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CONFIDENCE BALLS IN GAUSSIAN REGRESSION

BY YANNICK BARAUD
Ecole Normale Supérieure

Starting from the observation of &’-Gaussian vector of meafi and
covariance matrix-21, (I, is the identity m&ix), we propose a method for
building a Euclidean confidence ball arouyid with prescribed probability
of coverage. For eaoh we describe its nonasymptotic property and show its
optimality with respect to some criteria.

1. Introduction. Inthe present paper, we consider the statistical model
(1) Yi=fi +oe, i=1...,n,

wheref = (f1, ..., f»)' is an unknown vectogy a positive number angl, ..., ¢,
a sequence of i.i.d. standard Gaussian random variables. For&eartte 1[, the
aim of this paper is to build a nonasymptotic Euclidean confidence bafl feith
probability of coverage + B from the observation of = (Y1,...,Y,)".

This statistical model includes, as a particular case, the functional regression
model

(2) Yi=F(x;)+os;, i=1,...,n,

whereF is an unknown function on some interval, §8y1], and thex;'s are some
distinct deterministic points in this interval. The literature on the topic usually
deals with this particular model, which offers the advantage of focusing on the
quantity F, which does not depend on This simplifies the asymptotic point of
view. For this reason, we shall focus in this Introduction on the problem of building
a confidence ball foF'. In the sequel, we denote hjy ||,, the seminorm defined

on the set of real-valued function®n [0, 1] by [|7[|2 = n~1 Y7, 12(x)).

The problem of building a confidence ball far with respect to] - |,
easily reduces to that of building a Euclidean confidence ball for the vec-
tor f=(F(x1),..., F(x,)) by identifying the functions on [0, 1] with the
R”*-vectors( (x1), .. ., t(x,))". Thus, wherv2 is known, say equal to 1, the prob-
lem is solved by considering the Euclidean ball centerdd with squared radius
qo.n(B), wherego ,(B) denotes thgl — B)-quantile of ax 2-distribution with
n degrees of freedom. However, such a confidence ball is almost useless: besides
providing a very rough estimator df, the radius of the confidence ball is very
large. To overcome this problem, a natural idea is to start with a “good” estimator
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of F, sayF,, and then to estimati (F) = || F — F,, 12 by some suitable estimator,
says,. This is the key point of the procedures proposed by Li (1989), Beran (1996)
and Beran and Diimbgen (1998). In the last two papers, the estinfgtansds,

are such tha{/n(8,(F) — Sn) converges to some limit distributiaP asn becomes
large. Thus, if one denotes lgy—1(1 — ) the (1 — B)-quantile ofQ, the ball cen-

tered atF,, of squared radius, + 0~1(1 — B)/+/n provides a confidence region
with asymptotic probability of coverage-1. The limit distributionsQ obtained

in Beran (1996) and Beran and Dimbgen (1998) are both Gaussian of mean 0.
However, their variances depend Brando and, consequently? —1(1 — g) must

be estimated in turn from the data. The disadvantage of the procedures proposed
in Beran (1996) and Beran and Dumbgen (1998) mainly lies in their asymptotic
character. It is indeed difficult to judge whether the asymptotic regime is achieved
or not as it depends on the features of the unknown fundfion

In contrast, the asymptotic confidence balls proposed by Li (1989) are called
honestin the sense that the probability of coverage is uniform with respect to all
possible functiong. However, in Li (1989) the variance of the errors is assumed
to be known and the radius of the confidence ball involves an inexplicit constant.
His procedure is based on a Stein estimatorFofF,, and a Stein estimator
of |F — E, ||,%. A comparison between Li's confidence balls and ours will be given
in Section 2.3.

Another direction was investigated by Cox (1993). He considered Bayesian
inference for a class of regression models. The regression fundiiarese drawn
under a Gaussian prior distribution among the solutions of a high-order stochastic
differential equation. He analyzed tfié ([0, 1], dx)-distance betweef and its
estimatorF (the posterior expectation @f) and deduced a confidence ball 6r
He proved that ifz is fixed (large enough) the frequentist probability of coverage
of the confidence ball is close to 1 for &@llwithin a set of probability close to 1.
However, this probability of coverage is infinitely often less than any positive
asn tends to infinity for almost alF'. Unfortunately, this negative result on Cox’s
confidence ball makes it unattractive for non-Bayesians.

The ideas underlying our approach are due to Lepski and have been exposed
by their initiator in a series of lectures at the Institute Henri Poincaré in Paris.
We shall now give a brief account of these ideas and recommend that the reader
have a look at Lepski (1999) for more details. Lepski noted that is known
to belong to a suitable class of smooth functions, then the minimax approach
allows one to obtain both an estimator Bfand a control on the accuracy of
the estimation. However, unless one has a strong guess on the particular features
of F, X is usually too large to obtain an accurate estimation. The idea of Lepski is
to test one or several additional structuresroim order to improve the accuracy of
estimation. Unlike an adaptive approach, an attractive feature of Lepski’s approach
lies in that the accuracy is available to the statistician and, consequently, that a
nonparametric confidence ball fércan be derived. This is explained in the papers
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by Lepski (1999) and by Hoffmann and Lepski (2002). However, the procedure
described there for the purpose of buildihg-confidence balls suffers from the
following weaknesses. First, the point of view is purely asymptotic. The procedure
does not lead to confidence balls with prescribed probability of coverage for fixed
values ofn. Furthermore, a careful look at the proofs shows that, for a fixede
squared radius of the confidence ball is equal to a constant plus some term which
is essentially proportional to the number of hypotheses to test. Consequently,
the number of these cannot be large if one wants to keep the confidence ball
of a reasonable size. In addition, the squared radius of the confidence ball is
proportional to ¥8 and is thus very large for small values gf Finally, the
applications developed in Lepski (1999) and Hoffmann and Lepski (2002) mainly
address the Gaussian white noise model and an adaptation of the procedure to the
regression case would require an estimation of the unkrown

The results of the present paper are nonasymptotic and the procedures which are
described here aim at obtaining confidence balls which are as sharp as possible. In
particular, the dependency with respecgtand the number of hypotheses to testis
only logarithmic. This allows us to handle the variable selection problem described
in Section 2.4.

