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TIME SERIES REGRESSION WITH
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Dedicated to the memory of E. J. Hannan

A central limit theorem is established for time series regression
estimates which include generalized least squares, in the presence of
long-range dependence in both errors and stochastic regressors. The set-
ting and results differ significantly from earlier work on regression with
long-range-dependent errors. Spectral singularities are permitted at any
frequency. When sufficiently strong spectral singularities in the error and
a regressor coincide at the same frequency, least squares need no longer
be n1r2-consistent, where n is the sample size. However, we show that our
class of estimates is n1r2-consistent and asymptotically normal. In the
generalized least squares case, we show that efficient estimation is still
possible when the error autocorrelation is known only up to finitely many
parameters. We include a Monte Carlo study of finite-sample performance
and provide an extension to nonlinear least squares.

1. Introduction. This paper derives central limit theorems for esti-
mates of the slope coefficient vector b in the multiple linear regression.

1.1 y s a q b X x q u , t s 1, 2, . . . ,Ž . t t t

where both the K-dimensional column vector of regressors x and the unob-t
servable scalar error u are permitted to exhibit long-range dependence, a ist
an unknown intercept and the prime denotes transposition. Two widely used
methods of estimating b are ordinary least squares and generalized least
squares. Both are known to be asymptotically normal under a wide variety of

Ž .regularity conditions. However, it was pointed out by Robinson 1994a that,
when x and u collectively exhibit long-range dependence of a sufficientlyt t
high order, the least squares estimate is not asymptotically normal. We show
that a class of weighted least squares estimates, which includes generalized
least squares as a special case, is asymptotically normal under rather general
forms of long-range dependence in both x and u .t t

Given observations y , x , t s 1, . . . , n, consider estimates of the followingt t
w Ž .type indexed by the function f l , which is real-valued, even, integrable and
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xperiodic of period 2p :

ˆ ˆy1 ˆ1.2 b s A b ,Ž . f f f

where, with Ý denoting Ýn ,t ts1

p1
Â s I l w l dl,Ž . Ž .Hw x2p yp

p1
b̂ s I l w l dl,Ž . Ž .Hw x y2p yp

X
I l s w l w yl ,Ž . Ž . Ž .x x x

I l s w l w yl ,Ž . Ž . Ž .x y x y

1
i tlw l s x y x e ,Ž . Ž .Ýx t1r22p nŽ . t

1
i tlw l s y y y e ,Ž . Ž .Ýy t1r22p nŽ . t

1.3Ž .

1 1
x s x , y s y ,Ý Ýt tn nt t

ˆ ˆ ˆand A is nonsingular. Here A and b can equivalently be written asf f f

1 X
Â s x y x x y x f ,Ž . Ž .ÝÝf t s tysn st

1
b̂ s x y x y y y f ,Ž . Ž .ÝÝf t s tysn st

1.4Ž .

where
p1

1.5 f s f l cos jl dl.Ž . Ž .Hj 2
yp2pŽ .

ˆ ˆŽ .In case f l ' 1, so that f s 1r2p and f s 0 for j / 0, b s b , the0 j f 1
least squares estimate,

y1
Xˆ1.6 b s x y x x x y x y .Ž . Ž . Ž .Ý Ý1 t t t t½ 5

t t

We assume throughout that u is covariance stationary, having mean that ist
Ž .without loss of generality 0, and absolutely continuous spectral distribution

Ž .function, so that it has spectral density, denoted f l , satisfying

p

1.7 g s E u u s f l cos jl dl, j s 0, 1, . . . .Ž . Ž . Ž .Hj def 1 1qj
yp

Ž . Ž . Ž .y1Suppose f l ) 0, yp - l F p . Then taking f l s f l gives a general-
ˆ y1ized least squares estimate b . In case f is not known up to scale, but onlyf
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Ž . Ž .up to a finite-dimensional vector of parameters u , so that f l s f l; u is a
given function of l and u , a feasible generalized least squares estimate is
ˆ y1 ˆ ˆŽ . Ž .y1b , obtained by taking f l s f l; u , where u is an estimate of u .f̂

Now suppose that x is a stochastic sequence, independent of the ut t
Žsequence, and covariance stationary with autocovariance matrix G s E x yj 1

.Ž .XEx x y Ex . Then1 1qj 1

p
i jl1.8 G s e dF l ,Ž . Ž .Hj

yp

where the matrix F has Hermitian nonnegative definite increments and is
uniquely defined by the requirement that it is continuous from the right.

Ž .Under suitable conditions we then have the central limit theorem clt

1r2 ˆ y1 y11.9 n b y b ª N 0, S S S ,Ž . Ž .ž /f d f c f

Ž . 2Ž . Ž .where c l s f l f l and

p1
1.10 S s x l dF lŽ . Ž . Ž .Hx 2p yp

Ž .for x l such that S is finite and nonsingular. In particular,x

21r2 y1 y1ˆ1.11 n b y b ª N 0, 2p G S G ,Ž . Ž .Ž . ž /1 d 0 f 0

1r2 ˆ y1
y1 y11.12 n b y b ª N 0, S ,Ž . Ž .ž /f d f

1r2 ˆ y1
y1 y11.13 n b y b ª N 0, S .Ž . ˆ Ž .ž /f d f

Ž . Ž . Ž .Some conditions for 1.9 and 1.11 ] 1.13 have already been laid down in
the literature. In particular, the case when f is at least bounded,

1.14 sup f l - `,Ž . Ž .
l

has effectively been covered in a large literature, some relatively complete
Ž .results appearing in Hannan 1979 . There is also interest in cases where

Ž .1.14 does not hold, when we can say that u has long-range dependence:t
Ž .f l has a singularity at one or more l, such as l s 0. Here the relevant

literature is much less extensive, and it has stressed the least squares
estimate in case of nonstochastic x satisfying what have come to be calledt

Ž .‘‘Grenander’s conditions.’’ Eicker 1967 gave a clt under the assumption that

1.15 u s t « , t 2 - `,Ž . Ý Ýt j tyj j

where Ý will always denote a sum over 0, " 1, . . . of an obvious index, and
Ž .the « are independent with finite variance, and Hannan 1979 relaxed thet

latter assumption to square-integrable martingale differences. The square-
Ž .summability condition in 1.15 is equivalent only to covariance stationarity

Ž .of u given the other conditions i.e., to integrability of f . Such strongert
conditions on the t as absolute summability would rule out long-rangej

Ž .dependence, and imply 1.14 . Mention must also be made of important early,
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contributions in the simple location model special case. Ibragimov and Linnik
Ž .1971 , Theorem 18.6.5, considered this under essentially the same conditions

Ž . Ž .on u as Eicker 1967 , while Taqqu 1975 initiated a new avenue of researcht
by assuming u is a nonlinear function of a Gaussian process.t

Ž .The work of Yajima 1988, 1991 contained some central limit theory
Ž .under conditions on cumulants of all orders but stressed other aspects of
regression with nonstochastic regressors and long-range-dependent errors.
He assumed that

U y2 d 1< <1.16 f l s f l l , yp - l F p , 0 - d - ,Ž . Ž . Ž . 2

where f U is a continuous function, and showed the importance to the
properties of least squares of the behavior near l s 0 of the spectral distribu-

Ž .tion function, denoted M l , of the generalized harmonic analysis of his
nonstochastic x : the estimate of the ith element of b has rate of conver-t

Ž .gence depending on d if the ith diagonal element of M l has positive
Ž .increment at l s 0, and the same rate as under 1.14 otherwise. Yajima

Ž .1988, 1991 also obtained formulas for the asymptotic covariance matrix of
least squares and generalized least squares, and conditions under which they

Ž .have equal asymptotic efficiency. Dahlhaus 1995 proved asymptotic normal-
ity of generalized least squares estimates, and approximations thereto, for
certain forms of nonstochastic regressor such that M has mass at zero

Ž .frequency and under a condition similar to 1.16 . Kunsch, Beran and Hampel¨
Ž .1993 discussed the effect of long-range-dependent errors on standard in-
dependence-based inference rules in the context of certain experimental

Ž . Ž .designs. Koul 1992 , Koul and Mukherjee 1993 and Giraitis, Koul and
Ž .Surgailis 1994 considered the asymptotic properties of various robust esti-

mates of b.
Ž .Our setup can be compared to those of Yajima 1991 under his condition

