p. In addition, we assume that ε < 1/5. Then there ex-
ist absolute constants C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying

C1
min(n

1
2α+1 +logp,p)+log(1/δ)

n
< 1, we have

‖�̂ − �‖2
op ≤ C

((
min

{
n− 2α

2α+1 + logp

n
,
p

n

}
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1−2δ uniformly over all � ∈ Fα(M,M0,Mmin)

and Q.

REMARK 3.1. Unlike Theorem 3.3, in Theorems 3.4 we impose a condition
smin(�) > Mmin on the smallest eigenvalue of � while the minimax rate-optimal
result in Cai, Zhang and Zhou [9] does not require such a condition in the uncon-
taminated setting. The reason we consider a slightly smaller parameter space is
mainly due to our depth-based estimation approach. Indeed, since a bandable ma-
trix � is not necessarily banded, the analysis naturally takes a bias-variance trade-
off with the pivotal matrix being �k = (σij I{|i − j | ≤ k}), a banded version of
�. Our analysis measures the bias via the matrix depth. The condition on smin(�)

guarantees the proper behavior of the depth of �k , which can be well controlled
solely by the bandwidth k.

To close this section, we show in the following theorem that both rates in The-
orems 3.3 and 3.4 are minimax optimal under the ε-contamination model.

THEOREM 3.5. Assume p ≤ exp(γ n) for some γ > 0. There exist some abso-
lute constants C,c > 0 such that

inf
�̂

sup
�∈Fk(M)

sup
Q

P(ε,�,Q)

{
‖�̂ − �‖2

op ≥ C

(
k + logp

n
∨ ε2

)}
≥ c

and

inf
�̂

sup
�∈Fα

sup
Q

P(ε,�,Q)

{
‖�̂ − �‖2

op ≥ C

(
min

{
n− 2α

2α+1 + logp

n
,
p

n

}
∨ ε2

)}
≥ c,

for any ε ∈ [0,1], where Fα = Fα(M,M0,Mmin).
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Theorems 3.3, 3.4 and 3.5 give minimax rates for the classes of banded and
bandable covariance matrices. When ε = 0, the minimax rates of the two classes
are given in [9]. Both rates are achieved by a tapered sample covariance estima-
tor when there is no contamination. In comparison, when ε > 0, we achieve the
minimax rate by incorporating the structural assumption into the definition of the
matrix depth function.

3.4. Sparse covariance matrix. We consider sparse covariance matrices in this
section. For a subset of coordinates S ⊂ [p], define G(S) = {G = (gij ) ∈ Rp×p :
gij = 0 if i /∈ S or j /∈ S}. Define G(s) = ⋃

S⊂[p]:|S|≤s G(S). Then the sparse co-
variance class is

Fs = {
� � 0 : � − diag(�) ∈ G(s)

}
.

In other words, there are s covariates in a block that are correlated with each other.
The remaining covariates are independent from this block and from each other.
Such sparsity structure has been extensively studied in the problem of sparse prin-
cipal component analysis [5, 33, 37, 53], and is different from the notion of degree
sparsity studied in [1, 10]. Estimating the whole covariance matrix under such
sparsity was considered by [6].

To take advantage of the sparsity structure, we define a subset Us ⊂ Sp−1 for
the matrix depth function. For any S ⊂ [p], define VS = {u = (ui) ∈ Sp−1 : ui =
0 if i /∈ S}. The depth function is defined relatively to the following subset:

Us = ⋃
S⊂[p]:|S|=2s

VS.

A robust sparse covariance matrix estimator is defined by

(9) �̂ = arg max
�∈Fs

DUs

(
�, {Xi}ni=1

)
.

An estimator for � is �̂ = �̂/β as in (6).
The error of �̂ is studied in the class Fs(M) = Fs ∩ F(M) under the ε-

contamination model.

THEOREM 3.6. Assume that ε < 1/5. Then there exist absolute constants

C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying C1
s log ep

s
+log(1/δ)

n
< 1, we have

‖�̂ − �‖2
op ≤ C

((
s log ep

s

n
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈ Fs(M).

The next theorem shows that the upper bound in Theorem 3.6 is optimal under
the ε-contamination model.



ROBUST COVARIANCE AND SCATTER MATRIX ESTIMATION 1943

THEOREM 3.7. There are some absolute constants C,C1, c > 0 such that as

long as
s log ep

s

n
≤ C1 holds, then

inf
�̂

sup
�∈Fs (M)

sup
Q

P(ε,�,Q)

{
‖�̂ − �‖2

op ≥ C

(
s log ep

s

n
∨ ε2

)}
≥ c,

for any ε ∈ [0,1].
Theorems 3.6 and 3.7 together show that the minimax rate of the covariance

matrix class Fs(M) under the ε-contamination model is
s log ep

s

n
∨ ε2. When ε = 0,

the rate
s log ep

s

n
is obtained by [6] for a closely related matrix class that is a subset

of Fs(M).

3.5. Sparse principal component analysis. As an application of Theorem 3.6,
we consider sparse principal component analysis. We adopt the spiked covariance
model [3, 33]. That is,

� = V �V T + Ip,

where V ∈ Rp×r is an orthonormal matrix and � is a diagonal matrix with ele-
ments λ1 ≥ λ2 ≥ · · · ≥ λr > 0. When V has s nonzero rows [5, 6], � is in the
class Fs . The goal is to estimate the subspace projection matrix V V T . We propose
a robust estimator by applying singular value decomposition to �̂ in (9). That is,
define V̂ ∈ O(p, r) to be the matrix whose lth column is the lth eigenvector of �̂.
Then V̂ V̂ T is a robust estimator of V V T .

To study the convergence rate of V̂ , define the covariance matrix class as

Fs,λ(M, r) = {
� = V �V T + Ip : λ ≤ λr ≤ · · · ≤ λ1 ≤ M,V ∈ O(p, r),∣∣supp(V )

∣∣ ≤ s
}
,

where O(p, r) is the class of p × r orthonormal matrices and supp(V ) is the set
of nonzero rows of V . The rank r is assumed to be bounded by a constant.

THEOREM 3.8. Assume that ε < 1/5. Then there exist absolute constants

C,C1,C2 > 0, such that for any δ ∈ (0,1/2) satisfying C1((
s log ep

s

nλ2 ∨ ε2

λ2 ) +
log(1/δ)

nλ2 ) ≤ 1 and r ≤ C2, we have

∥∥V̂ V̂ − V V T
∥∥2

F ≤ C

((
s log ep

s

nλ2 ∨ ε2

λ2

)
+ log(1/δ)

nλ2

)
,

with P(ε,�,Q)-probability at least 1−2δ uniformly over all � ∈ Fs,λ(M, r) and Q.

According to Theorem 3.8, the convergence rate for principal subspace estima-

tion is
s log ep

s

nλ2 ∨ ε2

λ2 . We have the rate ε2/λ2 instead of the usual ε2 to account for

the outliers in the previous cases. As shown in the next theorem, the rate ε2/λ2 is
in fact optimal for sparse principal component analysis.
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THEOREM 3.9. There exist some absolute constants C,c, c′ > 0 such that

inf
�̂

sup
�∈Fs,λ(M,r)

sup
Q

P(ε,�,Q)

{∥∥V̂ V̂ − V V T
∥∥2

F ≥ C

(
s log ep

s

nλ2 ∨ ε2

λ2

)
∧ c′

}
≥ c,

for any ε ∈ [0,1].