We consider the case where is known to belong to some interval
I = [(1—n)t?2, 2] with n > 0. The situation; = 0 corresponds to the theoretical
situation where one exactly knows the variance. In contrast, the situatiod
corresponds to the practical one when the variance is known to belong to some
interval which is either derived by the experimental context or by statistical es-
timation (from an independent sample). In all cases, the optimality (in a suitable
sense) of our confidence balls is established. The proof relies on nonasymptotic
lower bounds for the minimax estimation and separation rates over linear spaces.
We show that if a confidence ball ensures the probability of coverage Lni-
formly over all f € R” ando? € I, then its radius (normalized by# ) must be
greater tharC max,/n, n~Y/4}, whereC is a constant free from andn. When
n = 0, this result allows one to recover that established by Li (1989), namely that
asymptotically the radius of such a confidence ball cannot converge toward O faster
thann=14. Wheny > 0, this result shows that practically the problem of estab-
lishing useful confidence balls is impossible unlgss small compared ta.

The paper is organized as follows. In Section 2 we consider the case of a
knowno (n = 0) and describe a procedure free from any prior assumptiofi.on
This procedure is implemented on numerical examples in Section 4. In Section 3,
we consider the case> 0 and provide some lower bounds on the radius of an
honest confidence ball. We show in this section that these lower bounds are sharp
by providing a construction of confidence balls which achieves these bounds. The
proofs are postponed to Section 5.

NOTATION. Throughout this paper we use the following notation. We denote
by || -] the Euclidean distance iiR". For a triplet (z,d,u) € Ry x N\
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{0} x 10, 1[, we denote byxz 4(-) the distribution function of a (non)central?
with noncentrality parameter and d degrees of freedom and hy, ;(«) its
(1 — u)-quantile foru €10, 1[. In particular, ifX is distributed ag ’d() then

E[X]=z+d, and P(X>gq.qu))=u Yu €10, 1[.

We will use the conventiog;, o(x) = 0 for all# €10, 1[ andz > 0. For each linear
subspacsé of R", we denote byl the orthogonal projector ontdand byB (x, r)
the Euclidean ball centered ate R”" of radiusr > 0. Finally, C, C’, ... denote
constants that may vary from line to line.

2. Confidence balls when the variance is known. The aim of this section
is twofold: first, explain the basic ideas of our approach and second, in the ideal
case where the variane# is known, build a confidence ball fgf with controlled
probability of coverage.

2.1. The basic ideas. An ideal procedure to build a confidence ball would
probably be to start with a nice estimator §f say f, and then get a uniform
control of || f — f| over all possiblef. This strategy is unfortunately impossible
in general. For illustration, let us considée= ITgY, the projection estimator of
onto a linear subspace of R” of dimensiond < n. By settingz equal to the
squared Euclidean distance betwegand S and using Pythagoras’ theorem, we
derive that

If — I =z + |ITse]| %02

and, hence, a control dff — f||2 necessarily requires that an upper bound:on

be known. This is of course seldom the case in practice. The idea of our procedure
is to get such a piece of information by means of a test. More precisely, let
us fix somea €]0,1 — B[ and consider thec?-test of levela of hypothesis

“f € §” against “f € R" \ §” which consists in rejecting the null when the test
statisticT = ||Y — IIsY||? is greater tham,,_o(x)o?. If the test accepts the

null, then intuitively this means that is close toS and, therefore, thatis small.

The following lemma shows thdtf — f|| cannot be large on the event that the
hypothesis f € S” is accepted.

LEMMA 2.1. Leta €]0,1— B[. Let us define
(3) ¢(¥) =1{|Y — sY[?> gon—p(@)o?)
and

Z={zeRy, Xzz,n—:D(QO,n—:D(a)) > B}.
If D #0,we set

4 2=sur{ - < B )] 2
) P 7€Z ¢TaeD Xin_@(QO,n—ﬁ)(a)) ’
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if & =0,we set

(5) p? =inflz > 0, x2,(qon(@)) < B}o.
Thenforall f € R",
(6) Pro[¢p(¥)=0,1f - fll = p] <B.

Let us assume that = 1 and make a few comments on the &tand the
quantity p. The inequalitye < 1 — 8 implies that 0 belongs t& and, hence, the
setZ is always nonvoid. Moreover, since the mapz — Xin_@(qo,n—@(a)) is
decreasing, continuous and tends to Ozdsecomes large, it appears tHatis
an interval of the form[O, z[, where 7 satisfiesy(z) = 8. When D =0 we
deduce thap? = 7 and, consequently, that is finite. Sincegg, o (1) tends to 0
asu approaches 1 from below, we see thétis also finite whenD +# 0. The
supremumi in (4) is usually achieved at some pgirt Z. If the squared Euclidean
distance betweenf and S equalsz*, then equality holds in (6). The quantity
is a critical value for the (squared) distangéetweenf and S: if z is large
compared taz*, then the test rejects the null with probability close to 1 and
thus the left-hand side of (6) is small. This is also the case if, on the other hand,
z is small compared t@* because therf is a “good” estimator off and the
event|| f — f| > p seldom occurs.

The convention

(7) q0.p(1) = —o0

allows one to define the quantipyequivalently as

(8) pZ:SUL{z+qo,@< 5 P /\1)}02.
220 X2 (qon—o(@))

In the sequel, we shall use this convention to simplify our notation.

