The Annals of Statistics
1977, Vol. 5, No. 4, 790-794

A CONVERGENCE THEOREM IN L-OPTIMAL DESIGN THEORY'

By JiA-YEONG TsAy

University of Cincinnati Medical Center

It is shown that the Fedorov procedure for finding L-optimal designs
always converges to an L-optimal design, even when the limiting design
is singular. Two lemmas are given first. An example illustrates the case
of singular limiting design.

1. Introduction. The theory of L-optimal (or linear optimal) designs was first
introduced by Fedorov (1972), although some special cases had been considered
before by many other authors, such as Elfving (1952), Kiefer and Wolfowitz
(1959), Karlin and Studden (1966), etc. For the detail, see Tsay (1976). Fedorov
suggests an iterative method to calculate L-optimal designs and shows that under
some conditions the constructed sequence converges to an L-optimal design (see
Theorem 2.10.1, Fedorov (1972)). One of his conditions is that the limiting
design be nonsingular. The purpose of this paper is to prove that the Fedorov
procedure always converges to an L-optimal design, even if the limiting design
is singular.

Let f' = (f, - - -, fi) be a vector of linearly independent continuous functions
on a compact set X and let ¢’ = (,, - - -, 6,) be a vector of unknown parameters
(primes denote transposes). Consider the regression model with mean ¢’ f(x)
and variance ¢>. An experimental design ¢ is a probability measure on X. The
information matrix of a design ¢ is denoted by M(§) = { f(x) f’(x) d&(x). Let L
be a nonnegative linear functional on the set of nonnegative definite symmetric
matrices. A design &£* is L-optimal if L(M~'(§*)) = min; L(M~*(§)). For a
singular design &, L(M-'(§)) is defined as lim,_, L{(M(§) + ¢/)~'}. In the next
section it will be shown that the Fedorov procedure always converges to an
L-optimal design. An example is given in Section 3 for the case of singular
limiting design.

2. Results. Let ¢(x, &) = L{MY(&) f(x) f"(x)M~'(£)} and $(§) = max, ¢(x, §).
Given a nonsingular design §,, define

’sn+1 = (1 - an)én + ané(xn)

where x, is a point maximizing ¢(x, §,), §(x,) a design with mass one at x, and

(2.1) &y = {P(xns €a) — LIMTE))Hrd(xn, E)(dxns €4) — 1)
with some constant y > 1 (Fedorov has only y > 1). Here d(x, §) is defined as
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f'(x)M=(§) f(x). We have the following theorem (compare with Theorem 2.10.1,
Fedorov (1972)).

THEOREM. For the sequence of designs {£,} generated above, L(M-*(£,)) —
L(M-%(&*)), where &£* is an L-optimal design.

Before proving the theorem we will prove two lemmas.
LEMMA 1. For the sequence of designs {£,} generated above, 3, (d(x,, §,))™* = co.
Proor. Suppose 3, (d(x,, §,))~* < oo, then by the definition of «,
@y ={P(Xns £) — LIMTE) 19 (X, Ea)(d(Xns €4) — 1)
(2.2) <A+ NP(xn €4) — LIMHED))Y18(Xns £4) (s €2)
< (1 + 0d(xn €16 (xns €4) d(xns €4)
= A+ 7)/rdx £4)

where the first inequality is simply that for any a >0, 5 >0, ¢ > 0if 0 <
a/b < 1, then a/b < (a + ¢)/(b + ¢). Using (2.2) we have ra,/(1 +7) <
(d(x,, §,))~", hence

71 +7) Zata < La(dXn €4))7 < o0,

from which it follows that [], (1 — a,) > 0.
By the definition of &, it is known that

§i=(1 — a)éy + apé(x)) > (1 — ap) - &,
£ = (1 — ), + a€(x) > (1 — a)(1 — ap)§,

(2.3) §n> (1 —apy) - (1 — @)y = = —a)-&.
Let n go to infinity, we get from (2.3)
hmen = Hn(l - an) : Eo-

But []. (1 — a,) > 0 and &, is nonsingular, it follows that lim &, is nonsingular,
hence lim sup d(x,, §,) < co. Thisimpliesthat };, (d(x,, £,))~* = oo which leads
to a contradiction. Consequently, we have };, (d(x,, £,))™* = co.

LeMMA 2. Let £* be an L-optimal design. For any nonsingular design & the
following inequality holds:

L(MZXE)) — LM (E¥)) < 6(§) — LIM(§)) -
(This is a special case of (6.5) of Kiefer (1974).)

ProoF. Define g(a) = L{((1 — a)M(§) + aM(§*))'} for 0 < @ < 1. Then
g9(@) is convex in a, thus g(1) — g(0) = ¢(0). But the derivative §(0) has the
relation

9(0) = L(M7XE)) — § 6(x, §) dé*(x) = L(M§)) — ¢(§) -
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It follows that
$(§) — LIM(§)) = —4(0) = 9(0) — g(1) = L(M*(§)) — L(M'(§%)) .
This proves the lemma.

