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SEQUENTIAL NONPARAMETRIC FIXED-WIDTH CONFIDENCE
INTERVALS FOR U-STATISTICS!

By RAYMOND N. SPROULE
Malaspina College

A sequential fixed-width confidence interval for the mean of a U-statistic,
having coverage probability approximately equal to preassigned «, is pre-
sented. The main result, Theorem 2, shows that the sequential procedure is
asymptotically efficient in the sense of Chow and Robbins (1965) and assumes
only finiteness of the second moment of the kernel, the weakest possible
condition. The paper follows naturally from Sproule (1974) and Sproule
(1969), the primary reference.

1. Introduction. Let X, ---, X, be independent and identically distrib-
uted (i.i.d.) random variables having d.f. F. Let f(x;, ---, x,) be a symmetric
(measurable) function of r arguments. Then for n = r, Hoeffding (1948) defines
a U-statistic by

-1

(1) Un = <’:) Z(n’r)f(Xav Tty Xar)

where Y™, here and in the sequel, represents the summation over all combi-
nations (o, ---, «,) formed from the integers {1, 2, ---, n}. Thus U, is an
“average” of the function f(x;, - --, x,) over the random sample X;, ---, X,.
Particular examples are the sample mean (where r = 1 and f(x;) = x;) and
the sample variance (where r = 2 and f(x;, x3) = (x; — x2)%/2). Let 6 =
E{f(X,, ---,X.)} so that E{U,} = 0. We develop a sequential confidence interval
for @ of fixed-width 2d, where d > 0, and such that the coverage probability
approaches (as d — 0) a specified «, where 0 < a < 1. Chow and Robbins (1965)
solve the problem for the sample mean using n~!s? where s is the sample
variance to estimate the unknown variance of the sample mean. We introduce
an estimate for the unknown variance of the U-statistic and then consider a

sequential procedure.

2. Estimation of the variance of U,. Define
fc(xly Tty xC) = E{f(xl’ ct %y Xey Xc+ly ct %y X,-)}

forc=1,2, ---, r. Note that f,(x1, ---, x;) = f(x1, --+, x,). We interpret
E{f(xy, -+, %, Xe41, - -+, X,)} as the conditional expectation of f(Xj, ---, X,)
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given that X;, ..., X, are fixed at the values x,, - - -, x., respectively. Clearly
E{fc(le ) Xc)} =0 forc= ]-y 2y cee, I Let Pc= Var{fc(le Sty Xc)} for ¢ =
1,2, ---, r. In particular f,(x;) = E{f(x1, X5, - -+, X,)} and p;, = Var{fi(Xy)}. If
E{f(Xy, - -+, X,)}2 < = then it follows from Hoeffding (1948) that the variance
of U, can be represented by

2) Var{U,} = n”'r%p; + O(n™?).

If the terms of order n~2 in (2) can be considered negligible, the problem of
estimating Var{U,} reduces to that of estimating the usually unknown functional

P1.
Foreachi= 1, 2, ---, n define a U-statistic based on X3, ---, X1, X1,

R} Xn by
-1
- 1 n-1,r .
U(i)n = (n r ) ZI b )f(Xixp ct Xa,)

(n=1,r) »

where the summation Y; is over all combinations (ay, - - -, a,) formed from
{1,2, ---,i—1,i+ 1, .-, n}. Define the W-statistics by setting W, = nU, —
(n—r)Ujnfori=1,2, -.., nand notice that they are identically distributed.
Furthermore, W, = n! Y%, W;, = rU,. Let

2= (n = 1)1 32 (Win — Wa)?.

It is well known that if E{f(X,, - - -, X,)}? < », then, letting o2 = r?p,,

3) lim, .52, = ¢ (a.s.)

