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UPS DELIVERS OPTIMAL PHASE DIAGRAM IN
HIGH-DIMENSIONAL VARIABLE SELECTION

BY PENGSHENG JI1,2 AND JIASHUN JIN1

Cornell University and Carnegie Mellon University

Consider a linear model Y = Xβ + z, z ∼ N(0, In). Here, X = Xn,p ,
where both p and n are large, but p > n. We model the rows of X as i.i.d.
samples from N(0, 1

n�), where � is a p × p correlation matrix, which is
unknown to us but is presumably sparse. The vector β is also unknown but
has relatively few nonzero coordinates, and we are interested in identifying
these nonzeros.

We propose the Univariate Penalization Screeing (UPS) for variable se-
lection. This is a screen and clean method where we screen with univariate
thresholding and clean with penalized MLE. It has two important properties:
sure screening and separable after screening. These properties enable us to
reduce the original regression problem to many small-size regression prob-
lems that can be fitted separately. The UPS is effective both in theory and in
computation.

We measure the performance of a procedure by the Hamming distance,
and use an asymptotic framework where p → ∞ and other quantities (e.g., n,
sparsity level and strength of signals) are linked to p by fixed parameters.
We find that in many cases, the UPS achieves the optimal rate of conver-
gence. Also, for many different �, there is a common three-phase diagram
in the two-dimensional phase space quantifying the signal sparsity and signal
strength. In the first phase, it is possible to recover all signals. In the second
phase, it is possible to recover most of the signals, but not all of them. In the
third phase, successful variable selection is impossible. UPS partitions the
phase space in the same way that the optimal procedures do, and recovers
most of the signals as long as successful variable selection is possible.

The lasso and the subset selection are well-known approaches to variable
selection. However, somewhat surprisingly, there are regions in the phase
space where neither of them is rate optimal, even in very simple settings,
such as � is tridiagonal, and when the tuning parameter is ideally set.

1. Introduction. Consider the following sequence of regression problems:

Y (p) = X(p)β(p) + z(p), z(p) ∼ N(0, In), n = np.(1.1)
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Here, X(p) is an np × p matrix, where both p and np are large, but p > np .
The p × 1 vector β(p) is unknown to us, but is sparse in the sense that it has
sp nonzeros where sp � p. We are interested in variable selection: determining
which components of β(p) are nonzero. For notational simplicity, we suppress the
superscript (p) and subscript p whenever there is no confusion.

A well-known approach to variable selection is subset selection, also known as
the L0-penalization method (e.g., AIC [2], BIC [23] and RIC [13]). This approach
selects variables by minimizing the following functional:

1

2
‖Y − Xβ‖2

2 + (λss)2

2
‖β‖0,(1.2)

where λss > 0 is a tuning parameter, and ‖ · ‖q denotes the Lq -norm. The approach
has good properties, but the optimization problem (1.2) is known to be NP hard,
which prohibits the use of the approach when p is large.

In the middle 1990s, Tibshirani [24] and Chen et al. [6] proposed a trail-
breaking approach which is now known as the lasso or the basis pursuit. This
approach selects variables by minimizing a similar functional, but ‖β‖0 is replaced
by ‖β‖1.

1
2‖Y − Xβ‖2

2 + λlasso‖β‖1.(1.3)

A major advantage of the lasso is that (1.3) can be efficiently solved by the interior
point method [6], even when p is relatively large. Additionally, in a series of papers
(e.g., [9, 10]), it was shown that in the noiseless case (i.e., z = 0), the lasso solution
is also the subset selection solution, provided that β is sufficiently sparse. For these
reasons, the lasso procedure is passionately embraced by statisticians, engineers,
biologists and many others.

With that being said, an obvious shortcoming of these methods is that the pe-
nalization term does not reflect the correlation structure in X, which prohibits the
method from fully capturing the essence of the data (e.g., Zou [30]). However, this
shortcoming is largely due to that these methods are one-stage procedures. This
calls for a two-stage or multi-stage procedure.

1.1. Screen and clean. An idea introduced in the 1960s, screen and clean,
has seen a revival recently [12, 27]. This is a two-stage method, where, at the
first stage, we remove as many irrelevant variables as possible while keeping all
relevant ones. At the second stage, we reinvestigate the surviving variables in hope
of removing all false positives. The screening stage has the following advantages,
some of which are elaborated in the literature:

• Dimension reduction. We remove many irrelevant variables, reducing the di-
mension from p to a much smaller number [12, 27].

• Correlation complexity reduction. A variable may be correlated to many other
variables, but few of which will survive the screening; it is only correlated with
a few other surviving variables.
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• Computation complexity reduction. Under some conditions (e.g., Section 2), sur-
viving variables can be grouped into many small units, each has a size ≤ K , and
correlation between units is weak. These units can be fitted separately, with
computational cost ≤ # of units × 2K .

Despite the perceptive vision and philosophical importance in these works [12, 27],
substantial vagueness remains: How to screen? How to clean? Is screen and clean
really better than the lasso and the subset selection? This is where the Univariate
Penalization Screening (UPS) comes in.

1.2. UPS. The UPS is a two-stage method which contains an U -step and a
P -step. In the U -step, we screen with univariate thresholding [9] (also known
as marginal regression [15] and sure screening [12]). Fix a threshold t > 0, and
let xj be the j th column of X. We remove the j th variable from the regression
model if and only if |(xj , Y )| < t . The set of surviving indices is then Up(t) =
Up(t;Y,X) = {j : |(xj , Y )| ≥ t,1 ≤ j ≤ p}.

Despite its simplicity, the U -step can be effective in many situations. The key
insight is that Up(t) has the following important properties:

• Sure Screening (SS). With overwhelming probability, Up(t) includes all but a
negligible proportion of the signals (i.e., nonzero coordinates of β). The termi-
nology is slightly different from that in [12].

• Separable After Screening (SAS). Define a graph where {1,2, . . . , p} is the set
of nodes, and nodes j and k are connected if and only if |(xj , xk)| is large (i.e.,
columns j and k are “significantly” correlated). The SAS property refers to as
that with overwhelming probability, Up(t) splits into many disconnected small-
size components [a component is a maximal connected subgraph of Up(t)].

We now explain how these properties pave the way for the P -step. Let I0 =
{i1, . . . , iK} and J0 = {j1, . . . , jL} be two subsets of {1,2, . . . , p}, 1 ≤ K,L ≤ p.
We have the following definition.

DEFINITION 1.1. For any p × 1 vector Y , Y I0 denotes the K × 1 vector such
that Y I0(k) = Yik , 1 ≤ k ≤ K . For any p × p matrix �, �I0,J0 denotes the K × L

matrix such that �I0,J0(k, �) = �(ik, j�), 1 ≤ k ≤ K,1 ≤ � ≤ L.

Note that the regression model is closely related to the model X′Y = X′Xβ +
X′z. Restricting the attention to U = Up(t), we have

(X′Y)U = (X′Xβ)U + (X′z)U = (X′X)U ,V β + (X′z)U ,

where V = {1,2, . . . , p}. Three key observations are the following: (a) since
z ∼ N(0, In), (X′z)U ∼ N(0, (X′X)U ,U ), (b) by the sure screening property,
(X′X)U ,V β ≈ (X′X)U ,U βU and (c) by the SAS property, (X′X)U ,U approximately
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equals a block diagonal matrix, where each block corresponds to a maximal con-
nected subgraph contained in Up(t). As a result, the original regression problem
reduces to many small-size regression problems that can be solved separately, each
at a modest computational cost.

In detail, fix two parameters λups and uups. Let I0 = {i1, i2, . . . , iK} ⊂ Up(t) be
a component, and let μ be a K × 1 vector the coordinates of which are either 0
or uups. Write A = (X′X)I0,I0 for short. Let μ̂(I0) = μ̂(I0;Y,X, t, λups, uups,p)

be the minimizer of the functional
1
2

(
(X′Y)I0 − Aμ

)′
A−1(

(X′Y)I0 − Aμ
) + 1

2(λups)2‖μ‖0.(1.4)

Combining all such estimates across different components of Up(t) gives the UPS
estimator, denoted by β̂ups = β̂ups(Y,X; t, λups, uups,p),

β̂
ups
j =

{
(μ̂(I0))k, if j = ik ∈ I0 for some I0 = {i1, i2, . . . , iK} ⊂ Up(t),
0, if j /∈ Up(tp).

The UPS uses three tuning parameters (t, λups, uups). In many cases, the perfor-
mance of the UPS is relatively insensitive to the choice of t , as long as it falls in
a certain range. The parameter λups has a similar role to those of the lasso and the
subset selection, but there is a major difference: the former can be conveniently
estimated using the data, whereas how to set the latter remains an open problem.
See Section 2 for more discussion.

We are now ready to answer the questions raised in the end of Section 1.1: UPS
indeed has advantages over the lasso and the subset selection. In Sections 1.3–1.7,
we establish a theoretic framework and investigate these procedures closely. The
main finding is the following: for a wide range of design matrices X, the Ham-
ming distance of the UPS achieves the optimal rate of convergence. In contrast,
the lasso and the subset selection may be rate nonoptimal, even for very simple
design matrices.

1.3. Sparse signal model and universal lower bound. We model β by

βj
i.i.d.∼ (1 − ε)ν0 + επ, 0 < ε < 1,1 ≤ j ≤ p,(1.5)

where ν0 is the point mass at 0, and π is a distribution that has no mass at 0. We
use p as the driving asymptotic parameter and allow (ε,π) to depend on p. Fix
0 < ϑ < 1 and recall that sp is the number of signals. We calibrate

ε = εp = p−ϑ so that sp ∼ pεp = p1−ϑ .(1.6)

For any variable selection procedure β̂ = β̂(Y |X), we measure the loss by the
Hamming distance

hp(β̂, β|X) = hp(β̂, β; εp,πp,np|X) = Eεp,πp

[ p∑
j=1

1
(
sgn(β̂j ) = sgn(βj )

)]
,
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where sgn(0) = 0. In the context of variable selection, the Hamming distance is a
natural choice for loss function. While the focus of this paper is on selection error
where we use L0-loss, the idea can be extended to the estimation setting where
we use Lq -loss (0 < q < ∞), but we have to perform an additional step of least
square fitting after the selection.

