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and University of North Carolina at Chapel Hill

Kernel estimators of an unknown multivariate regression function are
investigated. A bandwidth-selection rule is considered, which can be for-
mulated in terms of cross validation. Under mild assumptions on the kernel
and the unknown regression function, it is seen that this rule is asymptoti-
cally optimal.

1. Introduction. Let (X,Y),(X,Y;),(X,,Y,)... beindependent identically
distributed R“*! valued random vectors with Y real valued. Consider the
problem of estimating the regression function,

m(x) = E[Y|X = x],

using (X, Y;),...,(X,,Y,). In this paper, kernel estimators with a data-driven
bandwidth are investigated. Asymptotic optimality is established for a band-
width-selection rule which can be interpreted in terms of cross validation. The
results address two issues. First, they are important in exploratory data analysis,
[see, for example, the Projection Pursuit Regression algorithm given in Friedman
and Stuetzle (1981).] Second, they settle an open problem of Stone (1982).

Kernel estimators, as introduced by Nadaraya (1964) and Watson (1964), are a
local weighted average of the Y, given by

n x - X
m(x)=rm,(x)=n"1) h‘dK(
i=1 h
where K: R? > R is a kernel (i.e., window) function, 2 = h(n) € R™ is the
bandwidth (i.e., smoothing parameter), and f,(x) is the familiar
Rosenblatt—Parzen kernel density estimator,

fle) = fx) = £ hook 255

=1

)Y,-/f,,(x),

of the marginal density f(x) of X. A slight generalization of this estimator may
be obtained by allowing A to be a d-dimensional vector or even a d X d matrix.
The results of this paper extend to that case in a straightforward fashion,
although for simplicity of presentation, only scalar 4 is treated here.
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1466 HARDLE AND MARRON

One of the crucial points in applying ., is the choice of the bandwidth A.
Suppose that 4 is in some set H, C R of interest. A bandwidth-selection rule
h= iz(n) is an H, -valued function of (X,,Y)),...,(X,,Y,). Let the distance
d(m,, m) denote a given measure of accuracy for the estimator ;. Following
Shibata (1981), the bandwidth-selection rule % is said to be asymptotically
optimal with respect to d when

. d(ﬁliz’m)
lim | ———— f d(m,, m) =1,
n— oo m )

heH, h

n

with probability one.

In this paper, a bandwidth-selection rule is given, which is then shown to be
asymptotically optimal with respect to the distances:

Averaged Squared Error:

ds(f, m)=n" Z[ (X;) - m(X,)]"w(X,);
Integrated Squared Error:

d, (i, m) = [[#(x) = m(x)]*w(x) f(x) d;
Conditional Mean Integrated Squared Error:
do(f, m) = E[d,(f, m)|X,...,X,],

where w(x) is a nonnegative weight function.
A bandwidth-selection rule A will now be motivated. Write

d;(My,, m) = fﬁzkwf - 2fﬁz,,mwf + fmzwf.

Since the last summand is independent of A, the goal of minimizing this loss is
equivalent to that of minimizing

(1.1) fﬁz;",wf - 2frhhmwf.
But this cannot be realized in practice because this quantity depends on the

unknowns m and f. Observe, however, that the second term, for instance, may be
written as

[t = Egx v, [ X) Yw(X)].

This motivates estimating the second term by
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where 1, is the “leave-one-out” estimator given by

i (x) = (n - 1)‘1§jh-dK(x /i,
(1.2) f;(x)=(n—1)_1i§jh_dK(x_hXi)-

Similarly, the first term of (1.1) may be approximated by
n 'Y [m3(X;)w(X;)].
J=1

Thus, it seems reasonable to take A to minimize the sum of the estimates of the
first two terms. Adding a term which is independent of A does not change the
bandwidth-selection rule, which is then:

Choose h to minimize

CV(h)=n"" é (Y-, X,)]w( X;).

The above motivation is related to some ideas of Rudemo (1982) and Bowman
(1984).

