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MAJORIZATION, ENTROPY AND PAIRED COMPARISONS!

By HARRY JOE
University of British Columbia

Constrained majorization orderings and entropy functions are used to
study the class of probability matrices associated with paired comparisons.
Majorization orderings are also defined to handle the cases of order effects
and/or ties. Results are obtained for maximal and minimal probability
matrices with respect to the majorization ordering; these are related to
transitivity conditions. The Bradley—Terry and Thurstone-Mosteller models
are shown to be maximum entropy models. New models based on maximum
entropy are obtained for the cases of order effects and ties; these models are
compared with the Davidson and Beaver, the Rao and Kupper and the
Davidson models. Applications to professional baseball and hockey are given.

1. Introduction. In paired comparisons, n players (teams) or choices (op-
tions) compete or are compared with each other in pairs. Let P = ( p,;), . ; be the
n X n probability matrix, where p,; is the probability or proportion of times
that player i beats player j or choice i is preferred to choice j. Note that
p;j+p;=1 for all i#; and p;; is undefined. Let p,=X;..w;;p;; be the
probability or proportion of times that i wins or is preferred over one of the
other players or choices, where w;; > 0,X,,,w;;=1,i=1,..., n. w;; is a known
weight variable representing the relative frequency that i is compared with j
relative to other choices. If only the p,’s and w;;’s are known, we consider the
class # = #(p,,..., p,) of possible probability matrices and define an ordering
on £ in order to obtain qualitative comparisons among different probability
matrices in 2.

This problem is motivated by a professional sport such as baseball where a
pair of teams play against each other a certain number of times in a season. At
the end of the season, one can find out from newspapers the relative standings of
the teams. Unless one is following all of the games in a season, one does not have
information on how teams do against each other. In this case, the principle of
maximum entropy [see, for example, Good (1963)] might be used to get rough
estimates.

A majorization ordering will be defined on £ in the balanced case where all
the w;; are equal to (n—1)~! and it will be interpreted as an ordering of
transitivity. The probability matrices at the two extremes of the ordering and
the relationship between the majorization ordering and forms of stochastic
transitivity are a major focus of this paper. A probability matrix at the lower
end of the ordering will have “large entropy” and will satisfy the transitivity
condition p;; > 0.5, p;, > 0.5 = p;;, > max[ p,;, p;;] and a probability matrix at
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the upper end of the ordering will have intransitivities. In this paper, we use
entropy as a measure of closeness to uniformity for a set of numbers, with larger
entropy meaning closer to uniformity. The majorization ordering is another
example of a constrained vector majorization ordering. Vector majorization is
the subject of Marshall and Olkin (1979); a constrained majorization ordering for
two-way contingency tables is studied in Joe (1985) and a constrained majoriza-
tion ordering for distributions of k-tuples is studied in Joe (1988). A good
introduction to the method of paired comparisons is David (1963) and a bibli-
ography on paired comparisons is in Davidson and Farquhar (1976).

In Section 2, results are obtained on maximal and minimal probability
matrices for the majorization ordering. The Bradley—Terry (1952), uniform and
Thurstone—Mosteller models [see David (1963), Chapter 4] are obtained from
considering certain minimal probability matrices. In Section 3, generalizations
are mentioned. These include:

1. An extension of the majorization ordering to the case where w;; = w;; but

otherwise w;;’s are arbitrary.

2. An extension to allow for within-pair order effects (or the effect of playing at
home versus away).

3. An extension to allow for ties.

From these generalizations, new paired comparison models are obtained. These
models are compared with the Davidson and Beaver (1977), the Rao and Kupper
(1967) and the Davidson (1970) models. As in Good (1963), these models are
considered as “null hypotheses” that may be worth testing. Section 4 consists of
applications to professional baseball and hockey.

2. Majorization and transitivity. In this section, we consider the con-
strained majorization ordering on #(p,,..., p,) with w;; = (n - 1)7! for all
i, J. Our terminology for paired comparisons will be in terms of n teams (n > 3)
who compete against each other in pairs. Let x; = (n — 1)p;, i = 1,..., n. Then
Y ,x;=n(n — 1)/2. In addition, by generalizing Landau (1953), a necessary
condition for there to exist a probability matrix in £ is that Xj_, x;, >
J(J —1)/2, for a j-tuple (i},..., i;), where j > 2. We assume that this condition
holds throughout this section.