Somewhat surprisingly, there is a lower bound for the Hamming distance that
holds for all sample size n and design matrix X (and so “universal lower bound”).
The following notation is frequently used in this paper.

DEFINITION 1.2. Lp > 0 is a multi-log(p) term which may change from oc-
currence to occurrence, such that for any fixed δ > 0, limp→∞ Lp · pδ = ∞ and
limp→∞ Lpp−δ = 0.

Now, fixing r > 0, we introduce

τp = τp(r) =
√

2r logp(1.7)

and λp = λp(εp, τp) = 1
τp

[log(
1−εp

εp
)+ τ 2

p

2 ]. Let �̄ = 1−� be the survival function
of N(0,1). The following theorem is proved in [18].

THEOREM 1.1 (Lower bound). Fix ϑ ∈ (0,1), r > 0 and a sufficiently large p.
Let εp , sp and τp be as in (1.6) and (1.7), and suppose the support of πp is con-
tained in [−τp,0) ∪ (0, τp]. For any fixed n and matrix X = X(p) such that X′X
has unit diagonals, hp(β̂, β|X) ≥ sp · [(1 − εp)�̄(λp)/εp + �(τp − λp)].

Note that as p → ∞,

1 − εp

εp

�̄(λp) + �(τp − λp) ≥
{

Lp · p−(r−ϑ)2/(4r), r > ϑ ,(
1 + o(1)

)
, r < ϑ .

(1.8)

It may seem counterintuitive that the lower bound does not depend on n, but this is
due to the way we normalize X. In the case of orthogonal design [i.e., coordinates
of X and i.i.d. from N(0,1/n)], the lower bound can be achieved by either the
lasso or marginal regression [15]. Therefore, the orthogonal design is among the
best in terms of the error rate.

Theorem 1.1 says that if we have p1−ϑ signals, and the maximal signal strength
is slightly smaller than

√
2ϑ log(p), then the Hamming distance of any procedure

cannot be substantially smaller than sp , and so successful variable selection is
impossible. In the sections below, we focus on the case where the signal strength
is larger than

√
2ϑ log(p), so that successful variable selection is possible.

The universality of the lower bound hints it may not be tight for nonorthogo-
nal X. Fortunately, it turns out that in many interesting cases, the lower bound is
tight. To facilitate the analysis, we invoke the random design model.
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1.4. Random design, connection to Stein’s normal means model. Write X =
(x1, x2, . . . , xp) = (X1,X2, . . . ,Xn)

′. We model Xi as i.i.d. samples from a p-
variate zero-mean Gaussian distribution,

Xi
i.i.d.∼ N

(
0,

1

n
�

)
.(1.9)

The p × p matrix � = �(p) is unknown, but for simplicity we assume it has unit
diagonals. The normalizing constant 1/n is chosen so that the diagonals of the
Gram matrix X′X are approximately 1. Fixing θ ∈ (1 − ϑ,1), we let

n = np = pθ .(1.10)

Note that sp � np � p as p → ∞. For successful variable selection, it is almost
necessary to have sp � np [9]. Also, denoting the distribution of X by F = Fp ,
note that for any variable selection procedure, the overall Hamming distance is
Hammp(β̂, β) = EF [hp(β̂|X)].

Model (1.9) is called the random design model which may be found in the fol-
lowing application areas:

• Compressive sensing. We are interested in a p-dimensional sparse vector β . We
measure n general linear combinations of β and then reconstruct it. For 1 ≤
i ≤ n, choose a p × 1 coefficient vector Xi , and observe Yi = X′

iβ + zi , where
zi ∼ N(0, σ 2) is noise. For computational and storage concerns, one usually
chooses Xi’s as simple as possible. Popular choices of Xi include Gaussian
design, Bernoulli design, circulant design, etc. [3, 9]. Model (1.9) belongs to
Gaussian design.

• Privacy-preserving data mining. The vector β may contain some confidential
information (e.g., HIV-diagnosis results of a community) that we must protect.
While we cannot release the whole vector, we must allow data mining to some
extent, because, for example, the study is of public interest and is supported by
federal funding. To compromise, we allow queries as follows. For each query,
the database randomly generates a p × 1 vector Xi , and releases both Xi and
Yi = X′

iβ + zi to the querier, where zi ∼ N(0, σ 2) is a noise term. For pri-
vacy concerns, the number of allowed queries is much smaller than p. Popular
choices of Xi include Gaussian design and Bernoulli design [8].

Random design model is closely related to Stein’s normal means model W ∼
N(β,�), where � = �−1. To see the point, recall that model (1.1) is closely
related to the model X′Y = X′Xβ + X′z. Since the rows of X are i.i.d. sam-
ples from N(0, 1

n
�) and sp � np � p, we expect to see that X′Xβ ≈ �β and

X′z ≈ N(0,�), and so that X′Y ≈ N(�β,�). Therefore, Stein’s normal means
model can be viewed as an idealized version of the random design model. This
suggests that solving the variable selection problem opens doors for solving Stein’s
normal means problem, and vice versa.
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1.5. Optimality of the UPS. The main results of this paper are Theorems 2.1
and 2.2 in Section 2. To state such results, we need relatively long preparations.
Therefore, we sketch these results below, but leave the formal statements to later.
In models (1.1), (1.5) and (1.9), let (sp, τp, np) be as in (1.6), (1.7) and (1.10).
Suppose:

• Each row of � satisfies a certain summability condition, so it has relatively few
large coordinates.

• The support of πp is contained in [τp, (1 + η)τp], where τp = √
2r log(p), and

η is a constant to be defined later. We suppose r > ϑ , so that successful variable
selection is possible; see Theorem 1.1.

• Either all coordinates of � are positive, or that r/ϑ ≤ 3+2
√

2 (so that we won’t
have too many “signal cancellations” [27]).

Fix 0 < q ≤ (ϑ + r)2/(4r), and set the tuning parameters (t, λups, uups) by

t∗p = t∗p(q) =
√

2q logp, λups = λups
p =

√
2ϑ log(p), uups = uups

p = τp.

The main result is that, as p → ∞, the ratio between the Hamming error of the
UPS and sp is no grater than Lpp−(ϑ−r)2/(4r). Comparing this with Theorem 1.1
gives that the lower bound is tight, and the UPS is rate optimal.

1.6. Phase diagram for high-dimensional variable selection. The above re-
sults reveal a watershed phenomenon as follows. Suppose we have roughly sp =
p1−ϑ signals. If the maximal signal strength is slightly smaller than

√
2ϑ logp,

then the Hamming distance of any procedure cannot be substantially smaller
than sp , hence successful variable selection is impossible. If the minimal signal
strength is slightly larger than

√
2ϑ logp, then there exist procedures (UPS is one

of them) whose Hamming distances are substantially smaller than sp , and they
manage to recover most signals.

The phenomenon is best described in the special case where πp = ντp is the
point mass at τp , with τp = √

2r logp as in (1.7). If we call the two-dimensional
domain {(ϑ, r) : 0 < ϑ < 1, r > 0} the phase space, then the theorems say that the
phase space is partitioned into three regions:

• Region of no recovery (0 < ϑ < 1, 0 < r < ϑ). In this region, the Hamming
distance of any procedure � sp , and successful variable selection is impossible.

• Region of almost full recovery [0 < ϑ < 1, ϑ < r < (1 + √
1 − ϑ)2]. In this

region, there are procedures (e.g., UPS) whose Hamming errors are much larger
than 1, but are also much smaller than sp . In this region, it is possible to recover
most of the signals, but not all of them.

• Region of exact recovery [0 < ϑ < 1, r > (1 + √
1 − ϑ)2]. In this region, there

are procedures (e.g., UPS) that recover all signals with probability ≈ 1.
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FIG. 1. Left: phase diagram. In the yellow region, the UPS recovers all signals with high prob-
ability. In the white region, it is possible (i.e., UPS) to recover almost all signals, but impossible
to recover all of them. In the cyan region, successful variable selection is impossible. Right: parti-
tion of the phase space by the lasso for the tridiagonal model (1.11)–(1.12) (a = 0.4). The lasso is
rate nonoptimal in the nonoptimal region. The region of exact recovery by the lasso is substantially
smaller than that displayed on the left.

See Figure 1 (left panel) for these regions. Note that the partitions are the same
for many choices of �. Because of the partition of the phases, we call this the
phase diagram. The UPS is optimal in the sense that it partitions the phase space
in exactly the same way as do the optimal procedures.

The phase diagram provides a benchmark for variable selection. The lasso
would be optimal if it partitions the phase space in the same way as in the left
panel of Figure 1. Unfortunately, this is not the case, even for very simple �.
Below we investigate the case where X′X is a tridiagonal matrix, and identify pre-
cisely the regions where the lasso is rate optimal and where it is rate nonoptimal.
More surprisingly, there is a region in the phase space where the subset selection
is also rate nonoptimal.

1.7. Nonoptimal region for the lasso. In Sections 1.7 and 1.8, we temporarily
leave the random design model and consider Stein’s normal means model, which
is an idealized version of the former. Using an idealized version is mainly for
mathematical convenience, but the gained insight is valid in much broader settings:
if a procedure is nonoptimal in simple cases, we should not expect them to be
optimal in more complicated cases.