Note that the bandwidth-selection rule & may also be thought of in terms of
choosing A to make 7 (X)) an effective predictor of Y. This approach, based on
the idea of cross validation, was taken by Clark (1975) and Wahba and Wold
(1975) in the setting of spline estimation. See Rice (1984) and Hardle and Marron
(1985) for a discussion of other asymptotically optimal bandwith selectors.

In Section 2, a theorem is stated which shows that this bandwidth-selection
rule is asymptotically optimal with respect to the distances d,, d;, d.. In
Section 3 it is seen how the theorem of Section 2 provides an answer to Question
3 of Stone (1982). Section 4 demonstrates an application of these results. The rest
of the paper consists of proofs.

2. Asymptotic optimality. Assume the weight function w is bounded and
supported on a compact set with nonempty interior. Assumptions to be made on
the bandwidth, the kernel, and the probability distribution of (X, Y) are:

(A.l)For n=1,2,... H,=[h, h] where

h>C 'n® V4, h<Cn?,

for some constants C, § > 0.
(A.2) K is Holder continuous, ie,

|K(x) = K(¢)| < Cllx — t]|f,
where || - || denotes Euclidean norm on R¢, and also

fK(u)du= 1,

Jll¥IK ()] du < oo.
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(A.3) The regression function m and the marginal density f are Holder
continuous.

(A.4) The conditional moments of Y given X = x are bounded in the sense
that there are positive constants C,, C,, ... so that for i = 1,2,...

E[IY1X =x] < C, forall x.

(A.5) The marginal density f(x) of X is bounded from below on the support
of w.
(A.6) The marginal density f(x) of X is compactly supported.

THEOREM 1. Under the assumptions (A.1)-(A.6), the bandwidth-selection
rule, *“choose h to minimize CV(h),” is asymptotically optimal with respect to the
~ distances d 4, d;, and d.

Condition (A.1) may appear somewhat restrictive because minimization is
being performed over an interval whose length tends to zero. This is not a severe
restriction because in order to obtain the consistency of 1, the bandwidth must
satisfy some similar condition.

The condition (A.4) is substantially weaker than the boundedness conditions
on Y that have been imposed by a number of authors, starting with Nadaraya
(1964). This condition may be weakened to only a certain finite number of
conditional moments being bounded.

Condition (A.5) allows handling of the random denominator of 7z(x). Also,
since by (A.3), f and m are assumed to be continuous beyond the support of w,
any concern about “boundary effects,” such as those described by Gasser and
Miller (1979), and Rice and Rosenblatt (1983) is eliminated.

The assumption (A.6) is added for convenience in the proof. It may be
weakened to either the existence of any moment of X, or to the compact support
of K.

The techniques of this paper may also be applied to estimators related to .
For example, if the marginal density f is known, as in the “fixed-design”
(ie, X not random) case, it makes sense to consider the estimator

nt hek S i),

i=1

as studied by Johnston (1982).

3. Stone’s Question 3. Stone (1982) investigates the way in which the rate
of convergence of nonparametric regression estimators depends on the smooth-
ness of the regression functions. In particular, Stone defines smoothness classes
©,, indexed by r€ R™, and finds an estimator 7z, depending on r, which
“achieves the rate of convergence r” in the sense that there is a constant C so
that

lim sup P,[d,(#r,m)>Cn "] =0,

n—w meo,
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where the notation P, is used to indicate parametrization by m. [See Stone
(1982) for the details.] Stone then shows that the rate of convergence r is
“optimal” by showing that no estimator of any type can have a faster rate of
convergence uniformly over 0,. Stone’s Question 3 may be expressed as: Is there
an estimator M, independent of r, which achieves the optimal rate uniformly
over the smoothness classes?

