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All classical ‘‘prophet inequalities’’ for independent random variables
hold also in the case where only a noise-corrupted version of those

Ž . Ž .variables is observable. That is, if the pairs X , Z , . . . , X , Z are1 1 n n
independent with arbitrary, known joint distributions, and only the se-
quence Z , . . . , Z is observable, then all prophet inequalities which would1 n
hold if the X ’s were directly observable still hold, even though the

Ž .expected X-values i.e., the payoffs for both the prophet and statistician,
will be different. Our model includes, for example, the case when Z � Xi i
� Y , where the Y ’s are any sequence of independent random variables.i

Ž .1. Introduction and summary. Let X � X , . . . , X be a randomn 1 n
� �vector having a known joint distribution, with E X � � for all i � 1, . . . , n.i

The setting of classical prophet inequalities is where the X sequence is
observed sequentially, and the objective is to pick an X-value which is as
large as possible. There, the quantity

V 0 X � E max XŽ . ž /p n i
1�i�n

denotes the value for a prophet who has foreknowledge of the entire X-se-
quence and will thus select the largest value. A statistician, on the other
hand, is limited to stopping rules t � T n, where t � T n if and only if theX X

� 4 � 4event t � i belongs to the �-field generated by X , . . . , X and P t � n � 1.1 i
Thus, there the statistician’s value is

V 0 X � sup EX .Ž .s n t
nt�TX

The restriction of the statistician to rules in T n reflects the fact that theX
statistician’s decision to stop at any given time i can depend only on the past
and present observations and not on ones in the future. This corresponds to a

0Ž . 0Ž .situation where no recall is allowed. Obviously V X � V X .p n s n
Ratio and difference prophet inequalities provide upper bounds on

0Ž . 0Ž . 0Ž . 0Ž .V X �V X and V X � V X over large classes of random variables.p n s n p n s n

An excellent review of most of the earlier prophet inequalities is given in Hill
Ž .and Kertz 1992 . The first and probably the best known prophet inequality is
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Ž .the one in Krengel and Sucheston 1978 , which states that for all n � 2 and
0Ž . 0Ž .all nonnegative independent X , . . . , X , one has V X �V X � 2, and1 n p n s n

� Ž . 	this bound cannot be improved. See also Hill and Kertz 1981a . For i.i.d.
nonnegative X ’s the best bound a , on the above ratio, depends on n and it isn

� Ž . 	generally believed that lim a � 1.34 . . . . See Hill and Kertz 1982 .n�� n
� 	For independent bounded random variables taking values in a, b the

0Ž . 0Ž . Ž . �difference prophet inequality V X � V X � b � a �4 holds. See Hillp n s n
Ž . 	 �and Kertz 1981b . Prophet inequalities with cost for observations Jones

Ž .	 � Ž .	1990 or with discounting Boshuizen 1991 have also been considered.
In the present paper, an often more realistic model is considered. Though

still both the statistician and the prophet are interested in as large an
X-value as possible, the X ’s are not directly observable. The observed random
variables are Z ’s which may be thought of as the X ’s corrupted by ‘‘noise.’’

Ž .We take the general view that the pairs X , Z i � 1, 2, . . . , n are indepen-i i
dent and have an arbitrary known joint distribution. An important special
case of this model is the ‘‘additive noise’’ model where Z � X � Y , with thei i i
Y ’s mutually independent, identically distributed and independent of the
X ’s.

As a practical example, consider the following situation. Your firm wants
to hire a typist. It receives n responses to an advertisement. The true score
for typist i is X , perhaps some combined score depending on speed, accu-i
racy, and aesthetics of typed text. In this example it may be realistic to

Žassume that the X ’s are i.i.d. The typists are interviewed sequentially, e.g.,
.one a day and are given some sample task. The score of the ith typist on this

task is Z , probably X with some positive bias. Since the long-term perfor-i i
mance for the ith typist will be X , the X ’s are the variables of interest whichi
should be maximized. Here the statistician must decide whether to hire the
given candidate immediately after the interview, due possibly, to the non-
availability of the candidate at a later stage, whereas the prophet may base
his decision on an interview of all n candidates at no extra cost and with no
danger of nonavailability.

In general, as only the sequence Z is observable, both the prophet and then
statistician’s choices must depend on this sequence only. In particular, the
statistician is confined to the set of stopping rules T n defined similarly to T n,Z X
but with rules based on the sequence Z . Therefore, in this situation, then

Ž . nvalue for the statistician is defined as V X , Z � sup EX . The values n n t � T tZ
Ž .V X , Z for the prophet in this framework will be defined in a similarp n n

manner in the next section. It should be noted that the classical prophet
model is the one where X � Z and is in particular a special case of then n
additive model with the noise Y identically zero. Thus the present model
contains the previously described classical model. From this observation it
follows that any bound for the noise corrupted case cannot be more stringent
than those described earlier.