Note that Theorems 3.8 and 3.9 imply that the minimax rate of sparse PCA

under the ε-contamination model is
s log ep

s

nλ2 ∨ ε2

λ2 . When ε = 0, our minimax rate
reduces to the case without contamination, which was previously obtained by [5,
6]. It is interesting that for this class, the term in the minimax rate that charac-
terizes the influence of contamination is ε2

λ2 , compared with ε2 in all the previous
theorems. We will explain this curious fact by a unified lower bound argument in
Section 5.

To close this section, we briefly discuss the case where M in various covari-
ance matrix classes is not necessarily a constant. For unstructured covariance class
F(M) in Theorem 3.1, banded covariance class Fk(M) in Theorem 3.3, sparse
covariance class Fs(M) in Theorem 3.6 and spiked covariance class Fs,λ(M, r)

in Theorem 3.8, all the upper and lower bounds can be readily extended so that
the minimax rates with respect to ‖�̂ − �‖op or ‖V̂ V̂ − V V T ‖F will include an
extra factor of M . For the bandable class Fα(M,M0,Mmin) in Theorem 3.3, we
can assume all three values M , M0, Mmin are at the same order and scale together.
For this case, all the upper and lower bounds can also be readily extended so that
the minimax rates linearly depend on M .

4. Extension to elliptical distributions. In Section 3, we considered estimat-
ing the covariance matrix under the Gaussian distribution P� = N(0,�). Though
we show that our covariance estimator via matrix depth function is robust to arbi-
trary outliers, it is not clear whether such property also holds under more general
distributions. In real applications, the data may not follow a Gaussian distribution
and can have very heavy tails. It is even possible that the distribution may not have
finite first or second moment. In this section, we extend the Gaussian setting in
Section 3 to general elliptical distributions. We show that at the population level,
the scatter matrix of an elliptical distribution achieves the maximum of the matrix
depth function. This fact motivates us to use the matrix depth estimator (5) in the
elliptical distribution setting. Indeed, all error bounds we prove under the Gaus-
sian distribution continue to hold under the elliptical distributions. Therefore, the
proposed estimator is also adaptive to the shape of the distribution. As is pointed
out by a referee, the estimator induced by matrix depth is well defined even if the
underlying distribution is not elliptical. It can be interpreted as a multivariate ana-
logue to the median absolute deviation and can serve as a robust scale estimator of
the distribution.

We start by introducing the definition of an elliptical distribution.
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DEFINITION 4.1 ([23]). A random vector X ∈ Rp follows an elliptical distri-
bution if and only if it has the representation X = μ + ξAU , where μ ∈ Rp and
A ∈ Rp×r are model parameters. The random variable U is distributed uniformly
on the unit sphere Sp−1 and ξ ≥ 0 is a random variable in R independent of U .
Letting � = AAT and we denote X ∼ EC(μ,�, ξ).

For simplicity, we consider the model with μ = 0. We want to remark two points
on this definition. First, the representation EC(0,�, ξ) is not unique. This is be-
cause EC(0,�, ξ) = EC(0, a−2�,aξ) for any a > 0. Second, for an elliptical ran-
dom variable X ∼ EC(0,�, ξ) with smin(�) > 0, given any unit vector u ∈ Sp−1,
the distribution of uT X/

√
uT �u is independent of u. In other words, �−1/2X

is spherically symmetric. Motivated by these two points, we define the canonical
representation of an elliptical distribution as follows.

DEFINITION 4.2. For a nondegenerate elliptical distribution EC(0,�, ξ) in
the sense that smin(�) > 0, EC(0,�, η) is its canonical representation if and only

if � = a−2� and η = aξ for some a > 0, and P�(
|uT X|2
uT �u

≤ 1) = 1
2 , where P� =

EC(0,�, η). From now on, whenever we use P� = EC(0,�, η), it always denotes
the canonical representation.

To guarantee the existence and uniqueness of the canonical representation, we
need the following assumption on the marginal distribution. Define the distribution
function:

(10) G(t) = P�

( |uT X|2
uT �u

≤ t

)
.

Note that G(t) does not depend on the specific direction u ∈ Sp−1 used in the
definition. We assume that G(t) is continuous at t = 1 and there exist some τ ∈
(0,1/2) and α,κ > 0 such that

(11) inf|t |≥α

∣∣G(1) − G(1 + t)
∣∣ ≥ τ and inf|t |<α

|G(1) − G(1 + t)|
|t | ≥ κ−1/2.

Intuitively speaking, we require G(·) to be strictly increasing in a neighborhood of
t = 1.

PROPOSITION 4.1. For an elliptical distribution EC(0,�, η) that satisfies
(11), its canonical representation exists and is unique.

The existence and uniqueness of the canonical representation of EC(0,�, η)

imply that the matrix � is a well-defined object. We call � the scatter matrix. The
following proposition shows that the scatter matrix � is actually the deepest one
with respect to the matrix depth function.
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PROPOSITION 4.2. For any subset U ⊂ Sp−1, we have DU (�,P�) = 1
2 .

When X ∼ EC(0,�, η) has a density function, it must have the form p(x) =
f (xT �−1x) for some univariate function f (·) [23]. Examples of elliptical distri-
butions include:

1. Multivariate Gaussian. Density function p(x) ∝ exp(−βxT �−1x/2), where
the constant β is defined in (3). Proposition 3.1 implies that β−1� is the Gaus-
sian covariance matrix.

2. Multivariate Laplace. Density function p(x) ∝ exp(−
√

βxT �−1x), where the
constant β is determined through the canonical representation. The covariance
matrix has formula (p + 1)β−1�.

3. Multivariate t . Density function p(x) ∝ (1 + βxT �−1x/d)−
d+p

2 , where d is
the degree of freedom. The constant β is determined through the canonical
representation. When d > 2, the covariance matrix is d

d−2β−1�. Otherwise, the
covariance does not exist.

4. Multivariate Cauchy. This is a special case of multivariate t distribution when

d = 1. The density function is p(x) ∝ (1 + βxT �−1x)−
p+1

2 .

PROPOSITION 4.3. For all the four examples above, β is an absolute con-
stant independent of p. Moreover, the condition (11) holds with absolute constants
τ,α, κ independent of p.

Let us proceed to consider estimating the scatter matrix � under the ε-
contamination model P(ε,�,Q) = (1− ε)P� + εQ. This requires the estimator to be
robust in two senses. First, it should be resistant to the outliers. Second, it should
be adaptive to the distribution. Using the property of the scatter matrix spelled out
in Proposition 4.2, we show that the depth-induced estimator (5) enjoys optimal
rates of convergence in various settings.

THEOREM 4.1. Consider the estimator �̂ defined in (7). Assume ε < τ/3 and
the distribution P� = EC(0,�, η) satisfies (11). Then, there exist absolute con-
stants C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying C1

p+log(1/δ)
n

< 1, we
have

‖�̂ − �‖2
op ≤ Cκ

((
p

n
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈F(M).

