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We derive an exact p-value for testing a global null hypothesis in a gen-
eral adaptive regression setting. Our approach uses the Kac–Rice formula [as
described in Random Fields and Geometry (2007) Springer, New York] ap-
plied to the problem of maximizing a Gaussian process. The resulting test
statistic has a known distribution in finite samples, assuming Gaussian errors.
We examine this test statistic in the case of the lasso, group lasso, princi-
pal components and matrix completion problems. For the lasso problem, our
test relates closely to the recently proposed covariance test of Lockhart et al.
[Ann. Statist. (2004) 42 413–468].

In a few specific settings, our proposed tests will be less powerful than
other previously known (and well-established) tests. However, it should be
noted that the real strength of our proposal here is its generality. We provide
a framework for constructing valid tests across a wide class of regularized
regression problems, and as far as we can tell, such a unified view was not
possible before this work.

1. Introduction. In this work, we consider the problem of finding the distri-
bution of

max
η∈K ηT ε, ε ∼ N(0,�),(1)

for a convex set K ⊆ Rp . In other words, we study a Gaussian process with a finite
Karhunen–Loève expansion [1], restricted to a convex set in Rp .

While this is a well-studied topic in the literature of Gaussian processes, our
aim here is to describe an implicit formula for both the distribution of (1), as well
as the almost surely unique maximizer

η∗ = argmax
η∈K

ηT ε.(2)

A main point of motivation underlying our work is the application of such a for-
mula for inference in modern statistical estimation problems. We note that a similar
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(albeit simpler) formula has proven useful in problems related to sparse regression
[10, 15]. Though the general setting considered in this paper is ultimately much
more broad, we begin by discussing the sparse regression case.

1.1. Example: The lasso. As a preview, consider the �1 penalized regression
problem, that is, the lasso problem [19], of the form

β̂ = argmin
β∈Rp

1

2
‖y − Xβ‖2

2 + λ‖β‖1,(3)

where y ∈ Rn, X ∈ Rn×p , and λ ≥ 0. Very mild conditions on the predictor matrix
X ensure uniqueness of the lasso solution β̂; see, for example, Tibshirani [21].
Treating X as fixed, we assume that the outcome y satisfies

y ∼ N(Xβ0,�),(4)

where β0 ∈ Rp is some fixed true (unknown) coefficient vector, and � ∈ Rp×p

is a known covariance matrix. In the following sections, we derive a formula that
enables a test of a global null hypothesis H0 in a general regularized regression
setting. Our main result, Theorem 1, can be applied to the lasso problem in order
to test the null hypothesis H0 : β0 = 0. This test involves the quantity

λ1 = ∥∥XT y
∥∥∞,

which can be seen as the first knot (i.e., critical value) in the lasso solution path
over the regularization parameter λ [7]. Recalling the duality of the �1 and �∞
norms, we can rewrite this quantity as

λ1 = max
η∈K ηT (

XT y
)
,(5)

where K = {η : ‖η‖1 ≤ 1}, showing that λ1 is of the form (1), with ε = XT y (which
has mean zero under the null hypothesis). Assuming uniqueness of the entries of
XT y, the maximizer η∗ in (5) is

η∗
j =

{
sign

(
XT

j y
)
,

∣∣XT
j y

∣∣ = ∥∥XT y
∥∥∞,

0, otherwise,
j = 1, . . . , p.

Let j∗ denote the maximizing index, so that |XT
j∗y| = ‖XT y‖∞, and also s∗ =

sign(XT
j∗y), �jk = XT

j �Xk . To express our test statistic, we define

V−
η∗ = max

s∈{−1,1},k 
=j

1−s�j∗k/�j∗j∗>0

s(Xk − �j∗k/�j∗j∗Xj∗)T y

1 − s�j∗k/�j∗j∗
,

V+
η∗ = min

s∈{−1,1},k 
=j

1−s�j∗k/�j∗j∗<0

s(Xk − �j∗k/�j∗j∗Xj∗)T y

1 − s�j∗k/�j∗j∗
.
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Then under H0 : β0 = 0, we prove that

	(V+
η∗/�

1/2
j∗j∗) − 	(λ1/�

1/2
j∗j∗)

	(V+
η∗/�

1/2
j∗j∗) − 	(V−

η∗/�
1/2
j∗j∗)

∼ Unif(0,1),(6)

where 	 is the standard normal cumulative distribution function. This formula is
somewhat remarkable, in that it is exact—not asymptotic in n,p—and relies only
on the assumption of normality for y in (4) (with essentially no real restrictions on
the predictor matrix X). As mentioned above, it is a special case of Theorem 1, the
main result of this paper.

We refer to the above test statistic (6) as the Kac–Rice test for the lasso. It may
seem complicated, but when the predictors are standardized, ‖Xj‖2 = 1 for j =
1, . . . , p, and the observations are independent with (say) unit marginal variance,
� = I , then V−

η∗ is equal to the second knot λ2 in the lasso path and V+
η∗ is equal

to ∞. Therefore, (6) simplifies to

1 − 	(λ1)

1 − 	(λ2)
∼ Unif(0,1).(7)

This statistic measures the relative sizes of λ1 and λ2, with values of λ1 � λ2 being
evidence against the null hypothesis.

Figure 1(a) shows the empirical distribution function of a sample of 20,000 p-
values from (6), over lasso problems with a variety of different predictor matrices,

FIG. 1. The left panel shows the empirical distribution function of a sample of 20,000 p-values from
(6), coming from a variety of different lasso setups. The agreement with uniform here is excellent.
The right panel shows the empirical distribution function of a sample of 10,000 covariance test
p-values, computed using an Exp(1) approximation, using three different lasso setups. The Exp(1)

approximation is generally conservative, whereas the Kac–Rice test is exact.
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all under the global null model β0 = 0. In particular, for each sample, we drew the
matrix X uniformly at random from the following cases:4

• small case: X is 3 × 2, with values (in row-major order) equal to 1,2, . . . ,6;
• fat case: X is 100 × 10,000, with columns drawn from the compound symmetric

Gaussian distribution having correlation 0.5;
• tall case: X is 10,000 × 100, with columns drawn from the compound symmet-

ric Gaussian distribution having correlation 0.5;
• lower triangular case: X is 500 × 500, a lower triangular matrix of 1’s (the lasso

problem here is effectively a reparametrization of the 1-dimensional fused lasso
problem [20]);

• diabetes data case: X is 442 × 10, the diabetes data set studied in Efron et al. [7].

As is seen in the plot, the agreement with uniform is very strong.
In their proposed covariance test, Lockhart et al. [10] show that under the global

null hypothesis H0 : β0 = 0,

λ1(λ1 − λ2)
d→ Exp(1) as n,p → ∞,(8)

assuming standardized predictors, ‖Xj‖2 = 1 for j = 1, . . . , p, independent er-
rors in (4) with unit marginal variance, � = I , and a condition to ensure that λ2
diverges to ∞ at a sufficient rate.

In finite samples, using Exp(1) as an approximation to the distribution of the co-
variance test statistic seems generally conservative, especially for smaller values of
n and p. Figure 1(b) shows the empirical distribution function from 10,000 covari-
ance test p-values, in three of the above scenarios. [The predictors were standard-
ized before applying the covariance test, in all three cases; this is not necessary,
as the covariance test can be adapted to the more general case of unstandardized
predictors, but was done for simplicity, to match the form of the test as written
in (8).] Even though the idea behind the covariance test can be conceivably ex-
tended to other regularized regression problems (outside of the lasso setting), the
Exp(1) approximation to its distribution is generally inappropriate, as we will see
in later examples. Our test, however, naturally extends to general regularization
settings, allowing us to attack problems with more complex penalties such as the
group lasso and nuclear norm penalties.