In this spirit, we consider Stein’s normal means model

Ỹ ≡ X′Y ∼ N(�β,�),(1.11)

where β is as in (1.5) with τp = νπp and πp = √
2r log(p). To further simplify the

study, we fix a ∈ (0,1/2) and take � as the tridiagonal matrix T (a):

T (a)(i, j) = 1{i = j} + a · 1{|i − j | = 1}, 1 ≤ i, j ≤ p.(1.12)

Note that in this case the UPS partitions the phase space optimally.
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We now discuss the phase diagram of the lasso. The region {(ϑ, r) : 0 < ϑ <

1, r > ϑ} is partitioned into three regions as follows (see Figure 1):

• Nonoptimal region: 0 < ϑ < 2a(1 + a)−1 and 1
a
(1 + √

1 − a2)ϑ < r < (1 +√
1+a
1−a

)2(1 − ϑ). In this region, the lasso is rate nonoptimal [i.e., the Hamming

distance is Lp · pc with constant c > 1 − (ϑ + r)2/(4r)], even when the tuning
parameter is set ideally.

• Optimal region: 0 < ϑ < 1 and ϑ < r < 1
a
(1 + √

1 − a2)ϑ and r < (1 +√
1 − ϑ)2. In this region, if additionally a ≥ 1/3, then the lasso may be rate opti-

mal if the tuning parameter is set ideally. The discussion on the case 0 < a < 1/3
is tedious so we skip it.

• Region of exact recovery: 0 < ϑ < 1 and r > (1 + √
1 − ϑ)2 and r > (1 +√

1+a
1−a

)2(1 − ϑ). In this region, if the tuning parameter is set ideally, the lasso
may yield exact recovery with high probability. Region of exactly recovery by
the lasso is substantially smaller than that of the UPS. There is a sub-region in
the phase space where the UPS yields exact recovery, but the lasso could not
even when the tuning parameter is set ideally.

For discussions in the case where � is the identity matrix, compare [15, 25].
The above results are proved in Theorem 4.1, where we derive a lower bound
for the Hamming errors by the lasso. In [17], we show that the lower bound is
tight for properly large ϑ , but is not when ϑ is small. It is, however, tight for
all ϑ ∈ (0,1) if we replace model (1.5) by a closely related model, namely (2.2)
and (2.3) in [16]. For these reasons, the nonoptimal region of the lasso may be
larger than that illustrated in Figure 1. The discussion on the exact optimal rate of
convergence for the lasso is tedious and we skip it.

Why is the lasso nonoptimal? To gain insight, we introduce the term of fake
signal, a noise coordinate that may look like a signal due to correlation.

DEFINITION 1.3. We say that Ỹj is a signal if βj = 0, is a fake signal if
(�β)j = 0 and βj = 0, and is a (pure) noise if βj = (�β)j = 0.

With the tuning parameter set ideally, the lasso is able to distinguish signals
from pure noise, but it does not filter out fake signals efficiently. In the optimal
region of the lasso, the number of falsely kept fake signals is much smaller than
the optimal rate, so it is negligible; in the nonoptimal region, the number becomes
much larger than the optimal rate, and so is nonnegligible. This suggests that when
X′X moves away from the tridiagonal case, the partitions of the regions by the
lasso may change, but the nonoptimal region of the lasso continues to exist in
rather general situations.

The nonoptimality of the lasso is largely due to the fact that it is a one-stage
method. An interesting question is whether UPS continues to work well if we re-
place the univariate thresholding by the lasso in the screening stage. The disadvan-
tage of this proposal is that, compared to the univariate thresholding, the lasso is
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both slower in computation and harder to analyze in theory. Still, one would hope
the lasso could perform well in screening.

With that being said, we note that the implementation of the lasso only needs
minimal assumption on the model, which makes it very attractive, especially in
complicated situations. In comparison, we need both signal sparsity and graph
sparsity to implement the UPS, and how to extend it to more general settings re-
mains unknown. The exploration along this line is continued in our forthcoming
manuscripts [11, 19, 20]; see details therein.

1.8. Nonoptimal region for the subset selection. The discussion on the subset
selection is similar to that for the lasso so we keep it brief. Introduce v1(a) =

2−
√

1−a2√
1−a2(1−

√
1−a2)

and v2(a) = 2
√

1 − a2 − 1. Similarly, the phase space partitions

into three regions as follows:

• Nonoptimal region: 0 < ϑ < 4v1(a)

(v1(a)+1)2 and v1(a)ϑ < r < [ 1
v2(a)

(
√

1 − 2ϑ +√
1 − 2ϑ + ϑv2(a))]2.

• Optimal region: 0 < ϑ < 1 and ϑ < r < v1(a)ϑ and r < (1 + √
1 − ϑ)2.

• Exact recovery region: 0 < ϑ < 1, r > (1+√
1 − ϑ)2 and r > [ 1

v2(a)
(
√

1 − 2ϑ +√
1 − 2ϑ + ϑv2(a))]2.

See Theorem 4.2 for proofs and Figure 2 for illustration. Similar to the remarks
in Section 1.7, the region of exact recovery and the optimal region of the subset
selection may be smaller than those illustrated in Figure 2.

The reason why the subset selection is nonoptimal is almost the opposite to that
of the lasso: the lasso is nonoptimal for it is too loose on fake signals, but the subset
selection is nonoptimal for it is too harsh on signal clusters (pairs/triplets, etc.).
With the tuning parameter set ideally, the subset selection is effective in filtering

FIG. 2. Left: a re-display of the left panel of Figure 1. Right: partition of the phase space by the
subset selection in the tridiagonal model (1.11)–(1.12) (a = 0.4). The subset selection is not rate
optimal in the nonoptimal region. The exact recovery region by the subset selection is substantially
smaller than that of the optimal procedure, displayed on the left.
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out fake signals, but it also tends to kill one or more signals when the true signals
appear in clusters. These falsely killed signals account for the nonoptimality. See
Section 4.2 for details.

1.9. Connection to recent literature. This work is related to recent literature
on oracle property [22, 30], but is different in important ways. A procedure has the
oracle property if it yields exact recovery. However, exact recovery is rarely seen
in applications, especially when p � n. In many applications (e.g., genomics),
a large p usually means that signals are sparse or rare, and a small n usually means
signals are weak. For rare and weak signals, exact recovery is usually impossible.
Therefore, it is both scientifically more relevant and technically more challenging
to compare error rates of different procedures than to investigate when they satisfy
the oracle property.

The work is also related to [5, 28] on asymptotic minimaxity, where the lasso
was shown to be asymptotic rate optimal in the worst-case scenario. While their
results seem to contradict with those in this paper, the difference can be easily
reconciled. In the minimax approach, the asymptotic least favorable distribution

of β is given by βj
i.i.d.∼ (1 − εp)ν0 + εpντp , where εp = p−ϑ , τp = √

2r logp and
notably ϑ = r , which corresponds the boundary line of the region of no recovery
in the phase space (e.g., [28], pages 18 and 19, [1], Section 3). This suggests that
the minimax approach has limitations: it reduces the analysis to the worst-case
scenario, but the worst-case scenario may be outside the range of interest. In our
approach, we let (ϑ, r) range freely, and evaluate a procedure based on how it
partitions the phase space. Our approach has a similar spirit to that in [10].

The work is also related to the adaptive lasso [30]. The adaptive lasso is similar
to the lasso, but the L1-penalty λlasso‖β‖1 is replaced by the weighted L1-penalty∑p

j=1 wj |βj |, where w = (w1, . . . ,wp)′ is the weight vector. Philosophically, we
can view the adaptive lasso as a screen and clean method. Still, the proposed ap-
proach is different from the adaptive lasso in important ways. First, Zou [30] sug-
gested weight choices by the least squares estimate, which is only feasible when p

is small. In fact, when p � n, our results suggest that feasible weights should be
very sparse, while the weights suggested by the least squares estimates are usually
dense. Second, for the surviving indices, we first partition them into many dis-
joint units of small sizes, and then fit them individually. The adaptive lasso fits all
surviving variables together, which is computationally more expensive. Last, we
use penalized MLE in the clean step while the adaptive lasso uses L1-penalty. As
pointed out before, the L1-penalty in the clean step is too loose on fake signals,
which prohibits the procedure from being rate optimal.

The work is also related to other multi-stage methods, for example, the thresh-
old lasso [29] or the LOL [21]. These methods first use the lasso and the OLS for
variable selection, respectively, followed by an additional thresholding step. How-
ever, by an argument similar to that in Sections 1.7 and 1.8, it is not hard to see
that these procedures do not partition the phase diagram optimally.
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1.10. Contents. In summary, we propose the UPS as a two-stage method for
variable selection. We use Univariate thresholding in the screening step for its ex-
ceptional convenience in computation, and we use penalized MLE in the cleaning
step because it is the only procedure we know so far that yields the optimal rate
of convergence. On the other hand, the lasso and even the subset selection do not
partition the phase space optimally.

The remaining sections are organized as follows. Section 2 discusses the UPS
procedure and the upper bound for the rate of convergence. The section also ad-
dresses how to estimate the tuning parameters of the UPS and the convergence rate
of the resultant plug-in procedure. Section 3 discusses a refinement of the UPS for
moderately large p. Section 4 discusses the behavior of the lasso and the subset
selection. Section 5 discusses numerical results where we compare the UPS with
the lasso (the subset selection is computationally infeasible for large p so is not
included for comparison). Due to limited space, we do not include proofs in this
paper. The proofs can be found in the supplementary material for the paper [18].

Below is some notation we use in this paper. Fix 0 < q < ∞. For a p × 1
vector x, ‖x‖q denotes the Lq -norm of x, and we omit the subscript when q = 2.
For a p × p matrix M , ‖M‖q denotes the matrix Lq -norm, and ‖M‖ denotes the
spectral norm.

2. UPS and upper bound for the Hamming distance. In this section, we
establish the upper bound for the Hamming distance and show that the UPS is
rate optimal. We begin by discussing necessary notation. We then discuss the U -
step and its sure screening and SAS properties. Next, we show how the regression
problem reduces to many separate small-size regression problems and explain the
rationale of using the penalized MLE in the P -step. We conclude the section by
the rate optimality of the UPS, where the tuning parameters are either set ideally
or estimated.