THEOREM 4.2. Consider the estimator �̂ defined in (8). Assume ε < τ/3 and
the distribution P� = EC(0,�, η) satisfies (11). Then there exist absolute con-
stants C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying C1

k+logp+log(1/δ)
n

< 1,
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we have

‖�̂ − �‖2
op ≤ Cκ

((
k + logp

n
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈ Fk(M).

THEOREM 4.3. Consider the estimator �̂ defined in (8) with k = �n 1
2α+1 �∧p.

Assume ε < τ/3 and the distribution P� = EC(0,�, η) satisfies (11). Then there
exist absolute constants C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying

C1
min(n2α+1+logp,p)+log(1/δ)

n
< 1, we have

‖�̂ − �‖2
op ≤ Cκ

((
min

{
n− 2α

2α+1 + logp

n
,
p

n

}
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all � ∈ Fα(M,M0,Mmin)

and Q.

THEOREM 4.4. Consider the estimator �̂ defined in (9). Assume ε < τ/3 and
the distribution P� = EC(0,�, η) satisfies (11). Then there exist absolute constants

C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying C1
s log ep

s
+log(1/δ)

n
< 1, we have

‖�̂ − �‖2
op ≤ Cκ

((
s log ep

s

n
∨ ε2

)
+ log(1/δ)

n

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈ Fs(M).

THEOREM 4.5. Consider �̂ defined in (9), and define V̂ ∈ O(p, r) to be the
matrix whose lth column is the lth eigenvector of �̂. Assume the distribution P� =
EC(0,�, η) satisfies (11). Then there exist absolute constants C,C1,C2 > 0, such

that for any δ ∈ (0,1/2) satisfying C1κ((
s log ep

s

nλ2 ∨ ε2

λ2 ) + log(1/δ)

nλ2 ) ≤ 1 and r ≤ C2,
we have

∥∥V̂ V̂ − V V T
∥∥2

F ≤ Cκ

((
s log ep

s

nλ2 ∨ ε2

λ2

)
+ log(1/δ)

nλ2

)
,

with P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈ Fs,λ(M, r).

REMARK 4.1. Theorem 4.5 requires the scatter matrix � to belong to
Fs,λ(M, r), which means that � = V �V T + Ip . While the Ip part has a clear
meaning for covariance matrix, it may not be a suitable way of modeling the
scatter matrix. However, we may consider a more general space which contains
� = V �V T + σ 2Ip for some absolute constant σ 2 bounded in some interval
[M−1,M]. Then the result of Theorem 4.5 still holds.
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REMARK 4.2. The problem of finding the leading principal subspace for
EC(0,�, η) was coined as elliptical component analysis by [28]. While [28] ex-
tended sparse principal component analysis to the elliptical distributions, the influ-
ence of outliers was not investigated. In comparison, we show that our estimator is
robust to both heavy-tailed distributions and the presence of outliers.

REMARK 4.3. Theorems 4.1–4.5 identify a linear dependence on the number
κ in the error bounds. This dependence was previously revealed in the literature
when ε = 0 and p = 1. In this case, our proposed estimator is the median absolute
deviation that enjoys asymptotic normality

√
n(γ̂ − γ ) � N(0, 1

4|G′(1)|2 ) (see Ex-

ample 5.24 in [49]). Given the fact that |G(1) − G(1 + t)|/|t | ≈ |G′(1)| when t is
small, κ plays a similar role as |G′(1)|−2.

To close this section, we remark that the estimators via matrix depth function
does not require the knowledge of the exact elliptical distribution. They are adap-
tive to all EC(0,�, η) that satisfy the condition (11). Since the class of elliptical
distributions includes multivariate Gaussian as a special case, the lower bounds
in Section 3 imply that the convergence rates obtained in this section are opti-
mal.

5. A general minimax lower bound. In this section, we provide a general
minimax theory for ε-contamination model. Given a general statistical experiment
{Pθ : θ ∈ �}, recall the notation P(ε,θ,Q) = (1 − ε)Pθ + εQ. If we denote the min-
imax rate for the class {P(ε,θ,Q) : θ ∈ �,Q} under some loss function L(θ1, θ2)

by M(ε), then most rates we obtained in Section 2 and Section 3 can be writ-
ten as M(ε) 	 M(0) ∨ ε2. The only exception is M(ε) 	 M(0) ∨ (ε2/λ2) for
sparse principal component analysis. Therefore, a natural question is whether we
can have a general theory for the ε-contamination model that governs those min-
imax rates. The answer for this question lies in a key quantity called modulus of
continuity, whose definition goes back to the seminal works of Dohono and Liu
[18] and Donoho [16].

The modulus of continuity for the ε-contamination model is defined as

(12) ω(ε,�) = sup
{
L(θ1, θ2) : TV(Pθ1,Pθ2) ≤ ε/(1 − ε); θ1, θ2 ∈ �

}
.

The quantity ω(ε,�) measures the ability of the loss L(θ1, θ2) to distinguish two
distributions Pθ1 and Pθ2 that are close in total variation at the order of ε. A high
level interpretation is that two distributions Pθ1 and Pθ2 as close as ε/(1− ε) under
total variation distance cannot be distinguished at the presence of arbitrary contam-
ination distribution with proportion ε. Thus, an error at the order of ω(ε,�) cannot
be avoided for the loss L(·, ·). A general minimax lower bound depending on the
modulus of continuity is stated in the following theorem.
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THEOREM 5.1. Suppose there is some M(0) such that for ε = 0

(13) inf
θ̂

sup
θ∈�

sup
Q

P(ε,θ,Q)

{
L(θ̂, θ) ≥M(ε)

} ≥ c

holds. Then for any ε ∈ [0,1], (13) holds for M(ε) 	 M(0) ∨ ω(ε,�).

Theorem 5.1 shows that the quantity ω(ε,�) is the price of robustness one has
to pay in the minimax rate. To illustrate this result, let us consider the location
model in Section 2 where Pθ = N(θ, Ip). Since ‖θ1 − θ2‖2 = 2D(Pθ1 ‖ Pθ2) ≥
4TV(Pθ1,Pθ2)

2, we have ω(ε,�) � ε2. Besides, it is well known that M(0) 	 p/n

for the location model, and thus we obtain the rate (p/n) ∨ ε2 as the lower bound,
which implies Theorem 2.2. Similar calculation can also be done for the covariance
model. In particular, for sparse principal component analysis, we get ω(ε,�) 	
(ε/λ)2. The details of derivation are given in the Supplementary Material [11].

6. Discussion.

6.1. Impact of contamination on convergence rates. For all the problems we
consider in this paper, the minimax rate under the ε-contamination model has the
expression M(ε) 	 M(0) ∨ ω(ε,�). Define

ε∗ = sup
{
ε : ω(ε,�) ≤ M(0)

}
.

Then ε∗ is the maximal proportion of outliers under which the minimax rate ob-
tained without outliers can still be preserved. Thus, nε∗ is the maximal expected
number of outliers for an optimal procedure to achieve the minimax rate as if there
is no contamination.