Under an additional assumption on the smoothness of the marginal density of
X, an estimator having this property can be obtained by using a kernel estimator
with bandwidth selected as above:

THEOREM 2. Given 7 € (0, }), there is a kernel K and a constant C, > 0 so
that, under the assumptions (A.1)-(A.6),

lim sup sup P ,[d,(Ay,m)>Cn"]=0.

n=0 ren,1-1] f,me0O,

The proof of Theorem 2 is in Section 10.

4. An application. In this section it is seen how the proposed kernel
regression estimator performs in a real life example. The data consist of 300 pairs
of variables where Y denotes liver weight and X denotes age (note here d = 1),
gathered by the Institute of Forensic Medicine, Universitat Heidelberg. It is
apparent from the scatter diagram (Figure 1) that the data are quite nonlinear
and heteroscedastic, so that a nonparametric approach seems reasonable.

The above theorems make the choice of the smoothing parameter automatic,
but there are several quantities that still must be chosen. It is well known [see
Table 1 of Rosenblatt (1971)] that the choice of the kernel function, K, is of
relatively small importance. We used the kernel of Epanechnikov (1969) given by

K(u) = 3(1 — u®)1,_, ,(u)/4.

Of more concern is the choice of the weight function, w, and through w the
choice of its support S. To study the effect on our estimators of different choices
of S, we chose

w(x) = 1[Ax,100—Ax](x)’

where several different values of Ax were considered. Figure 2 shows the graph of
the cross-validation function for several choices of Ax. Note the minimum is
roughly at A = 22 except in the extreme case Ax = 10 where about 20% of the
data has been deleted.

Since this is a real data set, it is impossible to show that 2 = 22 optimizes any
of d4, d;, or d, but Figure 3 allows some comparison. The bandwidths 14 and 30
give regression estimates Mm(x) which seem under (and over, respectively)
smoothed. For a final comparison, Figure 1 shows how Mm(x) with A = 22 fits the
data.

Thus, at least in this example, the techniques of this paper seem relatively
independent of the choice of S.
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5. Proof of Theorem 1. A difficult feature, from an analytical point of view,
of the estimator m is that it has a random denominator. This will be dealt with
by the following device. For x in the compact support of w, write

(5.1) = m= (i~ m)f/f +(m—m)(f-f)/f.
Note that by the uniform consistency of fA to f (see Lemma 1 below), the second

term in negligible compared to the first [in a sense that is made precise in (5.3)
below]. Hence the following distances will be considered

dx(m, m) = d(mf/f, mi/f),

di(m, m) =d,(#mf/f, mf/f),

dg(m, m) = E[d}(h, m)|X,,..., X,],
and also

d(m, m) = E[d}(rh, m)].
[The unstarred analogue of d}; is not considered here because it may fail to exist,
see Hardle and Marron (1983).]
Marron and Héardle (1984) have shown that, under the assumption of Theo-

rem 1,

d:(ﬁlh, m) - dz"t}(’hha

sup

m) l
-0 as,

(5 2) h dItI(ﬁlh’ m)
sup di (i, m) 'dﬁ(ﬁlh,m) 50 as
h dllfl(ﬁlh: m) o

where sup,, denotes supremum over H,. (Actually, this is shown for £ in a finite
set H,, whose cardinality grows only algebraically fast, but that can be easily
extended to H, = [k, h] by a Holder continuity argument like that used in the
proof of the following Lemma 1.) In the rest of this paper, H, will denote a finite
subset of H, whose cardinality is bounded by n*, for some p > 0. The fact that
d4, d;, dg, and d@ are also similar to dj; in the sense (5.2) is the key to the
proof.
A substantial part of this is the verification of:

LEmMA 1. If (A1), (A2), (A.3), and (A.6) hold, then for any compact set
S c R?

sup sup| f,(x) — f(x)| > 0 as.

x€S h

The proof of Lemma 1 is in Section 6.
It follows immediately from Lemma 1, (5.1), and (5.2) that

dA(”hha m) — d]tl(ﬁlh,

sup

m)
-0 a.s.