It is important now to emphasize the main goal of this paper. We provide a gen-
eral recipe for constructing global tests in regularized regression problems. We do
not claim these tests to be most powerful across all settings; indeed, in certain set-
tings, our test will have less power than other well-studied alternative approaches.
The strength of our proposal is that it applies so broadly, and furthermore, that it

4Here, we only drew the matrix X at random across the different cases in order to illustrate that this
test holds for many different designs. For each fixed choice of design, the plot would look exactly
the same.
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leads to selective tests, beyond the global null, for many of these problems as well
(pursued in subsequent papers after this one). Power and selective inference are
the topics of Sections 6.2 and 6.3 of the discussion.

The rest of this paper is organized as follows. In Section 2, we describe the
general framework for regularized regression problems that we consider, and a
corresponding global null hypothesis of interest; we also state our main result,
Theorem 1, which gives an exact p-value for this null hypothesis. The next two
sections are then dedicated to proving Theorem 1. Section 3 characterizes the
global maximizer (2) in terms of the related Gaussian process and its gradient.
Section 4 applies the Kac–Rice formula to derive the joint distribution of the max-
imum value of the process (1) and its maximizer (2), which is ultimately used to
derive the (uniform) distribution of our proposed test. In Section 5, we broadly
consider practicalities associated with our test statistic, revisit the lasso problem
and examine the group lasso, principal components and matrix completion prob-
lems as well. We end with a discussion in Section 6.

2. General regularized regression problems. We examine a class of regu-
larized least squares problems of the form

β̂ ∈ argmin
β∈Rp

1

2
‖y − Xβ‖2

2 + λ ·P(β),(9)

with outcome y ∈ Rn, predictor matrix X ∈ Rn×p , and regularization parameter
λ ≥ 0. We assume that the penalty function P satisfies

P(β) = max
u∈C

uT β,(10)

where C ⊆ Rp is a convex set, that is, P is the support function of C. This serves
as a very general penalty, as we can represent any seminorm (and hence any norm)
in this form with the proper choice of set C. We note that the solution β̂ = β̂λ

above is not necessarily unique (depending on the matrix X and set C) and the
element notation used in (9) reflects this. A standard calculation, which we give in
Section A.1 of the supplementary document [17], shows that the fitted value Xβ̂

is always unique, and hence so is P(β̂).
Now define

λ1 = min
{
λ ≥ 0 : P(β̂λ) = 0

}
.

This is the smallest value of λ for which the penalty term in (9) is zero; any
smaller value of the tuning parameter returns a nontrivial solution, according to
the penalty. A straightforward calculation involving subgradients, which we give
in Section A.2 of the supplement [17], shows that

λ1 = Q
(
XT (I − PXC⊥)y

)
,(11)
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where Q is the dual seminorm of P , that is, Q(β) = maxv∈C◦ vT β , the support
function of the polar set C◦ of C. This set can be defined as C◦ = {v : vT u ≤ 1 for
all u ∈ C}, or equivalently,

C◦ = {
v : P(v) ≤ 1

}
,

the unit ball in P . Furthermore, in (11), we use PXC⊥ to denote the projection
operator onto the linear subspace

XC⊥ = X{v : v ⊥ C} ⊆Rn.

We recall that for the lasso problem (3), the penalty function is P(β) = ‖β‖1, so
Q(β) = ‖β‖∞; also C = {u : ‖u‖∞ ≤ 1}, which means that C⊥ = 0, and PXC⊥ =
0. Hence λ1 = ‖XT y‖∞, as claimed in Section 1.1.

Having just given an example of a seminorm in which C is of full dimen-
sion p, so that C⊥ = {0}, we now consider one in which C has dimension
less than p, so that C⊥ is nontrivial. In a generalized lasso problem [22], the
penalty is P(β) = ‖Dβ‖1 for some chosen penalty matrix D ∈ Rm×n. In this
case, it can be shown that the dual seminorm is Q(β) = minDT z=β ‖z‖∞. Hence,
C = {u : minDT z=u ‖z‖∞ ≤ 1}, and C⊥ = null(D), the null space of D. In many
interesting cases, this null space is nontrivial; for example, if D is the fused lasso
penalty matrix, then its null space is spanned by the vector of all 1’s.

2.1. A null hypothesis. As in the lasso case, we assume that y is generated
from the normal model

y ∼ N(Xβ0,�),(12)

with X considered fixed. We are interested in the distribution of (1) in order to test
the following hypothesis:

H0 : P(β0) = 0.(13)

This can be seen a global null hypothesis, a test of whether the true underlying
coefficient vector β0 has a trivial structure, according to the designated penalty
function P .

Assuming that the set C contains 0 in its relative interior, we have P(β) =
0 ⇐⇒ PCβ = 0, where PC denotes the projection matrix onto span(C). Therefore
we can rewrite the null hypothesis (13) in a more transparent form, as

H0 : PCβ0 = 0.(14)

Again, using the lasso problem (3) as a reference point, we have span(C) =Rp for
this problem, so the above null hypothesis reduces to H0 : β0 = 0, as in Section 1.1.
In general, the null hypothesis (14) tests β0 ∈ C⊥, the orthocomplement of C.

Recalling that

λ1 = max
v∈C◦ vT XT (I − PXC⊥)y,
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one can check that, under H0, the quantity λ1 is precisely of the form (1), with
K = C◦, ε = XT (I −PXC⊥)y, and � = Cov(ε) = XT (I −PXC⊥)�(I −PXC⊥)X

[as E(ε) = XT (I − PXC⊥)Xβ0 = 0 when β0 ∈ C⊥].

2.2. Statement of main result and outline of our approach. We now state our
main result.

THEOREM 1 (Kac–Rice test). Consider the general regularized regression
problem in (9), with P(β) = maxu∈C uT β for a closed, convex set C ⊆ Rp contain-
ing 0 in its relative interior. Denote K = C◦ = {v : P(v) ≤ 1}, the polar set of C,
and assume that K can be stratified into pieces of different dimensions, that is,

K =
p⋃

j=0

∂jK,(15)

where ∂0K, . . . , ∂pK are smooth disjoint manifolds of dimensions 0, . . . , p, re-
spectively. Assume also assume that the process

fη = ηT XT (I − PXC⊥)y, η ∈K,(16)

is Morse for almost every y ∈ Rn. Finally, assume that y ∈ Rn is drawn from the
normal distribution in (12).

Now, consider testing the null hypothesis H0 : P(β0) = 0 [equivalently, H0 :
PCβ0 = 0, since we have assumed that 0 ∈ relint(C)]. Define �η = G−1

η Hη for

Gη,Hη as in (29), (30), V−
η ,V+

η as in (24), (23), and σ 2
η as in (32). Finally, let η∗

denote the almost sure unique maximizer of the process fη over K,

η∗ = argmax
η∈K

fη,

and let λ1 = fη∗ denote the first knot in the solution path of problem (9). Then
under H0,

S =
∫ V+

η∗
λ1

det(�η∗ + zI)φσ 2
η∗ (z) dz

∫ V+
η∗

V−
η∗

det(�η∗ + zI)φσ 2
η∗ (z) dz

∼ Unif(0,1),(17)

where φσ 2 denotes the density function of a normal random variable with mean 0
and variance σ 2.

The quantity (17) is the Kac–Rice pivot evaluated at μ = 0. Lemma 4 shows it is
a pivotal quantity for the mean μ near η∗, derived via the Kac–Rice formula. Here
we give a rough explanation of the result in (17), and the approach we take to prove
it in Sections 3 and 4. The next section, Section 2.3, discusses the assumptions
behind Theorem 1; in summary, the assumption that K separates as in (15) allows
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us to apply the Kac–Rice formula to each of its strata, and the Morse assumption on
the process fη in (16) ensures the uniqueness of its maximizer η∗. These are very
weak assumptions, especially considering the strength of the exact, nonasymptotic
conclusion in (17).