Compared to the minimax rate, consistency is easier to achieve. Suppose
M(0) = o(1), then the necessary and sufficient condition for consistency is
ω(ε,�) = o(1). In most cases where ω(ε,�) 	 ε2, the condition reduces to
ε = o(1), meaning that as long as the expected number of outliers is at a smaller
order of n, the optimal procedure is consistent under the ε-contamination model.

6.2. Noncentered observations. In previous sections, we assume that the ob-
servations are sampled from a centered distribution. This is essential for the pro-
posed matrix depth method to work. It is important to extend our method to non-
centered data in order to make it more practical.

For the Gaussian case, our inspiration is from the simple fact that 1√
2
(X1 −

X2) ∼ N(0,�), where X1,X2 ∼ N(θ,�) are independent observations with with
θ ∈ Rp being an arbitrary mean vector. This motivates the following definition of
a U-version empirical matrix depth function. That is,

D̄U
(
�, {Xi}ni=1

) = min
u∈U min

{
1(n
2

) ∑
i<j

I
{∣∣uT (Xi − Xj)

∣∣2 ≤ 2uT �u
}
,

1(n
2

) ∑
i<j

I
{∣∣uT (Xi − Xj)

∣∣2 ≥ 2uT �u
}}

.
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Then a covariance matrix estimator �̂ is defined through (5) and (6) with
DU (�, {Xi}ni=1) replaced by D̄U (�, {Xi}ni=1). A similar pairwise difference trick
was used by [21] in a different setting. It turns out that all the non-asymptotic
bounds in Section 3 continue to hold for this new estimator. Due to limited space,
we provide more details in Section A of the Ssupplementary Material [11], includ-
ing the extension to the noncentered elliptical distributions, based on an extension
of the concentration inequality for suprema of some empirical process to its corre-
sponding U-process.

6.3. Connection with δ-breakdown point. The notion of breakdown point [25]
has been widely used to quantify the influence of outliers for a given estimator. Its
relation to the ε-contamination model was previously explored through the notion
of maximum bias in the context of robust covariance matrix estimation; see, for
example, [58]. In this section, we discuss the connection between a population
variation of the breakdown point and Huber’s ε-contamination model. Let us start
by the definition given in [14, 15, 17]. Consider the observations {Xi}ni=1 that
consist of two parts {Yi}n1

i=1 and {Zi}n2
i=1 with n1 +n2 = n. We view {Zi}n2

i=1 as the
outliers. Then a robust estimator θ̂ (·) should not be influenced much by the outliers
if the proportion n2/(n1 + n2) is small. The breakdown point of θ̂ with respect to
Y is defined as

(14) ε(θ̂ ,Y) = min
{

n2

n1 + n2
: sup
{Yi}n1

i=1∈Y
sup

{Zi}n2
i=1

∥∥θ̂({Yi}n1
i=1

) − θ̂
({Xi}ni=1

)∥∥ = ∞
}
,

where ‖ · ‖ is some norm. In its original form, the supremum of {Yi}n1
i=1 over Y

does not appear in the definition. However, {Yi}n1
i=1 are usually assumed to be in a

general position or follow some distribution. Thus, it is natural to apply this modifi-
cation. Now let us consider the ε-contamination model P(ε,θ,Q) = (1−ε)Pθ +εQ.
For i.i.d. observations X1, . . . ,Xn ∼ P(ε,θ,Q), it can be decomposed into two parts
{Yi}n1

i=1 and {Zi}n2
i=1, where n2 ∼ Binomial(n, ε) and n1 = n−n2. Conditioning on

n1, Y1, . . . , Yn1 ∼ Pθ and Z1, . . . ,Zn2 ∼ Q. Observe that n2
n1+n2

≈ ε, which means
the ε in the contamination model plays a similar role to the ratio n2

n1+n2
in (14).

Motivated by this fact, we introduce a population variation of (14). Given an esti-
mator θ̂ , its δ-breakdown point with respect to some parameter space � is defined
as

ε(θ̂ ,�, δ) = min
{
ε : sup

θ∈�

sup
Q

P(ε,θ,Q)

{
L

(
θ̂
({Yi}n1

i=1

)
,

(15)
θ̂
({Xi}ni=1

))
> δ

}
> c

}
,

where L(·, ·) is some loss function, and c ∈ (0,1) is some small constant. We
may view (16) as the population variation of (14) because supQ corresponds to
sup{Zi}n2

i=1
, supθ∈� corresponds to sup{Yi}n1

i=1∈Y and ε corresponds to n2
n1+n2

. We
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allow δ to be a sequence of n instead of ∞ because L(·, ·) can be a bounded loss
such as the one considered in the PCA problem in this paper. When δ = ∞ for
an unbounded loss and the bias term dominates the loss, the δ-breakdown point
becomes the lower bound of the contamination level ε for which the ε-maxbias
is infinite; see, for example, [58]. In general, the δ-breakdown point means the
minimal ε such that an estimator θ̂ is influenced at least by the level of δ under
the ε-contamination model. In fact, ε(θ̂ ,�, δ) is a quantity directly related to the
lower bound of the convergence rate of θ̂ under the ε-contamination model. This
is rigorously stated in the following theorem.

THEOREM 6.1. Assume the loss function is symmetric and satisfies

L(θ1, θ2) ≤ A
(
L(θ1, θ3) + L(θ2, θ3)

) ∀θ1, θ2, θ3 ∈ � with some A > 0,(16)

sup
θ∈�

P n
θ

{
L(θ̂, θ) >

1

2
c1A

−1δ

}
(17)

≥ sup
θ∈�

P n′
θ

{
L(θ̂, θ) >

1

2
A−1δ

}
∀n′ ≥ n

3
,

with some constant c1 ∈ (0,1). Then, for ε = ε(θ̂ ,�, δ) < 1
2 , we have

sup
θ∈�

sup
Q

P(ε,θ,Q)

{
L(θ̂, θ) >

1

2
c1A

−1δ

}
>

1

3
c,

for some c > 0 in (16) and sufficiently large n.

Before discussing the implications of Theorem 6.1, we remark on assump-
tion (17). The notation P n

θ means the estimator θ̂ (·) takes a random argument
θ̂ ({Yi}ni=1) with distribution Y1, . . . , Yn ∼ Pθ . Thus, assumption (17) simply means
when the sample sizes n,n′ are at the same order, the lower bounds remain at the
same order. In most cases including all the examples considered in this paper, (17)
automatically holds.