DEFINITION. Let y = (yy,...,%,) and 2 =(2y,..., 2,,) be vectors in Z™.
Then y majorizes 2 (written y>2z)if

m m
Zym_ .sz, k=1,...,m—1, and ) y,= Z:zi,

i=1 i=1

where y;; 2 o0 2 Ypyand 232 0 2 2

DEFINITION. Let P, @ € #(p,,..., p,)- Then P majorizes  (written P >

- Q) if P* > @*, where P* and @* are vectors consisting of the n(n — 1) elements

of P and @, respectively, in a nonincreasing order. P € £ is minimal (maximal)
if for any other @ € £ such that P > @ (P < @), then P* = @*.
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ExampLE. Let (x, x5, x5) = (1.3,1.1,0.6). Then

— 03 1 — 06 07
07 — 04)>)04 — 07
0 06 —

03 03 —

The majorization ordering allows a comparison of the probability matrices in
2 so it is of interest to study the minimal and maximal probability matrices.
Relationships with transitivity conditions and paired comparison models are
obtained and the majorization ordering is interpreted as an ordering of transitiv-
ity.

DEFINITION. A probability matrix P is weak (stochastic) transitive if
p;j=205 and p;>05=p;>05.
P is strong (stochastic) transitive if
p;;=205 and p>05=p,;=> max[pij, pjk] )
If a probability matrix is weak or strong transitive, then there is the linear
ordering of strength among the n teams with team i ahead of team j if

p;; > 0.5. Only for strong transitivity is this ordering the same as the ordering of
the p; or x;. For example, with (x,, x,, x;) = (1.2,1.1,0.7),

— 045 0.75
P=1055 — 055
025 0456 —

is weak but not strong transitive with the ordering of strength being team 2,
team 1, team 3.

THEOREM 2.1. If P€ #(p,,..., p,) is strong transitive, then the ordering
induced by the transitivity condition is the same as the ordering of the p,.

PrOOF. If p; > p;, then strong transitivity implies p;, > p;, for all & # i, j.
O

LEMMA 2.2. A necessary condition for P to be minimal is that p,; > 0.5
whenever p; > p;.

PRrOOF. Suppose P does not satisfy the condition. Then there exists i, j such
that x; > x; and p;; < 0.5 < p;;. Hence there is a k such that p;, > pj;,. Let
a=05 min[pji — Pij Pip — pjlz]' Replace Dijs Djis Pigs Pris Pjrs Prjs reSPeCtively,
by p;; + @, pj; — @, Py, — @, Pp; + @, Pjj, + @, pp; — @ to get a new matrix P'.
Then P> P'. O

THEOREM 2.3. A necessary condition for P to be minimal is that P is strong
transitive.
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PrROOF. Suppose P is not strong transitive. Then by Theorem 2.1, there
exists i, j, & such that x; > x; and p;, < pj. If p;; = 0.5, then n > 4 and there
exists / such that p, > p;. In this case, replace p;, pjx, Py, P;;, respectively,
by piy + @, pjp — a, py— a, py + a, where a = 0.5min[p;, — py, Py — Pl
and make the corresponding changes for p,;, p;;, Py, p;;. The new matrix is
smaller with respect to the majorization ordering. If p,;> 0.5, then replace
Dijs Pjis Piks Pris Pjrs Prjs respectively, by D;; — a, p;; +a,pta, p—a,
Djr — @, py; + a, where a = 0.5min[p;; — p;, pj, — p;x]. The new matrix is
again smaller with respect to the majorization ordering. O

REMARK. For n > 4, strong transitivity is not a sufficient condition for
minimality. An example with n = 4 and (x,, x,, x3, x,) = (2.45,1.75,1.25, 0.55) is

— 069 086 09 — 07 08 09
031 — 065 079, |03 — 065 08
014 035 — 0.76 015 035 — 075/
01 021 024 — 01 02 025 —

Theorem 2.4 shows that strong transitivity is a sufficient condition for minimal-
ity when n = 3.

THEOREM 2.4 (Minimality and maximality for n = 3). Suppose n = 3. If P
is strong transitive, then P is minimal. Suppose without loss of generality that
X, =Xy 2 x5 If x5 > 1, then

[ — 2-x, 1-a]
x,—1 — 1
| % 0 - |
is maximal and if x, < 1, then
[ — 1 x, — 1]
0 — X,
[2-% 1—x, -

is maximal.