Our general approach is based on finding an implicit formula for P(λ1 > t)

under the null hypothesis H0, where λ1 is the first knot in the solution path of
problem (9) and can be written as

λ1 = max
η∈K fη,

where fη = ηT XT (I −PXC⊥)y, the process in (16). Our representation for the tail
probability of λ1 has the form

P(λ1 > t) = E
(
Q(1(t,∞))

)
.(18)

Here, Q is a random distribution function and 1(t,∞) is the indicator function for
the interval (t,∞). The distribution Q depends on η∗, a maximizer of the process
fη, almost surely unique by the Morse assumption. This maximizer satisfies

η∗ ∈ ∂Q
(
XT (I − PXC⊥)y

) ⊆ K,

with ∂Q the subdifferential of the seminorm Q. Under the assumption that K =⋃p
j=0 ∂jK, the main tool we invoke is the Kac–Rice formula [1], which essentially

enables us to compute the expected number5 of global maximizers occuring in
each stratum ∂jK. This leads to the distribution of λ1, in Theorem 2, as well as the
representation in (18), with Q given in an explicit form. Unfortunately, computing
tail probabilities P(λ1 > t) of this distribution involve evaluating some compli-
cated integrals over K that depend on X,�, and hence the quantity λ1 as a test
statistic does not easily lend itself to the computation of p-values. We therefore
turn to the survival function S associated with the measure Q, and our main result
is that, when carefully evaluated, this (random) survival function can be used to
derive a test of H0, as expressed in (17) in Theorem 1 above.

2.3. Discussion of assumptions. In terms of the assumptions of Theorem 1,
we require that C contains 0 in its relative interior so that we can write the null
hypothesis in the equivalent form H0 : PCβ0 = 0, which makes the process fη in
(16) have mean zero under H0. We additionally assume that C is closed in order

5Note that for almost every realization, under the Morse assumption, there is generically only one
maximizer overall and hence the number of them is either 0 or 1. We use the term “number of global
maximizers” when applying the Kac–Rice formula as it applies to counting different types of points.
In our applications of it, however, there is only ever 0 or 1 such points. Similar arguments were used
to establish the accuracy of the expected Euler characteristic approximation for the distribution of
the global maximum of a smooth Gaussian process in Taylor et al. [18].
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to guarantee that fη has a well-defined (finite) maximum over η ∈ K = C◦. See
Section A.3 of the supplement [17].

Apart from these rather minor assumptions on C, the main requirements of the
theorem are: the polar set C◦ =K can be stratified as in (15), the process fη in (16)
is Morse, and y follows the normal distribution in (12). Overall, these are quite
weak assumptions. The first assumption, on K separating as in (15), eventually
permits us to apply to the Kac–Rice formula to each stratum ∂jK. We remark
that many convex sets possess such a decomposition; see Adler and Taylor [1].
In particular, note that such an assumption does not limit our consideration to
polyhedral K: a set can be stratifiable but still have a boundary with curvature
(e.g., as in K for the group lasso and nuclear norm penalties).

Further, the property of being a Morse function is truly generic; again, see Adler
and Taylor [1] for a discussion of Morse functions on stratified spaces. If fη is
Morse for almost every y, then its maximizers are almost surely isolated, and the
convexity of K then implies that fη has an almost surely unique maximizer η∗.
From the form of our particular process fη in (16), the assumption that fη is Morse
can be seen as a restriction on the predictor matrix X (or more generally, how X

interacts with the set C). For most problems, this only rules out trivial choices of X.
In the lasso case, for example, recall that fη = (Xη)T y and K is equal to the unit
�1 ball, so f ∗

η = ‖XT y‖∞, and the Morse property requires |XT
j y|, j = 1, . . . , p to

be unique for almost every y ∈ Rp . This can be ensured by taking X with columns
in general position (a weak condition that also ensures uniqueness of the lasso
solution; see Tibshirani [21]).

The assumption of normally distributed errors in the regression model (12) is
important for the work that follows in Sections 3 and 4, which is based on Gaussian
process theory. Note that we assume a known covariance matrix �, but we allow
for a dependence between the errors (i.e., � need not be diagonal). Empirically,
the (uniform) distribution of our test statistic under the null hypothesis appears to
quite robust against nonnormal errors in many cases of interest; we discuss this in
Section 6.1.

Lastly, we make a note about the role of convexity. Aside from computing
V−

η ,V+
η (see Section A.6 of the supplementary document [17]), the convexity of

the parameter space K is not necessary; we only need local convexity as described
in Adler and Taylor [1], that is, we only need to assume that the support cone of
K is locally convex everywhere. This is essentially the same as positive reach [8].
To be clear, while convexity is used in connecting the Kac–Rice test to the reg-
ularized regression problem in (11) (i.e., it establishes an equality between left-
and right-hand sides), the right-hand side is well-defined even if C◦ is not convex.
That is, the set K in (1) need not be convex. In fact, the issue of convexity is only
important for computational purposes, not theoretical purposes. In this sense, the
current paper provides an exact conditional test based on the global maximizer of
a smooth Gaussian field on a fairly arbitrary set. This is an advance in the theory of
smooth Gaussian fields as developed in [1] and will be investigated in future work.
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2.4. Notation. Rewrite the process fη in (16) as

fη = ηT XT (I − PXC⊥)(I − PXC⊥)y = ηT X̃T ỹ, η ∈ K,

where X̃ = (I − PXC⊥)X and ỹ = (I − PXC⊥)y. The distribution of ỹ is hence
ỹ ∼ N(X̃β0, �̃), where �̃ = (I − PXC⊥)�(I − PXC⊥). Furthermore, under the
null hypothesis H0 : PCβ0 = 0, we have ỹ ∼ N(0, �̃). For convenience, in Sec-
tions 3 and 4, we will drop the tilde notation, and write ỹ, X̃, �̃ as simply y,X,�,
respectively. To be perfectly explicit, this means that we will write the process fη

in (16) as

fη = ηT XT y, η ∈ K,

where y ∼ N(Xβ0,�), and the null hypothesis is H0 : y ∼ N(0,�). Notice that
when span(C) = Rp , we have exactly ỹ = y, X̃ = X, �̃ = �, since PXC⊥ = 0.
However, we reiterate that replacing ỹ, X̃, �̃ by y,X,� in Sections 3 and 4 is
done purely for notational convenience, and the reader should bear in mind that
the arguments themselves do not portray any loss of generality.

We will write E0 to emphasize that an expectation is taken under the null distri-
bution H0 : y ∼ N(0,�).

3. Characterization of the global maximizer. Near any point η ∈ K, the set
K is well approximated by the support cone SηK, which is defined as the polar
cone of the normal cone NηK. The support cone SηK contains a largest linear
subspace—we will refer to this TηK, the tangent space to K at η. The tangent
space plays an important role in what follows.

We study the process fη in (16), which we now write as fη = ηT XT y over
η ∈ K, where y ∼ N(Xβ0,�), and with the null hypothesis H0 : y ∼ N(0,�)

(see our notational reduction in Section 2.4). We proceed as in Chapter 14 of [1],
with an important difference being that here the process fη does not have constant
variance. Aside from the statistical implications of this work that have to do with
hypothesis testing, another goal of this paper is to derive analogues of the results
in Adler and Taylor [1], Taylor et al. [18], for Gaussian processes with nonconstant
variance. For each η ∈ K, we define a modified process

f̃ η
z = fz − zT αη,X,�(∇f|TηK), z ∈ K,

where αη,X,�(∇f|TηK) is the vector that, under H0 : y ∼ N(0,�), computes the
expectation of fz given ∇f|TηK, the gradient restricted to TηK, that is,

zT αη,X,�(∇f|TηK) = E0(fz|∇f|TηK).