A general lower bound based on the notion of δ-breakdown point is provided
by Theorem 6.1. Given an estimator θ̂ and an ε-contamination model, the solution
δ to the equation

(18) ε(θ̂ ,�, δ) = ε

lower bounds its rate of convergence. When θ̂ is a minimax optimal estimator with
rate M(ε), we obtain M(ε) � δ. In other words, the convergence rate δ under
the ε-contamination model automatically implies a δ-breakdown point with the
same ε.
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6.4. A unified framework of robustness and rate of convergence. Huber’s ε-
contamination model is very classical in robust statistics, and allows for a deeper
investigation than the breakdown point alone. For example, it has been well studied
how much bias an estimator wound suffer under the contamination model via the
concept of maxbias in various models, including [58]. In this paper, we demon-
strate that Huber’s ε-contamination model allows a simultaneous joint study of
robustness and rate of convergence of an estimator in the minimax sense. There
are some important works that studied such properties of robust estimators under
ε-contamination model. We mention [4, 31, 32] among others. However, such re-
sults in high-dimensional settings are rarely explored. This is our major reason to
develop the minimax rate optimality theory of robust covariance matrix estima-
tion under this framework. We illustrate the importance of this view by revisit-
ing the componentwise median studied in Section 2. Without contamination, the
componentwise median is a location estimator with minimax rate under Gaussian
distribution. It is also robust because of its high breakdown point [17]. However,
Proposition 2.1 shows that its performance under the presence of contamination is
not optimal. In contrast, Tukey’s multivariate median shows its advantage over the
componentwise median by obtaining optimality under the ε-contamination model.
This example suggests that the rate optimality and the robustness property of an
estimator should be studied together rather than separately.

Recently, Donoho and Montanari [19] have studied Huber’s M-estimator under
the ε-contamination model in a regression setting where p/n converges to a con-
stant. They find a critical ε∗ that determines the variance breakdown point. The
setting of ε-contamination model plays a critical role in their work to illustrate
both efficiency and robustness of Huber’s M-estimator in a unified way.

7. Proofs of main results. This section provides proofs for the results in Sec-
tion 3.

7.1. Auxiliary lemmas. For i.i.d. data {Xi}ni=1 from a contaminated distribu-
tion (1 − ε)P + εQ, it can be written as {Yi}n1

i=1 ∪ {Zi}n2
i=1. Marginally, we have

n2 ∼ Binomial(n, ε) and n1 = n−n2. Conditioning on n1 and n2, {Yi}n1
i=1 are i.i.d.

from P and {Z}n2
i=1 are i.i.d. from Q. The following lemmas control the ratio n2/n1

and characterize an important property, respectively. Their proofs are given in the
Supplementary Material [11].

LEMMA 7.1. Assume ε < 1/5. For any δ > 0 satisfying
√

1
2n

log(1/δ) < 1/5,
we have

(19)
n2

n1
≤ ε

1 − ε
+ 25

12

√
1

2n
log(1/δ),
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with probability at least 1 − δ. Moreover, assume ε2 > 1/n, and then we have

(20)
n2

n1
> c′ε,

with probability at least 1/2 for some constant c′ > 0.

LEMMA 7.2. Consider any parametric family {Pθ : θ ∈ �}. Then

{
(1 − ε1)Pθ + ε1Q : θ ∈ �,Q

} ⊂ {
(1 − ε2)Pθ + ε2Q : θ ∈ �,Q

}
,

holds for any 0 ≤ ε1 < ε2 ≤ 1.

Recall that for any S ⊂ [p], VS = {u = (ui) ∈ Sp−1 : ui = 0 if i /∈ S}. In partic-
ular, if S = {l1, . . . , l2}, then VS = V[l1,l2] defined in Section 3.3. Moreover, VS =
Sp−1 if S = {1, . . . , p}. Define a subset IHu,t of Rp as IHu,t = {y : |uT y| ≤ t}. Fi-
nally, we need the following concentration inequality for suprema of the empirical
process indexed by these subsets IHu,t , where u ∈ VS and t ∈ R. Its proof is given
in the Supplementary Material [11] by using Dudley’s entropy integral [20] and
VC classes [50].

LEMMA 7.3. For i.i.d. real-valued data X1, . . . ,Xn from distribution P, we
have for any S ⊂ [p], with probability at least 1 − δ,

sup
u∈VS,t∈R

∣∣P(IHu,t ) − Pn(IHu,t )
∣∣ ≤

√
1440eπ

1 − e−1

√
3 + 2|S|

n
+

√
log(1/δ)

2n
,

where Pn denotes the empirical distribution of {Xi}ni=1.

7.2. Proofs of upper bounds in Section 3. We first prove the following master
theorem.

THEOREM 7.1. For some index subsets S1, . . . , Sm ⊂ [p] with maxi |Si | ≤ s,
consider the estimator �̂ defined in (6) with U = ⋃m

i=1 VSi
. Assume ε < 1/5. Then

there exist absolute constants C,C1 > 0, such that for any δ ∈ (0,1/2) satisfying
C1

1+s+log(m/δ)
n

< 1, we have

sup
u∈U

∣∣uT �̂u − uT �u
∣∣ ≤ C

(
ε +

√
1 + s + log(m/δ)

n

)
,

P(ε,�,Q)-probability at least 1 − 2δ uniformly over all Q and � ∈ F(M) with
β� ∈ F , where constant β is defined in (3).
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PROOF. By Lemma 7.1, we decompose the data {Xi}ni=1 = {Yi}n1
i=1 ∪ {Zi}n2

i=1.
The following analysis is conditioning on the set of (n1, n2) that satisfies (19) with
probability at least 1 − δ. To facilitate the proof, define

Du(�,P�) = min
{
P�

(∣∣uT Y
∣∣2 ≤ uT �u

)
,P�

(∣∣uT Y
∣∣2 > uT �u

)}
,

Du

(
�, {Yi}n1

i=1

) = min

{
1

n1

n1∑
i=1

I
{∣∣uT Yi

∣∣2 ≤ uT �u
}
,

1

n1

n1∑
i=1

I
{∣∣uT Yi

∣∣2 > uT �u
}}

,

for each u ∈ Sp−1. Then we have DU (�,P�) = infu∈⋃m
i=1 VSi

Du(�,P�) and

DU (�, {Yi}n1
i=1) = minu∈⋃m

i=1 VSi
Du(�, {Yi}n1

i=1). Observe that

sup
�∈F

∣∣DU (�,P�) −DU
(
�, {Yi}n1

i=1

)∣∣

≤ sup
u∈⋃m

i=1 VS,t∈R

∣∣∣∣∣ 1

n1

n1∑
i=1

I
{∣∣uT Yi

∣∣2 ≤ t
} − P�

(∣∣uT Y
∣∣2 ≤ t

)∣∣∣∣∣
= sup

u∈⋃m
i=1 VS,t∈R

∣∣P�(IHu,t ) − Pn1(IHu,t )
∣∣.