Ž .1.16 in that, due to our mean correction, F effectively corresponds to his M
Ž .in case an element of M has a jump at frequency 0. Here Yajima 1991

w Ž .imposed conditions that are not innocuous. In particular, he required case i
x Ž .of his Theorem 2.1 that, in our notation, S be finite. Yajima 1991 includedf

also situations in which S diverges due to a jump in M at frequency 0.f

Ž .Robinson 1994a indicated how S can diverge in our present context.f
Ž .Suppose that a certain diagonal element of F l is absolutely continuous

< <y2 cwith derivative that behaves like C l in a neighborhood of l s 0, for
1 1Ž .c g 0, and C ) 0. Then S - ` if and only if c q d - , which is not truef2 2

if there is collectively sufficient long-range dependence in u and an xt t
element. This does not seem implausible in a situation in which long-range
dependence is suspected in u , because of empirical evidence of the peaked-t
ness, near zero frequency, of spectra of observable series. In this circum-

ˆŽ .stance it appears that 1.11 does not hold; b has a rate of convergence1
slower than n1r2, and need not be asymptotically normal. Note that S s `f
also if sufficiently strong singularities in the spectral densities of x and ut t
coincide at any nonzero frequency. Note also that the obvious stochastic
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Ž . Ž . Žanalog of condition 23 of Yajima 1991 employed in his clt for least
.squares does not hold even in case of white noise x . Our focus on stochastict

Žx reflects practical situations frequently encountered e.g., in oceanographyt
.and econometrics where the response of one series to others is of interest, yet

wit is natural to regard all as stochastically generated see, e.g., Hamon and
Ž .xHannan 1963 .

Ž .The present paper identifies functions f l which can guarantee the clt
Ž . 1r21.9 , with its n rate of convergence, under effectively no restrictions on
the degree of stationary long-range dependence in x and u . Such f includet t

y1 ˆŽ . y1f , so that 1.12 is included. The efficiency advantages of b are wellf
known in other circumstances, but the preceding discussion of the pitfalls of
ˆ ˆ y1b makes b seem even more attractive than usual. The conditions for the1 f

Ž . Ž .clt’s 1.9 and 1.12 are introduced and described in the following section,
ˆwhich, under the same conditions, asserts corresponding results in case b isf

replaced by

˜ ˜y11.17 b s A a ,Ž . ˜f f f

where

ny1 ny11 1˜1.18 A s I l f l , a s I l f l ,Ž . ˜Ž . Ž . Ž . Ž .Ý Ýf x j j f x y j jn njs1 js1

˜where l s 2p jrn. Note that b will sometimes be preferred on computa-j f

Ž . y1Ž . wtional grounds, especially as formulas for f l s f l and indeed for many
Ž .xother choices of f l are often simpler than the corresponding ones for f .j

Ž . Ž .For 1 F j F n y 1, w l and w l are invariant to location shift and so thex j y j

Ž .mean correction in the formulas in 1.3 is vacuous; it is the omission of j s 0
Ž . Ž . Ž . Žand n from the sums in 1.18 which permits unknown a and E x . Notet

˜ ˆ ˆ ˜.that b s b . The clt proofs for both b and b are given in Section 3.1 1 f f

Ž .Section 4 discusses the clt for the case 1.13 for a parametric f. Section 5
includes an extension to nonlinear regression. We report in Section 6 the
results of a small Monte Carlo study of finite-sample behavior.

2. Central limit theorems. We introduce the following conditions.

CONDITION 1.
` `

2u s t « , t - `,Ý Ýt j tyj j
0 0

where

< 2 < 2 2E « F s 0, E « F s E « s s a.s.,Ž . Ž . Ž .t ty1 t ty1 1

� 4 2F being the s-field of events generated by « , s F t y 1 , and the « beingty1 s t
uniformly integrable.
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CONDITION 2.
`

˜ ˜ < <f - ` where f s max f .Ý j a j
jGa0

Ž .CONDITION 3. The spectral density f l exists for all l, and
2n n

1r2˜< <2.1 g q ng f q nF s O n as n ª `,Ž . Ž .˜Ý Ýj n j n½ 5ž / ž /
0 0

< < < <where g s max g , F s Ý f .ã jG a j a < j < ) a j

Ž .CONDITION 4. c l is a continuous function.

CONDITION 5. S and S are nonsingular; S is finite.f c c

� 4 � 4CONDITION 6. x , « are independent sequences.t t

� 4CONDITION 7. x is fourth-order stationary, andt

2.2 G ª 0 as j ª `,Ž . j

< <2.3 lim max k 0, u , v , w s 0, 1 F a, b , c, d F K ,Ž . Ž .abcd
< < < < < <u ª` v , w -`

Ž .where k 0, u, v, w is the fourth cumulant of x , x , x , x , and x isabcd a0 bu cv dw it
x ’s ith element.t

Ž .THEOREM 1. Under 1.1 and Conditions 1]7, it follows that

1r2 ˆ 1r2 ˜ y1 y12.4 n b y b , n b y b ª N 0, S S S ,Ž . Ž .ž / ž /f f d f c f

Ž . Ž . Ž .y1and thus, when f l ) 0 and f l s f l for all l,

1r2 ˆ 1r2 ˜ y1
y1 y1 y12.5 n b y b , n b y b ª N 0, S .Ž . Ž .ž / ž /f f d f

The proof is reserved for the following section, and we first discuss the
conditions.

Ž . Ž .Condition 1 is a relaxation of Eicker’s 1967 condition on his « in 1.15 ;t
Ž .see also Hannan 1979 . It is restrictive in the linearity it imposes, but not

otherwise.
˜ y1Ž . Ž .Condition 2 implies that f s O f s o j as j ª `. Then Condition 3j j

Ž y1 .is automatically satisfied if also g s o j as j ª `. On weakening thej

Ž pŽ < <. Ž < <..latter requirement to g s O log 2 q j r 1 q j , for any p ) 0, we canj
Ž Ž < <. pq2Ž < <..satisfy Condition 3 by f s O 1r 1 q j log 2 q j . On the other hand, ifj

Ž pŽ < <.. Ž py2Ž < <. Žonly g s O 1rlog 2 q j , for any p ) 0, then f s O log 2 q j r 1 qj j
< <..j suffices. The first statement of Condition 3 implies, by the Riemann]

w Ž . xLebesgue lemma Zygmund 1977 , page 45 , the mild type of ergodicity
Ž .condition lim g s 0, and 2.1 entails no extra condition on g whenjª` j j

` ˜1r2 y2w Ž .xÝ f - ` which implies f s o j .0 j j



LONG-RANGE-DEPENDENT REGRESSION 83

Perhaps the conditions of most interest under which Condition 3 holds lie
1Ž .between these extremes: when, for some d g 0, ,2

y1 2 dy1< < < <2.6 g s O L j 1 q j ,Ž . Ž . Ž .Ž .j

y2 dy1< < < <2.7 f s O L j 1 q j ,Ž . Ž . Ž .Ž .j

wwhere L is slowly varying at ` see, e.g., Bingham, Goldie and Teugels
Ž .x Ž .1987 . The special case of 2.6

2.8 g ; Dj2 dy1 , D ) 0 as j ª `Ž . j

Ž .where ‘‘; ’’ means that the ratio of left- and right-hand sides tends to 1
holds in case of fractional autoregressive integrated moving average
Ž . Ž .FARIMA models with differencing parameter d, where f in 1.7 is given by

22 ils a eŽ .y2 dil< <2.9 f l s 1 y e , yp - l F p ,Ž . Ž . il2p b eŽ .

where a and b are polynomials of finite degree, all of whose zeros are outside
2 Ž .the unit circle, and s ) 0. The model 2.9 may have originated in Adenstedt

Ž . Ž . Ž .1974 , and it also satisfies 1.16 . However, we stress that ‘‘O ’’ in 2.6 has the
Ž .usual ‘‘upper bound’’ meaning, not ‘‘exact rate,’’ so even when L j ' 1 it can

hold also when the g not only decay slowly, but indefinitely oscillate. Forj
example, consider the spectral density

22 ilhs a eŽ .y2 dil 2 il j< <2.10 f l s 1 y 2 cos v e q e , yp - l F p ,Ž . Ž . Ł j il2p b eŽ .js1

2 w xwhere a, b and s are as before, and the v are distinct numbers in 0, p .j
1Ž . Ž .In case h s 1 and v s 0, 2.10 reduces to 2.9 with d s dr2, so 0 - d -1 1 1 4