For more details refer to Sproule (1969) and Sen (1977). A first-order expression
for the mean and variance of s2, is given in Sproule (1969). Forc=0,1, ---, r
define
2r—c - r -
q(c)(xl, ceey, x2r—c) = ( ) < ) z(c)f(xal’ cee, xar)f(xﬁl’ cee, xﬂr)

r 4

where the summation ¥ is over all combinations (a;, - -+, ;) and (81, - - -, ;)
each formed from {1, 2, - . ., 2r — ¢} and such that there are exactly c integers in

common.
Then, for eachc =0, 1, .. -, r define a U-statistic by

-1
© — n (n,2r—c) ,(c) e
Un <2r - C) 2 q (Xal’ ’ XaZr—c)'

Let po = 0. Then E{U®} = E{q') (X4, -+, Xor-c)} =pc + 0*forc=0,1, .-, 1.
Next, by a direct combinatorial argument,

-1
2 _ _ 1)1, (P ro (ry(n-—r _ 21770
(4) son=(n—1)"'n (r) Yi-o (c) (r _ c) [en — PJUY.
A rearrangement of (4) then yields
(%) stn = rA(UY = UD) + Tieo anlc) URY

where a,,(c) = 0(n™!) forc=0, 1, - - -, r. The representation for s2, in expression
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(5) will be required in the proof of Theorem 2. Note that we will not need an
explicit expression for a,(c) although one is readily available.

3. A confidence interval for 6. Let ®(x) denote the standard normal d.f.
and let 0 < a < 1. Define a constant a > 0 by setting ®(a) = (a + 1)/2. Let {a,}
be a sequence of positive real numbers such that lim,_,.a, = a. For d > 0 define
the stopping variable

(6) N(d) = smallest integer k = r such that s2, < kd?a;?

where s2, = s2, + k™" for suitably chosen v > 0. The £~ term makes N(d) a
“delayed” stopping variable and prevents very early stopping in situations where
the d.f. F is discrete and there is a very high probability that s2, is very small.
Chow and Robbins (1965) chose v = 1. Define a closed confidence interval Iy =
[Uny = d, Uy + d] of width 2d. Then the following theorem is generally useful:

THEOREM 1. Assume E{f(Xy, ---, X,)}? <o and p; > 0. Then
(i) N(d) is well-defined and is a nonincreasing function of d,
(ii) limg_,oN(d) = » (a.s.),
(iii) limg_oE{N(d)} = », and
(iv) limg_0a~2072d2N(d) = 1 (a.s.).
(v) limgoP{f € Inw} = a.

PrOOF. From (3) we obtain lim, ,.s2, = o2 (a.s.). Let ¥, = ¢7%2,, f(n) =
a;’na® and t = d%a%s% Then parts (i)-(iv) of the theorem follow from Lemma 1
of Chow and Robbins (1965).

Let N, be defined by (6) with d? replaced by ta%s2. (Note that N, ='N(d).)
Part (v) then follows from Theorem 6 of Sproule (1974) by identifying ¢ with n,
and N, with N;.

The main theorem is

THEOREM 2. Assume E{f(X, -+, X,)}> <o and p, > 0. Then
7 limg_od%a~ 26 2E{N(d)} = 1.

The sequential procedure may be simply described as follows: at each stage of
sampling, the U-statistic U, and an estimate of its variance are calculated, and
sampling is terminated as soon as the approximate coverage probability for the
interval [U, — d, U, + d], based on a normal approximation, is at least a. The
coverage probability is, in a certain sense, asymptotically «; that is, the sequential
procedure is consistent (Theorem 1(v)). Also, the expected sample size of the
procedure is asymptotically equal to the sample size of the corresponding non-
sequential scheme used when the variance of the U-statistic is known (Theorem
2); that is, the sequential procedure is efficient.
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Sequential fixed-width confidence intervals (of the Chow and Robbins, 1965,
type) for the mean of a U-statistic first appeared in Sproule (1969). Results
similar to Theorems 1 and 2 appeared in Sen and Ghosh (1981) but the stronger
assumption of finiteness of the (2 + §)th moment of the kernel for some 6 > 0
was needed. Here, the strongest possible result is achieved by utilizing the reverse
martingale property of U-statistics.

We now introduce two lemmas required in the proof of Theorem 2.