Our main result is that under very mild conditions all previously men-
tioned prophet inequalities remain valid in the most general ‘‘statistical

Ž . Ž .setup.’’ In particular, if X � 0, and the pairs X , Z , . . . , X , Z are inde-i 1 1 n n



D. ASSAF, L. GOLDSTEIN AND E. SAMUEL-CAHN1192

Ž .pendent, with each X , Z having arbitrary joint distribution, the ratioi i
Ž . Ž .V X , Z �V X , Z is again bounded by 2, and if in addition these pairsp n n s n n

are identically distributed the bound is the same a as above. Similarly, if then
� 	pairs are independent and X takes values in a, b , the correspondingi

Ž .difference prophet inequality is again b � a �4.
The above mentioned quite far-reaching results are based on surprisingly

simple mathematics. The crux is in showing that any noise-corrupted case
can be reduced to a ‘‘noise-free’’ case for the independent random variables
W , the conditional expectations of X given Z .i i i

In the noise-corrupted case, one may consider other types of prophets. For
example, a ‘‘perfect prophet’’ could be defined as one who observes the entire
uncorrupted X-sequence and bases his decision on it, as in the classical
setting. In Remark 2.8, we show that a perfect prophet may have an un-
bounded relative advantage over the statistician.

Ž . Ž .2. Main results. Let X , Z , . . . , X , Z be any sequence of pairs of1 1 n n
� �random variables with known distribution and E X � � for i � 1, . . . , n. Wei

begin with a precise definition of the value for the prophet in the ‘‘statistical
Ž .setup’’ with only Z � Z , . . . , Z observable, and the selection rule there-n 1 n

Ž .fore based only on the Z ’s. The set of nonrandomized selection rules for the
prophet is the set G of functionsn

n � 4G � g ; g : R � 1, . . . , n ,� 4n

with the interpretation that upon observing Z , . . . , Z , the prophet selects1 n
Ž .the index g Z , . . . , Z . The value for such a g is EX . The value for the1 n g ŽZ .n

prophet is thus defined as

V X , Z � sup EX .Ž .p n n g ŽZ .n
g�Gn

� Ž � . Ž � .Let W � E X Z and W � E X Z . The following proposition gives thei i n i i i
full solution for the prophet.

Ž . � � 4PROPOSITION 2.1. Any rule g* Z � argmax W : 1 � i � n is optimal inn i
G , andn

1 V X , Z � EX � E max W � .Ž . Ž . ž /p n n g*ŽZ . in 1�i�n

PROOF. For any g � G ,n

� � � �E X Z � max E X Z � max W � E X Z .Ž .Ž . Ž .g ŽZ . n i n i g*ŽZ . nn n1�i�n 1�i�n

Hence,

EX � E max W � � EX ,ž /g ŽZ . i g*ŽZ .n n1�i�n

Ž .and 1 follows upon taking sup over all g � G . �n

In the remainder of the present section we shall assume that the pairs
Ž . Ž . �X , Z , . . . , X , Z are independent. In this case W � W , and hence1 1 n n i i
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Proposition 2.1 yields Proposition 2.2.

PROPOSITION 2.2. Under independence,

V X , Z � E max W � V 0 W .Ž . Ž .ž /p n n i p n
1�i�n

We next consider the value for the statistician, who is limited to rules in
T n.z

PROPOSITION 2.3. For any t � T n
z

EW � EX .t t

PROOF. Note that the random variable W is a function of Z ; that is, it isi i
� 4Z measurable. Also, by definition, the event t � i is measurable withi

Ž .respect to Z , . . . , Z . Therefore,1 i

�EX � E E X Z� 4Ž .t t n

n

�� E E X 1 t � i ZŽ .Ý i n½ 5ž /
i�1

n

�� E E X 1 t � i ZŽ .Ž .Ý i n½ 5
i�1

n

�� E 1 t � i E X ZŽ . Ž .Ý i n½ 5
i�1

n

�� E 1 t � i E X ZŽ . Ž .Ý i i½ 5
i�1

n

� E 1 t � i W � EW .Ž . .Ý i t½ 5
i�1

Independence is used in the fifth equality. �

Ž n .Clearly the above equality does not hold for t � T .X

Ž Ž . .REMARK 2.1. Similarly, using X � ÝX 1 g Z � i and thereforeg ŽZ . i nn� � 	 � Ž Ž . . �E X Z � ÝW 1 g Z � i � W , it follows that for any g � Gg ŽZ . n i n g ŽZ . nn n