Ž .is required for 2.6 to hold. When h s 1 but 0 - v F p , we have a ‘‘cyclic’’1
FARIMA, f having singularity at the nonzero frequency v . In case h s 11

Ž .and v s p , Gray, Zhang and Woodward 1989 showed that g ;1 j
1j 4 d y11Ž . Ž . Ž .D y1 j , so again we need 0 - d - for 2.6 to hold, but now 2.81 4

does not hold. In case h s 1 and 0 - v - p , Gray, Zhang and Woodward1
Ž . 2 d1y1 Ž . Ž .1989, 1994 showed that g ; Dj cos jv , so 2.6 holds when 0 -j 1

1 Ž .d - , but not 2.8 . For h ) 1 there is more than one spectral singularity in1 2
w x w0, p , as may be a reasonable model for seasonal processes e.g., for monthly

Ž . x Ž .data take h s 7 and v s j y 1 pr6, j s 1, . . . , 7 . We conjecture that 2.6j
1Ž .will hold, with d s max a , . . . , a and 0 - a r2 s d - if v s 0 or p , 0 -1 h j j j4

1 Ž .a s d - otherwise. The problem of testing hypotheses on the d in 2.9j j j2
Ž . Ž . Ž .and 2.10 has been studied by Robinson 1994b . Conditions that link 1.16
Ž . Ž . Ž . Ž .and 2.8 outside the classes 2.9 and 2.10 can be inferred from Yong 1974 ,

Ž . Ž .and sufficient conditions for 2.6 with L j ' 1 in terms of upper bounds on f
Ž .and its derivative are in Lemma 4 of Fox and Taqqu 1986 , which can also be

generalized to the case of singularities at nonzero frequencies.
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1 Ž . Ž .As d decreases from to 0, 2.6 becomes stronger but 2.7 becomes2

weaker, and while ‘‘O ’’ in the latter again means ‘‘upper bound,’’ we have

2.11 f ; DX jy2 dy1 , DX ) 0 as j ª `,Ž . j

Ž . y1 Ž .along with 2.8 in case f s f and u is a noncyclic FARIMA as in 2.9 . Fort
this f, the f are proportional to the inverse autocorrelations of u . Condi-j t

tion 4 is implied by Condition 2, if f s f y1, and indicates that in order to
1r2 ˆchoose f merely to guarantee an n -consistent b we have to know thef

location of the singularity or singularities of f , and design f to have a zero or
w .zeros of sufficient order to cancel them. Suppose that, for some v g 0, p ,

y2 d 1Ž . < < Ž < <. Ž .f l ; C l y v rL 1r l y v as l ª v for d g 0, , f is continuous for2
Ž . w Ž .xl / "v and 2.6 holds as is true in case of 2.9 . Then, for any such d,

< <2.12 f l s l y v , 0 F l - p ,Ž . Ž .
w Ž y2 .xsatisfies Conditions 2, 3 because c s O j and 4. When f has severalj

Ž .singularities we can extend 2.12 to have zeros of degree 1 at each.
Nonsingularity in Condition 5 is likely to hold in case of no multicollinear-

ity in x . Finiteness of S is a consequence of Parseval’s equality andt f

Condition 2.
Condition 6 is very restrictive. We believe it could be relaxed to indepen-

dence up to some moment order, but at the cost of greater structure on x t
Žthan required in Condition 7. Such structure e.g., a linear process similar to

.that assumed for u could also lead to a reduction in the fourth momentt
Ž .condition on x , but we find the extremely mild condition 2.2 aestheticallyt

so appealing as to offset both considerations. The fourth cumulant condition
Ž .2.3 is vacuous in case of Gaussianity, and milder than the summability
conditions on cumulants frequently employed. Finally, the covariance station-
arity condition on x is very strong. There may be scope for replacing it by at
stochastic version of ‘‘Grenander’s conditions.’’ Neither Condition 7 nor
‘‘Grenander’s conditions’’ are satisfied by unit root behavior, a popular recent
assumption. While there are certainly many series lending empirical support
for this sort of assumption, not only is it strictly not ‘‘weaker’’ than Condition
7, but it actually describes a very specialized form of nonstationarity, and

Ž .covers a far narrower spectrum of the ‘‘I d ’’ processes than does Condition 7.
Ž .Note that the model 1.1 permits the vector x to consist of lags or leads of at

w Ž .xbasic time series see, e.g., Hannan 1967 ; parsimonious parameterizations
have been proposed in this case, entailing linear restrictions on b, and it is
easy to extend our results to cover these.

It is our insistence on allowing for any degree of fractional differencing, at
wany frequencies, in x which prevents the least squares choice of f ' 1 seet

Ž .x1.6 from being covered by the clt, and we have preferred not to investigate
in detail the trade-offs between F and f which the discussion of Section 1
indicates is possible. However, the following result will be of some use in
Section 4. Its proof is a simple consequence of some of the properties derived

w Ž .in the following section, and the Toeplitz lemma see, e.g., Stout 1974 , pages
x120 and 121 , and is omitted.
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Ž .THEOREM 2. Under 1.1 and Conditions 6 and 7 and the nonsingularity
of G ,0

1r2n
y1ˆ < <2.13 b s b q o n g as n ª `.Ž . Ý1 p j

0

As an application of Theorem 2, consider a problem of relatively minor
Ž .interest, estimating a in 1.1 . An obvious estimate is

X
Xˆ ˆ2.14 a s y y b x s a q u y b y b x ,Ž . ˆ ž /f f f

y1 y1 n 1r2ˆ Ž� < <4 .where u s n Ý u . If b s b q o n Ý g , as in Theorem 2, and ift t f p 0 j
1r2yd 1r2ydŽ . Ž .2.6 holds, then n a y a has the same limit distribution as n u,ˆf

Ž Ž .. w Ž .xand if Condition 1 holds this is N 0, Drd 2 d q 1 cf. Taqqu 1975 . On
ˆ 1r2Ž .the other hand, if f l is continuous and positive at l s 0 and b is n -f

Ž .consistent as in Theorem 1 , then the last term on the rightmost expression
ˆŽ . Ž .in 2.14 also contributes, unless E x s 0, while it dominates if b is1 f

less-than-n1r2-consistent.

Ž . Ž .3. Proof of Theorem 1. Dropping the f subscripts from 1.2 , 1.3 ,
ˆ ˆy1 ˜ ˜y1Ž . Ž .1.17 and 1.18 , write b y b s A a, b y b s A a, whereˆ ˜

ny1
y1 y1a s n x y x u y u f , a s n I l f l ,Ž . Ž .ˆ ˜ Ž . Ž .ÝÝ Ýt s tys x u j j

s t js1

for

y1 i tl yi tlI l s 2p n x e u e .Ž . Ž . Ý Ýx u t tž / ž /
t t

With Ex s 0, without loss of generality, write A s ny1Ý Ý x xX f , a s1 s t t s tys
ny1Ý Ý x uX f . Define r s Ý x f , s s Ý r t , with t s 0, j - 0,s t t s tys t s s tys u t t tyu j
and a s ny1Ýn s « , a s a y a , with N s N yet to be chosen. Write1 yN u u 2 1 n

X < X <� 4 � 4D s E naa x , D s E na a x , D s D y D ,Ž . Ž .0 t 1 1 1 t 2 0 1

py1E s 2p I l c l dl.Ž . Ž . Ž .H x
yp

Write

1r2 ˆ y1 ˆy1 1r2 y1r2 1r2 y1r2 1r2n b y b s A AA S S E E DŽ . Ž .Ž . Ž .c c 0

= Dy1r2D1r2 Dy1r2 n1r2 a q a ,Ž .Ž .0 1 1 1 2

1r2 ˜ ˆ ˆy1 ˜y1 1r2 ˜y1 1r2n b y b s A y A n a q A n a y a ,Ž .Ž . ˆ ˆ ˜Ž .
1r2 Ž 1r2 .2 5 5 5 1r2 5 2where X satisfies X s X, and noting that E D F E n a ,2 2

1r2 X ˆ5 5 Ž .where X s tr X X , the proof for b follows immediately from Proposi-
˜tions 1]6 below, and that for b from Propositions 1]5 and 7.
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PROPOSITION 1. For N increasing suitably with n,

5 1r2 5 2lim E n a s 0.2
nª`

PROOF. With C denoting a generic constant,

2 yNy1s2 X5 5E n a s E x x f f t tŽ .Ž . Ý ÝÝÝÝ2 r q tyr syq tyu syun usy` s r qt

` `2C
2 2< <F f t F Cn t ,ÝÝ Ý Ýtys u už /n st N N

which tends to 0 as n ª ` for a suitable sequence N , by Condition 1. In

PROPOSITION 2. As n ª `,

3.1 Dy1r2 n1r2a ª N 0, I ,Ž . Ž .1 1 d

where I is the identity matrix.