Our procedure for building a confidence ball aroyhd based on Lemma 2.1.
As a control of|| f — f| is possible when the hypothesig ‘€ S” is accepted,
we increase our chance to accept such hypotheses by considering a fagidy of
rather than a single one. Moreover, in order to ensure that, for at least thee
hypothesis ‘f € S” is accepted, we add the linear spate R” to the family, the
hypothesis f € R"” being obviously true.

2.2. Construction of the confidence ballLet {S,,,, m € M,,} be a finite family
of linear subspaces @". For eachm, we setD,, = dim(S,,), N, =n — Dy,
and associate witl§,, some numbep,, in 10, 1[. We assume that the following
assumption is fulfilled.

ASSUMPTION 2.1. The subscriptz belongs toM, and S, = R". We
haveZmeM,, Bm < B.
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For eachn € M,,, we definep,, as follows. Ifm = n, then

/03 = qo,n(ﬂn)o'z-
If m e My, \ {n} and D,, # 0, then p,, is defined by (8) withD,, in place
of D and g, in place of8. If m € M, \ {n} and D,, = 0, thenp,, is defined
by (5) with 8,, in place of§. A
For eachm € M, \ {n}, we definef,, = I1g, Y and¢,, is the test defined by (3)
with S = S,,. It m =n, then f, = Y andg, (y) =0 for all y € R".
We define
A ={m € My, pn(Y) =0}
and
(9) A=argminp,,  p=pa, [ =fa
meA
We have the following result.

THEOREMZ2.1. Let(f, p) be the pair of random variables defined(®y. The
regionB(f, p) is a confidence ball with probability of coverage- 8, that is

(10) Pio[feB(f.P)]=1-8 VfeR"
Moreoverfor eachm € M,, and f € R", if for somey €10, 1[ we have
(11) Proldm(Y)=0121—y  thenP [ <pnl=1-7y.
In particular, for all m € M,,,

12 inf Pr,[p 1—a.

(12) Anf Py, p<pml=1l—«a

Let us make a few comments:

1. Inequalities (11) and (12) are clear from the definition fofsince with
probability not less than £ y (resp. 1— «) we havem € 4. Inequality (12)
provides an upper bound (in probability) for the random varigblender the
lawP s, as soon ag < S,,. Inequality (11) says that this upper bound remains
valid not only whenf belongs toS,, but also whenyf is close toS,,, as then
the testp,, still accepts the hypothesig*e S,,” with large probability.

2. Note that4 is nonvoid sincen belongs to. The case wherg = p,
corresponds to the one where none of the hypotheges §,,” (with m €
M, \ {n}) is accepted. In this case, the resulting confidence ball is crude, namely
centered afr of radius p,. Note that whens, is chosen to be of ordes,
say /2, the radiuso? is of the same order g8° = go.,( )02, which means
that the procedure does not lose too much compared with the trivial confidence
ball B(Y, p).
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3. In the proofs we show something stronger than Theorem 2.1. Namely, we prove
that, with probability not less than 4 g, f belongs to the intersection of
the Euclidean baIIsB(fm, om) for m € A. However, the resulting confidence
region is no longer a ball in general.

The expressions of the quantitips do not allow a direct appreciation of their
orders of magnitude. An upper bound fgy is given in the following proposition.
We restrict ourselves to the case where the dimensicy, @$ not larger tham /2.
Indeed, considering linear spaces with dimension larger th@nleads to large
radii and thus does not offer a real gain compard@toT he proof of the following
proposition contains explicit constants.

PrROPOSITION2.1. Assume thafor all m € M, \ {n}, D,, <n/2.Thenthere
exists some constaatdepending om only such thatfor all m € M,

,031 <C max{ Dy, Vnlog(1/Bm), |Og(1/ﬁm)}0'2.

If M, reduces tdn}, thenp = p, and the radius of the ball is of ordes? by
taking 8, = B. By considering several linear spacgs we have the opportunity
to capture some specific features pfand consequently to reduce the order of
magnitude ofo. The number of testeM,,| to perform is taken into account via
the quantitys,,. If one choose$,, = 8/|M,| for all m € M,,, one gets that the
radius of the confidence ball depends logarithmically 4t |. However, a choice
of B,, depending omn via the dimension of the linear spaég, for example, is
recommended. We shall see an example in Section 2.4.

2.3. Comparison with the procedure proposed by Lin this section, we make
a comparison between our procedure and that proposed by Li. To simplify the
discussion we assume that = 1. Li's procedure relies on a Stein estimatorfof
say f*, and a Stein estimator dff — f*|2. The estimator/* is obtained by
modifying a linear estimator of , say f. By taking / = ITsY, whereS is a linear
subspace aR” of dimensionD < n, the confidence ball Li proposes is centered at

n—4OD
lY — MsY |2
and its squared radius is given by

_ 2
r2=cﬁ+n(l— &)’

n|Y — TsY||?

f*=f+(1 )(Y—HsY>

wherec is an unspecified constant dependingdando? only. He proved this
confidence ball has probability of coverage-18 for all f € R" simultaneously
provided thatn is large enough. To compare this confidence ball to ours, let
us make the a posteriori assumption ttfabelongs toS. On the one hand, by
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using our procedure witM,, = {m,n}, S,, = S, Bm = B/2 = B,, We derive
from Theorem 2.1 that, with probability close to A2 = p2, which is of order
max{/n, D}. On the other hand, replacitig’ — ITsY || by its expectation — D
shows that the squared radius of Li's confidence ball is of order

rZ%c\/ﬁ—i-n(l—n_i)):C\/ﬁ-i-i)

and is therefore of the same order as ours.
However, for thosef which do not belong t& the radius of Li's confidence
ball can become large. The advantage of our approach lies in that it is possible to
deal with a larger family of spaces than jyst R”}. By doing so, we can keep
the radius of the confidence ball to a reasonable size for those vectangh are
close to at least one of the linear spaces of the family and notSnly