EX � EW � . In the case of independence, W � can be replaced byg ŽZ . g ŽZ . g ŽZ .n n n

W .g ŽZ .n

Note that since W is a function of Z we have T n 
 T n, hencei i W Z

2 sup EW � sup EW .Ž . t t
n nt�T t�TW Z

Ž .Proposition 2.5 shows that equality holds in 2 . In order to prove this
assertion we need to consider, as an intermediate step, randomized stopping
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� Ž .rules for the W-sequence. See Chow, Robbins and Siegmund 1971 , page 111
	for an exact definition.

Ž . ˜Let W � W , . . . , W . Essentially a randomized stopping rule t specifiesi 1 i
Ž .the conditional probability q W of stopping at the ith observation when Wi i i

� 	is observed, conditional on not having stopped earlier. Thus q : W � 0, 1i i
Ž .with q W � 1. Denote the unconditional probability of stopping at time i,n n

Ž .when W is observed, by p W . Theni i i

i�1

p W � q W 1 � q W , i � 1, . . . , n.Ž . Ž . Ž .Ž .Łi i i i j j
j�1

Though it may be more natural to define a randomized stopping rule through
the sequence of q-functions, there is clearly a one-to-one correspondence
between the q and p sequences. The value EW may be evaluated byt̃

� n Ž .4 � Ž .EW � E Ý W p W . In the particular case where q and p are indica-t̃ i�1 i i i i i
	˜tor functions, t is nonrandomized.

˜nLet T denote the set of all randomized stopping rules for the W-sequence.W

n ˜n˜PROPOSITION 2.4. For every t � T there exists a t � T such that EWz Z W tz

� EW .̃t

n Ž . Ž � .PROOF. Let t � T be given. Define p W � P t � i W . The sequencez Z i i z i
˜nŽ . � Ž .˜ ˜p W generates a randomized stopping rule t � T . Note that P t � n � 1,i i W

	since t is a stopping rule. Nowz

�EW � E E W WŽ .½ 5t t nz z

n

�� E E W 1 t � i WŽ .Ý i z n½ 5ž /
i�1

n

�� E E W 1 t � i WŽ .Ž .Ý i z n½ 5
i�1

n

�� E W P t � i WŽ .Ý i z n½ 5
i�1

n

�� E W P t � i WŽ .Ý i z i½ 5
i�1

n

� E W p W � EW .Ž .Ý i i i t½ 5
i�1

� 4where the fifth equality uses the fact that t � i is measurable with respectz
to Z , . . . , Z . �1 i

PROPOSITION 2.5.

V X , Z � V 0 W .Ž . Ž .s n n s n
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PROOF.
0V W � sup EW � sup EW � sup EWŽ .s n t t t

n nnt�T t�T˜t̃�TW ZW

� sup EX � V X , Z .Ž .t s n n
nt�TZ

The first and last equalities are definitions; the second follows since the
�optimal rule can always be taken to be nonrandomized see Chow, Robbins

Ž .	 Ž .and Siegmund 1971 , the third uses Propositions 2.4 and inequality 2 , and
the fourth equality follows from Proposition 2.3. �

Propositions 2.5 and 2.2 yield the following theorem.

Ž . Ž .THEOREM 2.1. Let X , Z , . . . , X , Z be independent pairs of random1 1 n n
� �variables, with only Z , . . . , Z observable. Suppose E X � �, and set W �1 n i i

Ž � . Ž .E X Z . Then any prophet inequality ratio or difference which holds for thei i
Ž . Ž .independent W ’s is valid also for V X , Z and V X , Z . That is, ifp n n s n n

2 Ž 0Ž . 0Ž .. Ž Ž . Ž ..A 
 R is such that V W , V W � A, then V X , Z , V X , Z � A.p n s n p n n s n n

Ž . Ž .In the case of an infinite sequence X , Z , X , Z , . . . corresponding state-1 1 2 2
Ž .ments hold, provided E sup X � �.1� i i

From Theorem 2.1 we can thus deduce the following corollary, where we
Ž .assume V X , Z is strictly positive.s n n

Ž . Ž . Ž .COROLLARY 2.1. i If W � 0 then V X , Z �V X , Z � 2.i p n n s n n
Ž . Ž . Ž .ii If W � 0 are i.i.d., then V X , Z �V X , Z � a , where a is thei p n n s n n n n

Ž .bound of Hill and Kertz 1981b for the i.i.d. case.
Ž . Ž . Ž . Žiii If a � W � b for i � 1, . . . , n, then V X , Z � V X , Z � b �i p n n s n n

.a �4.