Ž .PROOF. Equation 3.1 is implied if the convergence holds conditional on
� 4 5 5x and we establish the latter. For any vector z such that z s 1 and anyt

y1r2 X y1r2 Ž .N, n, define d s n z D s . Then from Scott 1973 , it suffices to showu 1 u
that, as n, N ª `,

n
2 2 <3.2 d E « F ª 1,Ž . Ž .Ý u u uy1 p

yN

n
2 2 < < <� 43.3 E d E « I d « ) h x ª 0 for all h ) 0.Ž . Ž .Ý u u u u tž /

yN

Ž . n 2 2Trivially, 3.2 follows from Condition 1 and Ý d s 1rs . For d ) 0 theyN u
Ž .left-hand side of 3.3 is bounded by

n
2 2 < < < <3.4 E d E « I « ) hrd q P max d ) d .Ž . Ž .Ý ž /u u u u

uyN

The first term can be made arbitrarily small by choosing d small enough,
Ž .from uniform integrability. We now modify an argument of Eicker 1967 .

y1 Ž .Propositions 1, 4 and 5 below and Condition 5 imply that D s O 1 , so we1 p
5 y1r2 5can consider the set D F C, on which, for any « ) 0,1

< < y1r2 5 5 < <max d F max Cn r tÝu t tyu
u u t

1r2« 2 y1r25 5 5 5 < <F C r q CLn max r max t ,Ý t t u½ 5n u1FtFnt
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Ž . 2 Ž .where L s L « is chosen such that Ý t - « . Then the proof of 3.3 isuG L u
completed by

5 5 2 5 5 2 < <E r F E x f f F C - `,ÝÝt s tys tyu
s u

1r4
4 1r45 5 5 5 < < 5 5max r F max x f F C x s O n ,Ž .Ý Ýt t u t p½ 5

1FtFn 1FtFn t

using Markov’s inequality and Conditions 2 and 7. I

PROPOSITION 3. A ª S as n ª `.p f

y1 X Ž .PROOF. Write C s n Ý x x . By easy use of formula 30 onj 1F t, tqjF n t tqj

Ž . 5 5 2page 464 of Anderson 1971 , it is seen that Condition 7 implies E C y Gj j
ª 0 for all fixed j. With a simple truncation argument and Condition 2, it

ny1 Ž .follows that Ý f C y G ª 0. But Condition 2 also implies that1yn j j j p
Ý f G ª 0. I< j < G n j j

PROPOSITION 4. E ª S as n ª `.p c

Ž . J Ž < < . yi jlPROOF. Let c l s 2pÝ 1 y j rJ c e be the Cesaro sum to JJ jsyJ j

Ž . Ž .y2 p Ž .terms of the Fourier series of c l , where c s 2p H c l cos jl dl, andj yp

write

p1
E y S s I l c l y c l dl� 4Ž . Ž . Ž .Hc x J2p yp

p1
q c l I l dl y dF l� 4Ž . Ž . Ž .H J x2p yp

p1
q c l y c l dF l .� 4Ž . Ž . Ž .H J2p yp

The second term on the right-hand side is

J < <j
c 1 y C y G ª 0Ž .Ý j j j pž /JjsyJ

for any fixed J, as in the proof of Proposition 3, while Condition 4 implies
< Ž . Ž . <that for any « ) 0 we can choose J so large that sup c l y c l - « froml J

w Ž . xFejer’s theorem Zygmund 1977 , page 89 so that the norms of the first and`
Ž . Ž . Ž . Ž .last terms on the right-hand side are less than «r2p tr C and «r2p tr G .0 0

I
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PROPOSITION 5. E y D ª 0 as n ª `.p

PROOF. We have
c s f f g ,ÝÝm j k myjyk

so that
ny11

X XE y D s x x g f fÝÝ Ý Ýt u j tyjyq uyqn u qt 1yn

1
Xq x x g DÝÝ Ýt u j tyjyun ut < <j Gn

s R q R ,1 2
X � Ž .4 � Ž .4where Ý is a sum over q ) min n, n y j j q - max 1, 1 y j and D sq j

Ýf f . To prove R ª 0 and R ª 0, it is convenient to introduce first at tyj 1 p 2 p
series of lemmas, some of which will also be useful in proving subsequent
properties. Let a s Ý f f .jtu q ) nyj tyjyq uyq

< <LEMMA 1. For r - n,
ny1

F F 4 F .Ý Ý< ryt < r2 t
t ts0

PROOF. F s F , and for 1 F t F n, 0 F r - n we have 0 F< ryt < r2 w < ryt < r2x
1w < <xr y t F n y 1, with duplications due to division by 2 and taking integer2

parts, and to positive and negative values of r y t. I

LEMMA 2.
ny1

< <F s t f q nF .Ý Ýt t n
ts0 t

PROOF. Elementary.

LEMMA 3.
2

1r2˜ ˜tf F f .Ý Ýt tž /
t t

˜ ˜1r2 t ˜1r2 ˜1r2 2Ž .PROOF. Ý tf F Ý f Ý f F Ý f . It t t t us1 u t t

w xLEMMA 4. Under Condition 2, for all integers j and all t, u g 1, n ,

˜1r2 ˜1r2 ˜< <a F Cf f q f F .jtu nyt < tyjyu < r2 nyt < tyjyu < r2

PROOF. The left-hand side is bounded by

< < < <f f q f f ,Ý Ýty jyuyi yi tyjyuyi yi
igA igB
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1� < < < <4 � < <where A s i: i ) n y j y u, i F t y j y u , B s i: i ) n y j y u, i )2
1 < <4t y j y u . Because i g A or i g B imply t y j y u y i - t y n F 0 while2

1 Ž .i g A implies t y j y u y i F t y j y u F 0, we can bound the two sums2
˜1r2 ˜1r2 ˜< <respectively by f f Ý f and f F , whence the resultny t < tyjyu < r2 i nyt < tyjyu < r2

follows from Condition 2. I

LEMMA 5. For 0 F j - n,
2n

1r2˜< <3.5 a F C f q nF .Ž . ÝÝ Ýjtu t n½ 5ž /
ut 0

PROOF. Applying Lemma 4,

˜1r2 ˜1r2 ˜< <a F C f f q f FÝÝ Ý Ý Ý Ýjtu nyt < tyjyu < r2 nyt < tyjyu < r2
u u ut t t

2ny1
1r2˜ < <F C f q t f q nFÝ Ýt t n½ 5ž /

0 t

Ž .by Lemmas 1 and 2, where 3.5 follows from Lemma 3. I

< <LEMMA 6. Ý D F CF .j) 2 n j n

PROOF. We have

< < < < < < < < < <D F f f q f fÝ Ý Ý Ý Ýj q qyj q qyj
j)2 n < < j)2 n < < j)2 nq Fn q )n

< < < < < < < <F f f q 2 f fÝ Ý Ý Ýq j q j
q)n< < j)nq Fn

F CF . In

LEMMA 7. For j ) 0,
˜< <D F Cf .j jr2

PROOF.
< < < < < <D F f f q f fÝ Ýj q qyj q qyj

< < < <q Fjr2 q )jr2

˜F Cf . Ijr2

Consider now

R s x xX b q x xX bÝÝ ÝÝ1 t u tu nytq1 nyuq1 tu
u ut t

X ˜ X ˜q x x b q x x bÝÝ ÝÝu t tu nytq1 nyuq1 tu
u ut t

s R q R q R q R ,11 12 13 14
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y1 ny1 ˜ y1 ny1where b s n Ý g a , b s n Ý g a . Thentu js0 j jtu tu js1 j jtu