Since different parts of our model are introduced separately in different subsec-
tions, we summarize them as follows. The model we consider is

Y = Xβ + z, z ∼ N(0, In),(2.1)

where

Xi
i.i.d.∼ N

(
0,

1

n
�

)
,

(2.2)
βj

i.i.d.∼ (1 − εp)ν0 + εpπp, 1 ≤ i ≤ n,1 ≤ j ≤ p.

Fixing θ > 0, ϑ > 0, and r > 0, we calibrate

εp = p−ϑ, τp =
√

2r logp, np = pθ,(2.3)

assuming that

θ < (1 − ϑ).(2.4)
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Recall that the optimal rate of convergence is Lpp1−(ϑ+r)2/(4r). In this section,
we focus on the case where the exponent 1 − (ϑ + r)2/(4r) falls between 0 and
(1 − ϑ), or equivalently,

ϑ < r <
(
1 + √

1 − ϑ
)2

.(2.5)

In the phase space, this corresponds to the region of almost full recovery. The case
r < ϑ corresponds to the region of no recovery and is studied in Theorem 1.1.
The case r > (1 + √

1 − ϑ)2 corresponds to the region of exact recovery. The
discussion in this case is similar but is much easier, so we omit it.

Next, fixing A > 0 and γ ∈ (0,1), introduce

Mp(γ,A) =
{
� :p × p correlation matrix,

p∑
j=1

|�(i, j)|γ ≤ A,∀1 ≤ i ≤ p

}
.

For any �, let U = U(�) be the p × p matrix satisfying U(i, j) = �(i, j)1{i <

j}, and let d(�) = max{‖U(�)‖1,‖U(�)‖∞}. Fixing ω0 ∈ (0,1/2), introduce
M∗

p(ω0, γ,A) = {� ∈ Mp(γ,A) :d(�) ≤ ω0}, and a subset of M∗
p(ω0, γ,A),

M+
p (ω0, γ,A) = {� ∈ M∗

p(ω0, γ,A) :�(i, j) ≥ 0 for all 1 ≤ i, j ≤ p}.
For any � ∈ M∗

p(ω0, γ,A), the eigenvalues are contained in (1 − 2ω0,1 + 2ω0),
so � is positive definite (when ω0 > 1/2, � may not be positive definite).

Last, introduce a constant η = η(ϑ, r,ω0) by

η =
√

ϑr

(ϑ + r)
√

1 + 2ω0
min

{
2ϑ

r
,1 − ϑ

r
,
√

2(1 − ω0) − 1 + ϑ

r

}
.(2.6)

We suppose the support of signal distribution πp is contained in

[τp, (1 + η)τp],(2.7)

where τp = √
2r log(p) as in (1.7). This assumption is only needed for proving

the main lemma of the P -step (Lemma A.5, [18]) and can be relaxed for proving
other lemmas. Also, we assume the signals are one-sided mainly for simplicity.
The results can be extended to the case with two-sided signals.

We now discuss the U -step. As mentioned before, the benefits of the U -step are
threefold: dimension reduction, correlation complexity reduction, and computation
cost reduction. The U -step is able to achieve these goals simultaneously because it
satisfies the sure screening property and the SAS property, which we now discuss
separately.

2.1. The sure screening property of the U -step. Recall that in the U -step, we
remove the j th variable if and only if |(xj , Y )| < t for some threshold t > 0. For
simplicity, we make a slight change and remove the j th variable if and only if
(xj , Y ) < t. When the signals are one-sided, the change makes negligible differ-
ence. Fixing a constant q ∈ (0, (ϑ + r)2/(4r)), we set the threshold t in the U -step

t∗p = t∗p(q) =
√

2q log(p).(2.8)
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LEMMA 2.1 (Sure screening). In model (2.1)–(2.2), suppose (2.3)–(2.7) hold,
and t∗p is as in (2.8). For sufficiently large p, if �(p) ∈ M+

p (ω0, γ,A), then as

p → ∞,
∑p

j=1 P(x′
jY < t∗p,βj = 0) ≤ Lpp1−(ϑ+r)2/(4r). The claim remains true

if alternatively �(p) ∈ M∗
p(ω0, γ,A), but r/ϑ ≤ 3 + 2

√
2.

This says that the Hamming errors we make in the U -step are not substantially
larger than the optimal rate of convergence, and thus negligible.

2.2. The SAS property of the U -step. We need some terminology in graph
theory (e.g., [7]). A graph G = (V ,E) consists of two finite sets V and E, where
V is the set of nodes, and E is the set of edges. A component I0 of V is a maximal
connected subgraph, denoted by I0 � V . For any node v ∈ V , there is a unique
component I0 such that v ∈ I0 � V .

Fix a p × p symmetric matrix �0 which is presumably sparse. If we let V0 =
{1,2, . . . , p} and say nodes i and j are linked if and only if �0(i, j) = 0, then we
have a graph G = (V0,�0). Fix t > 0. Recall that Up(t) is the set of surviving
indices in the U -step

Up(t) = Up(t, Y,X) = {j : (xj , Y ) ≥ t,1 ≤ j ≤ p}.(2.9)

Note that the induced graph (Up(t),�0) splits into many components.

DEFINITION 2.1. Fix an integer K ≥ 1. We say that Up(t) has the separable
after screening (SAS) property with respect to (V0,�0,K) if each component of
the graph (Up(t),�0) has no more than K nodes.

Note that if Up(t) has the SAS property with respect to (V0,�0,K). Then for
all s > t , Up(s) also has the SAS property with respect to (V0,�0,K).

Return to model (2.1)–(2.2). We hope to relate the regression setting to a graph
(V0,�0), and use it to spell out the SAS property. Toward this end, we set V0 =
{1,2, . . . , p}. As for �0, a natural choice is the matrix � in (2.2). However, the
SAS property makes more sense if �0 is sparse and known, while � is neither. In
light of this, we take �0 to be a regularized empirical covariance matrix.

In detail, let �̂ = X′X be the empirical covariance matrix. Recall that X =
(X1,X2, . . . ,Xn)

′ and Xi ∼ N(0, 1
n
�). It is known [4] that there is a constant

C > 0 such that with probability 1 − o(1/p2), for all 1 ≤ i, j ≤ p,

|�̂(i, j) − �(i, j)| ≤ C
√

log(p)/
√

n.(2.10)

For large p, �̂ is a noisy estimate for �, so we regularize it by

�∗(i, j) = �̂(i, j)1{|�̂(i,j)|≥log−1(p)}.(2.11)

The threshold log−1(p) is chosen mainly for simplicity and can be replaced by
log−a(p), where a > 0 is a constant. The following lemma is a direct result of
(2.10); we omit the proof.
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LEMMA 2.2. Fix A > 0, γ ∈ (0,1) and ω0 ∈ (0,1/2). As p → ∞, for any
� ∈ M∗

p(ω0, γ,A), with probability of 1 − o(1/p2), each row of �∗ has no more

than 2 log(p) nonzero coordinates, and ‖�∗ − �‖∞ ≤ C(log(p))−(1−γ ).

Taking �0 = �∗, we form a graph (V0,�
∗). The following lemma is proved

in [18], which says that, except for a negligible probability, Up(t∗p) has the SAS
property.

LEMMA 2.3 (SAS). Consider model (2.1)–(2.2) where (2.3)–(2.7) hold. Set
t∗p as (2.8). As p → ∞, there is a constant K such that with probability 1 −
Lpp−(ϑ+r)2/(4r), Up(t∗p) has the SAS property with respect to (V0,�

∗,K).

2.3. Reduction to many small-size regression problems. Together, the sure
screening property and the SAS property make sure that the original regression
problem reduces to many separate small-size regression problems. In detail, the
SAS property implies that Up(t∗p) splits into many connected subgraphs, each is
small in size, and different ones are disconnected. Given two disjoint connected
subgraphs I0 and J0 where I0 � Up(t) and J0 � Up(t),

�∗(i, j) = 0 ∀i ∈ I0, j ∈ J0.(2.12)

Recall that the regression model (1.1) is closely related to the model X′Y =
X′Xβ +X′z. Fixing a connected subgraph I0 � Up(t∗p), we restrict our attention to
I0 by considering (X′Y)I0 = (X′Xβ)I0 + (X′z)I0 . See Definition 1.1 for notation.

Since Xi
i.i.d.∼ N(0, 1

n
�) and I0 has a small size, we expect to see (X′Xβ)I0 ≈

(�β)I0 and (X′z)I0 ≈ N(0,�I0,I0). Therefore, (X′Y)I0 ≈ N((�β)I0,�I0,I0).
A key observation is

(�β)I0 ≈ �I0,I0βI0 .(2.13)

In fact, letting I c
0 = {j : 1 ≤ j ≤ p, j /∈ I0}, it is seen that

(�β)I0 − �I0,I0βI0 = (�∗)I0,Ic
0βIc

0 + (� − �∗)I0,Ic
0βIc

0 = I + II.(2.14)

First, by Lemma 2.2, |II| ≤ C‖� − �∗‖∞‖β‖∞ = o(
√

log(p)) coordinate-wise,
hence II is negligible. Second, by the sure screening property, signals that are
falsely screened out in the U -step are fewer than Lpp1−(ϑ+r)2/(4r), and there-
fore have a negligible effect. To bring out the intuition, we assume Up(t∗p) con-
tains all signals for a moment (see [18], Lemma A.4, for formal treatment). This,
with (2.12), implies that I = 0, and (2.13) follows.