Applying Lemma 7.3 and union bound with maxi |Si | ≤ s, we get

(21) sup
�∈F

∣∣DU (�,P�) −DU
(
�, {Yi}n1

i=1

)∣∣ ≤
√

1440eπ

1 − e−1

√
3 + 2s

n1
+

√
log(m/δ)

2n1
,

with probability at least 1 − δ. We lower bound DU (�̂,P�) by

DU
(
�̂, {Yi}n1

i=1

) −
√

1440eπ

1 − e−1

√
3 + 2s

n1
−

√
log(m/δ)

2n1
(22)

≥ n

n1
DU

(
�̂, {Xi}ni=1

) − n2

n1
−

√
1440eπ

1 − e−1

√
3 + 2s

n1
−

√
log(m/δ)

2n1
(23)

≥ n

n1
DU

(
β�, {Xi}ni=1

) −
√

1440eπ

1 − e−1

√
3 + 2s

n1
−

√
log(m/δ)

2n1
(24)

≥DU
(
β�, {Yi}n1

i=1

) − n2

n1
−

√
1440eπ

1 − e−1

√
3 + 2s

n1
−

√
log(m/δ)

2n1
(25)

≥DU (β�,P�) − n2

n1
− 2

√
1440eπ

1 − e−1

√
3 + 2s

n1
−

√
2 log(m/δ)

n1
(26)

= 1

2
− n2

n1
− 2

√
1440eπ

1 − e−1

√
3 + 2s

n1
−

√
2 log(m/δ)

n1
.(27)
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The inequalities (22) and (26) are by (21). The inequalities (23) and (25) are due
to the property of depth function that

n1DU
(
�, {Yi}n1

i=1

) ≥ nDU
(
�, {Xi}ni=1

) − n2 ≥ n1DU
(
�, {Yi}n1

i=1

) − n2,

for any � ∈ F . The inequality (24) is by the definition of �̂ and that β� ∈ F .
Finally, the equality (27) is due to Proposition 3.1. Now let us use Lemma 7.1 so
that the right-hand side of (27) can be lower bounded by

1

2
− ε

1 − ε
− 40

√
6eπ

1 − e−1

√
3 + 2s

n
− 7

2

√
log(m/δ)

n
,

with probability at least 1 − 2δ. Using the property that Du(�̂,P�) ≥ DU (�̂,P�)

for each u ∈ U , we have shown that uniformly for all u ∈ U ,

(28) Du(�̂,P�) ≥ 1

2
− ε

1 − ε
− 40

√
6eπ

1 − e−1

√
3 + 2s

n
− 7

2

√
log(m/δ)

n
,

with probability at least 1−2δ. By Proposition 3.1 and the fact that 1
2 −min(x,1−

x) = |x − 1/2| for all x ∈ [0,1], we get

1

2
−Du(�̂,P�) = 2

∣∣∣∣�(
√

β) − �

(√
uT �̂u

uT �u

)∣∣∣∣.
Combining with (28), we have

sup
u∈U

∣∣∣∣�(
√

β) − �

(√
uT �̂u

uT �u

)∣∣∣∣ ≤ ε/2

1 − ε
+

√
2400eπ

1 − e−1

√
3 + 2s

n
+ 7

4

√
log(m/δ)

n
,

with probability at least 1 − 2δ. Under the assumption that ε < 1/5 and
C1

1+s+log(m/δ)
n

< 1 with some absolute constant C1 > 0, we have

sup
u∈U

∣∣∣∣√β −
√

uT �̂u

uT �u

∣∣∣∣ ≤ C2

(
ε +

√
1 + s + log(m/δ)

n

)
,

for some absolute constant C2 > 0 with probability at least 1 − 2δ. Finally, due
to assumption � ∈ F(M), we obtain that supu∈U uT �u ≤ ‖�‖op ≤ M , which im-
plies

sup
u∈U

∣∣uT �̂u/β − uT �u
∣∣ ≤ C

(
ε +

√
1 + s + log(m/δ)

n

)
,

with probability at least 1 − 2δ. Thus, the proof is complete. �

PROOF OF THEOREM 3.1. Since U = Sp−1 and F is taken as the set of all
positive semidefinite matrices, the conclusion follows the result of Theorem 7.1
with m = 1 and S1 = [p] by noting ‖�̂ − �‖op = supu∈VS1

|uT �̂u − uT �u|. �
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PROOF OF THEOREM 3.3. Consider the weights

wij = k−1((
2k − |i − j |)+ − (

k − |i − j |)+)
.

Since �̂ − � = (σ̂ij − σij ) ∈ Fk , we have (σ̂ij − σij ) = ((σ̂ij − σij )wij ). This
means �̂ − � can also be viewed as a tapered matrix. Then Lemma 2 of [9]
implies that ‖�̂ − �‖op ≤ 3 maxu∈Uk

|uT (�̂ − �)u|. Using the fact that Uk =⋃p+1−2k
l=1 V[l,l+2k−1] for 2k < p, the conclusion follows by Theorem 7.1 with

m = p + 1 − 2k, Si = [i, i + 2k − 1] for i = 1, . . . ,m and s = 2k. The result
holds trivially according to Theorem 7.1 when 2k > p since Uk = Sp−1. �

PROOF OF THEOREM 3.4. The main argument of the proof is due to a bias-
variance tradeoff. For � = (σij ) ∈Fα(M,M0,Mmin), define �k = (σij I{|i − j | ≤
k}). Then∣∣DUk

(β�,P�) −DUk
(β�k,P�)

∣∣
≤ max

u∈Uk

∣∣Du(β�,P�) −Du(β�k,P�)
∣∣

≤ 2 max
u∈Uk

∣∣∣∣�(
√

β) − �

(√
βuT �ku

uT �u

)∣∣∣∣ ≤
√

2β

π
max
u∈Uk

∣∣∣∣1 −
√

uT �ku

uT �u

∣∣∣∣
≤

√
2β

π
max
u∈Uk

∣∣∣∣u
T (�k − �)u

uT �u

∣∣∣∣ ≤
√

2β

π
M−1

min‖�k − �‖op.

Recall Uk = ⋃p+1−2k
l=1 V[l,l+2k−1] when 2k ≤ p and Uk = Sp−1 when 2k > p,

where k = �n 1
2α+1 � ∧ p. Using the bias bound above and the fact that β�k ∈ Fk ,

and modifying the arguments (22)–(28) in the proof of Theorem 7.1 with U = Uk ,
m = max(p + 1 − 2k,1) and s = (2k) ∧ p, we obtain

Du(�̂,P�) ≥ 1

2
− ε

1 − ε
− 40

√
6eπ

1 − e−1

√
3 + 4k

n

− 7

2

√
log(m/δ)

n
−

√
2β

π
M−1

min‖�k − �‖op,

uniformly for all u ∈ Uk with probability at least 1−2δ. Repeating the correspond-
ing subsequent argument in the proof of Theorem 7.1, we have

sup
u∈Uk

∣∣uT �̂u/β − uT �u
∣∣ ≤ C1M

(
ε +

√
k + log(m/δ)

n
+ M−1

min‖�k − �‖op

)
.

A triangle inequality implies

sup
u∈Uk

∣∣uT �̂u − uT �ku
∣∣ ≤ C2

(
ε +

√
k + log(m/δ)

n
+ ‖�k − �‖op

)
.
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By the argument in the proof of Theorem 3.3 and triangle inequality, we get

‖�̂ − �k‖op ≤ C3

(
ε +

√
k + log(m/δ)

n
+ ‖�k − �‖op

)
,

‖�̂ − �‖op ≤ C

(
ε +

√
k + log(m/δ)

n
+ ‖�k − �‖op

)
.