˜< <ER F G q G b q G q G bŽ . Ž .ÝÝ ÝÝ1 tyu uyt tu tyu uyt tu
u ut t

4
F c b ,ÝÝ tyu tun ut

ny15 5 < <where c s G , b s Ý g a . By Lemma 5 and Condition 3,j j tu js0 j jtu

3.6 b s O n ,Ž . Ž .ÝÝ tu
ut

so that ER ª 0 by Condition 7 and the Toeplitz lemma. Next1

4
2 25 5 5 5E R y ER F 4 E R y ERÝ1 1 1 j 1 j

js1

F h b b ,ÝÝÝÝ tuv w tu v w
u v wt

3.7Ž .

where

K

< <h s c c q c c q k t , u , v , wŽ .ÝÝÝÝtuv w tyv uyw tyw uyv abcd
a, b , c , ds1

s hŽ1. q hŽ2. q hŽ3. .tuv w tuv w tuv w

Ž . Ž1.By Condition 7, for any « ) 0 there exists L s L « such that h - « iftuv w

Ž < < < <. Ž2. Ž < < < <. Ž3.max t y v , u y w G L, h - « if max t y w , u y v G L and h - «tuv w tuv w
Ž < < < < < < < < < < < <.if max t y u , t y v , t y w , u y v , u y w , v y w G L. Thus, because

22Ž . Ž . 5 5Ý Ý Ý Ý b b s O n from 3.6 , it follows that E R y ER ª 0, andt u v w tu v w 1 1
then R ª 0. Now consider R . We have1 p 2

1
< <ER F c d ,ÝÝ2 tyu tun ut

< <where d s Ý g D . Applying Lemmas 3, 6 and 7 and Condition 3,tu < j < ) n j tyjyu

ny11
< <d F g D˜ÝÝ Ý Ýtu n ryjn ut 1yn < <j )n

2n

< < < <F g jD q n D˜ Ý Ýn j jž /1 j)2 n

3.8Ž .

2n
˜F Cg jf q nF s O 1 .Ž .˜ Ýn j nž /

1
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Thus ER ª 0 by the Toeplitz lemma. Next2

125 5 < <E R y ER F h d d ª 0ÝÝÝÝ2 2 tuv w tu v w2n u v wt

Ž .from 3.8 and the properties of h previously indicated and the Toeplitztuv w
lemma. I

PROPOSITION 6. As n ª `,

1r2 ˆn a y a ª 0, A y A ª 0.Ž .ˆ p p

1r2Ž .PROOF. Put n a y a s b q b q b , whereˆ 1 2 3

y1r2 y1r2b s yn x u f , b s yn u x fÝÝ ÝÝ1 s tys 2 t tys
s st t

and
y1r2b s uxn f .ÝÝ3 tys

st

Note first that

1r2ny1
y1 < <3.9 u s O n 1 y j rn g , x ª 0,Ž . Ž .Ýp j p½ 5ž /1yn

where the second result uses Condition 7 and the Toeplitz lemma. First
Ž . Ž .suppose f 0 s 0. Because f l s 2pÝf cos jl,j

ny1

< <f s n y j fŽ .ÝÝ Ýtys j
st 1yn

s y2nq y 2 tfÝn t
t

2n
1r2˜s O f q nFÝ t n½ 5ž /0

Ž .by Lemma 3, where q s Ý f . Thus b ª 0 by 3.9 and Condition 3.n t ) n t 3 p
Ž .Next, Ý Ý x f s yÝ x q q q , so thatt s t tys t t tq1 nyt

ny12

E x f s tr G P ,Ž .ÝÝ Ýt tys j j
st 1yn

where
Ž .min n , nyj

P s q q q q q q .Ž . Ž .Ýj tq1 nyt tqjq1 nytyj
Ž .max 1, 1yj

Ž nq1 .Because P s O Ý F uniformly in j, it follows from Lemmas 2 and 3,j 0 t



P. M. ROBINSON AND F. J. HIDALGO92

Ž .3.9 , Condition 3 and the Toeplitz lemma that b ª 0. Similarly,2 p

ny12

E u f s g P s O n ,Ž .ÝÝ Ýs tys j jž /
st 1yn

Ž . Ž .and then b ª 0 by 3.9 . Now suppose f 0 / 0, when Condition 4 implies1 p
Ž . Ž .f l is continuous at l s 0. Thus, from 3.9 and Fejer’s theorem, u s´
Ž y1r2 . Ž .O n , and because Condition 2 implies Ý Ý f s O n , it follows thatp t s tys

b ª 0. Because3 p

2 2 2< <E x f F f c s o n ,Ž .Ž .ÝÝ Ý ÝÝt tys j tys
s st t

we then have b ª 0. To deal with b ,2 p 1

ty1 52

E u f s f g f s d ,ÝÝ ÝÝ Ý Ý Ýt tys tys j tyvyj iž /
s s vt t jstyn is1

where
d s c ,ÝÝ1 tys

st

d s y f z ,Ý Ý Ý2 tys tyv
s vt)n

d s y f z ,Ý Ý Ý3 tys syv
stF0 t

d s y f g f ,ÝÝ Ý Ý4 tys j tyvyj
s vt jGt

d s y f g f ,ÝÝ Ý Ý5 tys j tyvyj
s vt j-tyn

Ž . Ž . Ž .where z s Ýg f . Now d s nr2p c 0 s O n by Condition 4, as in thek j kyj 1 n
proof of Proposition 4. Uniformly in t.

n

< < < < < < < <z F g f q g f q g fÝ Ý Ý Ý Ýtyv j tyvyj j tyvyj j tyvyj½ 5
v v yn j)n j-yn

n

< <s O g q ng ,˜Ý j nž /
0

Ž .so that d and d are O n by Lemma 3 and Condition 3. It is easily seen2 3
that

< < < < < <d F C g fÝ Ý Ý4 j tyvyj
vt jGt

< < < <F g q ng j f q nF s O nŽ .˜Ý Ýj n j n½ 5ž /
j j

Ž . Ž .by Condition 3. In the same way d s O n . Thus b ª 0 by 3.9 . The proof5 1 p
ˆthat A y A ª 0 is omitted because it follows from similar but morep
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straightforward calculations to those above after writing

1 1 1
X X XÂ s A s xx f y x x f y x f x . IÝÝ ÝÝ ÝÝtys s tys t tysn n ns s st t t

PROPOSITION 7. As n ª `,
1r2 ˜n a y a ª 0, A y A ª 0.Ž .˜ p p

PROOF. Because
ny1

n , ll s 0, mod n ,exp i lll sŽ .Ý j ½ 0, otherwise,js0

we have
1r2 y1r2 1r2n a y a s n x u v y n xu f ,Ž .˜ ÝÝ Ýt s tys j

st

where v s Ý f . The second term on the right-hand side is identicallyj < i < G1 jqin

Ž . Ž .0 if f 0 is 0 ; otherwise, because Condition 4 implies f 0 - `, and thus
y1r2Ž . Ž .u s O n , it is o 1 . The first term has mean 0 and variance bounded byp p

1
< <c g v v .ÝÝÝÝ tyu syv tys uyvn s u vt

By the Toeplitz lemma it suffices to show that

< <g v v s O n .Ž .ÝÝÝÝ syv tys uyv
s u vt

Ž n < < ny1 < < < <.The left-hand side is O Ý g Ý v Ý Ý v . In view of Condition 3js0 j 1yn j t s tys
1r2Ž .and Lemma 3, the proof that n a y a ª 0 is completed by the following˜ p

lemmas.

LEMMA 8.
ny1

< <v - `.Ý j
js1yn

< <PROOF. The left-hand side is bounded by 2Ý f - `. Ij

LEMMA 9.

< < < <v F C j f q nF .ÝÝ Ýtys j nž /
st j

PROOF. The left-hand side is bounded by
Ž .llq1 ny1ny1

< < < < < <2 j f q 4 f n y j y ll n .Ž .Ý Ý Ýj j
js1 llG1 ll n

The second term is bounded by 4nF . In
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˜Finally, the proof that A y A ª 0 follows fromp

1
X XÃ y A s x x v y xx f .ÝÝ Ýt s tys jn st

Ž . Ž y1 < <.The second term is clearly o 1 . The first has mean O n Ý Ý c v ª 0p t s tys tys
from the Toeplitz lemma and Lemma 8. The latter property is also used to
show that the variance of the first term tends to 0, on dealing with this term
as we did with R and R in the proof of Proposition 5. I1 2

4. Feasible generalized least squares. We now wish to estimate b
Ž .efficiently in the absence of knowledge of f up to scale. We write f l s

Ž . Ž .f l; u , where f l; u is a known function of l and the p-dimensional vector0
ˆ ˆ ˜y1 y1u , and u is unknown. For an estimate u of u , define b , b by puttingˆ ˆ0 0 f f

y1 ˆ ˆ ˜Ž . Ž .f l s f l; u in b and b . If u includes the scale factor of f , and this isf f

functionally unrelated to the remaining elements of u , then these estimates
of b are invariant to it, but the scale factor has to be estimated in order to
estimate the limiting covariance matrix S y1

y1 .f
Now introduce the following condition.