As a result, the original regression problem reduces to many small-size regres-
sion problems of the form

(X′Y)I0 ≈ N(�I0,I0βI0,�I0,I0)(2.15)

that can be fitted separately. Note that �I0,I0 can be accurately estimated by
(X′X)I0,I0 , due to the small size of I0. We are now ready for the P -step.
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2.4. P -step. The goal of the P -step is that, for each fixed connected subgraph
I0 � Up(t∗p), we fit model (2.15) with an error rate ≤ Lpp−(ϑ+r)2/(4r). This turns
out to be rather delicate, and many methods (including the lasso and the subset
selection) do not achieve the desired rate of convergence.

For this reason, we proposed a penalized-MLE approach. The idea can be ex-
plained as follows. Given that I0 � Up(t∗p) as a priori, the chance that I0 con-
tains k signals is ∼εk

p . This motivates us to fit model (2.15) by maximizing the

likelihood function εk
p · exp[−1

2 [(X′Y)I0 − Aμ]′A−1[(X′Y)I0 − Aμ]], subject to
‖μ‖0 = k. Recalling A = (X′X)I0,I0 ≈ �I0,I0 , this is proportional to the density
of (X′Y)I0 in (2.15), hence the name of penalized MLE. Recalling εp = p−ϑ and
λ

ups
p = √

2ϑ logp, it is equivalent to minimizing

[(X′Y)I0 − Aμ]′A−1[(X′Y)I0 − Aμ] + (λups
p )2 · ‖μ‖0.(2.16)

Unfortunately, (2.16) does not achieve the desired rate of convergence as ex-
pected. The reason is that we have not taken full advantage of the information
provided: given that all coordinates in I0 survive the screening, each signal in I0
should be relatively strong. Motivated by this, for some tuning parameter uups > 0,
we force all nonzero coordinates of μ to equal uups. This is the UPS procedure
we introduced in Section 1. In Theorem 2.1 below, we show that this procedure
obtains the desired rate of convergence provided that uups is properly set.

One may think that forcing all nonzero coordinates of μ to be equal is too
restrictive, since the nonzero coordinates of βI0 are unequal. Nevertheless, the
UPS achieves the desired error rate. The reason is that, knowing the exact values
of the nonzero coordinates is not crucial, as the main goal is to separate nonzero
coordinates of βI0 from the zero ones.

Similarly, since knowing the signal distribution πp may be very helpful, one
may choose to estimate πp using the data first and then combine the estimated
distribution with the P -step. However, this has two drawbacks. First, model (2.15)
is very small in size, and can be easily over fit if we introduce too many degrees of
freedom. Second, estimating πp usually involves deconvolution, which generally
has relatively slow rate of convergence (e.g., [26]); a noisy estimate of πp may
hurt rather than help in fitting model (2.15).

2.5. Upper bound. We are now ready for the upper bound. To recap, the pro-
posed procedure is as follows:

• With fixed tuning parameters (t, λups, uups), obtain Up(t) = {j : 1 ≤ j ≤ p,
(xj , Y ) ≥ t}.

• Obtain �∗ as in (2.11), and form a graph (V0,�0) with V0 = {1,2, . . . , p} and
�0 = �∗.

• Split Up(t) into connected subgraphs where different ones are disconnected. For
each connected subgraph I0 = {i1, i2, . . . , iK}, obtain the minimizer of (2.16),
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where each coordinate of μ is either 0 or uups. Denote the estimate by μ̂(I0) =
μ̂(I0;Y,X, t, λups, uups,p).

• For any 1 ≤ j ≤ p, if j /∈ Up(t), set β̂j = 0. Otherwise, there is a unique
I0 = {i1, i2, . . . , iK} � Up(t), where i1 < i2 < · · · < iK , such that j is the kth
coordinate of I0. Set β̂j = (μ̂(I0))k .

Denote the resulting estimator by β̂(Y,X; t, λups, uups). We have the following
theorem.

THEOREM 2.1. Consider model (2.1)–(2.2) where (2.3)–(2.7) hold, and fix
0 < q ≤ (ϑ + r)2/(4r). For sufficiently large p, if �(p) ∈ M+

p (ω0, γ,A), and we
set the tuning parameters of the UPS at

t = t∗p =
√

2q log(p), λups = λups
p =

√
2ϑ logp, uups = uups

p = τp,

then as p → ∞, Hammp(β̂ups(Y,X; t∗p,λ
ups
p ,u

ups
p ),ϑ, r,�(p)) ≤ Lp · sp ·

p−(r−ϑ)2/(4r). The claim remains valid if r/ϑ ≤ 3 + 2
√

2 and �(p) ∈ M∗
p(ω0,

γ,A) for sufficiently large p.

Except for the Lp term, the upper bound matches the lower bound in Theo-
rem 1.1. Therefore, both bounds are tight and the UPS is rate optimal.

2.6. Tuning parameters of the UPS. The UPS uses three tuning parameters
(t∗p,λ

ups
p ,u

ups
p ). In this section, we show that under certain conditions, the parame-

ters (λ
ups
p ,u

ups
p ) can be estimated from the data.

In detail, recall that Ỹ = X′Y . For t > 0, introduce F̄p(t) = 1
p

∑p
j=1 1{Ỹj > t}

and μp(t) = 1
p

∑p
j=1 Ỹj · 1{Ỹj > t}. Denote the largest off-diagonal coordinate of

� by δ0 = δ0(�) = max{1≤i,j≤p,i =j}|�(i, j)|. Recalling that the support of πp is
contained in [τp, (1 + η)τp], we suppose

2δ0(1 + η) − 1 ≤ ϑ/r so that δ2
0(1 + η)2r <

(ϑ + r)2

4r
.(2.17)

Let μ∗
p(πp) be the mean of πp . The following is proved in [18].

LEMMA 2.4. Fix q such that max{δ2
0(1 + η)2r,ϑ} < q ≤ (ϑ + r)2/(4r), and

let t∗p = √
2q logp. Suppose the conditions in Theorem 2.1 hold. As p → ∞, with

probability of 1 − o(1/p),

|[F̄p(t∗p)/εp] − 1| = o(1) and |[μp(t∗p)/(εpμ∗
p(πp))] − 1| = o(1).(2.18)

Motivated by Lemma 2.18, we propose to estimate (λups, uups) by

λ̂ups
p = λ̂ups

p (q) =
√

−2 log(F̄p(t∗p)),
(2.19)

ûups
p = ûups

p (q) = μp(t∗p)/F̄p(t∗p).
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THEOREM 2.2. Fix q such that max{δ2
0(1 + η)2r,ϑ} < q ≤ (ϑ + r)2/(4r),

and let t∗p = √
2q logp. Suppose the conditions of Theorem 2.1 hold. As p → ∞, if

additionally μ∗
p(πp) ≤ (1 + o(1))τp , then Hammp(β̂ups) ≤ Lp · sp ·p−(r−ϑ)2/(4r).

As a result, t∗p is the only tuning parameter needed by the UPS. By Theorem 2.2,
the performance of the UPS is relatively insensitive to the choice of t∗p , as long as
it falls in a certain range. Numerical studies in Section 5 confirm this for finite p.
The numerical study also suggests that the lasso is comparably more sensitive to
its tuning parameter λlasso.

2.7. Discussions. While the conditions in Theorems 2.1 are 2.2 are relatively
strong, the key idea of the paper applies to much broader settings. The success of
UPS attributes to the interaction of the signal sparsity and graph sparsity, which
can be found in many applications [e.g., compressive sensing, genome-wide asso-
ciation study (GWAS)].

In the forthcoming papers [11, 19, 20], we revisit the key idea of this paper,
and extend our results to more general settings. However, the current paper is dif-
ferent from [11, 19, 20] in important ways. First, the focus of [11] is on ill-posed
regression models and change-point problems, and the focus of [20] is on Ising
model and network data. Second, the current paper uses the so-called “phase di-
agram” as a new criterion for optimality (e.g., [10]), and Jin and Zhang [19] use
the more traditional “asymptotic minimaxity” as the criterion for optimality. Due
to the complexity of the problem, one type of optimality usually does not imply
the other. The current paper and [19] have very different targets, objectives and un-
derlying mathematical techniques, and the results in either one cannot be deduced
from the other.

The current paper is new in at least two aspects. First, given that marginal re-
gression is a widely used method but is not well justified, this paper shows that
marginal regression can actually work, provided that an additional cleaning stage
is performed. Second, it shows that L0-penalization method—the target of many
relaxation methods—is nonoptimal, even in very simple settings, and even when
the tuning parameter is ideally set.

3. A refinement for moderately large p. We introduce a refinement for the
UPS when p is moderately large. We begin by investigating the relationship be-
tween the regression model and Stein’s normal means model.

Recall that model (1.1) is closely related to the following model:

X′Y = X′Xβ + X′z, z ∼ N(0, In),(3.1)

which is approximately equivalent to Stein’s normal means model as follows:

X′Y ≈ �β + N(0,�) ⇐⇒ �−1X′Y ≈ N(β,�−1).(3.2)
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In the literature, Stein’s normal means model has been extensively studied, but
the focus has been on the case where � is diagonal (e.g., [26]). When � is not
diagonal, Stein’s normal means model is intrinsically a regression problem. To see
how close models (3.1) and (3.2) are, write

X′Y =
[
�β +

√
n

‖z‖X′z
]

+
[
(X′X − �)β +

(‖z‖√
n

− 1
)√

n

‖z‖X′z
]

= I + II.(3.3)

First, note that I ∼ N(�β,�). For II, we have the following lemma.

LEMMA 3.1. Consider model (2.1)–(2.2) where (2.2)–(2.4) hold. As p → ∞,
there is a constant C > 0 such that except for a probability of o(1/p),∣∣∣∣‖z‖√

n
− 1

∣∣∣∣ ≤ C
(√

logp
)
p−θ/2,

‖(X′X − �)β‖∞ ≤ C‖�‖(√
2 logp

)
p−(θ−(1−ϑ))/2.