ProOOF. The general form of a matrix in £ is
—_ Yy X =)
1-y — X,—1+y|
l—x,+y 2—x,—y -

where x; — 1 <y < min[1,2 — x,]. The maximality result follows from: (a) if
5> 1, then (x3,0) = (1 — %, + 3,2 — 2, — 3), (1,1 — x5) > (%, — ¥, %, — L +¥)
and (2 - XgyXg — D> (y1-y); (b) if X, 21, then (1, X~ D> (yx—Y)
2-2,00>1—-2x;+y,1-y)and (x5,1 —x,) > (X, =1+ ¥,2 — x5 — ).
For the minimality, in analogy to Theorem 2 of Joe (1985), it suffices to show
that if P, P’ € & are both strong transitive and P > P’, then P = P’. Let a,, be
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the difference between the largest m numbers in P and the largest m numbers in
P’. P — P’ has the form

— —-d d

d — -dj

-d d —
Supposing x; > x, > X3, @; = d and a3 = —d. If P> P’, then d = 0 and hence
P=P.0O

THEOREM 2.5. If n = 4, then a necessary condition for P to be maximal is
for P to be an extreme point of the convex set .

ProOF. By considering many cases, it can be shown that if i, j, k, [ are

distinct, then

D;j DPul|Pji Pu

Pr;j DPri||Pjr P
cannot be maximal unless at least one of the terms is a 1 or 0. Also, by Theorem
2.4, every 3 X 3 submatrix of P obtained from deleting a row and its correspond-
ing column must contain a 1 and a 0 to be maximal. By enumeration, if n = 4,

then P can be maximal only if it has at least three 1’s and three 0’s or if it is an
extreme point in convex set . O

REMARK. In general there will be a maximal probability matrix among the
extreme points of &2, but for n > 5 there can be maximal probability matrices
which are not extreme points. An example of a maximal probability matrix
which is not an extreme point is with (x,..., x;) = (3.58,1.78,1.6,2.52, 0.52):

— 1 1 0.89 0.69

0 — 099 0 0.79
0 001 — 059 1
011 1 041 — 1

031 021 O 0 —

is a convex combination of the extreme points

— 1 1 088 0.7 — 1 1 1 0.58

0 — 1 0 0.78 0 — 088 0 0.9

0 0O — 06 1 and |0 012 — 048 1 >
012 1 04 — 1 0 1 052 — 1

03 022 O 0 — 042 01 O 0 —

the latter extreme point is not maximal.

The next theorem implies that a maximal probability matrix cannot be strong
transitive unless there is one matrix in 2, such as with (x;, x5, x3) = (2,1,0).
Firom Theorem 2.4, it is easy to obtain a maximal probability matrix that is weak
transitive, for example, with (x,, x,, x3) = (1.4,1.3,0.3). Often for a maximal
probability matrix there will be cycles of intransitivities.
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THEOREM 2.6. If a probability matrix P is strictly strong transitive, that is,
Pir > max[ p;;, p;] for some (i, j, k) with p; > p; > p,, then P is not maximal.

Proor. This follows by comparison with Theorem 2.4 with row sum vector
(x1, x3, x3) = (Pij + Pirs Pji + Pjrs Pai + Py;)- O

THEOREM 2.7 (Sufficient condition for minimality or maximality). Let ¥(P)
be strictly Schur convex over P € 2, that is, ¥Y(P)> ¥(Q) if P> Q and
P* # Q*. Then P is minimal (maximal) if it minimizes (maximizes) ¥ over 2.

Proor. This follows essentially by the definition of strict Schur convexity. O

Special cases of strictly Schur convex functions are ¥(P) =YY, (i),
where { is strictly convex. In this case, ¥ is strictly convex over £ and the
minimum of ¥ will be the root of the derivative equations of the Lagrangian if
this root is nonnegative. With Lagrangian multipliers A,, the solution without
the nonnegativity constraint on the p;;’s satisfies
(2.1) ‘I",(pij) - (1 _pij) —A+A;=0, i#].