(5 3) h d]tl(ﬁlh’ m)
sup dl(mha m) — dltl(ﬁlh’ m) 50 as
A d(my, m) -
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In a similar spirit,

sup
h

dC(ﬁlh’ m) — d(m,, m)
dItl(mha m)

follows from:

LEMMA 2. Under the assumptions of Theorem 1

d(’}‘(ﬁlh, m) - d;l(ﬁlha m)
-0 a.s.

sup
R

dltl (mh’ m)
The proof of Lemma 2 is in Section 7.
Next, to bridge the gap between d, and CV(h), using the notation (1.2),

define

dy(n, m) = n”! i[ (%) = m(X)u( X)),

N 7 2 5 2 -2
dx(, m E [#,(X;) = m(X)] F(X)"1(X;) " w(X)).
Note that, for j =1,...,n,
~ ~ 1A S ) x - Xj
(5.4) f(x) =f(x) = (n = 1) "f(x) =(n = 1) "h"K| ——|.
This relationship and (8.1) allow expressions containing the leave-one-out estima-

tors to be approximated by the same expressions in terms of the ordinary
estimators. Thus, by Lemma 1 and (A.1)

(5.5) sup sup suplf(x) - f(x)]—= 0 as.,
where sup, denotes supremum over the support of w. So, as above, with A and f
replaced by /2, and f; in (5.1),

JA(ﬁl’ m) - d]tl(ﬁla m)
-0 a.s.

sup

h dltl(ﬁl’m)

follows from:

LEMMA 3. Under the assumption of Theorem 1

di(m, m)—dy(m,m)
-0 a.s.

sup

h d]tl(m’ m)

The proof of Lemma 3 is in Section 8. _ _
Let d denote any of d, d;, d¢, d}, df, d&, dj, d4, or df. To show

d(m;,m
(5.6) (Bnm) ) s,

ix}:fd(ﬁth, m)
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it is enough to check that

|d(rhy, m) — d(#y, m) —(CV(R) — CV(R))| _

0 as.
h’hl d(ﬁlh, m) +d("7\lhr, m)

But in view of the above equivalences, this may be done by showing

d (i, m)—d(i,,m)—(CV(h) — CV(K
(57) sup a(ry, m) :4(mh m) (A (h) (R)) 50 as.
B W dif(hy, m) + d(fy, m)

To check this write
(5.8)  du(#fry,, m)— CV(h)=2Cross(h) +n 'Y [m(Xj) - Y}]Qw(Xj),
j=1

where
Cross(h) =n"! i (ﬁzj(Xj) - m(X))(m(X-) - Y})w(X)

J J
Jj=1

Note that the last term on the right of (5.8) is independent of A. So the proof of
(5.7) and hence of Theorem 1 will be finished when it is seen that:

LEMMA 4. Under the assumptions of Theorem 1

sup|Cross(h)/d (i, m)| - 0 a.s.
h

The proof of Lemma 4 is in Section 9.

6. Proof of Lemma 1. Givenn > 0,forn =1,2,..., findaset H, C H, and
a set C; C C so that for any h € H, and any x € C, there is h’ € H, and
x’ € C; with
lh—HW|<n " and |x —x'|<n "
Note that H and C; can be chosen so that their cardinality increases algebrai-

cally fast in n — oo.
Given ¢ > 0,

P{ sup sup|f(x, h) —f(x)| > e] <I,+1I,
heH, xeC
where

A €
I,=P| sup sup |f(«x’, ') —f(x') > =],
WeH, x'eC, 2

= | s | ) = 15) (s ) = 1) > 5 |

h,W,x,x’
and where sup,, ; , . denotes supremum over h € H,, ' € H;, x € C, and
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x’ € C,. By the Borel-Cantelli Lemma, the proof of Lemma 1 is complete when
it is seen that

[oe]
(6.1) Y I, < oo,
n=1
o0
(6.2) Y II, < 0.
n=1

An argument based on Bernstein’s Inequality (Hoeffding, 1963), quite similar
to the proof of Lemma 2 of Stone (1984), may be used to establish (6.1). The
verification of (6.2) follows in a straightforward fashion from the Hoélder continu-
ity of f and K.