2.4. Application to variable selection.In this section, we illustrate the
procedure in the variable selection problem. Assume tha of the form XU,
where X is a knownp x n full-rank matrix with p € {1,...,n} and U some
unknown vector inR?. The problem of variable selection is to determine from
the data the nonzero coordinated gfthat is,

m*={jefl,...,p},U; #0}.
In this section we give a way to select those coefficients and provide simultane-
ously a confidence ball fof . We apply the procedure as follows:
Let Xy, ..., X, be the column vectors of the matrk and let#, be the class
of nonempty subsetis of {1, ..., p} with cardinality|m,| not larger tham /2. For
all m e 2,, we definesS,, as the linear span of the’s for j € m and set

B :,B[n (c’;))]_l with D = |m|.

We definemM,, = £, U {n} and seB,, = 8/2. Note that Assumption 2.1 is fulfilled
since

S ba=bt L=t Y% zs

meM, meP, 1<D<n/2 meP,,Im|=D
By applying the procedure described in Section 2.2 we select a set of imdioes
which the Euclidean distance between the least-squares estifiatnd f is
not greater tham,;, with probability greater than + g. Since f belongs to the
linear spaces,,,«, with probability greater than 4 « the setn* belongs taA and
consequently,;, is not greater thap,,«. Therefore, eithem = m* and then the
procedure selects the target subsetorm # m™* and then the resulting confidence
ball is at least as accurate as if the target subsetvere selected. In addition,
thanks to the inequality

(Z) < exp(D log(en/ D))
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and Proposition 2.1, with pbability greater than £ «, the following upper bound
holds: there exists some constahtdepending orx andg only such that

p% < C max{~/n|m*[log(en/|m*|), |m*|log(en/|m*|)}o>.

Let us denote this upper bound B, Another possible choice of thg,’s
iS B = Bu = B/| M| for all m € M,,. For this second strategg? is of order
B" =max{,/np, plo?as|M,|is of order 2. In the least favorable situation where
almost all the coefficient&';’s are nonzeropn*|, p andn are of the same order
and, thus so ar® and B’. In this case, both strategies lead to confidence balls
which are approximately of the same size. Yet, in the more favorable situation
where p is still of ordern but |m*| is small compared tgp, the strategy with
nonconstang,,’s leads to a sharper confidence ball. This illustrates the advantage
of taking 8, as a function ofn.

3. Confidence balls under some information on the variance. In this
section, we no longer assume tlais known but rather that it belongs to some
known intervall = [/I— g7, t], where(z2, n) € Ry x [0, 1[. As we shall see,
the uncertainty on the value ef has a terrible effect on the orders of magnitude
of radii of confidence balls.

3.1. How sharp can the confidence ball’beWe have the following result.

THEOREM 3.1. Letwa and 8 be numbers if0, 1] satisfying28 + o <1 —
exp(—1/36). Let (f,7) be a pair of random variables depending &ronly with
values inR"” x R, satisfyingfor all f € R” ando €1,

(13) ProlfeB(f.N]=1-8.
For eachm € M, letr,, be some positive quantity satisfying for alk 1
14 inf Prs[F 1-a.
(14) fIQSm f,a[rfrm]z (04
Then there exists some constahtdepending onx and 8 only such thatfor
all m e M,
(15) r2 > CmaX{nNy, Dy, v/Nu 2.
Foreachf e R” letr(«a, f) be such thatfor all o € I,
Pro{f <r(a, )} >1—a.
Then we have

(16) r?(a, f) = Cmax{nn, /n )72
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To keep our formula as legible as possible, the above theorem involves
an inexplicit constantC. However, lower bounds including explicit numerical
constants are available from the proof in Section 5.3.

Let us make few comments.

1. From an asymptotic point of view, (16) allows one to recover the result
established by Li, namely that the radius of an honest confidence ball
(normalized by,/n) cannot converge toward 0 faster than/4. We also get
that the thus normalized radius converges towards 0 onjy=fy(n) does and
then the rate cannot be better than ig@x(n), n—1/4}.

2. Whenn =0 andD,, < n/2 we derive from (15) that

r2 > Cmax{D,,, vn o2,

for some constant depending orx and 8 only. This lower bound is of the
same order as the upper bound;aﬁ1 established in Proposition 2.1 provided
that 8,, is free fromn. This is the case iB,, = 8/|-M,| and if the cardinality
of the collection).M,|, does not depend on The procedure is then optimal in
the sense given by Lepski (1999).

A natural idea to establish a confidence ball aroynethen the true variance
is unknown is to use the construction of the previous section and to replace
the variances by the upper bound, this latter quantity being connected
“intuitively” to the least favorable situation where the level of the noise is
maximal. Unfortunately, Theorem 3.1 says that such a construction cannot lead
to a confidence ball as changiagnto = would only affect the order of magnitude
of the radius by a factor/o, which would be contradictory with (16). In the next
section, we show how to modify our previous construction (with a knewm
view of obtaining a confidence ball whatever the valueg @indo € I.

3.2. Construction of a confidence ballln this section we build a confidence
ball under the information that belongs tof.
The following result holds.

THEOREM 3.2. Leto €] and assume that Assumpti¢hl is fulfilled.
Consider the construction aff, o) described in Sectiof.2 with the following
definitions for thep,,’s andw: if m = n, then

P2 = qon(Bu)T%
if m e M, \ (n) andD,, %0,
pa=Sup [ZGZ +q0.2,, ( il 1>02];

2 2 2 A
i 12, (@on, @72/ (a2)
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if meM,\ {n}andD,, =0,

pE = inf{x > 0,5Upx? 2, (900 (@)T%/0?) < ﬂm}

oel

and
A={me My, Y — ful® < qo.n, (@)7?).