CONDITION 8.
y1r2n

ˆ < <4.1 u y u s O gŽ . Ý0 p j½ 5ž /0

� 5 5 .and, defining N s u : u y u - d , there exists d ) 0 such thatd 0

p1 y1
f u s f l; u cos jl dlŽ . Ž .Hj 2

yp2pŽ .
is differentiable in N , for each j, andd

f uŽ .j
4.2 sup - `.Ž . Ý

uugNd

Ž .THEOREM 3. Under 1.1 and Conditions 1]8, it follows that

1r2 ˆ 1r2 ˜ y1
y1 y1 y14.3 n b y b , n b y b ª N 0, S ,Ž . ˆ ˆ Ž .ž / ž /f f d f

and S y1 is consistently estimated by bothf

ny11 1X ˆ ˆ4.4 x y x x y x f u and I l f l ; u .Ž . Ž .Ž . Ž . Ž .ÝÝ Ý ž /s t tys x j jn nst js1

The proof is omitted because it makes straightforward use of Theorem 1
and its proof, the mean value theorem and the fact that

ny1
2y1 y15 5 < <E n x y Ex u s o n gŽ .Ý Ýt 1 t jž /1Ft , tqjFn js0
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ˆ ˆ ˜ ˜y1 y1 y1 y1as n ª ` uniformly in j, to show that b y b and b y b areˆ ˆf f f f
Ž 1r2 .o n . We discuss Condition 8, however.p
In the simple model

1y2 u y12f u s u j , j s 1, 2, . . . , u ) 0, 0 - u - ,Ž .j 1 1 2 2

Ž . Ž .4.2 clearly holds. More generally, Lemma 5 of Fox and Taqqu 1986
Ž .establishes 4.2 under certain regularity conditions. These conditions entail a

Ž .singularity in f l; u at l s 0 only, and are satisfied in the FARIMA case
Ž . Ž .2.9 . It seems likely that Fox and Taqqu’s 1986 result can be extended to

Ž .enable 4.2 to be checked in case of singularities at nonzero frequencies.
Ž .Condition 4.1 is clearly milder than the requirement

ˆ y1r24.5 u y u s O n .Ž . Ž .0 p

ˆIt is necessary to say something about how u is obtained. First, pretend that
˜the u are observable, and denote by u an estimate of u based on them.t 0

˜In any given model any number of u is, in principle, available, some of
which have been explicitly discussed in the literature, and for some of these,

Ž .rates of convergence have been obtained. For example, defining I l s
2y1 n itl ˜Ž . < Ž . <2p n Ý u y u e , consider u minimizingts1 t

p I lŽ .
4.6 log f l; u q dl.Ž . Ž .H ½ 5f l; uŽ .yp

˜ y1r2Ž .Conditions for u y u s O n have here been given by Fox and Taqqu0 p
Ž . Ž . Ž .1986 , Dahlhaus 1989 and Giraitis and Surgailis 1991 in case f has a

Ž .singularity at l s 0 only, while Dahlhaus 1989 also considered approxima-
Ž . Ž .tions to 4.6 which lead to the same rate of convergence. Hosoya 1993 has

similar results in case of singularities at known, nonzero frequencies; see
Ž . 1r22.10 . It appears that n -consistency can be achieved by many other types
of estimates of parametric models for long-range dependence. While no
rigorous asymptotics exist for it, this seems true of the explicitly defined

Ž . Ž .estimate or a modification thereof of Kashyap and Eom 1988 for the
Ž . Ž .FARIMA 0, d, 0 model given by 2.9 with a s b ' 1, and an extension of

this type of estimate to the model

py1
y2 uil p< <f l; u s exp u cos j y 1 l 1 y e� 4Ž . Ž .Ý j

js1

Ž .proposed by Robinson 1994a .
˜ ˆNow suppose that for some such u we define u correspondingly after

˜replacing u in u byt

Xˆ4.7 u s y y y y b x y xŽ . Ž .ˆt t f t

˜ ˆŽ .for some f. Of course, b can be used in place of b . Then, given thatf f
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˜ n y1r2 ˆ ˜ n y1r2Ž� < <4 . Ž� < <4 .u y u s O Ý g , it suffices to show that u y u s O Ý g .0 p 0 j p 0 j
Unfortunately, this requires a somewhat case-by-case treatment, and in a
given case a reasonably detailed proof may be lengthy, especially for esti-
mates that are only implicitly defined, where a preliminary consistency proof

ˆ Ž . Ž .for u may be needed; this is true of estimates minimizing 4.6 with I l
ˆ y1 i tl 2Ž . Ž . < <replaced by I l s 2p n Ý u e , which are among those of most inter-ˆt t

est because of their efficiency under Gaussianity. There seems little interest
in presenting the details in even a single case, especially as the statistical
literature contains many demonstrations that errors can be replaced by
suitable residuals without affecting first-order asymptotics, and which sug-

ˆgest that the same is likely to be true in our problem, at least if b isf
X1r2 ˆŽ . Ž .n -consistent, because u s u y u y b y b x y x .ˆt t f t

Ž .It appears that 4.1 is capable of significant relaxation, subject to addi-
w Ž .xtional regularity conditions such as on higher-order derivatives of the f uj

ˆand that a slower rate of convergence of b would suffice, such that possiblyf
ˆ Ž . Ž .least squares b see Theorem 2 could be used in 4.7 . However, verification1

of these conjectures would not only be lengthy but of limited practical value
because it seems desirable in finite-sample practice to use estimates of u0

ˆ ˜ 1r2
y1 y1and b in b or b with the maximum, n , rate of convergence, andˆ ˆf f

Theorem 1 and our recent discussion indicate that this is likely to be possible.
ˆ y1In practice, we may also wish to iterate the above practice, employing b orf̂

˜ Ž .y1b to recalculate residuals 4.7 and thence new estimates of b which wouldf̂
have no greater asymptotic efficiency but might have better finite-sample
properties.

Ž .5. Nonlinear regression models. An important extension of 1.1 con-
sists of regression models with nonlinearity in parameters and possibly in
regressors also. Consider

5.1 y s a q z b q u , t s 1, 2, . . . ,Ž . Ž .t t 0 t

Ž .where z b is a given function of the vector b and of a stochastic regressiont
vector observed at time t, whose presence is indicated only by the t-subscript.
Note that b is zero-subscripted, as was u in the previous section, because of
the need to explicitly define an objective function for estimation in nonlinear

Ž .problems. As an example of z b , consider the multiplicative formt

K
b i5.2 z b s b x .Ž . Ž . Łt 1 i t

is2

Ž . Ž .Following the work of Jennrich 1969 and Malinvaud 1970 , on nonlinear
least squares in case of independent u , authors such as Gallant and Goebelt
Ž . Ž . Ž .1975 , Hannan 1971 and Robinson 1972 studied asymptotic theory for

Ž .estimates of models such as 5.1 in case of weakly dependent u . We allow ut t
to have long-range dependence. Nonlinear extremum estimates in regression

Ž .models with long-range-dependent errors have been discussed by Koul 1992 ,
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Ž . Ž .Koul and Muhkerjee 1993 and Robinson 1994a . However, the regression
models considered in the former two references are linear ones, the nonlin-
earity coming from the nonquadratic objective functions used, and the condi-
tions and theoretical treatment are very different from ours, while the latter
reference provides only a heuristic account of broad issues.