7. Proof of Lemma 2. Write
n 2
dg(f,, m) = f[n_l 2 8,(x, Xi)] f(x)_zw(x) dx,
' i=1

where

x — X
8y(x, X;) = h_dK(———’—l———)[m(Xi) - m(x)].
Under the assumptions of Theorem 1,

n~t Y 8,(x, X,)
i=1

is a so called delta sequence estimator [of g(x) = 0] which satisfies the conditions
of Theorem 1 in Marron and Hardle (1984). Hence,

d(’:k(’hha m) - d}t[(ﬁlh’

sup
heH,

m) 0
i d e
d]tl(mh’m) as

The above supremum may be easily extended to H, = [h, k] by taking the
points of H, to be sufficiently close together and then using a Holder continuity
argument.

8. Proof of Lemma 3. First note that, asin (5.4), for j=1,...,n
mi(x) fi(x) = m(x) f(x)

= (n - 1) (=) flz) ~ (n - 1)'1h-dK(" _th)Y,..

In the following the functions m, m, #;, f, f, f;, and w will be always evaluated
at X, so it is to be understood that “m” means “m(X;)”, and so on. Write

(8.1)

di(Ay,m)=n"'Y [A;+(f - m)]* 2w,
j=1
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where
A; = f; — mfy — (wf — mf)
= (n=1)""[#f - mf — 9K (0)(Y; - m)].
Then

df(y, m) —dx(m,, m)=n"' Y (A2 + 24,(Af — mf))f 2w
Jj=1

=((n-1)7"+2(n - 1) ") di(,, m)

(8.2) —2((n— 1) +(n- 1)_1)n‘1

- X (f = mf ) K(0)(Y; — m)f~%w

Jj=1
+(n—-1)"n1Y h‘ZdK(O)z(YJ- -m)f 2w,
J=1
But, by the Schwartz Inequality,

\

n-! i (f — mf )R~ 9K(0)(Y; — m)f*w

J=1

(8.3)

n

1/2
< (di(, m))V“’h-dK(O)(n-l > (%, - m)’ -2w) ,

and by the Strong Law of Large Numbers,

(8.4) n-! Zn: (Y, - m) 2w — E((Yj - m)2f'2w) a.s.

j=1
By a variance-bias? decomposition [see, for example, Parzen (1962), Rosen-
blatt (1969, 1971)], d (71, m) can be written

di(f,, m) = n-lh—d[fV(x)w(x) dx][fK(u)2 du]
+o(n~'h=9) + b2(h),

where the o is uniform over A € H,, where V(x) denotes the conditional variance
V(x) = E[Y2 - m(x)’X = x],

and where the part analogous to squared bias is denoted

() = [| [K(@)m(x — u) = m()]

(8.5)

6 2
(86) -f(x — hu) du] f(x) 'w(x) dx.
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It follows from (5.2), (8.2), (8.3), (8.4), and (8.5) that

sup |JX(ﬁlh, m) — dItI(ﬁlha m)| -0 as
h d (i, m) o

This completes the proof of Lemma 3.

9. Proof of Lemma 4. By the expansion (5.1), with 7 and [ replaced by J
and f;, and by (5.5), the proof of Lemma 4 will be complete when it is shown that

w B () = m(5) (05— m(X) () wl(X)

dllfl(ﬁlha m)

) sup
(9.1) s«

-0 a.s.