To check that such a representation is possible, suppose that the tangent space TηK
is j -dimensional, and let Vη ∈ Rp×j be a matrix whose columns form an orthonor-
mal basis for TηK. Then ∇f|TηK = VηV

T
η XT y, and a simple calculation using the
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properties of conditional expectations for jointly Gaussian random variables shows
that

E0(fz|∇f|TηK) = zT XT Pη,X,�y,

where

Pη,X,� = �XVη

(
V T

η XT �XVη

)†
V T

η XT ,(19)

the projection onto XVη with respect to � (and A† denoting the Moore–Penrose
pseudoinverse of a matrix A). Hence, we gather that

αη,X,�(∇f|TηK) = XT Pη,X,�y,

and our modified process has the form

f̃ η
z = fz − zT XT Pη,X,�y = (Xz)T (I − Pη,X,�)y.(20)

The key observation, as in Taylor et al. [18] and Adler and Taylor [1], is that if
η is a critical point, that is, ∇f|TηK = 0, then

f̃ η
z = fz for all z ∈ K.(21)

Similar to our construction of αη,X,�(∇f|TηK), we define CX,�(η) such that

E0
(
f̃ η

z |f̃ η
η

) = zT XT (I − Pη,X,�)�(I − P T
η,X,�)Xη

ηT XT (I − Pη,X,�)�(I − P T
η,X,�)Xη

· f̃ η
η

(22)
= zT CX,�(η) · f̃ η

η

and after making three subsequent definitions,

V−
η = max

z∈K:zT CX,�(η)<1

f̃
η
z − zT CX,�(η) · f̃ η

η

1 − zT CX,�(η)
,(23)

V+
η = min

z∈K:zT CX,�(η)>1

f̃
η
z − zT CX,�(η) · f̃ η

η

1 − zT CX,�(η)
,(24)

V0
η = max

z∈K:zT CX,�(η)=1
f̃ η

z − zT CX,�(η) · f̃ η
η ,(25)

we are ready to state our characterization of the global maximizer η.

LEMMA 1. A point η ∈ K maximizes fη over a convex set K if and only if the
following conditions hold:

∇f|TηK = 0, f̃ η
η ≥ V−

η , f̃ η
η ≤ V+

η and V0
η ≤ 0.(26)

The same equivalence holds true even when K is only locally convex.
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PROOF. In the forward direction (⇒), note that ∇f|TηK = 0 implies that we
can replace f̃

η
z by fz (and f̃

η
η by fη) in the definitions (24), (23), (25), by the

key observation (21). As each z ∈ K is covered by one of the cases CX,�(η) < 1,
CX,�(η) > 1, CX,�(η) = 1, we conclude that

fη ≥ fz for all z ∈ K,

that is, the point η is a global maximizer.
As for the reverse direction (⇐), when η is the global maximizer of fη over K,

the first condition ∇f|TηK = 0 is clearly true (provided that K is convex or locally
convex), and the other three conditions follow from simple manipulations of the
inequalities

fη ≥ fz for all z ∈ K. �

REMARK 1. The above lemma does not assume that K decomposes into strata,
or that fη is Morse for almost all w, or that y ∼ N(Xβ0,�). It only assumes
that K is convex or locally convex, and its conclusion is completely deterministic,
depending only on the process fη via its covariance function under the null, that
is, via the terms Pη,X,� and CX,�(η).

We note that, under the assumption that fη is Morse over K for almost every
y ∈ Rp , and K is convex, Lemma 1 gives necessary and sufficient conditions for
a point η ∈ K to be the almost sure unique global maximizer. Hence, for convex
K, the conditions in (26) are equivalent to the usual subgradient conditions for
optimality, which may be written as

∇fη ∈ NηK ⇐⇒ ∇f|TηK = 0,∇f|(TηK)⊥ ∈ NηK,

where NηK is the normal cone to K at η and ∇f|(TηK)⊥ is the gradient restricted

to the orthogonal complement of the tangent space TηK.

Recalling that fη is a Gaussian process, a helpful independence relationship
unfolds.

LEMMA 2. With y ∼ N(Xβ0,�), for each fixed η ∈ K, the triplet (V−
η ,V+

η ,

V0
η) is independent of f̃

η
η .

PROOF. This is a basic property of conditional expectation for jointly Gaus-
sian variables, that is, it is easily verified that Cov(f̃

η
z − zT CX,�(η), f̃

η
η ) = 0 for

all z. �
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4. Kac–Rice formulae for the global maximizer and its value. The charac-
terization of the global maximizer from the last section, along with the Kac–Rice
formula [1], allow us to express the joint distribution of

η∗ = argmax
η∈K

fη and fη∗ = max
η∈K fη.

THEOREM 2 [Joint distribution of (η∗, fη∗)]. Writing K = ⋃p
j=0 ∂jK for a

stratification of K, for open sets A ⊆ Rp,O ⊆ R,

P
(
η∗ ∈ A,fη∗ ∈ O

)
=

p∑
j=0

∫
∂jK∩A

E
(
det

(−∇2f|TηK
) · 1{V−

η ≤f̃
η
η ≤V+

η ,V0
η≤0,f̃

η
η ∈O}|∇f|TηK = 0

)
(27)

× ψ∇f|TηK(0)Hj (dη),

where:

• ψ∇f|TηK is the density of the gradient in some basis for the tangent space TηK,
orthonormal with respect to the standard inner product on TηK, that is, the
standard Euclidean Riemannian metric on Rp;

• the measure Hj is the Hausdorff measure induced by the above Riemannian
metric on each ∂jK;

• the Hessian ∇2f|TηK is evaluated in this orthonormal basis and, for j = 0, we
take as convention the determinant of a 0 × 0 matrix to be 1 (in [1], this was
denoted by ∇2f|∂jK,η, to emphasize that it is the Hessian of the restriction of f

to ∂jK).

PROOF. This is the Kac–Rice formula, or the “meta-theorem” of Chapter 10
of [1] (see also [3, 4]), applied to the problem of counting the number of global
maximizers in some set A ⊆Rp having value in O ⊆ R. That is,

P
(
η∗ ∈ A,fη∗ ∈ O

)
= E

(
#
{
η ∈ K ∩ A : ∇f|TηK = 0,V−

η ≤ f̃ η
η ≤ V+

η ,V0
η ≤ 0, fη ∈ O

})
= E

(
#
{
η ∈ K ∩ A : ∇f|TηK = 0,V−

η ≤ f̃ η
η ≤ V+

η ,V0
η ≤ 0, f̃ η

η ∈ O
})

,

where the second equality follows from (21). Breaking down K into its separate
strata, and then using the Kac–Rice formula, we obtain the result in (27). �

REMARK 2. As before, the conclusion of Theorem 2 does not actually depend
on the convexity of K. When K is only locally convex, the Kac–Rice formula [i.e.,
the right-hand side in (27)] counts the expected total number of global maximizers
of fη lying in some set A ⊆ Rp , with the achieved maximum value in O ⊆ R. For
convex K, our Morse condition on fη implies an almost surely unique maximizer,
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and hence the notation P(η∗ ∈ A,fη∗ ∈ O) on the left-hand side of (27) makes
sense as written. For locally convex K, one simply needs to interpret the left-hand
side as

P
(
η∗ ∈ A for some fη∗ = max

η∈K fη,max
η∈K fη ∈ O

)
.

REMARK 3. When fη has constant variance, the distribution of the maximum
value fη∗ can be approximated extremely well by the expected Euler characteristic
[1] of the excursion set f −1

η (t,∞) ∩K,

p∑
j=0

∫
∂jK

E
(
det

(−∇2f|TηK
)
1{fη>t,∇f|(TηK)⊥∈NηK}|∇f|TηK = 0

)
ψ∇f|TηK(0)Hj (dη).

This approximation is exact when K is convex [14], since the Euler characteristic
of the excursion set is equal to the indicator that it is not empty.

4.1. Decomposition of the Hessian. In looking at the formula (27), we note
that the quantities f̃

η
η ,V−

η ,V+
η ,V0

η inside the indicator are all independent, by con-
struction, of ∇f|TηK . It will be useful to decompose the Hessian term similarly.
We write

−∇2f|TηK = −Hη + Gη · f̃ η
η + Rη,

where

Rη = −E0
(∇2f|TηK|∇f|TηK

)
,(28)

Gη · f̃ η
η = −E0

(∇2f|TηK|f̃ η
η

)
,(29)

Hη = −(∇2f|TηK − Rη

) − Gη · f̃ η
η .(30)

At a critical point of f|∂jK, notice that Rη = 0 (being a linear function of the
gradient ∇f|TηK, which is zero at such a critical point). Furthermore, the pair of

matrices (Gηf̃
η
η ,Hη) is independent of ∇f|TηK. Hence, we can rewrite our key

formulae for the distribution of the maximizer and its value.

