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PARACONTROLLED QUASILINEAR SPDES

BY MARCO FURLAN AND MASSIMILIANO GUBINELLI

PSL-Université Paris-Dauphine and IAM & HCM, Universität Bonn

We introduce a nonlinear paracontrolled calculus and use it to renor-
malise a class of singular SPDEs including certain quasilinear variants of the
periodic two-dimensional parabolic Anderson model.

1. Introduction. We show how to renormalise a class of general quasilinear
equations of which one of the simplest examples is the following parabolic SPDE:

(1)
∂tu(t, x)− a

(
u(t, x)

)
�u(t, x)= ξ(x),

u(0, x)= u0(x), x ∈ T
2, t ≥ 0,

with a : R → [λ,1] for λ > 0 a uniformly bounded C3 diffusion coefficient, and
‖a(k)‖L∞ ≤ 1 for k = 0, . . . ,3. We assume that ξ ∈ C α−2(T2) with 2/3 < α < 1
where C α(T2) is the Besov space Bα∞,∞(T2). This would apply, for example, to
the space white noise on T

2. In this case, we only expect that u(t, ·) ∈ C α(T2) and
the term a(u(t, ·))�u(t, ·) is not well defined when 2α − 2 < 0. Equation (1) is
a quasilinear generalisation of the two-dimensional periodic parabolic Anderson
model (PAM). The linear parabolic Anderson model has a relatively straightfor-
ward treatment with the standard paracontrolled calculus by Gubinelli, Imkeller
and Perkowski (2015): the choice of a nonlinear variant of this model is moti-
vated by the intention of putting in evidence the main ideas of our technique in the
simplest possible setting, without being burdened in technicalities.

Let us remark from the beginning that the framework developed in this paper
allows us to deal as well with a class of equations of the form

(2)
a3

(
u(t, x)

)
∂tu(t, x)− a1

(
u(t, x)

)
�u(t, x)

= ξ
(
a2

(
u(t, x)

)
, t, x

)
, x ∈ T

2, t ≥ 0,

where a1, a2, a3 are sufficiently smooth nondegenerate coefficients and ξ(z, t, x)

is a Gaussian process with covariance

E
[
ξ(z, t, x)ξ

(
z′, t ′, x′

)]
= F

(
z, z′

)
Q

(
t − t ′, x − x′

)
, x, x′ ∈ T

2, t, t ′, z, z′ ∈R,
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with F a smooth function and Q a distribution of parabolic regularity ρ >−4/3.
This includes as a special case the space white noise discussed before, but we
could consider a time white noise with a regular dependence on the space variable,
or some noise which is mildly irregular in space and time.

Moreover, the scalar character of the equation or of the nonlinear diffusion co-
efficient will not play any specific role and we could consider vector-valued equa-
tions with general diffusion coefficients, provided the template problem (6) below
is uniformly parabolic.

For the sake of clarity and simplicity, we will discuss mainly the basic exam-
ple (1) since this contains already most of the technical difficulties. The fact that
one can handle models as general as (2) can be seen as a direct byproduct of the
techniques we will introduce below. Let us state one simple result that can be ob-
tained via the theory developed in this paper.

THEOREM 1.1. Fix 2/3 < α < 1. Let ξ ∈ C α−2(T2) be a space white noise
with zero average on the torus, u0 ∈ C α an initial condition and a : R → [λ,1]
for some λ > 0, a ∈ C3(R) and ‖a(k)‖L∞ ≤ 1 ∀k ∈ 0, . . . ,3. Let (ξε, u0,ε)ε>0 be a
family of smooth approximations of ξ , u0 obtained by convolution with a rescaled
smoothing kernel and uε the classical solution to the Cauchy problem

(3) ∂tuε − a(uε)�uε = ξε + σε
a′(uε)
a(uε)2

, u(0)= u0,ε.

Then we can choose a sequence of constants (σε)ε>0 and a random time T > 0
in such a way that the family of r.v. (uε)ε>0 ⊆ L α

T (T
2) converges almost surely

as ε → 0 to a random element u ∈ L α
T (T

2), where L α
T is the parabolic space

C([0, T ],C α(T2))∩Cα/2([0, T ],C 0(T2)).
This element can be characterised as the solution to a paracontrolled singular

SPDE (see below for more details).

In order to devise a suitable formulation of equation (1) and obtain a theory with
u ∈ C α we decompose the nonlinear diffusion term in the l.h.s. with the help of
Bony’s paraproduct Meyer (1980) and write

(4) ∂tu− a(u)≺�u= ξ +
(u)

with

(5) 
(u) := a(u) ◦�u+ a(u)��u,

where ≺, � are standard paraproducts and ◦ denotes the resonant product (see the
Appendix for the definitions). In (4), the l.h.s. is always well defined, irrespectively
of the regularity of the function u, and the problem becomes that of controlling the
resonant product a(u) ◦�u appearing in the r.h.s. A key point of the analysis put
forward below is that this term can be expected to be of regularity 2α− 2 > α− 2,
better than the leading term ξ ∈ C α−2.
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Our approach can be described as follows. For an equation of the form

∂tu− a1(u)�u= a2(u)ξ,

we consider at first a parametric “template” problem with constant coefficients η1,
η2,

(6) ∂tϑ(η, t, x)− η1�ϑ(η, t, x)= η2ξ(t, x),

where now η = (η1, η2) is a fixed vector in R
2. A nonlinear paraproduct ≺≺

will allow us to modulate the parametric solution ϑ(η) with the quantity a(u) =
(a1(u), a2(u)) in order to capture the most irregular part of the solution u itself.
As a consequence, the paracontrolled Ansatz

u=≺≺
(
a(u),ϑ

) + u�

will define a regular remainder term u� which solves a standard PDE. With this
decomposition the resonant products appearing in equation (4) can be estimated
along the lines of the standard paracontrolled arguments introduced in Gubinelli,
Imkeller and Perkowski (2015), and all the arguments introduced there can be
extended in a straightforward manner to the quasilinear setting.