The regionB( f, /) is a confidence ball with probability of covera@e- 8; that
is, (10)is satisfiedMoreoverfor eachm € M,,,

17 inf P 0 < >1—o.
( ) Fesy fio [0 < pm] = o

An upper bound fop,, is given by the following proposition.

PrROPOSITION3.1. Assume thaforall m € M, \{n}, D, <n/2.There exists
some constar@ depending omx only such thatfor all m € M,,,

p2 < Cmax{nn, Dy, Vn109(1/Bm), 109(1/Bm)} 2.

From an asymptotic point of view, we derive from Theorem 3.1 the optimality
of the procedure whenever the cardinality of the collectitfy | does not depend
onn by taking 8,, = B8/|-M,| for all m € M,. For more general collections, the
procedure is also optimal for thosee M, for which 8,, does not decrease with

4. Illustrative numerical examples. In this section we apply our procedure
in three examples. In the sequel, the number of observations=isL000. We
chooses = 10% anda = 20%. Theeg;’s are standard i.i.d. Gaussian random
variables and we assume that the variance is known, that3s= 1. We
setx; =i/nfori =1,...,nanddefine the vectof as(F(x1), ..., F(x,)), where
F is one of the following functions of0, 1]:

Fi(x) =co92rx),

Fo(x) = co92rx) + 0.3sin(207 x),
1.5, if0 <x <0.3,
0.5, if0.3<x <0.6,
2, if0.6 <x <0.8,
0, else.

F3(x) =

For each functiorF € {F1, F», F3}, Figure 1 showd with one set of simulated
data.

For eachm > 1, we define¥,, as the linear span generated by the con-
stant function on[0, 1], ¢o = 1, together with the sine and cosine functions
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T T T T T T
0.0 0.2 0.4 0.6 08 1.0
FiG. 1.

co92rjx),sinrjx)for j=1,...,m.Foreachn > 1, we defines,, as the linear
space

Sm={(F(x1), ..., F(xp)), F € Fu}.
We take
M, =2 k=1,...,K,}U{n},

with K, = 8. The numberk, is chosen such that dits,x,) < n. We choose
B, =pB2 K andforeactkk =1,...,K,, Bx =27

We made 100 simulations. For each simulation and each function
F e {F1, F», F3} we considem(F), the smallest integern € M, such that the
hypothesis f € S,,” is accepted. In Table 1 we have displayed for edth
andm € M, the number of simulations for whioh(F) = m.

Letus now comment on Table 1. Note that the raglis are increasing witkD,), .
This comes from our choices @,'s, which are more favorable to linear spaces
with small dimensions. Thus, the smaller is the dimensignthe sharper is the
radius of the confidence ball when the hypothegis"S,,” is accepted.
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TABLE 1
Indices Dimensions Squared radii “feSm”

m Dm p,z,,/n F, F, Fs3
2 5 0.118 82 47 0
4 9 0.136 1 0 8
8 17 0.155 0 1 20
16 33 0.181 1 33 28
32 65 0.222 1 3 17
64 129 0.293 4 5 6
128 257 0.425 1 1 7
256 513 0.681 4 4 5
1000 1000 1.157 6 6 9

Function F; belongs tof>. As expected, the hypothesig ‘€ S»” is accepted
for around 80 simulationsy = 20%. This choice otr is arbitrary. By taking
a smaller, the hypothesis will be accepted more often but on the other hand
the radius of the confidence ball will be larger. For example, the vaILp%pi,
respectively, equals.049 and 0160 fora = 15% andx = 10%.

Function F» is a perturbation ofF;. The test ‘f € S»” is accepted for
47 simulations even though> does not belong tdf> but F16. However, for
these 47 simulations the procedure has taken advantage of the closeness
of F» to %> to provide a sharper confidence ball than the one we would obtain
if m(F>) were equal to 16. We emphasize that the procedure provides a confi-
dence ball with probability of covege 90% even though the “right” model féb
(namely #16) is accepted for only 33 simulations. This comes from the fact that
the radius of the confidence ball takes into account a possible bias between the
true and the linear space accepted by the test. Finally note that, as expected from
Theorem 2.1, the radius of the confidence ball excgégé: for 19 simulations
sinceF», belongs tafFie.

Function F3 was considered in Beran and Dimbgen (1998) in one simulated
example. In their simulation, the squared radius (with respeict ty/n ) of the
confidence ball was obtained by bootstrap and was equal to 0.144. We obtain a
radius of the same order for 288 + 20 simulations.

5. Proofs. Throughout the proofs we repeatedly use the following inequalities
on the quantiles of noncentraf random variables. These inequalities are due to
Birgé (2001). Foralk €10,1[,z > 0,d > 1,

(18) Ge.a(w) < z+d +2v(2z + d)log(1/u) + 2log(1/u),
(19) Gea(l—u) > z7+d — 24/ (22 + d)log(1/u).

In the sequelll,, for m € M,, denotes the orthogonal projector ois}p.
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5.1. Proof of Lemm&.1  For simplicity, let us taker? = 1.
If & =0, thenf =TIgY =0, and hence

(20)  Pra[p()=0.1lf — fll = p] =Pra[lI¥I* < qou(@). [ f] = p]-

If |Ifl < p this probability equals 0. Otherwisd,f|| > p. Since |Y |2 is
distributed as &2 with noncentrality parametdirf |2 andn degrees of freedom, it
follows from the definition of that the right-hand side of (20) is not larger than

Now let D # 0. For all f € R”, note that|[Tse||? and ||Y — TIsY |2 = || f —
I f +¢ — Ise|| are independent random variables. By settirg|| f — s /|2,
we deduce

Pra[op(Y)=0,If — £l = p]
=Ps1[|Y — Y |? < gon_o(@). I f — Ts f11? + [T sel|? = p?]
= Xzz,n—ﬂ)(QO,n—:D(a))(l - XOZ,;D(,OZ - Z))

If Xin_ﬂ(qo,n_@(a)) < B, then the result is established. Otherwise Z and, by

definition of p,
2 B
p-—z= qo,:o( )
x2,_0(qon—o(@))

which leads to

B

X2 p(@on-n(@))

(1-x&p(p*—2) <
and the result follows.