LEMMA 3. For each fixed η ∈K, we have

f̃ η
η ∼ N

(
μη,σ

2
η

)
,

independently of (V−
η ,V+

η ,V0
η ,Hη), with

μη = ηT X(I − Pη,X,�)Xβ0,(31)

σ 2
η = ηT XT (I − Pη,X,�)�

(
I − P T

η,X,�

)
Xη,(32)

and (recall) Pη,X,� = �XVη(V
T
η XT �XVη)

†V T
η XT , for an orthonormal basis Vη

of TηK.



INFERENCE VIA KAC–RICE 757

Moreover, the formula (27) can be equivalently expressed as

P
(
η∗ ∈ A,fη∗ ∈ O

) =
p∑

j=0

∫
∂jK∩A

E
(
det

(−Hη + Gηf̃
η
η

)
× 1{V−

η ≤f̃
η
η ≤V+

η ,V0
η≤0,f̃

η
η ∈O}

)
ψ∇f|TηK(0)Hj (dη)(33)

=
p∑

j=0

∫
∂jK∩A

E
(
M�η,Vη,μη,σ 2

η
(1O)1{V−

η ≤V+
η ,V0

η≤0}
)

× ψ∇f|TηK(0)det(Gη)Hj (dη),(34)

where

M�,V,μ,σ 2(h) =
∫ V+

V−
h(z)det(� + zI)

e−(z−μ)2/2σ 2

√
2πσ 2

dz,(35)

and �η = G−1
η Hη.

REMARK 4. Until (34), we had not used the independence of f̃
η
η and

V−
η ,V+

η ,V0
η (Lemma 2). In (34), we do so, by first integrating over f̃

η
η (in the

definition of M), and then over V−
η ,V+

η ,V0
η .

4.2. The conditional distribution. The Kac–Rice formula can be generalized
further. For a possibly random function h, with h|∂jK continuous for each j =
0, . . . , p, we see as a natural extension from (33),

E
(
h
(
η∗)) =

p∑
j=0

∫
∂jK

E
(
h(η)det

(−Hη + Gηf̃
η
η

)
(36) × 1{V−

η ≤f̃
η
η ≤V+

η ,V0
η≤0}

)
ψ∇f|TηK(0)Hj (dη).

This allows us to form a conditional distribution function of sorts. As defined in
(35), M�,V,μ,σ 2 is not a probability measure, but it can be normalized to yield one:

Q�,V,μ,σ 2(g) = M�,V,μ,σ 2(g)

M�,V,μ,σ 2(1)
.(37)

Working form (36), with h(η) = g(fη),

E
(
g(fη∗)

) =
p∑

j=0

∫
∂jK

E
(
M�η,Vη,μη,σ 2

η
(g)1{V−

η ≤V+
η ,V0

η≤0}
)

× ψ∇f|TηK(0)det(Gη)Hj (dη)
(38)

=
p∑

j=0

∫
∂jK

E
(
Q�η,Vη,μη,σ 2

η
(g)M�η,Vη,μη,σ 2

η
(1)1{V−

η ≤V+
η ,V0

η≤0}
)

× ψ∇f|TηK(0)det(Gη)Hj (dη).
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In fact, the quantity Q�,V,μη,σ 2
η

is a proper conditional distribution. That is, for
suitable g,

E
(
g(fη∗)|η∗ = η,�η∗ = �,Vη∗ = V

) = Q�,V,μη,σ 2
η
(g).(39)

See Section A.4 of the supplement [17] for details.

4.3. The Kac–Rice pivotal quantity. Suppose that we are interested in testing
the null hypothesis H0 : y ∼ N(0,�). We might look at the observed value of the
first knot λ1 = fη∗ , and see if it was larger than we would expect under H0. From
the results of the last section,

P(fη∗ > t) = E
(
Q�η∗ ,Vη∗ ,μη∗ ,σ 2

η∗ (1(t,∞))
)
,

and so the most natural strategy seems to be to plug our observed value of the
first knot into the above formula. This, however, requires computing the above
expectation, that is, the integral in (38).

In this section, we present an alternative approach that is effectively a condi-
tional test, conditioning on the observed value of η∗, as well as �η∗ and Vη∗ . To
motivate our test, it helps to take a step back and think about the measure Q�,V,μ,σ 2

defined in (37). For fixed values of �,V,μ,σ 2, we can reexpress this (nonrandom)
measure as

Q�,V,μ,σ 2(g) =
∫ ∞
−∞

g(t) · q�,V,μ,σ (t) dt,

where q�,V,μ,σ is a density function (supported on [V−,V+]). In other words,
Q�,V,μ,σ 2(g) computes the expectation of g with respect to a density q�,V,μ,σ 2 ,
so we can write Q�,V,μ,σ 2(g) = E(g(W)) where W is a random variable whose
density is q�,V,μ,σ 2 . Now consider the survival function

S�,V,μ,σ 2(t) = Q�,V,μ,σ 2(1(t,∞)) = P(W > t).

A classic argument shows that S�,V,μ,σ 2(W) ∼ Unif(0,1). Why is this useful?
Well, according to Lemma 3 (or, Remark 1 following the lemma), the first knot
λ1 = fη∗ almost takes the role of W above, except that there is a further level
of randomness in η∗, and �η∗,Vη∗ . That is, instead of the expectation of g(fη∗)
being given by Q�η∗ ,Vη∗ ,μη∗ ,σ 2

η∗ (g), it is given by E(Q�η∗ ,Vη∗ ,μη∗ ,σ 2
η∗ (g)). The key

intuition is that the random variable

S�η∗ ,Vη∗ ,μη∗ ,σ 2
η∗ (fη∗) = Q�η∗ ,Vη∗ ,μη∗ ,σ 2

η∗ (1(fη∗ ,∞))(40)

should still be uniformly distributed, since this is true conditional on η∗,�η∗,Vη∗
and unconditionally, the extra level of randomness in η∗,�η∗,Vη∗ just gets “av-
eraged out” and does not change the distribution. Our next lemma formalizes this
intuition and, therefore, provides a test for H0 based on the (random) survival
function in (40).
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LEMMA 4 (Kac–Rice pivot). The survival function of Q�,V,μ,σ 2 , with � =
�η∗ , V = Vη∗ , μ = μη∗ , σ 2 = σ 2

η∗ , and evaluated at t = fη∗ , satisfies

S�η∗ ,Vη∗ ,μη∗ ,σ 2
η∗ (fη∗) ∼ Unif(0,1).(41)

PROOF. Fix some h : R → R. A standard argument shows that (fixing
�,V,μ,σ 2),

Q�,V,μ,σ 2(h ◦ S�,V,μ,σ 2) =
∫ 1

0
h(t) dt.

Now we compute, applying (38) with g being a composition of functions,

E
(
h
(
S�η∗ ,Vη∗ ,μη∗ ,σ 2

η∗ (fη∗)
))

=
p∑

j=0

∫
∂jK

E
(
Q�η,Vη,μη,σ 2

η
(h ◦ S�η,Vη,μη,σ 2

η
)M�η,Vη,μη,σ 2

η
(1)

× 1{V−
η ≤V+

η ,V0
η≤0}

)
ψ∇f|TηK(0)det(Gη)Hj (dη)

=
p∑

j=0

∫
∂jK

E

([∫ 1

0
h(t) dt

]
M�η,Vη,μη,σ 2

η
(1)1{V−

η ≤V+
η ,V0

η≤0}
)

× ψ∇f|TηK(0)det(Gη)Hj (dη)

=
[∫ 1

0
h(t) dt

] p∑
j=0

∫
∂jK

E
(
M�η,Vη,μη,σ 2

η
(1)1{V−

η ≤V+
η ,V0

η≤0}
)

× ψ∇f|TηK(0)det(Gη)Hj (dη)

=
∫ 1

0
h(t) dt. �

REMARK 5. In particular, under H0, we have μη∗ = 0, and Lemma 4 shows
that

S�η∗ ,Vη∗ ,0,σ 2
η∗ (fη∗) ∼ Unif(0,1).