All three bounds are the best possible, and corresponding results are valid for
the infinite case.

Ž .REMARK 2.2. Note that a sufficient condition for i in Corollary 2.1, i.e.,
for W � 0, is that X � 0, though this is clearly not necessary. Thus Z mayi i i

Ž 2 .take on negative values, as in the additive noise case where, say Y � NN 0, � .i
Ž . Ž .A sufficient condition for ii is that X � 0 and that X , Z be i.i.d. pairs. Ai i i

Ž .sufficient condition for iii is a � X � b.i

REMARK 2.3. Consider the case where there is a cost for sampling, that is,
ˆ ˆX � X � c where the X are independent and c denotes the cost of sam-i i i i i

ˆpling i units; usually c � ci for some c � 0. Here W � W � c wherei i i i
ˆ ˆŽ � .W � E X Z . Thus the ‘‘cost of sampling’’ structure carries over to the Wi i i i

and the corresponding prophet inequalities carry over as well. Similar results
i�1 ˆ ˆhold for the discounting structure where X � � X , X � 0 and 0 � � � 1.i i i

i�1 ˆThen W � � W ; that is, the discounting structure carries over, as do thei i
corresponding inequalities.
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Ž .REMARK 2.4. In Samuel-Cahn 1984 it is shown that the bound 2 for
Ž .independent X � 0 corresponding to i in Corollary 2.1 holds even if thei

�statistician is limited to ‘‘simple threshold rules’’ of the form t � inf i: Xi
4� b � n for some constant b, instead of using an optimal rule. Thus in the

present setting the above statement carries over for ‘‘simple threshold rules’’
applied to the W ’s.

REMARK 2.5. Nowhere have we used the one-dimensional structure of the
Z ’s. They could be multidimensional, or even just independent �-fields, fori
all i � 1, . . . , n.

REMARK 2.6. All results carry over, when the statistician resorts to the
˜n n Žrandomized stopping rules T instead of T . A similar remark holds for theZ Z

.prophet.

REMARK 2.7. It is not difficult to construct examples in which the noise
does not vanish asymptotically but the corresponding bound is still sharp. A
simple example of this type is an extension of the classical example for the
independent case. For 0 � � � 1, let X � ��� � X � 0, X � � and X1 n�2 n�1 n
equal 1 with probability � and 0 with probability 1 � �. Let Y be indepen-i

1 1Ž .dent uniform on � , , and consider the additive noise model. Then2 2
Ž . 0Ž . Ž . 0Ž . Ž .V X , Z � V X � � and V X , Z � V X � � 2 � � , hence the ra-s n n s n p n n p n

tio is 2 � � and the bound of 2 is again sharp in the noise corrupted case as
well.

REMARK 2.8. Finally, we consider the ratio prophet inequality in the case
of a ‘‘perfect prophet’’ who is able to base his decision on the entire X

0Ž . Ž .sequence. In this case, the ratio of interest is V X �V X , Z . The follow-p n s n n
ing example shows that the ratio may tend to infinity with n.

Let the X ’s be independent Bernoulli p � 0 random variables. If any of
these variables is equal to 1, the prophet will choose it; hence his value

Ž .nequals 1 � 1 � p . For our example, we assume the statistician can only see
the Z sequence where each of the ones of the original sequence have been
flipped to zeros, and each of the zeros to ones,with probability � . That is, let

ŽB , . . . , B be independent Bernoulli 1 � � variables, and Z � B X � 1 �1 n i i i
.Ž .B 1 � X . Then, for � � 0, the Z sequence equals the X sequence, and thei i

0Ž . Ž .ratio V X �V X , Z is easily seen to be one. However, when � � 1�2, thep n s n n
Z ’s and X ’s are independent and so the statistician can only get the value p;
thus the ratio tends to n as p � 0. Intermediate cases may be obtained when
0 � � � 1�2.

0Ž . Ž .Note that n is the ‘‘best bound’’ on V X �V X , Z for all sequences ofp n s n n
nonnegative X ’s and any Z ’s, with any type of dependence, in the present

Ž .‘‘perfect prophet’’ setup. This follows since V X , Z � max EX , be-s n n 1� i� n i
cause the statistician can always obtain the value max EX by choosing1� i� n i
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Ž .the nonrandom index which maximizes EX , whereas for the propheti

n
0V X � E max X � E X � n max EX .Ž . Ýž / ž /p i i iž /1�i�n 1�i�ni�1

� Ž . 	Compare Hill and Kertz 1981a Proposition 1.
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