Recently Otto and Weber (2016) and Bailleul, Debussche and Hofmanová
(2016) investigated quasilinear SPDEs in the context of pathwise methods and
in a range of regularities compatible with the ones we will consider in this paper.

• Otto and Weber (2016) obtained a local well-posedness result for equations of
the form

∂tu(t, x)− a
(
u(t, x)

)
∂2
xu(t, x)= f

(
u(t, x)

)
ξ(t, x), (t, x) ∈ T

2,

where both space and time variables take values in a one-dimensional periodic
domain and their noise can be white in time but coloured in space, essentially
behaving like a distribution of parabolic regularity in (−4/3,1). In order to do
that they introduce a specific notion of modelled function and related estimates.

• Bailleul, Debussche and Hofmanová (2016) obtain local well-posedness for the
generalised parabolic Anderson model equation

(7) ∂tu(t, x)− a
(
u(t, x)

)
�u(t, x)= g

(
u(t, x)

)
ξ(x), t ≥ 0, x ∈ T

2.

The authors obtain the same result as the one presented in Section 6 of our work,
without the machinery of nonlinear paraproducts introduced here, but using only
the basic tools of paracontrolled analysis and some clever transformations.

Let us comment a bit on relations of our results with those contained in these two
papers.

• The parametric controlled Ansatz of Otto and Weber (2016) is the main source
of inspiration for the present work. We think that it is a very deep and funda-
mental observation which is quite orthogonal to the development of an alterna-
tive theory for singular SPDEs which is the main aim of their work. Our paper
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shows that this idea survives outside their specific methodology, in particular
that Safanov’s approach to Schauder estimates is not necessary to handle quasi-
linear equations, and a relatively straightforward extension of the paracontrolled
approach is sufficient to encompass in a compact manner the results on quasi-
linear equations contained in their paper.

• While the approach of Bailleul, Debussche and Hofmanová (2016) is more
straightforward than ours, it has fundamental limitations. In particular, we
remark that the generalisation of (7) to matrix-valued diffusion coefficients
(aij )i,j , namely to equations of the form

(8) ∂tu(t, x)− aij
(
u(t, x)

) ∂2

∂xi∂xj
u(t, x)= g

(
u(t, x)

)
ξ, t ≥ 0, x ∈ T

2,

is out of reach of the techniques used in Bailleul, Debussche and Hofmanová
(2016), while can be treated directly in our framework and by Otto and Weber’s
approach.

• Another interesting observation we make in the present work is that the para-
metric Ansatz can pervade without problems all the coefficients of the equation.
In particular, we can allow very general noise terms whose law itself depends on
the solutions of the equation. This is one of the main novelties of this paper, not
present in other works on singular SPDEs. See equation (2) above and Section 7
below for a detailed explanation of this case.

• Let us mention that Otto and Weber’s parametric Ansatz has predecessors in
the theory of rough paths and in standard stochastic analysis. Nonlinear ver-
sions of rough paths have been considered by one of the authors in order to
study the Korteweg–de Vries equation [Gubinelli (2012)]. Nonlinear Young in-
tegrals were used by one of the authors in joint work with Catellier [Catellier
and Gubinelli (2016)] to study the the regularising properties of sample paths of
stochastic processes. See also the related work of Hu and Lê (2017) on differen-
tial systems in Hölder media. Relevant to this discussion of nonlinear variants
of rough paths is the work of Bailleul on rough flows [Bailleul (2015)] and
their application to homogenisation [Bailleul and Catellier (2017)]. By look-
ing at the composition f (g(x)) as the action of the distribution δg(x) on the
function f , nonlinear constructions can be linearised at the price of working
in infinite-dimensional spaces: this is the approach chosen by Kelly and Mel-
bourne to avoid nonlinear generalisations of rough path theory in their study of
homogenisation of a fast–slow system with random initial conditions [Kelly and
Melbourne (2017)]. It is also worth mentioning Kunita’s theory of semimartin-
gale vector fields [Kunita (1984)], which occupies a place in stochastic analysis
quite similar to that occupied by these recent developments in the landscape of
rough paths/paracontrolled distributions theories. A nonlinear generalisation of
the classic bilinear paraproducts already appeared in the notion of paracompo-
sition introduced by Alinhac [Bony (1991)].
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Usefulness of paraproducts in the analysis of nonlinear PDEs is by now
well established; see, for example, the seminal paper [Meyer (1980)], the early
review [Bony (1991)] and the recent books [Alinhac and Gérard (2007) and
Bahouri, Chemin and Danchin (2011)]. Let us mention also the interesting pa-
per [Hörmander (1990)] where paradifferential operators allow to bypass the
Nash–Moser fix-point theorem in some applications where the loss of regular-
ity prevents straightforward use of standard Banach fix-point theorem. The main
observation in that paper is that, with the aid of paradifferential operators, it is
possible to identify a “corrected” problem for which standard Banach fix point
applies.

Paracontrolled calculus for singular SPDEs has been introduced by Gubinelli,
Imkeller and Perkowski (2015) [see also the lecture notes on Gubinelli and
Perkowski (2015)] and used to study various equations like the KPZ equa-
tion [Gubinelli and Perkowski (2017)], the dynamic 
4

3 model [Catellier and
Chouk (2013)] in d = 3 and its global well-posedness [Mourrat and Weber (2017)],
the spectrum of the continuous Anderson Hamiltonian in d = 2 [Allez and Chouk
(2015)]. By using heat-semigroup techniques paracontrolled calculus has been ex-
tended to the manifold context by Bailleul and Bernicot (2016a).