This proves our main result, Theorem 1, noting that the statistic in (17) is just
S�η∗ ,Vη∗ ,0,σ 2

η∗ (fη∗) written out a little more explicitly.

REMARK 6. We have used the survival function of fη∗ , conditional on η∗
being the global maximizer, as well the additional local information (�η∗,Vη∗).
Conditioning on this extra information makes the test very simple to compute, at
least in the lasso, group lasso and nuclear norm cases. If we were to marginalize
over these quantities, we would have a more powerful test. In general, it seems
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difficult to analytically marginalize over these quantities, but perhaps Monte Carlo
schemes would be feasible. Further, Lemma 4 holds for any μη∗ , implying that this
marginalization over (�η∗,Vη∗) would need access to the unknown μη∗ . Under the
global null, H0 : μη∗ = 0, this would not an issue, though it would cause a problem
for the selective inference work described in Section 6.3.

5. Practicalities and examples. We now summarize the steps required to ap-
ply the Kac–Rice test in an instance of the regularized regression problem (9). The
test procedure is to compute the statistic

S�η∗ ,Vη∗ ,0,σ 2
η∗ (λ1) =

∫ V+
η∗

λ1
det(�η∗ + zI)φσ 2

η∗ (z) dz

∫ V+
η∗

V−
η∗

det(�η∗ + zI)φσ 2
η∗ (z) dz

,(42)

and compare this against Unif(0,1). Recalling that �η = H−1
η Gη, this leaves us

with essentially 6 quantities to be computed—λ1,V+
η∗,V−

η∗,Gη∗,Hη∗, σ 2
η∗ from

(11), (24), (23), (29), (30), (32), respectively, and the above integral to be cal-
culated.

If we know the dual seminorm Q of the penalty P in closed form, then the first
knot λ1 can be found explicitly from (11); otherwise, it can be found numerically
by solving the (convex) optimization problem

λ1 = max
η∈Rp

ηT XT (I − PXC⊥)y subject to P(η) ≤ 1.

The remaining quantities, V+
η∗,V−

η∗,Gη∗,Hη∗, σ 2
η∗ , all depend on η∗ and on the

tangent space Tη∗K. Again, depending on Q, the maximizer η∗ can either be found
in closed form, or numerically by solving the above optimization problem. Once
we know the projection operator onto the tangent space Tη∗K, (32) is an explicit
expression for σ 2

η∗ ; furthermore, V−
η∗,V+

η∗ are given by two more tractable (convex)
optimization problems (which in some cases admit closed form solutions); see
Section A.6 of the supplement [17].

The quantities Gη∗,Hη∗ are different; however, even once we know η∗ and the
tangent space Tη∗K, finding Gη∗,Hη∗ involves computing the Hessian ∇2f|Tη∗K,
which requires a geometric understanding of the curvature of f around Tη∗K. That
is, Gη∗,Hη∗ cannot be calculated numerically (say, via an optimization procedure,
as with λ1,V−

η∗,V+
η∗), and demand a more problem-specific, mathematical focus.

For this reason, computation of Gη∗,Hη∗ can end up being an involved process
(depending on the problem). In the examples that follow, we do not give derivation
details for the Hessian ∇2f|Tη∗K, but refer the reader to [1] for the appropriate
background material.

To see a high-level summary of the quantities involved, see Algorithm 1.
We now revisit the lasso example, and then consider the group lasso and nuclear

norm penalties, the latter yielding applications to principal components and matrix
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Algorithm 1 Computing the Kac–Rice pivot
1: Solve for λ1 and η∗ {note: we use concise notation throughout, see Sec-

tion 2.4}
2: Form an orthonormal basis Vη∗ of the tangent space Tη∗K
3: Compute the projection Pη∗,X,� in (19)
4: Evaluate the conditional variance σ 2

η∗ and CX,�(η∗) from (32) and (22)

5: if ∇2f|Tη∗K = 0 then
6: Let �η∗ = 0
7: else if ∇2f|Tη∗K 
= 0 then

8: Let �η∗ = G−1
η∗ Hη∗ from (29) and (30)

9: end if
10: Solve the optimization problems (23) and (24), yielding V−

η∗ , V+
η∗

11: Evaluate the integrals in (42) to obtain S = S�η∗ ,Vη∗ ,0,σ 2
η∗ (λ1)

completion. We remark that in the lasso and group lasso cases, the matrix �η∗ =
G−1

η∗ Hη∗ is zero, simplifying the computations. In contrast, it is nonzero for the
nuclear norm case.

Also, it is important to point out that in all three problem cases, we have
span(C) = Rp , so the notational shortcut that we applied in Sections 3 and 4 has
no effect (see Section 2.4), and we can use the formulae from these sections as
written.

5.1. Example: The lasso (revisited). For the lasso problem (3), we have
P(β) = ‖β‖1 and C = {u : ‖u‖∞ ≤ 1}, so Q(β) = ‖β‖∞ and K = C◦ = {v :
‖v‖1 ≤ 1}. Our Morse assumption on the process fη = ηT XT y over K (which
amounts to an assumption on the predictor matrix X) implies that there is a unique
index j∗ such that

λ1 = ∣∣XT
j∗y

∣∣ = ∥∥XT y
∥∥∞ = max‖η‖1≤1

ηT XT y.

Then in this notation η∗ = sign(XT
j∗y) · ej∗ (where ej∗ is the j∗th standard basis

vector), and the normal cone to K at η∗ is

Nη∗K = {
v ∈Rp : sign(vj∗) = sign

(
XT

j∗y
)
, |vj | ≤ |vj∗ | for all j 
= j∗}

.

Because this is a full-dimensional set, the tangent space to K at η∗ is Tη∗K =
(Nη∗K)⊥ = {0}. This greatly simplifies our survival function test statistic (40)
since all matrices in consideration here are 0 × 0 and, therefore, have determi-
nant 1, giving

S�η∗ ,Vη∗ ,0,σ 2
η∗ = 	(V−

η∗/ση∗) − 	(λ1/ση∗)

	(V−
η∗/ση∗) − 	(V+

η∗/ση∗)
.
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The lower and upper limits V+
η∗,V−

η∗ are easily computed by solving two linear

fractional programs; see Section A.6 of the supplement [17]. The variance σ 2
η∗

of fη∗ is given by (32), and again simplifies because Tη∗K is zero dimensional,
becoming

σ 2
η∗ = (

η∗)T
XT �Xη∗ = XT

j∗�Xj∗ .

Plugging in this value gives the test statistic as in (6) in Section 1.1. The reader can
return to this section for examples and discussion in the lasso case.

5.2. Example: The group lasso. The group lasso [23] can be viewed as an
extension of the lasso for grouped (rather than individual) variable selection. Given
a predefined collection G of groups, with

⋃
g∈G g = {1, . . . , p}, the group lasso

penalty is defined as

P(β) =
G∑

g=1

wg‖βg‖2,

where βg ∈ R|g| denotes the subset of components of β ∈ Rp corresponding to g,
and wg > 0 for all g ∈ G. We note that

C = {
u ∈ Rp : ‖ug‖2 ≤ wg,g ∈ G

}
,

so the dual of the penalty is

Q(β) = max
g∈G w−1

g ‖βg‖2,

and

K = C◦ =
{
v ∈Rp : ∑

g∈G
wg‖vg‖2 ≤ 1

}
.

Under the Morse assumption on fη = ηT XT y over K (again, this corresponds to
an assumption about the design matrix X), there is a unique group g∗ such that

λ1 = w−1
g∗

∥∥XT
g∗y

∥∥
2 = max

g∈G w−1
g

∥∥XT
g y

∥∥
2 = max∑

g∈G wg‖ηg‖2≤1
ηT XT y,

where we write Xg ∈ Rn×|g| to denote the matrix whose columns are a subset of
those of X, corresponding to g. Then the maximizer η∗ is given by

η∗
g =

⎧⎪⎨⎪⎩
XT

g y

wg‖XT
g y‖2

, if g = g∗,

0, otherwise,

for all g ∈ G,

and the normal cone Nη∗K is seen to be

Nη∗K = {
v ∈ Rp : vg∗ = cXT

g∗y,‖vg‖2/wg ≤ c
∥∥XT

g∗y
∥∥

2/wg∗

for all g 
= g∗, c ≥ 0
}
.