It follows that |II| ≤ C
√

2 log(p) · p−[θ−(1−ϑ)]/2 coordinate-wise. Therefore,
asymptotically, models (3.1) and (3.2) have negligible difference. However, when
p is moderately large, the difference between models (3.1) and (3.2) may be non-
negligible. In Table 1, we tabulate the values of

√
2 log(p) · p−[θ−(1−ϑ)]/2, which

are relatively large for moderately large p.
This says that, for moderately large p, the random design model is much noisier

than Stein’s normal means model. As a result, in the U -step, we tend to falsely
keep more noise terms in the former than in the latter; some of these noise terms
are large in magnitude, and it is hard to clean all of them in the P -step. To see how
the problem can be fixed, we write

X′Xβ = (X′X − �∗)β + �∗β.(3.4)

On one hand, the term (X′X − �∗)β causes the random design model to be much
noisier than Stein’s normal means model. On the other hand, this term can be
easily removed from the model if we have a reasonably good estimate of β . This
motivates a refinement as follows.

For any p × 1 vector y, let S2(y) = 1
p−1

∑p
j=1(yj − ȳ)2 where ȳ = 1

p

∑p
j=1 yj .

We propose the following procedure: (1) Run the UPS and obtain an estimate

TABLE 1
The values of

√
2 log(p)p−[θ−(1−ϑ)]/2 for different p and (θ,ϑ)

p 400 5 × 400 52 × 400 53 × 400 54 × 400 55 × 400

(θ,ϑ) = (0.91,0.65) 0.65 0.46 0.33 0.22 0.15 0.10
(θ,ϑ) = (0.91,0.5) 1.01 0.82 0.65 0.51 0.39 0.30
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of β , say, β̂ . Let W(0) = X′Y and β̂(0) = β̂ . (2) For j = 1,2,3, respectively, let
W(j) = X′Y − (X′X − �∗)β̂(j−1). If S(W(j))/S(W(j−1)) ≤ 1.05, run the UPS
with X′Y replaced by W(j) and other parts unchanged, and let β̂(j) be the new
estimate. Stop otherwise.

Numerical studies in Section 5 suggest that the refinement is beneficial for mod-
erately large p. When p is sufficiently large [e.g.,

√
2 log(p) · p−[θ−(1−ϑ)]/2 ≤

0.4], the original UPS is usually good enough. In this case, refinements are not
necessary, but may still offer improvements.

4. Understanding the lasso and the subset selection. In this section, we
show that there is a region in the phase space where the lasso is rate nonopti-
mal (similarly for subset selection). We use Stein’s normal means model instead
of the random design model (as the goal is to understand the nonoptimality of
these methods, focusing on a simpler model enjoys mathematical convenience, yet
is also sufficient; see Section 1.7).

To recap, the model we consider in this section is Ỹ ∼ N(�β,�), where Ỹ is
the counterpart of X′Y in the random design model. Fix a ∈ (−1/2,1/2). As in
Section 1.7, we let � be the tridiagonal matrix as in (1.12), and πp be the point
mass at τp = √

2r logp. In other words,

βj
i.i.d.∼ (1 − εp)ν0 + εpντp , εp = p−ϑ, τp =

√
2r logp.(4.1)

Throughout this section, we assume r > ϑ so that successful variable selection is
possible. Somewhat surprisingly, even in this simple case and even when (εp, τp)

are known, there is a region in the phase space where neither the lasso nor the
subset selection is optimal. To shed light, we first take a heuristic approach below.
Formal statements are given later.

4.1. Understanding the lasso. The vector Ỹ consists of three main compo-
nents: true signals, fake signals and pure noise (see Definition 1.3). According
to (4.1), true signals may appear as singletons, pairs, triplets, etc., but singletons
are the most common and therefore have the major effect. For each signal single-
ton, since � is tridiagonal, we have two fake signals, one to the left and one to the
right. Given a site j , 1 ≤ j ≤ p, the lasso may make three types of errors:

• Type I. Ỹj is a pure noise, but the lasso mistakes it as a signal.

• Type II. Ỹj is a signal singleton, but the lasso mistakes it as a noise.

• Type III. Ỹj is a fake signal next to a signal singleton, but the lasso mistakes it
as a signal.

There are other types of errors, but these are the major ones.
To minimize the sum of these errors, the lasso needs to choose the tuning param-

eter λlasso carefully. To shed light, we first consider the uncorrelated case where �
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is the identity matrix. In this case, we do not have fake signals and it is under-
stood that the lasso is equivalent to the soft-thresholding procedure [26], where the
expected sum of types I and II errors is

p[(1 − εp)�̄(λlasso) + εp�(λlasso − τp)].(4.2)

Here, �̄ = 1 −� is the survival function of N(0,1). In (4.2), fixing 0 < q < 1 and
taking λlasso = λlasso

p = √
2q log(p), the expected sum of errors is

∼
{

Lp

[
p1−q + p1−(ϑ+(

√
q−√

r)2)
]
, if 0 < q < r ,

p1−q + p1−ϑ, if q > r .

The right-hand side is minimized at q = (ϑ + r)2/(4r) at which λlasso
p = ϑ+r

2r
τp ,

and the sum of errors is Lpp1−(ϑ+r)2/(4r), which is the optimal rate of conver-
gence. For a smaller q , the lasso keeps too many noise terms. For a larger q , the
lasso kills too many signals.

Return to the correlated case. The vector Ỹ is at least as noisy as that in the
uncorrelated case. As a result, to control the type I errors, we should choose λlasso

p

to be at least ϑ+r
2r

τp . This is confirmed in Lemma 4.2 below.
In light of this, we fix q ≥ (ϑ + r)2/(4r) and let λlasso

p = √
2q log(p) from

now on. We observe that except for a negligible probability, the support of β̂ lasso,
denoted by Ŝlasso

p , splits into many small clusters (i.e., block of adjacent indices).

There is an integer K not depending on p that has the following effects: (a) If Ỹj

is a pure noise, and there is no signal within a distance of K from it, then either
β̂ lasso

j = 0, or β̂ lasso
j = 0 but β̂ lasso

j±1 = 0, and (b) If Ỹj is a signal singleton, and

there is no other signal within a distance of K from it, then either β̂ lasso
j = 0, or

β̂ lasso
j = 0 but β̂j±2 = 0 and at least one of {β̂ lasso

j+1 , β̂ lasso
j−1 } is 0. These heuristics

are justified in [17] (we use such heuristics to provide insight, but not for proving
results below).

At the same time, let I0 = {j − k + 1, . . . , j} ⊂ Ŝlasso
p be a cluster, so that

β̂ lasso
j−k = β̂ lasso

j+1 = 0. Since � is tridiagonal, (β̂ lasso)I0 , the restriction of β̂ lasso to
I0, is the solution of the following small-size minimization problem:

1
2μ′(�I0,I0)μ − μ′Ỹ I0 + λlasso‖μ‖1 where μ is a k × 1 vector.(4.3)

See Definition 1.1. Two special cases are noteworthy. First, I0 = {j}, and the
solution of (4.3) is given by β̂ lasso

j = sgn(Ỹj )(|Ỹj | − λlasso)+, which is the soft-
thresholding [26]. Second, I0 = {j − 1, j}. We call the solution of (4.3) in this
case the bivariate lasso. We have the following lemma, where all regions I-IIId are
illustrated in Figure 3 (x-axis is Ỹj−1, y-axis is Ỹj ).

LEMMA 4.1. Denote λ = λlasso. The solution of the bivariate lasso (β̂ lasso
j−1 ,

β̂ lasso
j ) is given by (β̂ lasso

j−1 , β̂ lasso
j ) = (sgn(Ỹj−1)(|Ỹj−1|−λ)+, sgn(Ỹj )(|Ỹj |−λ)+)
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FIG. 3. Partition of regions as in Lemma 4.1 (left) and in Lemma 4.3 (right).

if (Ỹj−1, Ỹj ) is in regions I, IIa-IId and (β̂ lasso
j−1 , β̂ lasso

j ) = 1
1−a2 (Zj−1 − aZj ,Zj −

aZj−1) if (Ỹj−1, Ỹj ) is in regions IIIa-IIId. Here, Zj−1 = Ỹj−1 − λ if (Ỹj−1, Ỹj )

is in regions IIIa, IIId and Zj−1 = Ỹj−1 + λ otherwise; Zj = Ỹj − λ if (Ỹj−1, Ỹj )

is in regions IIIa, IIIb and Zj = Ỹj + λ otherwise.

In the white region of Figure 3, both β̂ lasso
j−1 and β̂ lasso

j are 0. In the blue regions,
exactly one of them is 0. In the yellow regions, both are nonzero. Lemma 4.1 is
proved in [18].

As a result, the following hold, except for a negligible probability:

• Type I. There are O(p) indices j where Ỹj is a pure noise, and no signal appears
within a distance of K from it. For each of such j , the lasso acts on Ỹj as
(univariate) soft-thresholding, and β̂ lasso

j = 0 if and only if |Ỹj | ≥ λlasso
p .

• Types II–III. There are O(pεp) indices where Ỹj is a signal singleton, and no
other signal appears within a distance of K from it. The lasso either acts on Ỹj

as soft-thresholding, or acts on both Ỹj and one of its neighbors as the bivariate
lasso. As a result, β̂ lasso

j = 0 if and only if |Ỹj | ≤ λlasso
p (type II), and both β̂ lasso

j

and β̂ lasso
j−1 are nonzero if and only if (Ỹj−1, Ỹj )

′ falls in regions IIIa-IIId, with
IIIa and IIIb being the most likely (type III).