By taking ¢’(u) = 0.5F Y(u) or y(u) = [ F~(v) dv for a cumulative distribu-
tion function F which is symmetric about 0, the linear model F~Y( p, D=A—A;
results, so that the linear model is a “maximum entropy” model with respect to
the majorization ordering. Taking F to be logistic, uniform and normal lead,
respectively, to the well known Bradley—Terry, uniform and Thurstone—Mosteller
models. The Bradley-Terry model, which has the form p, ;=0,/(0; + 6,), where
0; = exp[A;], also results from taking ¢ (u) = u log u, the negative of Shannon
entropy. For the Bradley—Terry model but not for the other linear models, the
maximum entropy estimates from (2.1) given p, correspond to the maximum
likelihood estimates. This is because, for the Bradley—Terry model, the minimum
sufficient statistics are the winning proportions. Bradley (1976) summarizes
several ways of looking at the Bradley—Terry model; the maximum entropy view
appears to be new for the paired comparisons literature.

3. Generalizations.

3.1. Extended majorization. In this section, we consider an extended major-
ization ordering associated with the constraints ¥,,,w;;p,i=p;, i=1,...,n,
where w;;>0 and ¥, ,,w;;=1, i=1,...,n. We also assume the symmetry
condition w;; = w;;. This extension would be applicable for modeling professional
sports leagues in more recent decades because pairs of teams do not play against
each other the same number of times but teams play the same number of gam
over the season. ‘

The extended majorization is a special case of the majorization in Joe (1987)

- for functions on a measure space. Here the measure space consists of the finite
set {({, j):1<i<n,1<j<n,i#j}and the measure which puts mass w;; on
@ J)-
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DEFINITION. Let P, @ bein #(p,,..., p,) (as defined in Section 1). Then P
majorizes @ (written P> Q) if XX, . ;w;¥(p;;) =2 LX, . ;w;;¥(q;;) for all con-
vex continuous real-valued functions ¢ on [0, 1]. Minimality and maximality are
defined as in Section 2.

The theorems in Section 2 do not easily generalize, but Theorem 2.7 becomes

THEOREM 3.1. Let { be a strictly convex real-valued function on [0,1]. If
P € # minimizes (maximizes) LY, jw;y(p;;) over P, then P is minimal
(maximal).

Without the nonnegativity constraint on the p;’s, the solution of the
Lagrangian again satisfies (2.1), so that the linear models are minimal with
respect to the extended majorization ordering.

3.2. Order effects. In this section, we consider a generalization which allows
for within-pair order effects [compare Beaver and Gokhale (1975) and Davidson
and Beaver (1977)]. This takes into account the situation where a choice may be
preferred with two different probabilities depending on whether it is presented
first or second within a pair. In the context of sports, for each match one team
may be considered “at home” and the other “away.” We will use the superscripts
H and A on p;; to denote the two probablhtlcw

Suppose we know ¥, pfi=(n—Dpff =xF and T, pf=(n - )pd =
xf, i=1,. , . Note that ZxH+ZxA—n(n—l) Denote by £ =

P(pa,..., p,, , p1 ,-++, D) the class of matrix pairs
P = {PA = (pij)#j’ PH = (pij)iaéj}

that satisfy ph+ p,‘-‘}.=.1, L# ], Ej;ejl?g = sz: Yiwi PzAJ_‘ =xf, p 20, pf2 0.
The definition of majorization over & is similar to Section 2.

Theorem 2.7 generalizes here. (2.1) becomes

V(o) - vt -pt) ¥ 42 and (o) - ¥(1-pf) <2+,

i+].

For ¢(u) = ulog u, the solution of these equations leads to
(32.1) pE=0//(6F+67), ph=0r/(6A+06F), i+,
for certain nonnegative numbers 6, 82, where 6/ = exp(A\Y) and 6 = exp(\}).
The Davidson and Beaver model (1977) overlaps with this model. The Davidson
and Beaver model has the form
(3'2'2) pzj l/(o + Ytj )’ pg = Yljol/(o_] + Yijoi)7 i #:]1
Whel‘e Ytj = ji' If 0i2 = oiHoiA, i = 1, ceey n, and Y,J = 0,’0]/0‘1.10111, i *j, then
(3.2.1) and (3.2.2) are equivalent. A useful way to compare the models is through
the likelihoods and minimum sufficient statistics given data.