INFERENCE VIA KAC–RICE 763

Hence, the tangent space Tη∗K = (Nη∗K)⊥ is

Tη∗K = {
u ∈ Rp : uT

g∗XT
g∗y = 0, ug = 0 for all g 
= g∗}

,

which has dimension r∗ − 1, with r∗ = rank(Xg∗). An orthonormal basis Vη∗ for
this tangent space is given by padding an orthonormal basis for (span(XT

g∗y))⊥
with zeros appropriately. From this, we can compute the projection operator

Pη∗,X,� = �XVη∗
(
V T

η∗XT �XVη∗
)†

V T
η∗XT ,

and the variance of fη∗ as

σ 2
η∗ = 1

w2
g∗‖XT

g∗y‖2
2

yT Xg∗XT
g∗(I − Pη∗,X,�)�Xg∗XT

g∗y.

The quantities V−
η∗,V+

η∗ can be readily computed by solving two convex programs,
see Section A.6 of the supplementary document [17]. Finally, we have Hη∗ = 0 in
the group lasso case, as the special form of curvature matrix of a sphere implies
that Gη∗ f̃ η∗

η∗ = −∇2f|Tη∗K in (29). This makes �η∗ = G−1
η∗ Hη∗ = 0, and the test

statistic (42) for the group lasso problem becomes∫ V+
η∗

λ1
zr∗−1φσ 2

η∗ (z) dz∫ V+
η∗

V−
η∗

zr∗−1φσ 2
η∗ (z) dz

= P(χr∗ ≤ V+
η∗/ση∗) − P(χr∗ ≤ λ1/ση∗)

P(χr∗ ≤ V+
η∗/ση∗) − P(χr∗ ≤ V−

η∗/ση∗)
.(43)

In the above, χr∗ denotes a chi distributed random variable with r∗ degrees of
freedom, and the equality follows from the fact that the missing multiplicative
factor in the χr∗ density [namely, 21−r∗/2/�(r∗/2)] is common to the numerator
and denominator, and hence cancels.

Figure 2(a) shows the empirical distribution function of a sample of 20,000 p-
values from problem instances sampled randomly from a variety of different group
lasso setups (all under the global null model β0 = 0):

• small case: X is 3×4, a fixed matrix slightly perturbed by Gaussian noise; there
are 2 groups of size 2, one with weight

√
2, the other with weight 0.1;

• fat case: X is 100 × 10,000 with features drawn from the compound symmetric
Gaussian distribution having correlation 0.5; here are 1000 groups each of size
10, each having weight

√
10;

• tall case: X is 10,000 × 100 with features drawn from the compound symmetric
Gaussian distribution having correlation 0.5; there are 1000 groups each of size
10, each having weight

√
10;

• square case: X is 100 × 100 with features drawn from the compound symmetric
Gaussian distribution having correlation 0.5; there are 10 groups each of size
10, each having weight

√
10;
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FIG. 2. The left panel shows the empirical distribution function of a sample of 20,000 p-values (43)
computed from various group lasso setups, which agrees very closely with the uniform distribution.
The right panel shows the empirical distribution functions in three different group lasso setups, each
over 10,000 samples, when p-values are instead computed using an Exp(1) approximation for the
covariance test. This approximation ends up being anti-conservative whereas the Kac–Rice test is
exact.

• diabetes case 1: X is 442 × 10, the diabetes data set from Efron et al. [7]; there
are 4 (arbitrarily created) groups: one of size 4, one of size 2, one of size 3 and
one of size 1, with varying weights;

• diabetes case 2: X is 442 × 10, the diabetes data set from Efron et al. [7];
there are now 10 groups of size 1 with i.i.d. random weights drawn from
1 + 0.2 Unif(0,1) (generated once for the entire simulation);

• nested case 1: X is 100 × 10, with two nested groups (the column space for one
group of size 2 is contained in that of the other group of size 8) with the weights
favoring inclusion of the larger group first;

• nested case 2: X is 100 × 10, with two nested groups (the column space for one
group of size 2 is contained in that of the other group of size 8) with the weights
favoring inclusion of the smaller group first;

• nested case 3: X is 100 × 12, with two sets of two nested groups (in each set,
the column space for one group of size 2 is contained in that of the other group
of size 4) with the weights chosen according to group size;

• nested case 4: X is 100 × 120, with twenty sets of two nested groups (in each
set, the column space for one group of size 2 is contained in that of the other
group of size 4) with the weights chosen according to group size.

As we can see from the plot, the p-values are extremely close to uniform.
In comparison, arguments similar to those given in Lockhart et al. [10] for the

lasso case would suggest that for the group lasso, under the null hypothesis,

λ1(λ1 − V−
η∗)

σ 2
η∗

d→ Exp(1) as n,p → ∞,
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under some conditions (one of these being that V−
η∗ diverges to ∞ fast enough).

Figure 2(b) shows the empirical distribution function of 10,000 samples from three
of the above scenarios, demonstrating that, while asymptotically reasonable, the
Exp(1) approximation for the covariance test in the group lasso case can be quite
anti-conservative in finite samples.

5.3. Example: Nuclear norm. In this setting, we treat the coefficients in (9) as
a matrix, instead of a vector, denoted by B ∈ Rn×p . We consider a nuclear norm
penalty on B ,

P(B) = ‖B‖∗ = tr(D),

where D is the diagonal matrix of singular values in the singular value decompo-
sition B = UDV T . Here, the dual seminorm is

Q(B) = ‖B‖op = max(D),

the operator norm (or spectral norm) of B , that is, its maximum singular value.
Therefore, we have

C = {
A : ‖A‖op ≤ 1

}
,

K = C◦ = {
W : ‖W‖∗ ≤ 1

}
.

Examples of problems of the form (9) with nuclear norm penalty P(B) = ‖B‖∗
can be roughly categorized according to the choice of linear operator X = X(B).
For example:

• principal components analysis: if X : Rn×p → Rn×p is the identity map, then
λ1 is the largest singular value of y ∈ Rn×p , and moreover, V−

η∗ is the second
largest singular value of y;

• matrix completion: if X : Rn×p → Rn×p zeros out all of the entries of its argu-
ment outside some index set O ⊆ {1, . . . , n} × {1, . . . , p}, and leaves the entries
in O untouched, then problem (9) is a noisy version of the matrix completion
problem [5, 12];

• reduced rank regression: if X : Rn×p → Rm×p performs matrix multiplication,
X(B) = XB , and y ∈ Rm×p , then problem (9) is often referred to as reduced
rank regression [13].

The first knot in the solution path is given by λ1 = ‖XT (y)‖op, with XT denoting
the adjoint of the linear operator X. Assuming that XT (y) has singular value de-
composition XT (y) = UDV T with D = diag(d1, d2, . . .) for d1 ≥ d2 ≥ · · · , and
that the process fη = 〈η,XT (y)〉 is Morse over η ∈ K, there is a unique η∗ ∈ K
achieving the value λ1,

η∗ = U1V
T
1 ,
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where U1,V1 are the first columns of U,V , respectively. The normal cone Nη∗K
is

Nη∗K = {
cU1V

T
1 + cŨD̃Ṽ T : ŨT Ũ = I, Ṽ T Ṽ = I, D̃ = diag(d̃1, d̃2, . . .),

UT
1 Ũ = 0,V T

1 Ṽ = 0,max(D̃) ≤ 1, c ≥ 0
}
,

and so the tangent space Tη∗K = (Nη∗K)⊥ is

Tη∗K = span
({

U1V
T
j , j = 2, . . . , p

} ∪ {
UjV

T
1 , j = 2, . . . , n

})
.