Paracontrolled calculus is currently limited to “first-order” computations. This
limitation is also ubiquitous in the present work. Even if, in practice, this is not
a big issue, and the calculus is still able to deal with a large class of problems,
it makes the paracontrolled approach less appealing for a general theory of sin-
gular SPDEs. Let us remark that recently Bailleul and Bernicot (2016b) devel-
oped an higher order version of the paracontrolled calculus. However, apart from
these recent developments, whose impact is still to be assessed, the most general
theory for singular SPDEs has been developed in Friz and Hairer (2014), Hairer
(2014a, 2014b) under the name of regularity structures theory. Regularity struc-
tures are a vast generalisation of Lyons’ rough paths [Lyons (1998), Lyons, Caru-
ana and Lévy (2007), Lyons and Qian (2002)] which give effective tools to describe
nonlinear operations acting on certain spaces of distributions, their renormalisation
by subtraction of local singularities and their use to solve singular SPDEs. Reg-
ularity structures have been successfully applied to all the models mentioned so
far [Hairer (2013, 2014a)], to other models like the Sine–Gordon model [Hairer
and Shen (2016)] (which however can also be handled via paracontrolled tech-
niques) and to study weak universality conjectures [Hairer and Quastel (2015),
Hairer and Xu (2016)]. In their current instantiation, it does not seem possible to
solve quasilinear SPDEs via regularity structures.

The results of the present paper hint to the fact that a nonlinear version of regu-
larity structures is conceivable, at least, in principle. Indeed one can imagine mod-
els depending on additional parameters and modelled distributions acting as eval-
uations of the parametric models at certain space-time dependent values of the
parameters. During the revision stage of the present article, Hairer and Gerencsér
uploaded a paper on the arXiv [Gerencsér and Hairer (2017)] in which they set up
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parameter-dependent regularity structures and the corresponding BPHZ models to
solve a wide range of quasilinear stochastic PDEs (in particular those with noise
regularity that is out of reach of standard first-order paracontrolled calculus).

The structure of the paper is the following. In Section 2, we introduce our ba-
sic tools: the nonlinear paraproduct decomposition and some related commutation
lemmas. In Section 3, we introduce the paracontrolled Ansatz which allows us
to transform the singular problem (1) into a well-behaved PDE. In Section 4, we
discuss a priori estimates, the uniqueness of the solution of the transformed PDE
and its continuity w.r.t. the random data and the initial condition. We also intro-
duce the algebraic structure which allows us to renormalise the model. Section 5
deals with the renormalisation of the stochastic data and the construction of the
enhanced noise associated to white noise. Section 6 deals with the extension of the
results to the more general equation (7). In Section 7, we develop a paracontrolled
structure for equation (2) and define its renormalised enhanced noise. Finally, in
the Appendix, we review some reference material on Besov spaces and linear para-
products, and prove some technical lemmas.

Notations. We will denote as C α := Bα∞,∞(T2) the Zygmund space of regu-
larity α ∈ R on the torus T

2. See the Appendix for the definition of the general
Besov spaces Bα

p,q , the Littlewoord–Paley operators (�i)i≥−1 and the basic prop-
erties thereof needed in this paper. If V is a Banach space and T > 0, we de-
note Cα

T V the space of α-Hölder functions in CT V := C([0, T ];V ). We introduce

parabolic spaces L α
T := C

α/2
T C 0 ∩CT C α with norm

(9) ‖f ‖L α
T
= ‖f ‖

C
α/2
T C 0 + ‖f ‖CT C α .

Moreover, for convenience, we denote C α
T := CTC α . We will avoid writing ex-

plicitly the time span T whenever this does not cause ambiguities. We will need
also spaces for functions of (η, t, x) where η is an additional parameter in [λ,1]
for λ ∈ (0,1) which we denote Ck

ηV with the norm

(10) ‖F‖Ck
ηV

= sup
η∈[λ,1]

sup
n=0,...,k

∥∥∂nηF (η, ·)∥∥V ,
where V is a Banach space of functions on [0, T ] × T

2: in our case V = C α
T or

V = L α
T .

We will denote by Ki,x(y) = 22iK(2i (x − y)) the kernel of the Littlewood–
Paley operator �i and Qi,t (s)=Qi(t − s)= 22iQ(22i (t − s)) a smoothing kernel
at scale 22i in the time direction where Q is a smooth, positive function with com-
pact support in R+ and mass 1. We introduce also the shortcut Pi,x =K<i−1,x =∑

j<i−1Ki,x . Another notation shortcut widely used in this article is to write
∫
x,y

for integrals on T
2 or R with respect to the measures dx and dy without specify-

ing the integration bounds, whenever this does not create ambiguity. Finally, we
will note δf tx

sy = f (t, x)− f (s, y) and δτ f tx
sy = f (s, y)+ τ(f (t, x)− f (s, y)) for

τ ∈ [0,1].
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2. Nonlinear paraproducts. In this section, we introduce nonlinear para-
product and some related results that will be used in Section 3 to analyse equa-
tion (1).

Let g : [0, T ]×T
2 →R, and h :R×[0, T ]×T

2 →R be smooth functions. We
can decompose the composition h(g(·), ·) via nonlinear paraproducts as follows.
Define

≺(g,h)(t, x) :=
∑
q≥1

∫
y,z

Pq,x(y)Kq,x(z)h
(
g(t, y), t, z

)
,(11)

◦(g,h)(t, x) :=
∑
k≥−1

k+1∑
q=k−1

∫
y,z

Kk,x(y)Kq,x(z)h
(
g(t, y), t, z

)
,(12)

�(g,h)(t, x) :=
∑
k≥1

∫
y,z

Kk,x(z)Pk,x(y)h
(
g(t, z), t, y

)
.(13)

This gives a map

(14)
(g,h) �→♦(g,h) :=≺(g,h)+◦(g,h)+�(g,h)

= h
(
g(·), ·)

that can be uniquely extended to

♦ : C ρ
T ×C2

ηC
γ
T → C

γ∧ρ
T , ρ ∈ (0,1), γ ∈R, ρ + γ > 0,

thanks to the following bounds:

LEMMA 2.1 (Nonlinear paraproduct estimates). Let g ∈ C ρ
T for some ρ ∈

(0,1), g ∈ [λ,1], and h ∈ C2
ηC

γ
T for any γ ∈R. Then∥∥≺(g,h)

∥∥
C

γ
T
� ‖h‖CηC γ

T
,∥∥�(g,h)

∥∥
C

ρ∧(ρ+γ )
T

� ‖g‖C
ρ
T
‖h‖C1

ηC
γ
T

and ∥∥≺(g1, h)−≺(g2, h)
∥∥
C

γ
T

� ‖g1 − g2‖CT L∞‖h‖C1
ηC

γ
T
,∥∥�(g1, h)−�(g2, h)

∥∥
C

ρ∧(ρ+γ )
T

� ‖g1 − g2‖CT L∞
(‖g1‖C

ρ
T
+ ‖g2‖C

ρ
T

)‖h‖C2
ηC

γ
T

+ ‖g1 − g2‖C
ρ
T
‖h‖C1

ηC
γ
T
.
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Moreover, if ρ + γ > 0, we have also∥∥◦(g,h)
∥∥
C

ρ+γ
T

� ‖h‖C1
ηC

γ
T
‖g‖C

ρ
T
,∥∥◦(g1, h)−◦(g2, h)
∥∥
C

ρ+γ
T

� ‖g1 − g2‖CT L∞
(‖g1‖C

ρ
T
+ ‖g2‖C

ρ
T

)‖h‖C2
ηC

γ
T

+ ‖g1 − g2‖C
ρ
T
‖h‖C1

ηC
γ
T
.

In particular, if ρ+γ > 0 the composition ♦(g,h)= h(g(·), ·) is linear in h and
locally Lipshitz in g:∥∥♦(g,h)

∥∥
C

γ
T

� ‖h‖C1
ηC

γ
T
‖g‖C

ρ
T
,∥∥♦(g1, h)−♦(g2, h)
∥∥
C

γ
T

� ‖g1 − g2‖C
ρ
T

(
1 + ‖g1‖C

ρ
T
+ ‖g2‖C

ρ
T

)‖h‖C2
ηC γ .

PROOF. Due to the support properties of the Fourier transforms of the kernels
Kq and Pq , it is easy to see that∫

y,z
Pq,x(y)Kq,x(z)h

(
g(t, y), t, z

)
has Fourier transform compactly supported in an annulus 2qA, and the same holds
for ∫

y,z
Kk,x(z)Pk,x(y)h

(
g(t, z), t, y

)
,

while the resonant term

k+1∑
q=k−1

∫
y,z

Kk,x(y)Kq,x(z)h
(
g(t, y), t, z

)

has Fourier transform supported in a ball of radius 2q . This allows us to estimate
Besov norms of paraproducts via L∞ norms of Littlewood–Paley blocks in the
usual way.

Using the fact that ∥∥�kh
(
g(t, y), t, ·)∥∥L∞ � 2−γ k‖h‖CηC γ

T
,∥∥�kh

(
g(t, y), t, ·) −�kh

(
g
(
t, y′

)
, t, ·)∥∥L∞ � 2−γ k‖h‖C1

ηC
γ
T
‖g‖C

ρ
T

∣∣y − y′
∣∣ρ
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and∥∥�kh
(
g1(t, y), t, ·) −�kh

(
g2(t, y), t, ·)∥∥L∞ � 2−γ k‖h‖C1

ηC
γ
T
‖g1 − g2‖CT L∞

we obtain the bounds on ≺(g,h), �(g,h), ◦(g,h), ≺(g1, h)−≺(g2, h).
We proceed to estimate the term �(g1, h)−�(g2, h). We will use the following
notation for brevity:

δg
1y
2z := g1(t, y)− g2(t, z) and δτ g

1y
2z := g2(t, z)+ τ

(
g1(t, y)− g2(t, z)

)
.

Then∣∣∣∣
∫
y,z

Kk,x(z)Pk,x(y)
[
h
(
g1(t, z), t, y

) − h
(
g2(t, z), t, y

)]∣∣∣∣
=

∣∣∣∣
∫
y,z,τ∈[0,1]

Kk,x(z)Pk,x(y)
[
∂ηh

(
δτ g

1z
2z, t, y

)
δg1z

2z − ∂ηh
(
δτ g

1x
2x , t, y

)
δg1x

2x
]∣∣∣∣

�
∣∣∣∣
∫
y,z,t∈[0,1],σ∈[0,1]

Kk,x(z)Pk,x(y)∂
2
ηh

(
δσ

(
δτ g

1
2
)z
x, t, y

)(
δg1z

1x − δg2z
2x

)
δg1z

2z

∣∣∣∣
+

∣∣∣∣
∫
y,z,τ∈[0,1]

Kk,x(z)Pk,x(y)∂ηh
(
δτ g

1x
2x , t, y

)(
δg1z

2z − δg1x
2x

)∣∣∣∣
� ‖g1 − g2‖CT L∞

(‖g1‖CT C ρ + ‖g2‖CT C ρ

)‖h‖C2
ηCT C γ 2−ρk ∑

q<k−1

2−γ q

+ ‖g1 − g2‖CT C ρ‖h‖C1
ηCT C γ 2−ρk ∑

q<k−1

2−γ q .

With the same reasoning we can bound the norm of ◦(g1, h)−◦(g2, h). �

We will need the following time-smoothed nonlinear paraproduct:

(15) ≺≺(g,h)(t, x) :=
∑
i

∫
y,s

Qi,t (s)Pi,x(y)
(
�ih

(
g(s, y), t, ·))(x),

with Q ∈ C∞
c (R) a kernel with total mass 1 as specified in the Introduction, and

Qi,t (s) := 22iQ(2i (t − s)). In (15), we use the convention that a continuous func-
tion t �→ g(t) on R+ is extended to R by defining g(t) = g(0) for t ≤ 0. This
preserves the Hölder norms of index in [0,1]. The modified nonlinear paraproduct
enjoys similar bounds to the regular one.