Noting that Ỹj ∼ N(0,1) if it is a pure noise and Ỹj ∼ N(τp,1) if it is a sig-
nal singleton, the sum of types I and II errors is Lpp[P(N(0,1) ≥ λlasso

p ) +
εpP (N(τp,1) < λlasso

p )] = Lpp[�̄(λlasso
p ) + εp�(λlasso

p − τp)]. Also, when Ỹj is

a signal singleton, (Ỹj−1, Ỹj )
′ is distributed as a bivariate normal with means aτp

and τp , variances 1, and correlation a. Denote such a bivariate normal distribution
by W for short. The type III error is Lpp · P(βj−1 = 0, βj = τp, (Ỹj−1, Ỹj )

′ ∈
regions IIIa or IIIb) ∼ Lppεp · P(W ∈ regions IIIa or IIIb). Therefore, the sum of



UPS DELIVERS OPTIMAL PHASE DIAGRAM 95

three types of errors is

Lpp · [�̄(λlasso
p ) + εp�(λlasso

p − τp) + εpP (W ∈ regions IIIa or IIIb)],(4.4)

which can be conveniently evaluated. Note that the sum of types I and II errors in
the correlated case is the same as that in the uncorrelated case, which is minimized
at λlasso

p = (ϑ + r)/(2r)τp . Therefore, whether the lasso is optimal or not depends
on whether the type III error is smaller than the optimal rate of convergence or
not. Unfortunately, in certain regions of the phase space, the type III error can be
significantly larger than the optimal rate. In other words, provided that the tuning
parameters are properly set, the lasso is able to separate the signal singletons from
the pure noise. However, it may not be efficient in filtering out the fake signals,
which is the culprit for its nonoptimality.

For short, write Hammp(β̂ lasso(λlasso
p )) = Hamm(β̂ lasso(λlasso

p ); εp, τp, a). The
following is proved in [18], confirming the above heuristics.

LEMMA 4.2. Fix ϑ ∈ (0,1), r > ϑ , q > 0 and a ∈ (−1/2,1/2). Set the lasso
tuning parameter as λlasso

p = √
2q logp. As p → ∞,

Hamm(β̂ lasso(λlasso
p ))

sp

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lpp−min{((1−|a|)/(1+|a|))q,q−ϑ}, if 0 < q <
(ϑ + r)2

4r
,

Lpp−min{((1−|a|)/(1+|a|))q,(
√

r−√
q)2}, if

(ϑ + r)2

4r
< q < r ,(

1 + o(1)
)
, if q > r .

The exponent on the right-hand side is minimized at q = (ϑ + r)2/(4r)

when r < [(1 + √
1 − a2)/|a|]ϑ and q = (1 + |a|)(1 − √

1 − a2)r/(2a2) when
r > [(1 + √

1 − a2)/|a|]ϑ , where we note that r < [(1 + √
1 − a2)/|a|]ϑ and

r > [(1 + √
1 − a2)/|a|]ϑ correspond to the optimal and nonoptimal regions

of the lasso, respectively. This shows that in the optimal region of the lasso,
λlasso

p = (ϑ + r)/(2r)τp remains the optimal tuning parameter, at which the sum
of types I and II errors is minimized, and the type III error has a negligible effect.
In the nonoptimal region of the lasso, at λlasso

p = (ϑ + r)/(2r)τp , the type III error
is larger than the sum of types I and II errors, so the lasso needs to raise the tuning
parameter slightly to minimize the sum of all three types of errors (but the resultant
Hamming error is still larger than that of the optimal procedure). Combining this
with Lemma 4.2 gives the following theorem, the proof of which is omitted.

THEOREM 4.1. Set λlasso
p = √

2q logp. For all choices of q > 0, the error

rate of the lasso satisfies Hammp(β̂ lasso(λlasso
p )) ≥ Lp · sp · p−(ϑ−r)2/(4r) when



96 P. JI AND J. JIN

r/ϑ < (1 + √
1 − a2)/|a| and

Hammp(β̂ lasso(λlasso
p )) ≥ Lp · sp · pϑ−((1−|a|)(1−

√
1−a2)/(2a2))r ,

when r/ϑ > (1 + √
1 − a2)/|a|.

In [17], we show that when r/ϑ ≤ 3 + 2
√

2, the lower bound in Theorem 4.1 is
tight. The proofs are relatively long, so we leave the details to [17].

4.2. Understanding subset selection. The discussion is similar, so we keep it
brief. Fix 1 ≤ j ≤ p. The major errors that subset selection makes are the following
(type III is defined differently from that in the preceding section):

• Type I. Ỹj is a pure noise, but subset selection takes it as a signal.

• Type II. Ỹj is a signal singleton, but subset selection takes it as a noise.
• Type III. (Ỹj−1, Ỹj ) is a signal pair, but subset selection mistakes one of them as

a noise.

Suppose that Ỹj is either a pure noise or a signal singleton, and for an ap-
propriately large K , no other signal appears within a distance of K from it. In
this case, except for a negligible probability, β̂ lasso

j±1 = 0, and the subset selec-

tion acts on site j as hard thresholding [26], β̂ss
j = Ỹj · 1{|Ỹj | ≥ λss}. Recall that

Ỹj ∼ N(0,1) if it is a pure noise, and Ỹj ∼ N(τp,1) if it is a signal singleton.
Take λss = λss

p = √
2q logp as before. Similarly, the expected sum of types I and

II errors is

Lpp[�̄(λss
p ) + p−ϑ�(λss

p − τp)]
(4.5)

=
{

Lp

(
p1−q + p1−ϑ−(

√
q−√

r)2)
, if 0 < q < r ,

Lp(p1−q + p1−ϑ), if q > r .

On the right-hand side, the exponent is minimized at q = (ϑ + r)2/4r , at which
the rate is Lpp1−(ϑ+r)2/(4r), which is the optimal rate of convergence.

Next, consider the type III error. Suppose (Ỹj−1, Ỹj ) is a signal pair and
no other signal appears within a distance of K for a properly large K . Sim-
ilarly, since � is tridiagonal, (β̂ss

j−1, β̂
ss
j )′ is the minimizer of the functional

1
2β2

j−1 + 1
2β2

j +aβj−1βj − (Ỹj−1βj−1 + Ỹjβj )+ (λss
p )2

2 (I {βj−1 = 0}+ I {βj = 0}).
We call the resultant procedure bivariate subset selection. The following lemma is
proved in [18], with the regions illustrated in Figure 3.

LEMMA 4.3. The solution of the bivariate subset selection is given by
(β̂ss

j−1, β̂
ss
j ) = (0,0) if (Ỹj−1, Ỹj ) is in region I, (β̂ss

j−1, β̂
ss
j ) = (Ỹj−1,0) if

(Ỹj−1, Ỹj ) is in regions IIa, IIc, (β̂ss
j−1, β̂

ss
j ) = (0, Ỹj ) if (Ỹj−1, Ỹj ) is in regions IIb,

i.i.d. and (β̂ss
j−1, β̂

ss
j ) = (

Ỹj−1−aỸj

1−a2 ,
Ỹj−aỸj−1

1−a2 ) if (Ỹj−1, Ỹj ) is in regions IIIa-IIId.
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When (Ỹj−1, Ỹj ) falls in regions I, IIa or IIb, either β̂ss
j−1 or β̂ss

j is 0,

and the subset selection makes a type III error. Note there are O(pε2
p) sig-

nal pairs, and that (Ỹj−1, Ỹj )
′ is jointly distributed as a bivariate normal with

means (1 + a)τp , variances 1 and correlation a. The type III error is then

Lpp1−(2ϑ+min{[(
√

r(1−a2)−√
q)+]2,2[(√r(1+a)−√

q)+]2}. Combining with (4.5) and
Mills’s ratio gives the sum of all three types of errors. Formally, writing for short
Hammp(β̂ss(λss

p )) = Hammp(β̂ss(λss
p ); εp, τp, a), we have the following lemma

proved in [18].

LEMMA 4.4. Set the tuning parameter λss
p = √

2q logp. The Hamming error

for the subset selection Hammp(β̂ss(λss
p )) is at least⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lp · sp · p−min{q−ϑ,ϑ+[(
√

r(1−a2)−√
q)+]2}, if 0 < q <

(ϑ + r)2

4r
,

Lp · sp · p−min{(√r−√
q)2,ϑ+[(

√
r(1−a2)−√

q)+]2}, if
(ϑ + r)2

4r
< q < r ,

sp · (
1 + o(1)

)
, if q > r .

The exponents on the right-hand side are minimized at q = (ϑ + r)2/(4r)

if r/ϑ < [2 − √
1 − a2]/[√1 − a2(1 − √

1 − a2)], and at q = [2ϑ + r(1 −
a2)]2/[4r(1 − a2)] if r/ϑ > [2 − √

1 − a2]/[√1 − a2(1 − √
1 − a2)]. As a result,

we have the following theorem, the proof of which is omitted.

THEOREM 4.2. Set the tuning parameter λss
p = √

2q logp. Then for all q > 0,
the Hamming error of the subset selection satisfies

Hammp(β̂ss(λss
p ))

sp

≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lpp−(ϑ−r)2/(4r), if
r

ϑ
<

2 − √
1 − a2

√
1 − a2(1 − √

1 − a2)
,

Lpp−[2ϑ+r(1−a2)]2/(4r(1−a2))+ϑ, if
r

ϑ
>

2 − √
1 − a2

√
1 − a2(1 − √

1 − a2)
.

This gives the phase diagram in Figure 2, where (ϑ, r) satisfying r/ϑ <

[2 − √
1 − a2]/[√1 − a2(1 − √

1 − a2)] defines the optimal region, and (ϑ, r)

with r/ϑ > [2 − √
1 − a2]/[√1 − a2(1 − √

1 − a2)] defines the nonoptimal re-
gion. Similar to the lasso, the subset selection is able to separate signal singletons
from the pure noise provided that the tuning parameter is properly set. But the
subset selection is too harsh on signal pairs, triplets, etc., which costs its rate op-
timality. In [17], we further show that in certain regions of the phase space, the
lower bound in Theorem 4.1 is tight.
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5. Simulations. We have conducted a small-scale empirical study of the
performance of the UPS. The idea is to select a few interesting combina-
tions of (ϑ, θ,πp,�) and study the behavior of the UPS for finite p. Fixing
(p,πp,�,ϑ, θ), let np = pθ and εp = p−ϑ . We investigate both the random de-
sign model and Stein’s normal means model.