LEMMA 1. IfE{|f(Xy, -+, X,)|} <, then for any e >0
E{sup,n™| U, |} < co.
PrROOF. Truncate f(---) by letting

’ _Jf(Xal’ "’yXar) if lf(')l s(maxjaj)°/2
['Kepy =05 Xo) = | 0 otherwise

and set
Ky -5 Xao) = [(Xayy 05 Xo) = (Xays 05 Xo)-
Then let
Sp= 3" f(Xay, -5 X))y Sn=T"f (Xays -+ Xa,)
and
Sy =X (Xays -+ Xa)-
(a) To prove E{sup,n~"*?| S/ |} < =, note that
sup,n~ | S| < sup,n~"? T f(Xoy, o, X |
< sup,n~ " Y™ (max;a;)”? < sup, 3 ™" (max;a;)"""?
< sup, 2} <J, _ 11> JTRLE T < .
(b) Next,
E{sup,n="*9| S” |}
< E{sup,n™" T | f"(Xays -5 Xo) I}
= E{sup,n™* T, RV (X Koy -5 X 1
< E{R5 7 BETVN Xy Kag -5 Xa) 1)
= X5 jT BV B (X Xagy -5 Xa) N

= 2;;7‘."_(”1) <.i. : 11> f . lf(xb Sty xr)l Hf=1 dF(xl)
LA 1>

< SR b < b B T < o
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where we have set

bf=f 3 'f(xly Ct 0y xr)' Hlt=l dF(xz)
[ f G102 1257
forj=r,r+1, ---,sothat b= 0 and b; = b;.,.

(c) Finally, the lemma follows from (a) and (b) and the fact that S, =
S, + Sy

A positive integer-valued random variable M depending on (X3, X, - - -) such
that, for n =1, 2, ---, the event {M = n} is in %), the o-field generated by
{Xn, Xns1, --+}, is called a “reverse stopping variable”. The following lemma
appears in Simons (1968) and is a consequence of Theorem 2.2 on page 302 of
Doob (1953).

LEMMA 2. LetZ_,,, -- -, Z_m, be a martingale where —o < m; < m, < » and
let M be a reverse stopping variable with P{m, = M < my} = 1. Then E{Z_y} =
E{Z_.}.

PROOF OF THEOREM 2. (a) As in Simons (1968), define a reverse stopping
variable for d > 0

last integer n = n,
such that s2, > ndZ%a,? if there is such an n

®) M=9p,-1 if 2, < nd%;? forall n=no
) if s2,> nd%,;,? infinitely often
where no = r + 1. Let I represent the indicator function and define ¢t and N, as
in the proof of Theorem 1. Then for every ¢t > 0
N: = nolpp=n-1) + (M + 1) Ip12ny)
= Mlimzng + nolip=ng-1) + Iiprzny)

< d %a}sty + nolimzn,—1) < ta”%0 %adsty + no.
Thus, for every t > 0,

9) : t'E{N,} < a 20 2E{aksZyu} + t 'no.

(b) We prove lim,_...E{s2y} = ¢% From expression (5) we have

(10) E{siy} = rPE{UY — U} + Yoo E{afUS).
Define 2, = U and Z‘), = limp_eZ), for ¢ = 0, 1, ---, r. Then Z, =
lim,e U = p. + 6% (as.) for c = 0, 1, ---, r. (Recall that po = 0.) Then,

{29, ..., Z9)} is a martingale. Therefore, from Lemma 2 with m; = n, — 1 and

-0y
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mg = ®©,

(11) E{Ui?} = E{UrL} = p. + 0

forc=0,1, ---, r. In particular, E{U$}} = p, + 6% and E{U{} = 62 From (6)
and (8), for every t > 0, N, < M + 1, so that, as a consequence of Theorem 1(ii),
lim, M = o (a.s.). Also, lim, ..U = p. + 6% (as.) forc =0, 1, ---, r. Now
an(¢) = 0(n™), so that lim,_.apu(c)US? =0 (a.s.) forc=0, 1, - - -, . Furthermore,
by Lemma 1, E{sup,a,(c)|UY|} < w for ¢ =0, 1, ---, r. We then use the
Lebesgue dominated convergence theorem to obtain

(12) i, $ieo Efan(c) Usd} = 0.