5.2. Proof of Theorem£.1 and 3.2 Theorem 2.1 being a straightforward
consequence of Theorem 3.2 by taking: O, we only prove Theorem 3.2.

Let us first prove (17). The resultis clear fer=n as by definitiorp < p,. Let
us fix somen € M, \ {n}. We derive from the definition g that

]ij,a[l3 > pm] < ]Pf,a[m ¢ A]
=Pso[IY = full® > qo.n, (@)7?]
<P [IY = full®> qo.n, (@)o?],

ast > . We conclude by noting that, fof € S,,,, ||Y — f,x|12/c2 is distributed as
a x2 with N,, degrees of freedom.
We shall now show something that is stronger than (10), namely that

Pro |:f ¢ ﬂ £(fm’:0m):| <B.

meh
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For all f e R",

Pfo [fsé N £<fm,pm>}

meA

=Pro[3me AN f = full > pn]
< Y Prolllf = full > oot € A

meM,

= Y Pro[llf = full > oo 1Y = full? < qon,, (@)7?].

meMy,

Since}_,c x, Bm = B, itis enough to prove that, for eaehe M, the probability

Pro(m) =Pro[llf = full > om, 1Y = full? < qo.n,, (@)T?]

is not greater thag,,. A
If m = n, this is clear sinc& = f, and, fort2 > o2,

Pro () =Pro[0?le1? > qon(Ba)T?] < B

Let us now prove the inequality whed,, = 0. In this casef,, = 0. If || £1| < pm,
we haveP s, (m) = 0 and thus the inequality is true. Otherwisg| > p,, and as,
forallu >0z — Xgn(u) is nondecreasing with we get, by definition of,,,

]P)fﬁ (m) = Xﬁf“z/dz’n(Clo,n(Ol)TZ/GZ)
= Xﬁ%/az’n(qom(a)‘rz/o'z) < Bm-

Let us now fix somem € M, \ {n} such thatD,, # 0 and set; = || f —
I1,, f||2/02. Note that the random variables

If = ful® _ 1S = T f + 0 Tlne]®

2
=z+ IT, e
2 2 ” m ”

and

1Y = full? 1f =T f +0(e— Mye)|?
0'2 - 0'2

are independent and that the second one is distributed as a nongehtrith
noncentrality parameterand N,, degrees of freedom. Therefore, we get

2 2
P T
(21) Pfo(m) = (1 .y (G—’Z - Z>> X2, (qo,zvm (a);)-

We deduce from the definition @i, that, for allo € I andz > 0, the right-hand
side of (21) is not larger tha#,,, which leads to the result.
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5.3. Proof of TheorenB.1 The principle of the proof leading to the lower
bounds on the,’s is due to Lepski. However, the following nonasymptotic
inequalities are to our knowledge new. In the sequel weNsgt= n — D,,. Let
us now fix somen € M,,; we divide the proof into consecutive claims.

CLAaM 1. Ifa+ B8 <1—exp—1/36),then

D
",,21 = ( = — Y °C1°(Dm)772a

27
whereL; = —4log(l— o — 8)/8L

Note that the claim is clear whem,,, = O0; we shall thus restrict ourselves to the
caseD,, > 1. The proof relies on two lemmas. In the first one, we show that, under
the assumption of Theorem 3.1, with probability close to 1 the Euclidean distance
betweenf € §,, and its estimatoy‘~ is not greater than,,.

LEMMA 5.1. Letthe pair(f, 7) satisfy the assumption of Theor8m.Then
forallmeM,, f €S, ando €1,

(22) Pro[lf = Fll > rm] <o+ 8.
PRoOOF Forall f €S,
Prollf = Il > ru]
<Prollf = Fll > rmstm = F1+Pro[If — Fll > rms F > 1]
<Pso[lf = fll > F]+ProlF > ru]
and we conclude thanks to (13) and (14

The second lemma shows that such a property of the estinfat®possible
only if r,, is large enough.

LEMMA 5.2. LetS be a linear subspace @&" of dimensionD > 1 andé a

positive number such that< 1 — exd—D/36]. If f is an estimator off in (1)
which satisfiesfor all f € S,

(23) Pro[llf — fll > vp(8)] <56,

then

D 2
V3 (8) > (2—7 — 5%1) log(1/(1 — 5)))02.
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In light of Lemma 5.1, the claim derives from Lemma 5.2 by takkg S,,,
8 =a + B ando = t. Let us now turn to the proof of Lemma 5.2.