The maximum likelihood estimates of the parameters in (3.2.1) correspond to
the maximum entropy estimates when the number of times a pair of teams
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compete against each other at home and away is a constant r. One can still
consider maximum likelihood estimation for the model (3 2.1) if the number of
times that team i competes against j at home is I;j» i # J, where the r;; need not
all be the same. From the likelihood equatlon in the parameters for the model
(3 2.1), it can be seen that the minimum sufficient statistics are mH, m4
i=1,...,n, where m¥ and m# are, respectively, the total number of wins at
home and away for team i agamst the other teams For the model (3.2.2), the
minimum sufﬁc1ent statistics are m; = m¥ + m#, i=1,...,n, and mf; + mf,
i <j, where m# s 1# J, is the number of times that team i wins away over team
J. If all the y;; are equal to a constant y in (3.2.2), then the minimum sufficient
statistics are m;, i = 1,...,n, and m# =¥, ;mf, and this is a special case of
(3 2.1) with 67 = 6,, 62 = v8,, i = 1,..., n. Furthermore, in this case the model
is a maximum entropy model w1th Y(u) = ulogu if the constraints are
LApE+pf)=af+xf=x,i=1,. .,n,and T, i ph = y.

3.3. Ties. In this section, we consider a generalization which allows for ties
between two chorces or teams [compare Rao and Kupper (1967) and Davidson
(1970)]. Let pY, i 2 i pPE i be, respectlvely, the probablhtles that ¢ wins over, ties,
loses to j, with p}¥ —p,z, p,, = p,z, p,, =p)/ and p}} + p; + p}; = 1. Suppose
that the probablhtles pY, pT, pt of a win, tie and loss for team i are known
when an opponent is chosen at random from one of the other teams. This leads
to the constraints Zﬁ,p,] (n=DpY=xF%,,,pli=(n-1)pl =T and
Zj,&ip” (n — 1)pf = xf, where T(x? + 27 + L) = n(n - 1)/2.

A majorization ordering can be defined in a similar way to Section 2. Theorem
2.7 extends directly. For {(u) = ulog u, the maximum entropy model has the

form
pl = 60} /(678} + 616Y + 676T),

(33.1) pL=0t6%/ (00} + 616} + 6747 ),
p% = 0707 /(66F + 616} + 6767).
The Davidson model has the form
p;‘j‘; = 0/[0, + 01 + V(aiaj)l/2],
(3.3.2) ph=0/[6,+6,+4(6.8)",
5= v(6:6)"2/[6:+ 6, + v(6,6,)".

@ 32) is a special case of (3.3.1) with =0, 6L=1 and 67 = (v6,)'/,
i =1,..., n. The Rao and Kupper model has the form

p,-v}' =6,/(0;, + Y9, piLj = 0,'/(0,' + v6)),
Pl = 0.0(y* = 1)/(6; + v6,)(0; + ~6,).

The three models will be compared through likelihoods and minimum sufficient
statistics given data.

(3.3.3)
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The maximum likelihood estimates of the parameters in (3.3.1) correspond to
the maximum entropy estimates when the number of times a pair of teams
compete against each other is a constant r. As in Section 3.2, one can still
consider maximum likelihood estimation for the model (3.3.1) if the number of
times that teams i and j compete is r;;, i # j, where the r;; need not all be the

same. For the model (33 1), the mlmmum sufficient statlstlcs are m, , mT,
i=1,...,n, where m!¥ and mT are, respectively, the total number of wins and

ties for team ¢ with other teams. For the model (3.3.2), the minimum sufﬁcient
statistics are s; = 2m¥ + m7, i=1,...,n,and ¢t = Z,<lmu, where m . is the
number of ties between teams i and j. The model (3.3.2) arises as a max1mum
entropy model with y(u) = ulogu if the constraints are T, ,(2p} + p) =
2x¥ +xf=y,i=1,...,n, and Z‘,,-,.,-p,?} = 2. For the model (333), the mini-
mum sufﬁc1ent statlstlcs are mY + m,, i=1,...,n,and m '+ ml, i+ Jj,where

W is the number of wins for team i over team J. (3.3. 3) is not a maximum
entropy model.

4. Applications. In this section, we consider examples that in part moti-
vated this work. We use professional baseball and hockey data from several
decades ago because then there were fewer teams and each pair played the same
number of times.

For professional baseball (NL and AL), the yearly record for each pair of
teams (at home, away and combined) can be found in the annual Official
Baseball Guide. The “probability” matrices are at the lower end of the majoriza-
tion ordering, but not close to minimal; they are not strong transitive but quite
close to being weak transitive. For illustration of the estimates based on the
Bradley—Terry model, (3.2.1) and (3.2.2) with Yij =7, We use the 1964 NL
winning proportions. For baseball in 1964, each pair of teams played r = 9 times
at home and away.