PROOF OF THEOREM. Denote L(M-Y(£,)), L(M~Y(£*)), max, ¢(x, £,), d(xn, &,)
by L,, L*, §,, d, respectively.
From Lemma 2.10.2(2) of Fedorov (1972) we have

LO;ngng"'gL*-

Now since {L,} is a bounded monotone decreasing sequence, it must converge,
say, to L. We will show that L = L*.
Suppose L > L*. Then there exists a number § > 0 such that for all n

(2.4) L,>L*+9d.
Combining Lemma 2 and (2.4) we get
(2.5) 0<é¢,—L, forall n.
From (2.10.6) of Fedorov, (2.1) and (2.5) it follows that
Ly — Ly = auf(1 — a,) - {$a/(1 + au(d, — 1)) — L,)

- _ QS” - Ln_ { _ ¢n - L”}
7¢n(dn - 1) - (¢n - Ln) 1 + (¢n - Ln)/r¢n
= q;n - Ln_ . (qun - L,‘)-(Q;,, _ Lﬂ)
7¢n(dn - 1) - (¢n - Ln) (1 + T)¢n - Ln

q;” - Ln (T¢n —_ an)B
2.6 . . .
_ 1 ) 70
7 dnq;n/(q;n - Ln) (1 + T) + rL”/(gz§” - Ln)
_ 1 _ 3
N 1 _ 3
d, (1 + Lyo) 1+ 7+ 7LyJo
=c/d,

where ¢ = /(1 + L,/0)(1 + y + 7L,/d) is a constant.
By Lemma 1 and (2.6) we obtain

(2.7) Ly — Ly =235 (L, — Loyy)
>c- 3 V3d, "> o as N—ooo.

From (2.7) it follows that L, — — oo as N — oo which is impossible. Therefore,
L = L*. This proves the theorem.

REMARK. It seems that the theorem may still hold if the a,, in (2.1) is relaxed
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to the form

(2'8) a, = {¢(Xn’ En) - L(M_l(gn))}/rl‘(M_l(gn))(d(xm Sn) - 1)

with a constant y > 1. Theorem 3.1 (a) of Atwood (1976) assures the «, in
(2.8) to be less than 1, hence the sequence {£,} so constructed is a sequence of
probability measures. The monotonicity of {L,} follows from (2.8) and the first
equality of (2.6). However, a different technique is needed to prove Lemma 1.
The following corollary does generalize the theorem in this dlrectlon although
not quite as far as may be possible.

COROLLARY. Let 2 be a positive constant. Define
= (q;” - Ln)/rnq;n(dn - 1)

with y,, satisfying both
' Ta = A

and

(2'9) i rnq;n > Ln .
Then for the sequence of designs {§,} generated with this a,,, LIM~(§,)) — L(M~'(£*)),

where £* is an L-optimal design. (Note that the strict inequality in (2. 9) is used to
avoid the occurrence of singular designs in {£,}.)

Proor. Lemma 1 can be proved as before, since y, = 2 gives

a, < (1 + 1.)rad(xs €,) = (1 + D/2d(x,, €,)

as the form of the inequality (2.2). The monotonicity of {L,} can be obtained
from the first line of (2.6) and (2.9). Therefore the corollary can be proved just
as the theorem was with minor algebraic modification.

3. Example. We will give an example for the case of a singular limiting
design. Let us consider the model §'f(x) = 6, + 6,x on [0, 1]. Define L(D) =
Dy, where D = [Ju Ju] is a covariance matrix. Let § = {$,3}, and y = 1lin
(2.1). Then it is easy to see that M~*(§,)) = [_} ~i], L(M~'(§,)) = 2 and ¢(x, &) =
4x* — 8x + 4. Since x, = 0 maximizes ¢(x, &), using (2.1) we have a, = },
& = {}}}- Similarly, M~Y(§)) = [} &1 L(M(&) = 4, ¢(x, §) = Px* — 3Px +
18 and sup, ¢(x, &) = ¢(0,&,) = 1f. Hencex;, =0, a, =% and ¢, = {is 1}

Let a, = (3)™". Then using the same procedure we can inductively find that

1 1
o , 1 . |1 —a, 1 —a,
E”_il—a”, an}’ M (En)_ 1 1 ’
1—a, a,(l —a,)
LME) =11 —a),  ¢x&)=>10—xP/1—a), x,=0
anda,=1—a,.
Thus we have

lim,_. L(M~¢,)) = 1 = lim,__ ¢(x,,&,) and lim, &, = &0)
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where £(0) is a design concentrating all mass at the point 0. It is obvious that
§(0) is singular and L-optimal.

It is interesting to note that £(0) is the only L-optimal design for this problem.
Furthermore, if the procedure in the corollary is used, we can get a design as
close to the optimal one as we want in one step. For instance, 7, could be
chosen very close to but bigger than }, then @, would become very close to but
smaller than 1. This makes &, very close to &* = £(0). In this example, the
problem was to find a design which would provide an estimator with maximum
efficiency for the intercept of the regression line 6, + 6,x. The design £(0) is
to take all observations at the point 0 and hence this design is disconnected for
0, and 6,. For the theory of connected designs we refer the interested reader
to Eccleston and Hedayat (1974). If we are interested in estimating the slope
instead, the one and only one optimal design is to take half of the observations
at 0 and the remaining half at 1. This design certainly is nonsingular.
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