PrROOF OF LEMMA 5.2. The Gaussian law being invariant by orthogonal
transformation, with no loss of generality, we assume thad the linear span
generated byes,...,ep, the D first vectors of the canonical basis &".
Moreover, by homogeneity, we assume thdt= 1. Let v(§) be some positive
number satisfying

D 2
- - = - - .
(24) v2(8) < 7 gv D log(l — 3)

Note that the right-hand side of (24) is positive fox 1 —expg—D /36]. We prove
Lemma 5.2 by showing that, for all estimatgfswith values inR”,

inf P — fIP<v?@®)] <1-35.
inf Praflf = F1° = v*®)] <
Let &1,...,&p be Rademacher random variables (iB%; = £1] = 1/2) which

are independent df and setf(§) = A Z;Zl & e;, wherei denotes some positive
number to be chosen later on. Using that

dPr )1 »2D
dFos () =expl ——— H,Zf’y’

and the fact thaf (§) € S, we have
inf P F2 .2
inf Praflf = FI7 < v°®)]

D
< Pf@),l[Z(xsi ~ fi)? < v2<6>}

i=1

D
- Eo,l[l{Z(kEi ~ i)’ =< v2<6>}

i=1

D
X exp(—)uzi)/2+)»ZE,-Y,->]

i=1
Note thatf = f(Y) satisfies
D _ D .
Y & — f)? =22 1{& fi(¥) < 0}
i=1 i=1

and thus, setting

D
NE, fH=22>"1& fi(r) <0},

i=1
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we derive

. 12 2
inf Pro[lf = /17 <v®)]

. D
< E0,1|:1{N(§, ) <v%(5)) exp(—kzi)/2+ A& Y,->i|.

i=1
By averaging with respect tp and using Fubini’s theorem we get

. 712 2
inf Pro[lf = /17 <v®)]

D
< e—A2$/2E0,1|:E5 [1{N(E, ) <v?©®)} exp<?» 25 Yi)H.

i=1

(25)

By the Cauchy-Schwarz inequality we have

D
E?[l{N(S, P <v?©)) exp(,\zgiyiﬂ

i=1

D
<Pe[NE, f) < v*(©)]Ee [exp(zx D& Yiﬂ

i=1

D
=P:[N(, f) <v?©®)]]] coshiaayy),
i=1

which together with (25) gives
: 2~ .2
inf Proflf = fI" <v%@)]

(26) < —AZJD/ZE ]P)l/2 3 2 2 H/2 ,
<e 01| P [N, f) <vi(®)] [ cosh/“(20Y)) |.
i=1

Conditionally onY, the random variabl@V (¢, f)/22 is a sum ofD independent
random variables with values {®, 1}. Thus by Hoeffding’s inequality we obtain

that, for allr > 0,
Pe[N(. /) <Ee[NE /] - 22VDr] <e™?.

Taking r = 22D /2 — log(1 — 8) and noting thatEs [N (¢, f)] = 12D /2 we get

from (24) that

292
Eg[N(S,f)]—szﬁzkz(%—\/kf —ﬁ)log(l—&))

> (’\_2 _k—3>g)—,\2«/—:olo (1-9)
25 g
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and thus, fon = v/2/3,
E[N(E, /)] — A2V D1 = v?(8).
Consequently,
Pé/Z[N(f, H<v’@))<e’=1- 8)6—)\21)/2'
Now using that
D D
Eo,1|: l_[ COSH-/Z(Z)LY,-)i| = H EO,l[COSH/Z(ZkYi)]
i=1 i=1
< Ey{*[cosh2Yp)]
= expA”D].
we derive from (26) that
it Profllf = FI? = v*@®] <1-3,

which concludes the proof.[

CLAIM 2. Ifa+28<1-—exp—1/4),then

(27) 92 > max{y/L2Ny, (N — 2¢/ L3N, )n)72,

with £ = 2log(1 + 4(1 — a — 2B)?) andL3 = —log(1 — o — 2).

The claim is clear whew,, = 0; thus we only consider the case whaig > 1.

Again, the proof relies on two lemmas. The first one shows that if the(pair)
satisfies the assumptions of Theorem 3.1, then it is possible to build a level
(¢ + B)-testof “f € §,,,” against “f € R" \ §,,,” which achieves the power1 3

on the complement of a ball of radiug,3 Namely, the following holds:

LEMMA 5.3. Let(f,7) be a pair of random variables with valuesif x R
satisfying the assumptions of Theor@rh. The test of hypothesig € S,,” against
the alternative' f ¢ S,,” associated with the critical region

(28) R =7 >ra} U{Ilf = M 1l > 27}
has the following propertiedor all o € I,
(29) SUpPy,[R] <o+ B,

JESm

and for all f satisfying|| f — I, f|l > 3ru,
(30) Pro[R]=1-B.
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PROOF Let us show (29). First note that, for dlle S,,,,

I/ =T fl<If = FIl+1f =T £
<2|f ~ fl.
By (13), (14) and (31), for alf € S,, we have

ProlRI <Proli > rpl
+P o[l f = T f1l > 27]
<a+Pro[21f — fll > 2] <a+p.
Let us now show (30). Lef € R" be such that f — IT,, f || > 3r,,. Since
1 =T fIl 2 f = T f = 1 f = fll = 3w = L f = [,

we derive that

(31)

ProlRI=Pro[llf — Mnfll < 2F.F < 1]
<Prolf = T fll < 2rm. 7 <ru]
<Pro[lf = fll = rmsrm = F]
<Pso[lf - fl=F]<B. O

We obtain the claim by proving that a test having the properties described in the
previous lemma exists only if, is large enough. The inequality

91’,121 > \/£2Nm‘l,’2
derives from Baraud [(2002), Proposition 1]. For the second inequality,
92 > (N — 2y/L3N,, )nt?,
we use the following lemma.
LEMMA 5.4. Let S be a linear subspace &”" with dim(S) = D (we set

N =n— D) and§ and g be numbers satisfyinQ < 8 + § < 1 — exp(—N/4).
Let¢ (Y) be atest function with values {0, 1} satisfyingforall o € I,

(32) SUpP s [¢(Y) =1] <4,
fes

and for all f € R” such that]| f — ITs |2 > A(N, B),

(33) Prolp(Y)=1]>1-8.

Then

AN, B) > (N — 2/=NTog(d— B —5) )yr°.
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By applying this lemma withf =« + 8, S = S, and D = D,, and the test
described in Lemma 5.3 we obtain the claim.