From this tangent space, the marginal variance σ 2
η∗ in (32) can be easily computed.

This leaves V−
η∗,V+

η∗,Gη∗,Hη∗ to be addressed. As always, the quantities V−
η∗,V+

η∗
can be determined numerically, as the optimal values of two convex programs; see
Section A.6 of the supplementary document [17], though these problems admit
closed form solutions. We direct the reader to Section A.5 of the supplement [17]
for details of the computations.

In Figure 3, we plot the empirical distribution function of a sample of 20,000
p-values computed over problem instances that have been randomly sampled from
the following scenarios, all employing the nuclear norm penalty (and all under the
null model B0 = 0, with B0 being the underlying coefficient matrix):

• principal components analysis: y is 2 × 2,3 × 4,50 × 50,100 × 20,30 ×
1000,30 × 5,1000 × 1000;

• matrix completion: y is 10×5 with 50% of its entries observed at random, 100×
30 with 20% of its entries observed at random, 10×5 with a nonrandom pattern
of observed entries, 20×10 with a nonrandom pattern of observed entries, 200×
10 with 10% of its entries observed at random;

FIG. 3. The left panel shows the empirical distribution function of a sample of 20,000 p-values
computed over a variety of problem setups that utilize the nuclear norm penalty. The right panel
shows the distribution of 20,000 covariance test p-values when an Exp(1) approximation is used,
which shows the exponential approximation to be clearly inappropriate for the nuclear norm setting.
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• reduced rank regression: X is 100 × 10 whose entries are drawn from the com-
pound symmetric Gaussian distribution with correlation 0.5, and y is 100 × 5.

As is evident in the plot, the agreement with uniform is excellent [as above, each
particular scenario above produces Unif(0,1) p-values regardless of how X was
chosen, modulo the Morse assumption].

Again, along the lines of the covariance test, we consider approximation of
λ1(λ1 −V−

η∗)/σ 2
η∗ by an Exp(1) distribution under the null hypothesis. Figure 3(b)

shows that this approximation is quite far off, certainly much more so than in the
other examples. Preliminary calculations confirm mathematically that the Exp(1)

distribution is not the right limiting distribution here; we will pursue this in future
work.

6. Discussion. We derived an exact (nonasymptotic) p-value for testing a
global null hypothesis in a general regularized regression setup. Our test is based
on a geometric characterization of regularized regression estimators and the Kac–
Rice formula, and has a close relationship to the covariance test for the lasso prob-
lem [10]. In fact, the Exp(1) limiting null distribution of the covariance test can be
derived from the formulae given here. These two tests give similar results for lasso
problems, but our new test has exact (not asymptotic) error control under the null,
with less assumptions on the predictor matrix X.

Another strength of our approach is that it provably extends well beyond the
lasso problem; in this paper, we examine tests for both the group lasso and nu-
clear norm regularization problems. Still, the test can be applied outside of these
cases too, and is limited only by the difficulty in evaluating the p-value in practice
(which relies on geometric quantities to be computed).

We recall that the covariance test for the lasso can be applied at any knot along
the solution path, to test if the coefficients of the predictors not yet in the current
model are all zero. In other words, it can be used to test more refined null hypothe-
ses, and not only the global null. Our paper only addresses global testing, but since
it was written, there has been much follow-up work in developing tests for the
null hypotheses visited further down the regularization path, in various problem
settings of interest. We discuss these advances later, and first discuss the important
issues of non-Gaussian errors, and power.

6.1. Non-Gaussian errors. Throughout, our calculations have rather explicitly
used the fact that XT y is Gaussian distributed. One could potentially appeal to the
central limit theorem if the components of y − Xβ0 are i.i.d. from some error dis-
tribution (treating X as fixed), though the calculations in this work focus on the
extreme values, so the accuracy of the central limit theorem in the tails may be in
doubt. We do not address these theoretical issues here, but instead consider simu-
lations under heavy-tailed, skewed noise. In particular, we drew errors according
to a t-distribution with 5 degrees of freedom plus an independent centered Exp(1)
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distribution. Figure A.8 in the Appendix [17] shows that the lasso and group lasso
p-values are relatively well behaved, while the nuclear norm p-values seem to
break down.

6.2. Power. An important issue raised by the editors and referees of this pa-
per concerns the power of our proposed tests. As correctly noted by the editors
and referees, the Kac–Rice test is not optimal in terms of power, in a number
of practical scenarios. For example, consider the Kac–Rice test in the lasso case,
that is, with the �1 regularizer P(β) = ‖β‖1, and the associated the global test-
ing problem H0 : β0 = 0. When the design X is orthogonal, it is known that the
most powerful test against sparse alternatives is the max test, which rejects based
on λ1 = ‖XT y‖∞; for example, see Arias-Castro, Candès and Plan [2]. The Kac–
Rice test, on the other hand, rejects based on a monotone function of λ1 − λ2, the
first two largest absolute entries of XT y; see (7). Both theoretical and empirical
calculations show that a test based on the gap λ1 − λ2 is not as powerful as a test
based solely on λ1, though the former still can have substantial power.

More examples along these lines can be drawn up, showing that the Kac–Rice
test, while still providing nontrivial power in a wide variety of specific applica-
tions, falls short when compared to the most powerful test against a particular
class of alternatives. This is not surprising, and we feel, should not be alarming
either. If one has a particular global testing setup in mind, with a particular set of
alternatives in mind, then of course one should use the most powerful test when
available. The strength of the Kac–Rice framework developed in this paper does
not lie in its power for global testing problems such as those considered in the
lasso, group lasso or nuclear norm cases discussed in Sections 5.1, 5.2 and 5.3,
respectively. Its real strengths are twofold:

• it provides a single unified framework under which we can derive exact tests
for global hypotheses, shown to be applicable in a wide range of settings, and
in principle at least, applicable in settings that do not currently possess well-
established global testing theory;

• it leads to exact tests beyond the global null, of selective hypotheses along the
regularization path, which as far as we can tell was not generically possible
before this work.

The second point above is further discussed below.

6.3. Related work on selective inference. The global Kac–Rice framework
proposed here has spawned new work on selective hypothesis testing, in each of the
major example areas considered (lasso, group lasso and nuclear norm problems).
Selective inference is a term used to describe hypothesis testing when the hypothe-
ses themselves are generated or selected based on observable data. It is a new field
with a small but growing literature, and we believe, has an important place in the
modern statistical toolkit full of adaptive regression and classification procedures.
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We refer the reader to [9] for a fairly comprehensive theoretical development of
this topic.

After the current paper was written, our Kac–Rice framework has led to selec-
tive tests—that is, tests for hypothesis beyond the global null, at later steps in the
regularization path—for least angle regression and the lasso [16], grouped step-
wise regression [11] and principal components analysis [6]. To the best of our
knowledge, these papers are among the first available rigorous inferential tests for
the randomly selected hypotheses visited in these complex procedures. In a sense,
each of the aforementioned works were consequences of the Kac–Rice framework,
obtained by extending the arguments laid out in Sections 5.1, 5.2 and 5.3, respec-
tively. We are not aware of other global testing frameworks that can also accom-
modate such extensions, in general.

6.4. Gaussian random field theory. Finally, the construction of the process
f̃

η
η is a contribution to the theory of smooth Gaussian random fields as described

in [1]. Our construction allows earlier proofs that apply only to (centered) Gaussian
random fields of constant variance (i.e., marginally stationary) to smooth random
fields with arbitrary variance. Even in the marginally stationary case, the condi-
tional distribution Q defined in (38) provides a new tool for exact selective infer-
ence at critical points of such random fields. We leave this, and many other topics,
for future work.
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Associate Editor provided feedback on preliminary versions of this work that has
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SUPPLEMENTARY MATERIAL

Supplement to “Inference in adaptive regression via the Kac–Rice for-
mula” (DOI: 10.1214/15-AOS1386SUPP; .pdf). We provide some proofs, as well
as supplementary details on computing the Kac–Rice test.
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