Define
ˆ ˆb s arg min Q b ,Ž .f f

B

p
2ˆ < <Q b s w l y w l; b y I l f l dlŽ . Ž . Ž . Ž . Ž .½ 5Hf y z y

yp

p

s I l; b y 2 R I l; b f l dl,Ž . Ž . Ž .� 4H z z y
yp

< < 2I l; b s w l; b , I l; b s w l; b w yl ,Ž . Ž . Ž . Ž . Ž .z z z y z y

1 1
i tlw l; b s z b y z b e , z b s z b ,� 4Ž . Ž . Ž . Ž . Ž .Ý Ýt t1r2 n2p nŽ . t t

where B is a compact subset of R K. As in Section 1 it can be argued that the
clt with n1r2 convergence rate can fail for the nonlinear least squares choice
Ž . y1f l ' 1, whereas f s f is an efficient choice among those f which do

lead to n1r2-consistency.
This setup does not quite cover models with infinite-dimensional leads or

lags, such as where

5.3 z b s x b x ,Ž . Ž . Ž .Ýt j tyj

where the regression vector x is observed only at t s 1, . . . , n and the rowt
Ž .vector x b can be nonlinear in b ; for example, a popular choice has beenj

the geometric weights

b b j , j G 0,1 2 < <5.4 x b s b - 1, K s 1.Ž . Ž .j 2½ 0, j - 0,

Ž . Ž .However, we can replace z b in 5.3 byt
ty1

5.5 z b s x b x ,Ž . Ž . Ž .˜ Ýt j tyj
tyn

ˆand it is easily shown that the error in b is no more thanf

n
y1 < < 5 5 5 5O n j x b q x b ,Ž . Ž .Ý Ýp j 0 j 0ž /

jsyn < <j )n

Ž .and by the Kronecker lemma we can apply 5.10 of Condition 14 below to
Ž y1r2 .show that this is o n , as desired.p

We define
˜ ˜b s arg min Q b ,Ž .f

B

ny11
Q̃ b s I l ; b y 2 R I l ; b f l .Ž . � 4Ž . Ž . Ž .Ýf z j z y j jn js1
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˜Ž . Ž .In case 5.3 we may replace Q b byf

ny11
X5.6 x l ; b I l x yl ; b y 2 R x l ; b I l f l ,Ž . � 4Ž . Ž . Ž . Ž . Ž . Ž .Ý j x j j j x y j jn js1

where

x l; b s x b e i jl ,Ž . Ž .Ý j

Ž .the frequency response function x l; b typically being of simpler form than
Ž . Ž . Žthe x b and written down by inspection, for example x l; b s b 1 yj 1

il.y1 Ž .b e in case 5.4 .2
We now introduce some additional conditions. Define

5 5� 4N b s b : b g B , b y b - d .Ž .d

CONDITION 9. b is an interior point of the compact set B.0

� Ž .4 Ž .CONDITION 10. For all b g B, z b is strictly stationary, z b ist 1
continuous, there exists d ) 0 such that

5.7 E sup z 2 b - `,Ž . Ž .1ž /
Ž .bgN bd

and, for all b, b g B,

n1
25.8 lim g b , b s 0,Ž . Ž .Ý jnnª` js1

Ž . � Ž . Ž .4where g b, b s cov z b , z b , and, for all k,j 1 1qj

n1
lim cum z b , z b , z b , z b s 0.Ž . Ž . Ž . Ž .�Ý 1 1qj 1qk 1qjqknnª` js1

� Ž .4 � 4CONDITION 11. z b and « are independent for all b g B.t t

� 4CONDITION 12. For all b g B R b ,0

p

f l d G l; b , b y G l; b , b�Ž . Ž . Ž .H 0
5.9 ypŽ .

yG l; b , b q G l; b , b ) 0,4Ž . Ž .0 0 0

where, for all b, b g B, G is given by

p
i jlg b , b s e dG l; b , b ,Ž . Ž .Hj

yp
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and the matrix
G l; b , b G l; b , bŽ . Ž .
G l; b , b G l; b , bŽ . Ž .

has Hermitian nonnegative definite increments and is continuous from the
right.

Ž . Ž . Ž .CONDITION 13. z b is twice differentiable in b, rb z b andt 1
Ž 2 X. Ž . rb b z b are continuous at b and there exists d ) 0 such that1 0

22 2  z bŽ .1
E sup z b q sup - `.Ž . X1½ 5b b bŽ . Ž .bgN b bgN bd 0 d 0

Ž . Ž . Ž .CONDITION 14. In case z b is given by 5.3 , and z b is replaced byt t
ˆ ˜ 2Ž . Ž . Ž . 5 55.5 in b , or Q b is replaced by 5.6 , we have max E x - ` andf f t t

< <1r2 5 55.10 j x b - `.Ž . Ž .Ý j 0

Ž .We will apply Conditions 5 and 7 and the notation in 1.8 with x theret
replaced by

 z bŽ .t 0
5.11 .Ž .

b

Conditions 9]11 are introduced partly for the consistency proof which is
needed as a preliminary to the clt’s in Theorems 4 and 5 below. Condition 9 is
fairly standard in asymptotic theory for extremum estimates, and can be

Ž .removed with respect to a multiplicative scale parameter in z b . Condi-t
Ž .tions 10 and 13 can be checked for 5.2 if the x are positive, bounded awayi t

from 0, depend only on a stationary and ergodic Gaussian vector and satisfy a
Ž . Ž .suitable moment condition. The components 5.8 of Condition 10, and 2.2 of

Ž .Condition 7 with 5.11 substituted, can more readily be explained in terms of
Ž . Ž .conditions on the observables on which z b in general nonlinearly de-t

pends than can ‘‘Grenander’s conditions,’’ linear processes or unit roots;
Ž . Ž .5.8 is equivalent to the absence of jumps in G l; b, b , and is implied if
Ž .g b, b ª 0 as j ª `. Conditions 10 and 13 are of a different character fromj

Ž . Ž .the corresponding ones of Hannan 1971 and Robinson 1972 , which are
Ž .expressed in terms of limits. Condition 11 holds in 5.2 under Condition 6,

and, in general, implies that the derivatives in Condition 13 will also be
independent of the « . Condition 12 is an inevitable identifiability conditiont

Ž . Ž .which, like Condition 7 with 5.11 , is violated in 5.2 if, for example,
x s x a.s., for some i / j.i1 j1

Ž .THEOREM 4. Under 5.1 and Conditions 1]5, 7 and 9]14, it follows that
Ž . Ž . Ž . Ž . Ž .y12.4 holds, and thus 2.5 holds in case f l ) 0 and f l s f l .

Ž . Ž .THEOREM 5. Under 5.1 and Conditions 1]5 and 7]14 and f l ) 0 for
Ž . Ž .y1all l, it follows that 4.3 holds and S is consistently estimated by 4.4f

ˆŽ . Ž .y1with x replaced by rb z b .t t f
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It suffices to indicate how the proof of Theorem 4 differs from the many
other proofs for extremum estimates, and how it uses Theorem 1. We discuss

ˆ ˆonly b . The first step is to show that b ª b , where the broad argumentf f p 0

Ž .is similar to that of, for example, Malinvaud 1970 ; see also the proofs of a.s.
Ž . Ž .convergence of Jennrich 1969 and others. Writing Q b in time domainf

Ž .form using 1.5 , because of Conditions 3 and 13 it suffices to show that, for
all fixed j,

1 1
X X5.12 z b u ª 0, z b z b ª g b , bŽ . Ž . Ž . Ž . Ž .Ý Ýt tqj p t tqj p jn nt t

uniformly in b, b g B, where ÝX is a sum over 1 F t, t q j F n. Pointwiset
mean square convergence is an easy consequence of Conditions 2 and 10, and
uniformity follows from this, Condition 9 and equicontinuity resulting from

< Ž . Ž . < 2the Cauchy inequality and the fact the sup z b y z b for allbg N Ž b . 1 1d

Ž .b g B as d ª 0, which is due to continuity, the domination condition 5.5
Ž .and a routine extension of DeGroot 1970 , page 206. Next we have

ˆ Q b  Q bŽ .ž /f f f 0 ˜ ˆ0 s s q H b y b ,ž /f 0b b

˜with probability approaching 1 as n ª `, where H is a matrix with ith row
2 X Ž i. Ž i. ˆŽ . Ž . 5 5 5 5 rb b Q b such that b y b F b y b , i s 1, . . . , K. In viewi f 0 f 0
Ž . Ž . Ž . Žof 5.11 we can rewrite rb Q b as y2a where a is defined at the startˆ ˆf

ˆ ˜.of Section 3 so after applying Theorem 1 it suffices to show that 2 A y H ª 0.p
ˆThis follows straightforwardly from consistency of b and Condition 13 usingf

Ž .techniques in the proof of 5.12 .