LEMMA 2.2. Let g ∈ CT L
∞, g ∈ [λ,1] and h ∈ C1

ηL
γ
T for γ ∈ (0,2). Then∥∥≺≺(g,h)

∥∥
C

γ
T
� ‖h‖CηC γ

T
and

∥∥≺≺(g,h)
∥∥
L

γ
T
� ‖h‖CηL γ

T
.

Moreover, ≺≺(g,h) is linear in h and∥∥≺≺(g1, h)−≺≺(g2, h)
∥∥
C

γ
T
� ‖g1 − g2‖CT L∞‖h‖C1

ηC
γ
T
,∥∥≺≺(g1, h)−≺≺(g2, h)

∥∥
L

γ
T
� ‖g1 − g2‖CT L∞‖h‖C1

ηL
γ
T
.
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PROOF. The norm ‖≺≺(g,h)‖CT C γ can be treated in the same way as in
Lemma 2.1.

We estimate ‖≺≺(g,h)‖Cγ/2
T C 0 as follows:

∥∥�j≺≺(g,h)(t1)−�j≺≺(g,h)(t2)
∥∥
L∞

� sup
x

∣∣∣∣
∫
z
Kj,x(z)

∑
i∼j

∫
y,s

Qi,t1(s)Pi,z(y)
[
�ih

(
g(s, y), t1, z

)

−�ih
(
g(s, y), t2, z

)]∣∣∣∣
+ sup

x

∣∣∣∣
∫
z
Kj,x(z)

∑
i∼j

∫
y,s

[
Qi,t1(s)−Qi,t2(s)

]
Pi,z(y)�ih

(
g(s, y), t2, z

)∣∣∣∣
�

∥∥h(·, t1, ·)− h(·, t2, ·)
∥∥
CηC 0 + |t1 − t2|γ /2‖h‖CηC γ

T
.

The second inequality can be obtained easily with the same techniques used so far.
�

REMARK 2.3. Using the Fourier support properties of the kernel Pq,x(·) it
is easy to see that for every x ∈ T

2, q ≥ 0:
∫
y Pq,x(y) =

∫
y K−1,x(y) = 1 and∫

y Kq,x(y)= 0. Then for a constant function g(t, x)= ḡ, one can write

♦(ḡ, h)=≺(ḡ, h)+
∑
q≤0

�qh(ḡ, ·)

and using the fact that the kernel Q has mass 1 we have ≺≺(ḡ, h)=≺(ḡ, h).

2.1. Nonlinear commutator. The next technical ingredient is a commutator
lemma between the nonlinear paraproduct of (15) and the standard resonant prod-
uct. Since it will be needed below to analyse a term of the form ≺≺(g,h) ◦
�≺≺(g,h), we will specialise our discussion to this specific structure. Notice that
in the following the various space-time operators act pointwise in the parameter η,
in the sense that, for example,

(h ◦�h)(η, t, x)= (
h(η, t, ·) ◦�h(η, t, ·))(x).

LEMMA 2.4. Define

� : C∞([0, T ],T2) ×C2
ηC

∞([0, T ],T2) → C∞([0, T ],T2)
by

�(g,h) := [
≺≺(g,h) ◦�≺≺(g,h)

] −♦(g,h ◦�h).
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Then for all ρ ∈ (0,1), γ < 1 ε > 0 such that 2γ − 2 + ρ − ε > 0 and g ∈ [λ,1],
we have ∥∥�(g,h)∥∥

C
2γ−2+ρ−ε
T

�
(
1 + ‖g‖L

ρ
T

)‖h‖2
C1
ηC

γ
T
,

∥∥�(g1, h)−�(g2, h)
∥∥
C

2γ−2+ρ−ε
T

� ‖g1 − g2‖CT L∞
(‖g1‖L

ρ
T
+ ‖g2‖L

ρ
T

)‖h‖2
C2
ηC

γ
T

+ ‖g1 − g2‖L
ρ
T
‖h‖2

C1
ηC

γ
T
.

As a consequence, � can be uniquely extended to a locally Lipshitz function

� : L ρ
T ×C2

ηC
γ
T → C

2γ−2+ρ−ε
T .

PROOF. We can approximate ≺≺(g,h)◦�≺≺(g,h) with its value for a fixed
g = g(t, z) to obtain

�q�(g,h)(t, x)

=
∫
z
Kq,x(z)

(
≺≺

(
g(t, z), h

) ◦�≺≺
(
g(t, z), h

))
(t, z)

−
∫
z
Kq,x(z)♦(g,h ◦�h)(t, z)

+
∫
z
Kq,x(z)

(
≺≺(g,h) ◦�(

≺≺(g,h)−≺≺
(
g(t, z), h

)))
(t, z)(16)

+
∫
z
Kq,x(z)

((
≺≺(g,h)−≺≺

(
g(t, z), h

)) ◦�≺≺
(
g(t, z), h

))
(t, z).(17)

We start considering the first two terms in the expression above. Note that

�j�≺≺
(
g(t, z), h

)
(t, z)=�j≺≺

(
g(t, z),�h

)
(t, z)

and that by Remark 2.3 ∀i ≥ 2

�i≺≺
(
g(t, z), h

)
(t, z)=�ih

(
g(t, z), t, ·)(z).