A bias argument in [9] implies that ‖�k − �‖op ≤ C4k
−α . The proof is complete

by observing that k = �n 1
2α+1 � ∧ p and m = max(p + 1 − 2k,1). �

PROOF OF THEOREM 3.6. Note that �̂ − � ∈ F2s , and thus ‖�̂ − �‖op =
max|S|=2s ‖(�̂ − �)SS‖op = supu∈Us

|uT (�̂ − �)u|. We denote all subsets of [p]
with cardinality 2s as S1, . . . , Sm, where m = (p

2s

) ≤ exp(2s log ep
s

). The proof is
complete by applying Theorem 7.1 with these subsets S1, . . . , Sm, noting that Us =⋃m

i=1 Si . �

PROOF OF THEOREM 3.8. Since Fs,λ(M, r) ⊂ Fs(M + 1), the result of The-
orem 3.6 applies and we get

‖�̂/β − �‖2
op ≤ C

(
s log ep

s

n
∨ ε2 + log(1/δ)

n

)
,

with probability at least 1 − 2δ. Weyl’s inequality implies |sr+1(�̂/β) − 1| ≤
‖�̂/β − �‖op. Under the assumption that the rate is bounded by a small constant,
we have sr(�) − sr+1(�̂/β) > cλ for some constant c > 0. By the Davis–Kahan
theorem [13], we have ‖V̂ V̂ T − V V T ‖F ≤ C′‖�̂/β − �‖op/λ, and the proof is
complete. �
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SUPPLEMENTARY MATERIAL

Supplement to “Robust covariance and scatter matrix estimation under
Huber’s contamination model” (DOI: 10.1214/17-AOS1607SUPP; .pdf). In this
supplement, we collect the proofs for the remaining main results, provide details on
the extension to the noncentered observations and demonstrate numerical studies
in low-to-moderate dimensional settings.

https://doi.org/10.1214/17-AOS1607SUPP


1958 M. CHEN, C. GAO AND Z. REN

REFERENCES

[1] BICKEL, P. J. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist.
36 2577–2604. MR2485008

[2] BICKEL, P. J. and LEVINA, E. (2008). Regularized estimation of large covariance matrices.
Ann. Statist. 36 199–227. MR2387969

[3] BIRNBAUM, A., JOHNSTONE, I. M., NADLER, B. and PAUL, D. (2013). Minimax bounds for
sparse PCA with noisy high-dimensional data. Ann. Statist. 41 1055–1084. MR3113803

[4] BUJA, A. (1986). On the Huber–Strassen theorem. Probab. Theory Related Fields 73 149–152.
MR0849070

[5] CAI, T. T., MA, Z. and WU, Y. (2013). Sparse PCA: Optimal rates and adaptive estimation.
Ann. Statist. 41 3074–3110.

[6] CAI, T. T., MA, Z. and WU, Y. (2015). Optimal estimation and rank detection for sparse
spiked covariance matrices. Probab. Theory Related Fields 161 781–815.

[7] CAI, T. T., REN, Z. and ZHOU, H. H. (2013). Optimal rates of convergence for estimating
Toeplitz covariance matrices. Probab. Theory Related Fields 156 101–143. MR3055254

[8] CAI, T. T., REN, Z. and ZHOU, H. H. (2016). Estimating structured high-dimensional covari-
ance and precision matrices: Optimal rates and adaptive estimation. Electron. J. Stat. 10
1–59. MR3466172

[9] CAI, T. T., ZHANG, C.-H. and ZHOU, H. H. (2010). Optimal rates of convergence for covari-
ance matrix estimation. Ann. Statist. 38 2118–2144. MR2676885

[10] CAI, T. T. and ZHOU, H. H. (2012). Optimal rates of convergence for sparse covariance matrix
estimation. Ann. Statist. 40 2389–2420. MR3097607

[11] CHEN, M., GAO, C. and REN, Z. (2018). Supplement to “Robust covariance and scatter matrix
estimation under Huber’s contamination model.” DOI:10.1214/17-AOS1607SUPP.

[12] DAVIDSON, K. R. and SZAREK, S. J. (2001). Local operator theory, random matrices and
Banach spaces. Handbook of the Geometry of Banach Spaces 1 131.

[13] DAVIS, C. and KAHAN, W. M. (1970). The rotation of eigenvectors by a perturbation. III.
SIAM J. Numer. Anal. 7 1–46.

[14] DONOHO, D. and HUBER, P. J. (1983). The notion of breakdown point. In A Festschrift for
Erich L. Lehmann. 157–184. Wadsworth, Belmont, CA. MR0689745

[15] DONOHO, D. L. (1982). Breakdown properties of multivariate location estimators. Techni-
cal report, Harvard Univ., Boston. Available at http://www-stat.stanford.edu/~donoho/
Reports/Oldies/BPMLE.pdf.

[16] DONOHO, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238–270.
MR1272082

[17] DONOHO, D. L. and GASKO, M. (1992). Breakdown properties of location estimates based on
halfspace depth and projected outlyingness. Ann. Statist. 20 1803–1827.

[18] DONOHO, D. L. and LIU, R. C. (1991). Geometrizing rates of convergence, III. Ann. Statist.
19 668–701.

[19] DONOHO, D. L. and MONTANARI, A. (2015). Variance breakdown of Huber (M)-estimators:
n/p → m ∈ (1,∞). Preprint. Available at arXiv:1503.02106.

[20] DUDLEY, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899–
929. MR0512411

[21] DÜMBGEN, L. (1998). On Tyler’s M-functional of scatter in high dimension. Ann. Inst. Statist.
Math. 50 471–491.

[22] FAN, J., HAN, F. and LIU, H. (2014). PAGE: Robust pattern guided estimation of large covari-
ance matrix. Technical report, Princeton Univ., Princeton, NJ.

[23] FANG, K.-T., KOTZ, S. and NG, K. W. (1990). Symmetric Multivariate and Related Distribu-
tions. Chapman & Hall, London.

http://www.ams.org/mathscinet-getitem?mr=2485008
http://www.ams.org/mathscinet-getitem?mr=2387969
http://www.ams.org/mathscinet-getitem?mr=3113803
http://www.ams.org/mathscinet-getitem?mr=0849070
http://www.ams.org/mathscinet-getitem?mr=3055254
http://www.ams.org/mathscinet-getitem?mr=3466172
http://www.ams.org/mathscinet-getitem?mr=2676885
http://www.ams.org/mathscinet-getitem?mr=3097607
https://doi.org/10.1214/17-AOS1607SUPP
http://www.ams.org/mathscinet-getitem?mr=0689745
http://www-stat.stanford.edu/~donoho/Reports/Oldies/BPMLE.pdf
http://www.ams.org/mathscinet-getitem?mr=1272082
http://arxiv.org/abs/arXiv:1503.02106
http://www.ams.org/mathscinet-getitem?mr=0512411
http://www-stat.stanford.edu/~donoho/Reports/Oldies/BPMLE.pdf


ROBUST COVARIANCE AND SCATTER MATRIX ESTIMATION 1959

[24] FRISTON, K. J., JEZZARD, P. and TURNER, R. (1994). Analysis of functional MRI time-
series. Human Brain Mapping 1 153–171.

[25] HAMPEL, F. R. (1971). A general qualitative definition of robustness. Ann. Math. Stat. 42
1887–1896.

[26] HAN, F. and LIU, H. (2013). Optimal rates of convergence for latent generalized correlation
matrix estimation in transelliptical distribution. Preprint. Available at arXiv:1305.6916.

[27] HAN, F. and LIU, H. (2014). Scale-invariant sparse PCA on high-dimensional meta-elliptical
data. J. Amer. Statist. Assoc. 109 275–287.