6. Monte Carlo simulations. Finite-sample performance of estimates
Ž .was investigated in a small Monte Carlo study. In the linear model 1.1 we

took K s 1 and a s 0, b s 1; our results are invariant to the choice of a and
b. The scalar processes x and u were both Gaussian FARIMA’s witht t

w Ž .x Ž . Ž .y1 < il <y2 c Ž . Ž .y1 <spectra see 2.9 dF l rdl s 2p 1 y e and f l s 2p 1 y
il y2 d ˆ ˜< Ž .e , for the grid of values c, d s 0.05 0.1 0.45. In b and b we tookf f

1Ž . < <f l s 2 sin l , which satisfies our conditions for all the above c, d, noting2

� 2Ž 2 .4that f s 2r p 1 y 4 j , j s 0, " 1, . . . . The asymptotic relative efficiencyj
is

2
G 2 y 2c G 1 y c q d G 2 y c y d� 4Ž . Ž . Ž .

,4
G 3r2 y c G 1 y 2c q 2 d G 3 y 2c y 2 dŽ . Ž . Ž .

which is given in Table 1. The efficiency increases in d and decreases in c,
such that it is effectively 100% for all c when d s 0.45, and is generally very
satisfactory for the other larger values of d, and falls below 50% only when
c s 0.45, d s 0.05. Notice that least squares is asymptotically normal for all
cases above the south]westrnorth]east diagonal.
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TABLE 1

ˆ ˜ ˆ ˜ Ž . < <y1 y1Asymptotic relative efficiency of b or b to b or b with f l s 2 sin lr2f f f f

d

0.05 0.15 0.25 0.35 0.45

0.05 0.8295 0.8992 0.9494 0.9820 0.9980
0.15 0.7792 0.8701 0.9351 0.9769 0.9975

c 0.25 0.7039 0.8270 0.9139 0.9695 0.9966
0.35 0.5850 0.7597 0.8811 0.9580 0.9954
0.45 0.3823 0.6470 0.8268 0.9392 0.9933

We generated 1000 replications of series x and u of lengths n s 64, 128t t
Ž .and 256, via the algorithm of Davies and Harte 1987 , noting that x and ut t

have autocovariances

jy1 G 1 y 2cŽ . Ž .
G s ,j G 1 q j y c G 1 y j y cŽ . Ž .

jy1 G 1 y 2 dŽ . Ž .
g s , j s 0, " 1, . . .j G 1 q j y d G 1 y j y dŽ . Ž .

ˆ ˆw Ž .x Ž . y1see Adenstedt 1974 . Deriving the y from 1.1 , we then computed b , b ,ˆt f f
˜ ˜ y1b and b in each case, whereˆf f

2
n itl jny1 ˆÝ y y b x ež /ts1 t f t

d̂ s arg min Ý f l ; d«FdF1r2y« Ž .jjs1

Ž . Ž .y1 < il <y2 dfor f l; d s 2p 1 y e and « s 0.001.
ˆ y1Table 2 displays the ratio of the asymptotic variance of b , namely,f

2y1 y1
y1n S s G 1 y c q d rnG 1 y 2c q 2 d ,Ž . Ž .f

ˆ ˜to the Monte Carlo mean-squared errors of b and b . The differencesf f
ˆ ˜between the b and b values decrease as n increases, but even for n s 64f f

they seem rather slight so we detect no finite-sample grounds for preferring
one of these estimates over the other. Throughout Table 2 there are notice-

Ž .able discrepancies relative to Table 1 mostly the Table 2 values are smaller ,
with some departures from monotonicity in c and d, and little evidence of
convergence over the range of n considered; indeed, in some cases the ratios
drift in the wrong direction. However, nowhere is the asymptotic theory
grossly misleading, and generally it seems to have performed fairly well.

y1 ˆy1 y1Table 3 contains ratios of S to Monte Carlo mean-squared errors of b ˆf f
˜ y1and b . They are predominantly less than 1, and for the smaller values of cf̂

and d substantially so. In some cases there are significant, even large,
ˆ ˜y1 y1differences between the b and b values, though often they are veryˆ ˆf f
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TABLE 2
y1 ˆ ˜ Ž . < <y1Ratios of nS to Monte Carlo MSE’s of b and b with f l s 2 sin lr2f f f

ˆ ˜b bf f

n s 64

c rrrrr d 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45

0.05 0.829 0.889 0.918 0.964 0.963 0.821 0.881 0.918 0.959 0.962
0.15 0.768 0.875 0.821 0.945 1.042 0.760 0.869 0.809 0.938 1.008
0.25 0.709 0.756 0.922 0.905 0.920 0.700 0.747 0.916 0.886 0.901
0.35 0.584 0.744 0.890 0.898 1.018 0.567 0.730 0.870 0.870 0.979
0.45 0.395 0.640 0.777 0.930 0.930 0.385 0.629 0.765 0.916 0.897

n s 128

c rrrrr d 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45

0.05 0.813 0.894 0.880 0.988 0.973 0.809 0.891 0.882 0.981 0.973
0.15 0.813 0.818 0.970 0.990 0.989 0.809 0.808 0.964 0.990 0.976
0.25 0.668 0.796 1.006 0.955 0.998 0.661 0.790 1.007 0.939 0.980
0.35 0.607 0.766 0.849 1.049 0.971 0.601 0.750 0.838 1.029 0.939
0.45 0.406 0.662 0.769 0.971 0.979 0.403 0.647 0.762 0.956 0.955

n s 256

c rrrrr d 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45

0.05 0.837 0.894 0.915 0.937 0.995 0.833 0.895 0.910 0.934 0.994
0.15 0.758 0.909 0.965 0.950 0.984 0.755 0.906 0.959 0.945 0.969
0.25 0.699 0.833 0.898 0.941 1.003 0.697 0.834 0.892 0.936 0.997
0.35 0.611 0.758 0.927 1.018 0.975 0.607 0.749 0.922 0.998 0.955
0.45 0.409 0.620 0.821 0.980 1.027 0.406 0.615 0.806 0.969 1.001

˜ y1slight. The b demonstrate the greater degree of convergence to 1 with n.f̂
One expects that a major effect on the results is the estimation of d and that

Ž .they could deteriorate if a richer model of f l were estimated. Overall, while
there is clearly a degree of sensitivity to c and d, the estimates considered
appear to cope adequately with long-range dependence in both x and u .t t
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TABLE 3
y1 ˆ ˜y1 y1 y1Ratios of nS to Monte Carlo MSE’s of b and bˆ ˆf f f

ˆ ˜I1 I1b bˆ ˆf f

n s 64

c rrrrr d 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45

0.05 0.964 0.935 0.933 0.955 0.955 0.964 0.934 0.936 0.951 0.954
0.15 0.916 0.931 0.848 0.947 0.955 0.916 0.931 0.843 0.942 0.992
0.25 0.906 0.874 0.901 0.912 1.020 0.905 0.869 0.903 0.898 0.893
0.35 0.737 0.882 0.911 0.907 0.907 0.734 0.878 0.903 0.885 0.941
0.45 0.583 0.792 0.809 0.933 0.906 0.584 0.788 0.802 0.922 0.878

n s 128

c rrrrr d 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45

0.05 0.981 0.980 0.926 1.003 0.962 0.981 0.981 0.928 0.998 0.962
0.15 0.997 0.908 1.004 0.984 0.978 0.997 0.905 1.004 0.986 0.966
0.25 0.891 0.899 1.028 0.956 1.001 0.891 0.898 1.033 0.942 0.984
0.35 0.846 0.951 0.936 1.048 0.960 0.847 0.945 0.925 1.036 0.931
0.45 0.614 0.905 0.854 0.962 0.960 0.616 0.907 0.852 0.954 0.939

n s 256

c rrrrr d 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45

0.05 1.023 0.966 1.001 0.916 0.899 1.021 0.968 0.998 0.941 0.989
0.15 0.899 1.021 0.999 0.911 0.923 0.898 1.023 1.013 0.957 0.971
0.25 1.034 0.990 0.927 0.846 0.808 1.032 0.990 0.951 0.933 0.988
0.35 0.940 0.953 0.963 0.909 0.727 0.937 0.950 1.002 1.009 0.946
0.45 0.654 0.794 0.892 0.858 0.613 0.653 0.797 0.932 1.014 0.986
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