The numerator of (9.1) may be written as
n Yy U, + n Y Vi

i+j i+j
where
n 1 X - ‘Xl -1
Ui,j = (n 1 )FK( . 3 )(Yz - m(Xi))(Yj - m(Xj))f(Xj) w(Xj)a
n 1 X, - X, .
Viii= (n 1 )ﬁK( ’ 7 )(m(Xi) - m( X))V, - m(X,))[(X,;)” w(X,).
Hence (9.1) and the Lemma 4 will be established when it is shown that
n?y, U, ;
(9.2) sup — 1,0 as
' r | dii(f,, m) o
n?y, \
(9.3) sup|——2L 150 as
' w | dfi(, m) >

To verify (9.2), note that by Holder-continuity considerations, it is enough to
show that, for H; as above,
n?y U, ,

i#j

sup -0 as.

heH,, dltl(ﬁlh’ m)
For this, note that given ¢ > 0, k = 1,2,...
n Y U, n 2y U, ek

%) _ oy
P| sup | —L—|>¢| <e *#(H!) sup E| ——"—
rem, | dy (i, m) ren; | di(m,, m)
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so that the proof of (9.2) will be complete when it is seen that there is a constant
7 > 0, so that for 2 = 1,2,..., there are constants C,, so that

K )y U,, Te
1#]

9.4 SUpE | ————
©-4) B G (i m)

< Cyn "k,

Similarly (9.3) will be verified by showing that
[ n 2y Ve

i#j _
(9.5) supE| —— | < C,n ™.
h dltl(mham) k

To check (9.4), for i, j = 1,..., n define
Z;= Y, - m(X,),

(9.6)

X. .
L e [ CE AL

In the following, C will denote a generic constant which may depend on % and
may take on different values even in the same formula. From Theorem 2 of
Whittle (1960) and (A.4), it follows that

2k 2k
(n—lzuw.) |X1...,an=E[(ZaijZiZj) |X1,...,an
iJ

i#)

E

k
<C ( Y afj) .
iJ
Thus, by (A.5) and integration by substitution,

(n- 1)2Zh‘2dK(M) r

2k
E|n" 'Y U, ;| <CE
' i#j h

i#j

2k
< Cn—2kh—2dk Z nlhdl/Z < Ch_dk.
=2

The inequality (9.4) follows easily from this and (8.5).
To check (9.5), in addition to the notation (9.6), define

n X,- X, .
b=(n-1)7"% h_dK( . 7 l)(m(Xi) ~m( X)) (X)) w(X)1 s 5

i=1

Again using Theorem 2 of Whittle (1960) and (A.4),

n 2k
E -E (Zb,z,) |X1,...,Xn]
Jj=1

2k
(n‘1 > V”) 1 X5y X,

i1#j
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Using the notation (8.2), it follows that

2k
Eln_lzw'j] < CE

i#j

n n X_.Xl

R R
J=1\i=1,i#j

k

« (m(X) - m<xj>))

<C f h-nb2(R)]".
=0

The inequality (9.5) is a consequence of this and (8.5).
This completes the proof of Lemma 4.

10. Proof of Theorem 2. Note that in the proof of Theorem 1, all computa-
tions are valid uniformly over the sets ©,. In particular, letting sup; ,, denote
supremum over m € 0, r € [n,1 — 5] (5.3) implies that, for ¢ > 0,

dl(ﬁlh: m) - dltl(mh’ m)
- >e|=0,
dl’&(mh’m)

(10.1) lim supP, ,,

R fom

sup
h

and (8.5) may be written as:

di(f,, m) - n-lh-d[fV(x)w(x) dx][fK(u)2 du] — b2(h)

- 0,
dﬁ(ﬁlhf m)

(10.2) sup

f,m
asn — o0.

Now given a positive integer /, assume the kernel function K has the property
that for nonnegative integers ji,..., j;, with0 <j, + .-+ +j, <,

fx{l <o+ x2K(x) dx = 0,
where

x=(xy,...,%4).

It follows from (A.3), (A5), and Taylor’'s Theorem that if m satisfies the
condition (1.2) of Stone (1982), with p = & + B (Stone’s notation) then, for
heH,

b%*(h) < Ch?».
Thus, by (10.2), taking ! sufficiently large, if r = 2p/(2p + d) € (1,1 — 7)
(10.3) infdj (1, m) < Cn™".

Theorem 2 follows from (10.1) and (10.3).
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