This yields(
≺≺

(
g(t, z), h

) ◦�≺≺
(
g(t, z), h

))
(t, z)−♦(g,h ◦�h)(t, z)

= ∑
i∼j

�i≺≺
(
g(t, z), h

)
(t, z)�j≺≺

(
g(t, z),�h

)
(t, z)

− ∑
i∼j

�ih
(
g(t, z), t, ·)(z)�j�h

(
g(t, z), t, ·)(z)
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=
2∑

q=1

�1�qh
(
g(t, z), t, ·)(z) 2∑

�=1

�1���h
(
g(t, z), t, ·)(z)(18)

− ∑
i∼j

1i≤11j≤1�ih
(
g(t, z), t, ·)(z)�j�h

(
g(t, z), t, ·)(z).(19)

Note that fixing the value of the function g in (18) makes it localised in Fourier
space, that is, ∃n0 ∈N such that ∀k ≥ n0:∫

z
Kk,x(z)

2∑
q=1

�1�qh
(
g(t, x), t, ·)(z) 2∑

�=1

�1���h
(
g(t, x), t, ·)(z)= 0

and this last term can be easily bound in L∞ by ‖h‖2
CηC

γ
T

. Thus, we add and

subtract to (18) the terms
2∑

q=1

�1�qh
(
g(t, x), t, ·)(z) 2∑

�=1

�1���h
(
g(t, x), t, ·)(z),

2∑
q=1

�1�qh
(
g(t, z), t, ·)(z) 2∑

�=1

�1���h
(
g(t, x), t, ·)(z)

and we are left estimating∫
z
Kk,x(z)

2∑
q=1

�1�qh
(
g(t, z), t, ·)(z)

·
2∑

�=1

�1
[
���h

(
g(t, z), t, ·) −���h

(
g(t, x), t, ·)](z)

and ∫
z
Kk,x(z)

2∑
q=1

�1
[
�qh

(
g(t, z), t, ·) −�qh

(
g(t, x), t, ·)](z)

·
2∑

�=1

�1���h
(
g(t, x), t, ·)(z).

As already noted in the proof of Lemma 2.1, we have∥∥�qh
(
g(t, z), t, ·) −�kh

(
g(t, x), t, ·)∥∥L∞

� 2−γ q‖h‖C1
ηC

γ
T
‖g‖C

ρ
T
|z− x|ρ,∥∥���h

(
g(t, z), t, ·) −���h

(
g(t, x), t, ·)∥∥L∞

� 2(2−γ )�‖h‖C1
ηC

γ
T
‖g‖C

ρ
T
|z− x|ρ
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and this, together with the estimation∫
z

∣∣Kk,x(z)
∣∣|z− x|ρ � 2−kρ,

allows us to bound the terms above in L∞ with 2−kρ‖g‖C
ρ
T
‖h‖2

C1
ηC

γ
T

. Summing

up, we have seen that (18) can be bound in C ρ
T by (1+‖g‖C

ρ
T
)‖h‖2

C1
ηC

γ
T

, and this

gives a bound on C
2γ−2+ρ−ε
T for γ < 1, ε > 0. The exact same reasoning can be

applied to (19) to obtain the same estimation.
Consider now (16) and (17). We obtain∫

z
Kq,x(z)

[(
≺≺(g,h)−≺≺

(
g(t, z), h

)) ◦�≺≺
(
g(t, z), h

)]
(t, z)

=
∫
z
Kq,x(z)

∑
i∼j�q

�j�≺≺
(
g(t, z), h

)
(t, z)

· (�i≺≺(g,h)(t, z)−�i≺≺
(
g(t, z), h

)
(t, z)

)
.

Using Lemma 2.2 we have∣∣��j≺≺
(
g(t, z), h

)
(t, z)

∣∣ � 2(2−γ )j‖h‖CηC γ
T
.

Lemma 2.5 gives∣∣�i

(
≺≺(g,h)−≺≺

(
g(t, z), h

))
(t, z)

∣∣ � 2−(γ+ρ−ε)i‖g‖L
ρ
T
‖h‖C1

ηC
γ
T
,

and thus (17) is bounded by 2−(2γ+ρ−2−ε)q‖g‖L
ρ
T
‖h‖2

C
γ
T

. We can easily bound

(16) in the same way, and this proves the first inequality.
The second result of this lemma can be obtained following the same reasoning

as above, noting that ∀k, q ≥−1:∫
z
Kk,x(z)

[
�qh

(
g1(t, z), t, ·)(z)−�qh

(
g1(t, x), t, ·)(z)

+�qh
(
g2(t, x), t, ·)(z)−�qh

(
g2(t, z), t, ·)(z)]

� 2−ρk‖g1 − g2‖C
ρ
T
‖h‖C1

ηC
γ
T

+ 2−ρk‖g1 − g2‖CT L∞
(‖g1‖C

ρ
T
+ ‖g2‖C

ρ
T

)‖h‖C2
ηC

γ
T

and using the estimations of Lemma 2.5.
The extension of � to L

ρ
T × C2

ηL
γ
T is standard [see, e.g., the proof of the

commutator lemma, Gubinelli, Imkeller and Perkowski (2015), Lemma 2.4]. �

LEMMA 2.5. Let us introduce the shortcut notation

℘i(g,h)(t, z) :=�i≺≺(g,h)(t, z)−�i≺≺
(
g(t, z), h

)
(t, z).



PARACONTROLLED QUASILINEAR SPDES 1109

Then, with the same assumptions of Lemma 2.4, we have∣∣℘i(g,h)(t, z)
∣∣ � 2(ε−ρ−γ )i‖g‖L

ρ
T
‖h‖C1

ηC
γ
T

and ∣∣℘i(g1, h)(t, z)−℘i(g2, h)(t, z)
∣∣

� 2(ε−ρ−γ )i‖g1 − g2‖L
ρ
T
‖h‖C1

ηC
γ
T

+ 2(ε−ρ−γ )i‖g1 − g2‖CT L∞
(‖g1‖L

ρ
T
+ ‖g2‖L

ρ
T

)‖h‖C2
ηC

γ
T
.