In Table 1, the 0 have been scaled to have a sum of 1 (BT stands for
Bradley-Terry and DB stands for Dawdson—Beaver) and the 6%, # have been
scaled to have a sum of 2; for the model (3.2.2), ¥ = 0.893. For these data, the 5

TABLE 1
% % (] (]
Team % home away BT [ L (& DB
St. Louis 0.574 . 0.593 0.556 0.127 0.129 0.123 0.127
Cincinnati 0.568 0.580 0.556 0.124 0.122 0.124 0.124

Philadelphia 0.568 0.568 0.568 0124 0115 0132  0.124
San Francisco  0.556 0.543 0.568 0118 0104 0133 0.118

Milwaukee 0.543 0.556 0.531 0113  0.111 0114  0.113
Los Angeles 0.494 0.506 0.481 0.094  0.092 0.095  0.094
Pittsburgh 0.494 0.519 0.469 0.094  0.098 0.090 0.094
Chicago 0.469 0.494 0.444 0.086 0.089  0.082  0.086
Houston 0.407 0.506 0.309 0.068  0.100 0.045 0.068

New York 0.327 0.407 0.247 0.050  0.068  0.035  0.050
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for the Bradley—Terry and Davidson-Beaver models are the same to three
decimal places. For the Bradley—Terry model, the estimates based on the
combined proportion of wins form a strong transitive probability matrix; the
average of the estimates of the winning proportions at home and away from
(3.2.1) or (3.2.2) need not form a strong transitive probability matrix.

Majorization provides a qualitative way of looking at the data, but the
adequacies of fit of the different models can be studied through log likelihood
ratios [Bradley (1954)]. For the combined home and away data, the log likeli-
hood ratios statistic for the Bradley—Terry model is 33.76 with 36 degrees of
freedom. For (3.2.1) and (3.2.2) with y,; = v, the log likelihood ratio statistics are,
respectively, 67.57 with 71 degrees of freedom and 76.33 with 80 degrees of
freedom. The Bradley—Terry model fits the combined data adequately, and both
(3 2.1) and (3.2.2) fit the at home and away data adequately. (3.2.2) with v;; =y
is an adequate simpler model [the log likelihood ratio statistic for (3.2.2) relative
to (3.2.1) is 8.76 with 9 degrees of freedom]. (3.2.1) would be expected to be a
better model than (3.2.2) with v;; = v if the winning proportions at home and
away are ordered quite differently among the teams.

We now go to professional hockey (NHL). The yearly standings and pairwise
records can be found in the annual National Hockey League Guide. For
illustration of the results in Section 3.3, we use data from the 1952-1953 season
consisting of the number of games won, tied and lost by each of the 6 teams.
Each pair of teams played 14 times. The estimates from models (3.3.1) and (3.3.2)
are given in Table 2.

For model (3.3.1), the 6%, §T, 6L have been standardized to have a sum of 3,
and for (3.3.2), the é have been standardlzed to have a sum of 1 and # = 0.590.
From these values, a team is estimated to have a winning record against another
team which is lower in the standings in Table 2. A comparison with the actual
record for each pair revealed that the estimates from (3.3.1) (when rounded to
the nearest multiple of 1/14) can be considered only as a first order approxima-
tion; there are discrepancies due to a couple of intransitivities relatlve to the
standings in Table 2. In other words, the actual proportions P = (pY, ) P 2 piLj)i <j
here are at the lower end of the majorization ordering, but not minimal. '

The adequacies of fit of the different models can be studied through log
likelihood ratios as in the preceding example. The log likelihood ratio statistics
for (3.3.1) and (3.3.2) are, respectively, 23.63 with 28 degrees of freedom and 33.06

.

TABLE 2
Team w T L w [ (18 [}
Detroit 36 18 16 0.228 0.166 0.114 0.256
Montreal 28 19 23 0.181 0.175 0.153 0.181
Boston 28 13 29 0.189 0.108 0.195 C.158
Chicago 27 15 28 0.181 0.129 0.186 0.158
Toronto 27 13 30 0.184 0.108 0.200 0.150

New York 17 16 37 0.122 0.144 0.236 0.098
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with 39 degrees of freedom. Both (3.3.1) and (3.3.2) fit the data adequately and
(3.3.2) is an adequate simpler model [the log likelihood ratio statistics for (3.3.2)
relative to (3.3.1) is 9.43 with 11 degrees of freedom]. (3.3.1) would be expected to
be a better model than (3.3.2) if the number of ties per team is more variable.
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