In the former, the experiment contains the following steps: (1) Generate a p × 1

vector β by βj
i.i.d.∼ (1−εp)ν0 +εpπp , and an np ×1 vector z ∼ N(0, Inp). (2) Gen-

erate an np × p matrix X the rows of which are samples from N(0, 1
np

�); let
Y = Xβ + z. (3) Apply the UPS and the lasso. For the lasso, we use the glm-
net package by Friedman et al. [14] (� is assumed unknown in both procedures).
(4) Repeat 1–3 for 100 independent cycles, and calculate the average Hamming
distances.

In the latter, the settings are similar, except for (i) np = p, (ii) Y ∼ N(�1/2β, Ip)

in step 2 and (iii) � is assumed as known in step 3 (otherwise valid inference is
impossible). We include Stein’s normal means model in the study for it is the
idealized version of the random design model.

EXPERIMENT 1. In this experiment, we use Stein’s normal means model to in-
vestigate the boundaries of the region of exact recovery by the UPS and that by the
lasso. Fixing p = 104 and � as the tridiagonal matrix in (1.12) with a = 0.45, we
let ϑ range in {0.25,0.5,0.65}, and let πp = ντp with τp = √

2r logp, where r is
chosen such that τp ∈ {5,6, . . . ,12}. For both procedures, we use the ideal thresh-
old introduced in Sections 2 and 4, respectively. That is, the tuning parameters
of the UPS are set as (t∗p,λ

ups
p ,u

ups
p ) = (ϑ+r

2r
τp,

√
2ϑ log(p), τp), and the tuning

parameter of the lasso is set as λlasso
p = max{ϑ+r

2r
, (1 + √

(1 − a)/(1 + a))−1}τp .
The results are reported in Table 2, where the UPS outperforms consistently

over the lasso, most prominently in the case of ϑ = 0.25. Also, for ϑ = 0.25,0.5,

or 0.65, the Hamming errors of the UPS start to fall below 1 when τp exceeds 8,7
or 7, respectively, but that of the lasso won’t fall below 1 until τp exceeds 12,8

TABLE 2
Hamming errors (Experiment 1). UPS needs weaker signals for exact recovery

τp 5 6 7 8 9 10 11 12

ϑ = 0.25 UPS 49 11.1 1.79 0.26 0.02 0 0 0
lasso 186.7 99.35 58.26 38.53 25.97 18.18 12.94 10.57

ϑ = 0.50 UPS 10.06 2.11 0.37 0.09 0 0 0 0
lasso 16.36 5.11 1.47 0.51 0.28 0.33 0.26 0.09

ϑ = 0.65 UPS 5.49 1.29 0.33 0.06 0 0 0 0
lasso 7.97 2.43 0.69 0.18 0.07 0.03 0.02 0.01
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or 7, respectively. In Section 1, we show that the UPS yields exact recovery when
τp > (1 + √

1 − ϑ)
√

2 logp, where the right-hand side equals (8.01,7.32,7.01)

with the current choices of (p,ϑ). The numerical results fit well with the theoretic
results.

EXPERIMENT 2. We use a random design model where (p,ϑ, θ) = (104,0.65,
0.91), and τp ∈ {1,2, . . . ,7}. The experiment contains three parts, 2a–2c. In 2a, we
take � to be the penta-diagonal matrix �(i, j) = 1{i = j} + 0.4 · 1{|i − j | = 1} +
0.1 · 1{|i − j | = 2}. Also, for each τp , we set πp as Uniform(τp − 0.5, τp + 0.5).
In 2b, we generate � in a way such that it has 4 nonzero off-diagonal elements
on average in each row and each column, at locations randomly chosen. Also, for
each τp , we take πp to be Uniform(τp − 1, τp + 1). In 2c, we use a non-Gaussian
design for X. In detail, first, we generate an n × p matrix M the coordinates of
which are i.i.d. samples from Uniform(−√

3,
√

3). Second, we generate � as in 2b.
Last, we let X = (1/

√
n)M�1/2. Also, for each τp , we take πp to be the mixture

of two uniform distributions 1
2 Uniform(τp − 0.5, τp + 0.5) + 1

2 Uniform(−τp −
0.5,−τp + 0.5). In all these experiments, the tuning parameters are set the same
way as in Experiment 1. The results are reported in Table 3, suggesting that the
UPS outperforms the lasso almost over the whole range of τp .

EXPERIMENT 3. The goal of this experiment is twofold. First, we investigate
the sensitivity of the UPS and the lasso with respect to their tuning parameters.
Second, we investigate the refined UPS introduced in Section 3. Fix q > 0. For the
lasso, we take λlasso

p = √
2q log(p). For the UPS, set the U -step tuning parameter

as t∗p = √
2q log(p) and let the P -step tuning parameters be estimated as in (2.19).

Theorem 2.2 predicts that the UPS performs well provided that q ∈ (max{ϑ, δ2
0(1+

η)2r}, (ϑ + r)2/(4r)), so both the lasso and the UPS are driven by one tuning
parameter q . We now investigate how the choice of q affects the performances of
the UPS and the lasso. The experiment contains three sub-experiments 3a–3c.

In 3a, we use Stein’s normal means model where (p, r) = (104,3), πp = ντp

with τp = √
2r logp, � is the penta-diagonal matrix satisfying �(i, j) = 1{i=j} +

0.45 · 1{|i−j |=1} + 0.05 · 1{|i−j |=2}, and ϑ ∈ {0.2,0.5,0.65}. Note that when ϑ =

TABLE 3
Ratios between Hamming errors and pεp (Experiment 2a–2c). Bold: UPS. Plain: lasso

τp 1 2 3 4 5 6 7

2a 1.01 1.02 0.96 1.04 0.82 0.97 0.51 0.64 0.24 0.28 0.09 0.10 0.04 0.04
2b 1.00 1.00 0.98 1.04 0.84 0.96 0.55 0.67 0.26 0.32 0.10 0.12 0.05 0.05
2c 0.94 0.95 0.90 0.91 0.89 0.95 0.48 0.60 0.18 0.27 0.05 0.11 0.01 0.03
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FIG. 4. Experiment 3a. x-axis: q . y-axis: Hamming error. Left to right: ϑ = 0.2,0.5,0.65.

0.65, (max{ϑ, δ2
0(1 + η)2r}, (ϑ + r)2/(4r)) = (0.65,1) (similarly for other ϑ), so

we let q ∈ {0.7,0.8, . . . ,1.1}.
In 3b, we use a random design model where (p, r,πp,�,q) and the tuning

parameters are the same as in 3a, but θ = 0.8 and ϑ ∈ {0.5,0.65} (the case ϑ = 0.2
is relatively challenging in computation so is omitted). We compare the lasso with
the refined UPS where in each iteration, we use the same tuning parameters as
in 3a.

In 3c, we use the same setup as in 3b, except that we fix q = 1 and let τp range
in {6,6.5, . . . ,9}.

The results of 3a–3c are reported in Figures 4–6, correspondingly. These results
suggest that, first, the UPS consistently outperforms the lasso, and, second, the
UPS is relatively less sensitive to different choices of q .

EXPERIMENT 4. In this experiment, we investigate the effect of larger p

and n, respectively. The experiment includes two sub-experiments, 4a and 4b.
In 4a, we use Stein’s normal means model where (ϑ, r) = (0.5,3), � as in

Experiment 2c, πp = ντp with τp = √
2r logp, and we let p = 100 × {1,10,

102,103,104}. The lasso and the UPS are implemented as in Experiment 3a, where
q = 1. The results are reported in the left part of Table 4, where the second line

FIG. 5. Experiment 3b. x-axis: q . y-axis: Hamming error. Left: ϑ = 0.5. Right: ϑ = 0.65.
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FIG. 6. Experiment 3c. The x-axis is τp , and the y-axis is the ratio between the Hamming error
and pεp . Left to right: ϑ = 0.65,0.5,0.2.

displays the ratios between the Hamming errors by the lasso and that by the UPS.
Theoretic results (Sections 1.7 and 4) predict that for (ϑ, r) in the nonoptimal re-
gion of the lasso, such ratios diverge as p tends to ∞. The numerical results fit
well with the theory.

In 4b, we illustrate that in a random design model, if we fix p and let n increase,
then the random design models get increasingly close to Stein’s normal means
model. In detail, we take a random design model where (p,ϑ, r) = (104,0.5,3),
� and πp as in Experiment 2c and np = 300 × {1,3,32,33,34}. We also take
Stein’s normal means model with the same (p,ϑ, r,�,πp). The performance of
the UPS in both models is reported in the right part of Table 4, where the last line
is the ratio between the Hamming errors by the UPS for the random design model
and that for the Stein’s normal means model. The ratios effectively converge to 1
as n increases.

Acknowledgments. Jiashun Jin thanks Tony Cai, Emmanuel Candes, David
Donoho, Stephen Fienberg, Alan Friez, Robert Nowak, Runze Li, Larry Wasser-
man and Cun-Hui Zhang for valuable pointers and discussion.

TABLE 4
Left: ratios between the Hamming errors by the UPS and that by the lasso (Experiment 4a). Right:
ratios between the Hamming errors by the UPS for the random design model and that for Stein’s

normal means model (Experiment 4b)

p n

102 103 104 105 106 300 900 2,700 8,100 24,000

2.43 5.81 6.25 8.80 10.37 479.25 54.04 12.66 1.08 1.01
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SUPPLEMENTARY MATERIAL

Supplementary material for “UPS delivers optimal phase diagram in high-
dimensional variable selection” (DOI: 10.1214/11-AOS947SUPP; .pdf). Owing
to space constraints, the technical proofs are moved to a supplementary docu-
ment [18].
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