Then, from (10), (11) and (12) we conclude that lim, ..E{s%y} = o2 Finally,
since lim, ..M~ = 0 (a.s.), the Lebesgue dominated convergence theorem again
implies that lim, o E{M~"} = 0. Thus lim, . E{s2y} = ¢>.
(c) We prove that
(13) lim, . E{a}s2y} = a2
First, note that lim,,.a%s2y = a?s? (a.s.). Now, let A = inf,a2 and B =
sup,a2. Then, for every t > 0, As2y < ak;s2y < BsZy. Thus
0 < a%? — Ae? = E{lim;.(alsiy — AsZy)}
and, by Fatou’s lemma,
0 < a%? — Ac¢? < lim inf, o Ef{adssZy — AsZy}
) = lim inf,_.E{a}siy} — Ac>
Also,
0 < Bo? — a%? = E{lim;_.(Bs2y — a%rsZy)}
and, by invoking Fatou’s lemma once more,
0 < Bo? — a%? < lim inf, . E{BsZy — akis2u}
(15) = Bo? — lim sup,_,E{a3;s2p}.
Then (13) follows from (14) and (15).
(d) Weiconclude from (9) and (13) that lim sup, ..t E{N,} < 1. However,

Fatou’s lemma implies that lim inf, .t *E{N,} = 1. This completes the proof of
Theorem 2. :

4. Examples.
EXAMPLE 1. The population variance. Let u=E{X,} and u; = E{(X, — u)’}

for j = 2, 3, --. (when existent). Assume 0 < u3 < p, < . Let f(x;, x2) =
(%1 — %2)%/2 so that § = E{(X; — X5)?/2} = us. The corresponding U-statistic
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is the sample variance U, = (n — 1)7s, where s; = n™* 3%, (X; — X,)’ for
j =28, ... and X, is the sample mean. Also fi(x;) = E{(x; — X5)?/2} =
(%1 — 1)%/2 + p2/2 and p; = 6, = (ps — p3)/4 so that ¢* = r’p; = py — pi.

From the definition of s2,, after some manipulation, we obtain

(16) s2,=n%(n - 1)[s, — s3] + n7".

The factor n3(n — 1)? in (16) may be omitted without affecting the properties of
s2,, to any appreciable extent.

For the sake of simplicity let a, = a for k = 2, 3, ... although any positive
sequence {ax} such that lim, ..a, = a would do since we are investigating
asymptotic behavior. (There is some justification for taking the a, to be percent-
age points of the t-distribution.) Define

N(d) = smallest integer £ = 2 such that s2, < kd%a~?

where s2), is given by (16). Then Iy = [Uy — d, Uy + d] is a sequential confidence
interval for § = u, having width equal to 2d and coverage probability approxi-
mately equal to «, for small values of d. Note, also, that in addition to being
efficient in the sense of Theorem 2, the sequential procedure is invariant under
a location shift.

EXAMPLE 2. The probability of concordance. Suppose that X, =
(X, X®), ..., X, = (XP, X?) is a bivariate random sample of a random
variable X = (X®, X®) having continuous marginal distribution functions. Let
s(u) = -1, 0 and +1 when u < 0, u = 0 and u > 0, respectively, and let f(x;, x2)
= s(x{ — 28)-s(x? — x$?). The corresponding U-statistic is

(17) U, = n_l(n - 1)_1 2“17*“2 S(ngll) - X&?)'S(X,?l) - Xfri))
and is referred to as the difference sign covariance of the sample. See Hoeffding

(1948). Two points x, and x, are “concordant” if s(x{" — x§")s(x? — x) = +1
and are “discordant” if s(x{ — x§")s(x{® — x?) = —1. Let

71 = P{X, and X, are concordant} = P{(X{ — X{").(X®? — X?) > 0}

and 7, equal the probability that X; and X, are either both concordant, or, both
discordant, with X3. Then the expectation of the U-statistic is § = 27; — 1 and,
after some calculation, p; = 27, — 1 — 6% Assume that p; > 0. Now, let C, equal
the number of concordant pairs among {X;, - - -, X,.}. Then (17) becomes

U,=4n'(n-1)C,-1=2C, -1

where C, = C,./(3).

To determine s2,, fori =1, 2, - - -, n, let T}, equal the number of points among
{Xi1, -+, Xi-1, Xit1, - - -, X} concordant with X;. Then W, = 4(n — 1)7'T}, — 2
and, after some manipulation,

(18) s2, = 16(n — 1)[LE, T2 — 4n7'C2).

Then (18) may be used to generate a sequential fixed-width confidence interval
for 7, the probability of concordance.
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