PROOF.[
�i≺≺(g,h)−�i≺≺

(
g(t, z), h

)]
(t, z)

= ∑
k∼i

∫
x,y
s,τ

Ki,z(x)Qk,t (s)Pk−1,x(y)∂η�kh
(
δτ g

sy
tz , t, x

)(
δg

sy
ty + δg

ty
tz

)

�
∑
k∼i

∫
x,y
s,τ

∣∣Ki,z(x)Qk,t (s)Pk−1,x(y)
∣∣

· ‖∂η�kh‖CT L∞|t − s|(ρ−ε)/2‖g‖
C
ρ/2−ε/2
T L∞

+ ∑
k∼i

∫
x,y
s,τ

∣∣Ki,z(x)Qk,t (s)Pk−1,x(y)
∣∣‖∂η�kh‖CT L∞|y − z|ρ‖g‖C

ρ
T

� 2−(ρ−ε)i2−γ i‖∂ηh‖C
γ
T

(‖g‖Cρ
T C 0 + ‖g‖C

ρ
T

)
,

where we used the notation δgsytz = g(s, y)−g(t, z), δτ g
sy
tz = g(t, z)+ τ(g(s, y)−

g(t, z)) and Lemma A.5. This proves the first bound.
The second inequality can be obtained in the same way with the techniques

already used here and in Lemma 2.1. �

2.2. Approximate paradifferential problem. In this section, we construct an
approximate solution to the equation

(20) (∂t − g ≺�)u= f, u(0, ·)= 0,

with data f ∈ C γ−2 and g ∈ L
ρ
T , for some fixed ρ,γ ∈ (0,1). The idea is to

obtain it via a certain class of paradifferential operators. We introduce the operator
L acting on functions of (η, t, x) by

(21) (L U)(η, t, x) := ∂tU(η, t, x)− η�U(η, t, x).

We will also use the notation L η1 := ∂t − η1�.
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Observe that if u does not depend on η we can define

(22) ≺(g,L )u :=≺(g,L u)

and from Definition (11) with h= L u we obtain ≺(g,L )u= ∂tu− g ≺�u.
We can describe the commutation between the differential operator L and the

paraproduct ≺≺(g, ·) via the following estimate.

LEMMA 2.6. Let ρ ∈ (0,1), γ ∈ R. Let U ∈ C2
ηC

γ
T and g ∈ L ρ

T such that
g ∈ [λ,1]. Define

�(g,U) :=R1 +R2

with R1 and R2 as in (25), (26). Then for every ε > 0,

(23)
∥∥�(g,U)∥∥

C
ρ+γ−2−ε
T

�
(
1 + ‖g‖CT L∞

)‖g‖
L

ρ
T
‖U‖C1

ηC
γ
T
.

Moreover, �(g,U) is linear in U and∥∥�(g1,U)−�(g2,U)
∥∥
C

ρ+γ−2−ε
T

� ‖g1 − g2‖L
ρ
T

(
1 + ‖g1‖L

ρ
T
+ ‖g2‖L

ρ
T

)‖U‖C2
ηC

γ
T
.

In particular, we have

(24) �(g,U)=≺≺(g,L U)−≺(g,L )≺≺(g,U) ∈ CTC ρ+γ−2−ε

whenever this expression makes sense.

PROOF. We start considering g ∈ C∞([0, T ],T2) andU ∈ C2
ηC

∞([0, T ],T2),
and prove (24) in this setting. Notice that ≺≺(g(t, y),L g(t,y)U) = L U(g(t,

y)). As a consequence, we can estimate

≺≺(g,L U)(t, x)−≺
(
g,L ≺≺(g,U)

)
(t, x)

=≺≺(g,L U)(t, x)− ∑
k

∫
y
Pk,x(y)

(
L g(t,y)�k≺≺(g,U)

)
(t, x)

=≺≺(g,L U)(t, x)− ∑
k

∫
y
Pk,x(y)

(
∂t�k≺≺(g,U)

)
(t, x)

+ ∑
k

∫
y
Pk,x(y)g(t, y)

(
��k≺≺(g,U)

)
(t, x)

=≺≺(g,L U − ∂tU)(t, x)

+ ∑
k

∫
y
Pk,x(y)g(t, y)

(
�k≺≺(g,�U)

)
(t, x)

+ ∑
k

∫
y
Pk,x(y)g(t, y)

(
�k

[
�,≺≺(g, ·)]U )

(t, x)
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− ∑
k

∫
y
Pk,x(y)

(
�k

[
∂t ,≺≺(g, ·)]U )

(t, x)

with the commutators

[
�,≺≺(g, ·)]U :=�≺≺(g,U)−≺≺(g,�U),[
∂t ,≺≺(g, ·)]U := ∂t�k≺≺(g,U)−�k≺≺(g, ∂tU).

We have

≺≺(g,L U − ∂tU)(t, x)+
∑
k

∫
y
Pk,x(y)g(t, y)

(
�k≺≺(g,�U)

)
(t, x)

=R1(t, x)

with the definition

R1(t, x) :=
∑
k,i

∫
y′,s
y,z

Pk,x(y)Kk,x(z)Pi,z
(
y′

)
Qi,t (s)

[
g(t, y)

− g
(
s, y′

)]
��iU

(
g
(
s, y′

)
, t, z

)(25)

and

∑
k

∫
y
Pk,x(y)

[
g(t, y)

(
�k

[
�,≺≺(g, ·)]U )

(t, x)

− (
�k

[
∂t ,≺≺(g, ·)]U )

(t, x)
]

=R2(t, x)

with the definition

R2(t, x) :=
∑
k,i

∫
y,y′,s

Pk,x(y)Kk,x(z)Qi,t (s)g(t, y)�Pi,z
(
y′

)
�iU

(
g
(
s, y′

)
, t, z

)

+ 2
∑
k,i

∫
y,y′,s

Pk,x(y)Kk,x(z)Qi,t (s)g(t, y)

×∇Pi,z(y′)∇�iU
(
g
(
s, y′

)
, t, z

)
− ∑

k,i

∫
y,y′,s

Pk,x(y)Kk,x(z)∂tQi,t (s)Pi,z
(
y′

)
�iU

(
g
(
s, y′

)
, t, z

)
.