[28] HAN, F. and LIU, H. (2017). ECA: High dimensional elliptical component analysis in non-
Gaussian distributions. J. Amer. Statist. Assoc. To appear.

[29] HAN, F., LU, J. and LIU, H. (2014). Robust scatter matrix estimation for high dimensional
distributions with heavy tails. Technical report, Princeton Univ.

[30] HUBER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Stat. 35 73–101.
MR0161415

[31] HUBER, P. J. (1965). A robust version of the probability ratio test. Ann. Math. Stat. 36 1753–
1758. MR0185747

[32] HUBER, P. J. and STRASSEN, V. (1973). Minimax tests and the Neyman–Pearson lemma for
capacities. Ann. Statist. 1 251–263. MR0356306

[33] JOHNSTONE, I. M. and LU, A. Y. (2009). On consistency and sparsity for principal compo-
nents analysis in high dimensions. J. Amer. Statist. Assoc. 104 682–693.

[34] LAM, C. and FAN, J. (2009). Sparsistency and rates of convergence in large covariance matrix
estimation. Ann. Statist. 37 4254–4278. MR2572459

[35] LIU, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. 18
405–414.

[36] LIU, R. Y., PARELIUS, J. M. and SINGH, K. (1999). Multivariate analysis by data depth:
Descriptive statistics, graphics and inference. Ann. Statist. 27 783–858. MR1724033

[37] MA, Z. (2013). Sparse principal component analysis and iterative thresholding. Ann. Statist.
41 772–801. MR3099121

[38] MARONNA, R. A. (1976). Robust M-estimators of multivariate location and scatter. Ann.
Statist. 4 51–67.

[39] MITRA, R. and ZHANG, C.-H. (2014). Multivariate analysis of nonparametric estimates of
large correlation matrices. Preprint. Available at arXiv:1403.6195.

[40] MIZERA, I. (2002). On depth and deep points: A calculus. Ann. Statist. 30 1681–1736.
[41] MIZERA, I. and MÜLLER, C. H. (2004). Location-scale depth. J. Amer. Statist. Assoc. 99 949–

966.
[42] OJA, H. (1983). Descriptive statistics for multivariate distributions. Statist. Probab. Lett. 1

327–332.
[43] ROUSSEEUW, P. J. and HUBERT, M. (1999). Regression depth. J. Amer. Statist. Assoc. 94

388–402.
[44] SERFLING, R. (2004). Some perspectives on location and scale depth functions. J. Amer. Statist.

Assoc. 99 970–973.
[45] TUKEY, J. W. (1974). T6: Order Statistics, in mimeographed notes for Statistics 411. Dept.

Statistics, Princeton Univ.
[46] TUKEY, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the Interna-

tional Congress of Mathematicians 2 523–531.
[47] TUKEY, J. W. (1977). Exploratory Data Analysis. Addison-Wesley Series in Behavioral Sci-

ence: Quantitative Methods. Reading, MA.
[48] TYLER, D. E. (1987). A distribution-free M-estimator of multivariate scatter. Ann. Statist. 15

234–251.
[49] VAN DER VAART, A. W. (2000). Asymptotic Statistics. Cambridge Univ. Press, Cambridge.

http://arxiv.org/abs/arXiv:1305.6916
http://www.ams.org/mathscinet-getitem?mr=0161415
http://www.ams.org/mathscinet-getitem?mr=0185747
http://www.ams.org/mathscinet-getitem?mr=0356306
http://www.ams.org/mathscinet-getitem?mr=2572459
http://www.ams.org/mathscinet-getitem?mr=1724033
http://www.ams.org/mathscinet-getitem?mr=3099121
http://arxiv.org/abs/arXiv:1403.6195


1960 M. CHEN, C. GAO AND Z. REN

[50] VAPNIK, V. N. and CHERVONENKIS, A. Y. (1971). On the uniform convergence of relative
frequencies of events to their probabilities. Theory Probab. Appl. 16 264–280.

[51] VARDI, Y. and ZHANG, C.-H. (2000). The multivariate �1-median and associated data depth.
Proc. Natl. Acad. Sci. USA 97 1423–1426.

[52] VISSER, H. and MOLENAAR, J. (1995). Trend estimation and regression analysis in climato-
logical time series: An application of structural time series models and the Kalman filter.
J. Climate 8 969–979.

[53] VU, V. Q. and LEI, J. (2013). Minimax sparse principal subspace estimation in high dimen-
sions. Ann. Statist. 41 2905–2947.

[54] WEGKAMP, M. and ZHAO, Y. (2016). Adaptive estimation of the copula correlation matrix for
semiparametric elliptical copulas. Bernoulli 22 1184–1226.

[55] XUE, L. and ZOU, H. (2013). Optimal estimation of sparse correlation matrices of semipara-
metric Gaussian copulas. Stat. Interface 7 201–209.

[56] XUE, L. and ZOU, H. (2014). Rank-based tapering estimation of bandable correlation matrices.
Statist. Sinica 24 83–100.

[57] ZHANG, J. (2002). Some extensions of Tukey’s depth function. J. Multivariate Anal. 82 134–
165.

[58] ZUO, Y. and CUI, H. (2005). Depth weighted scatter estimators. Ann. Statist. 33 381–413.
[59] ZUO, Y. and SERFLING, R. (2000). General notions of statistical depth function. Ann. Statist.

28 461–482.
[60] ZUO, Y. and SERFLING, R. (2000). Nonparametric notions of multivariate “scatter measure”

and “more scattered” based on statistical depth functions. J. Multivariate Anal. 75 62–78.

M. CHEN

DEPARTMENT OF MEDICINE

UNIVERSITY OF CHICAGO

CHICAGO, ILLINOIS 60637
USA
E-MAIL: mengjiechen@uchicago.edu
URL: http://www.mengjiechen.com

C. GAO

DEPARTMENT OF STATISTICS

UNIVERSITY OF CHICAGO

CHICAGO, ILLINOIS 60637
USA
E-MAIL: chaogao@galton.uchicago.edu
URL: http://www.stat.uchicago.edu/~chaogao

Z. REN

DEPARTMENT OF STATISTICS

UNIVERSITY OF PITTSBURGH

PITTSBURGH, PENNSYLVANIA 15260
USA
E-MAIL: zren@pitt.edu
URL: http://www.pitt.edu/~zren

mailto:mengjiechen@uchicago.edu
http://www.mengjiechen.com
mailto:chaogao@galton.uchicago.edu
http://www.stat.uchicago.edu/~chaogao
mailto:zren@pitt.edu
http://www.pitt.edu/~zren

	Introduction
	Prologue: Robust location estimation
	Robust covariance matrix estimation
	Matrix depth
	General covariance matrix
	Bandable covariance matrix
	Sparse covariance matrix
	Sparse principal component analysis

	Extension to elliptical distributions
	A general minimax lower bound
	Discussion
	Impact of contamination on convergence rates
	Noncentered observations
	Connection with delta-breakdown point
	A uniﬁed framework of robustness and rate of convergence

	Proofs of main results
	Auxiliary lemmas
	Proofs of upper bounds in Section 3

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