PROOF OFLEMMA 5.4. Let¥ be the set defined by
F={feR" M fI*> A},

where A denotes some positive number. To obtain the desired result it is enough
to show that, for

A < (N —2J/=NlogI— B —9))nt?,
we have
(34) ;réf[ flgl; Prolp(¥Y)=1<1-8.
Since the quantity, = /1 — nt belongs ta, we have that, for all vectois € R”,
Clyr;fl )12]; Prolg(Y)=1]
<Pz0.[6(V) = UM Z|? = A} + L[| T Z|) < A).

By taking Z as a random variable independentaddistributed ag /it e, we obtain
by averaging with respect t6 that

inf inf Prolp(Y)=1] <E[Pz,[¢(Y)=1]] + Pl Z| < Al
oel feF

For the first term of the right-hand side of this inequality, note Bi&t; ,,] = Po -.
As Oe S andt € I, we have

E[Pz0,[¢(Y)=1]] <é.
For the second term, note that our upper boundansures that
A<qgon@A—B— Snt?

by using the lower bound on the quantiles;ot random variables (19). As the
random variablé [T, Z||?/(nt?) is distributed as g ?(N), we get

P[|Mg Z|2 <Al <1—B -3,

which concludes the proof.(]
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Conclusion. By gathering the inequalities of the two claims we get that, for
some constart depending orx andg only,

r2 > Cmax{Ny1, D, /Ny 2.

Let us now prove (16). Let us fix somee R". When f = 0, the result is clear
by takings,, = {0}. Then we deduce the result for genefddy arguing as follows.
Let us consider the random variablgs= 7 (Y + f) + f andi, =7(Y + f). For
all g e R" ando € I, we have that

Peols € B(fur 7)) =Peifolg + f€B(f,7)]=1- .

Consequently, the pair of random variablg§, 7,) satisfies (13) and thus, by
takingr, (o, 0) = r(a, f) we derive that

r(e, f)=r(a,0)>C max{nn, ﬁ}rz.

5.4. Proof of Proposition®.1and 3.1 The result of the former proposition
being a consequence of the latter by taking 0, we only prove Proposition 3.1.
In the sequel we set,, = log(1/8,,) and L, = log(1/«). We distinguish three
cases.

CAsSEm =n. We derive, from (18),
p2 < (n+2y/nL, +2L,)72,
which leads to the result.
CASED,, #0,m #n. Letusfixo € I. Since forz satisfying
X2y (qo.N, (@) T%/0?) < B

we have

ﬁm
(35) 2+ 0.0, A1) =—c0,
X2 v, (qo.N,, (@)T2/0?)

we bound from above the left-hand side of (35) for thosatisfying

(36) x2n, (q0.N, (@)T%/0?) > B

It follows from (19) that ifz satisfies (36), then

2
T
q0,N,, (05); >72+ Np—2V(2z2+ Nn)Ly,

and as we have

Z
2\/(2Z + Nu)Ly < 2\/2ZLm + 2\/NmLm = E + 2\/ Ny Ly + 4Lm
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and

qo.nN,, (@) <Ny + 2/ NyuLy + 2Ly
from (18), we deduce thatsatisfies

2
T
20'2 =< <2<QO,Nm (a)p - Nm) + 4y Ny Ly, + 8Ln1)02

< (2Nmn +4/Np(VIm + VLa ) + 8Ly + 4L0,>r2.

Thanks to (18) and the facts thaf , (qo.n,,(@)7?/0?) <1 andD,, < N,,, we
deduce that, for those

Zaz+qo,1)m< P A 1)02

X2y (qo.n, (@)T%/0?)

(37)

< (2Nmn + Do+ 2Ny (3VLm + 2V/Ley ) + 2(5L, + 2La)>t2,

and, consequently, that

:031 = (2an77 + Dy + 2V N, (3\/ Ly +2y La) +2(5L, + 2Lo¢)>72-

The result follows av,, < n.

CASE D,, =0. Arguing as above we have that fosatisfying

x = (2N + 4N (VL + VL) + 8Ly + 4L )72
we have that, for alb € I,
12 /g2 (@00(@)T%/07) < B

and therefore, by definition qf;,,,

P2 < (201 +4Vn(VLn + VLo ) + 8L + 4Ly )72,

which leads to the result.

Acknowledgments. The author thanks the five referees for their suggestions
that led to an improvement of the paper. The author is also grateful to Lucien Birgé
for helpful discussions.

REFERENCES

BARAUD, Y. (2002). Non-asymptotic minimax rates of testing in signal detect@ernoulli 8
577-606.

BERAN, R. (1996). Confidence sets centered’gtestimatorsAnn. Inst. Statist. Math8 1-15.

BERAN, R. and DJMBGEN, L. (1998). Modulation of estimators and confidence sits. Statist.
26 1826-1856.



CONFIDENCE BALLS 551

BIRGE, L. (2001). An alternative point of view on Lepski's method State of the Arin Probability
and StatisticYM. de Gunst, C. Klaassen and A. van der Vaart, eds.) 113-133. IMS,
Beachwood, OH.

Cox, D. (1993). An analysis of Bayesian inference for nonparametric regregsim.Statist21
903-923.

HOFFMANN, M. and LEPsKI, O. (2002). Random rates in anisotropic regression (with discussion).
Ann. Statist30 325—-396.

LEPsKI, O. (1999). How to improve the accuracy of estimatitath. Methods Statis8 441-486.

L1, K.-C. (1989). Honest confidence regions for nonparametric regression. Statist.17
1001-1008.

ECOLE NORMALE SUPERIEURE

DEPARTEMENT DEMATHEMATIQUES
ET APPLICATIONS

CNRS UMR 8553

45RUE D'ULM

75230 RARIS CEDEX 05

FRANCE

E-MAIL : yannick.baraud@ens.fr