(26)
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Indeed, ([
∂t ,≺≺(g, ·)]U )

(t, x)

= ∑
i

∫
y,s
(∂tQi,t )(s)Pi,x(y)

(
�iU

(
g(s, y), t, x

))
,

([
�,≺≺(g, ·)]U )

(t, x)

= ∑
i

∫
y,s

Qi,t (s)�Pi,x(y)
(
�iU

(
g(s, y), t, x

))

+ 2
∑
i

∫
y,s

Qi,t (s)∇Pi,x(y)(∇�iU
(
g(s, y), t, x

))
.

(27)

This shows that (24) holds for smooth functions.
With the techniques used in Lemma 2.5, we can estimate∣∣�qR1(t, x)

∣∣ � ∑
k∼q

(
2−(ρ−ε)k‖g‖

C
ρ/2
T C 0 + 2−ρk‖g‖C

ρ
T

)
2(2−γ )k‖U‖CηC γ

T
.

By the spectral support properties of the commutators, we have that∥∥[
�,≺≺(g, ·)]U∥∥

C
γ+ρ−2
T

� ‖g‖C
ρ
T
‖U‖C1

ηC
γ
T

and ∥∥�q

[
∂t ,≺≺(g, ·)]U∥∥

CT L
∞ � 2(2+ε−ρ−γ )q‖g‖

C
ρ/2
T C 0‖U‖C1

ηC
γ
T

+ 2(2−ρ−γ )q‖g‖C
ρ
T
‖U‖C1

ηC
γ
T
.

This yields

‖R2‖C
γ+ρ−2−ε
T

�
(
1 + ‖g‖CT L∞

)‖g‖L
ρ
T
‖U‖C1

ηC
γ
T
.

We have so far proved (23) and then (24) follows by continuity. The local Lipshitz
dependence on g can be obtained via similar computations. �

REMARK 2.7. If f does not depend on η we consider the parametric problem,

(28) (∂t − η�)Uf (η, t)= f, Uf (η,0)= 0, η ∈ [λ,1],
which is solved by

Uf (η, t)=
∫ t

0
eη�(t−s)f ds.

Remark that

∂ηUf (η, t)=
∫ t

0
eη�(t−s)(t − s)�f ds and

∂2
ηUf (η, t)=

∫ t

0
eη�(t−s)(t − s)2�2f ds.
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We have, thanks to the well-known Schauder estimates of Lemma A.4 (since η ≥
λ):

(29) ‖Uf ‖C2
ηL

γ
T
:= sup

n=0,1,2
sup

η∈[λ,1]
∥∥∂nηUf (η)‖L

γ
T
� ‖f ∥∥

C
γ−2
T

.

We define then

(30) u(t, x) :=≺≺(g,Uf )(t, x)

and observe that u(t, x) is an approximate solution of equation (20), indeed

(∂t − g ≺�)u=≺
(
g,L ≺≺(g,Uf )

) =≺≺(g,L Uf )−�(g,Uf )

= f −�(g,Uf )

and the estimation in Lemma 2.6 together with the bound (29) yield immediately
the following inequality:

(31)
∥∥�(g,Uf )

∥∥
C

ρ+γ−2−ε
T

� ‖g‖L
ρ
T

(
1 + ‖g‖CT L∞

)‖f ‖
C

γ−2
T

.

3. Paracontrolled Ansatz. In order to give a meaning to the PDE in (4) with
initial condition u0 ∈ C α , our initial goal will be to get information on solutions
θ = θ(g) of the equation

∂tθ − g ≺�θ = ξ,

for a fixed g ∈ C α
T , 2/3 < α < 1, g ∈ [λ,1]. Using the results of Section 2.2, we

consider to this effect the parametric problem

(∂t − η�)ϑ(η, t)= ξ,

for η ∈ [λ,1]. We will consider the stationary solution of this problem which has
the form

(32) ϑ(η, x)=
∫ ∞

0
eη�sξ ds = (−η�)−1ξ

and in order for (32) to be well defined we impose that the noise ξ has zero mean
on T

2 (this is a simplifying assumption which can be easily removed, e.g., at the
price of adding a linear term to the equation). We can control (32) by bounding its
Littlewood–Paley blocks with a Bernstein lemma for distributions with compactly
supported Fourier transform [Bahouri, Chemin and Danchin (2011), Lemma 2.1]
to obtain

(33) ‖ϑ‖C2
ηL α

T
= ‖ϑ‖C2

ηC α
T
� ‖ξ‖C α−2 .

We define now for every t ∈ [0, T ]
θ(t, x) :=≺≺

(
a(u),ϑ

)
.
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Thanks to Lemma 2.2, we have the bound ‖θ‖L α
T
� ‖ϑ‖CηL α

T
� ‖ξ‖C α−2 . We

observe that this definition together with Lemma 2.6 gives

∂tθ − a(u)≺�θ = ξ −�
(
a(u),ϑ

)
with ‖�(a(u),ϑ)‖C 2α−2−ε

T
� ‖a(u)‖2

L α
T
‖ξ‖C α−2

T
. We expect then �(a(u),ϑ) to

be bounded in C 2α−2−ε
T for any ε > 0. At this point let us introduce the Ansatz

(34) u= θ + u�.

REMARK 3.1. Notice that we are not making any assumption on the existence
of such u, which is the subject of Section 4. Our aim here is to find the equation
that a couple (u,u�) ∈ C α

T ×C 2α
T verifying (34) must solve, in order for u to solve

(4).

Observe that

∂tu− a(u)≺�u= (
∂t − a(u)≺�

)
θ + (

∂t − a(u)≺�
)
u�

= ξ + (
∂t − a(u)≺�

)
u� −�

(
a(u),ϑ

)
.

It follows that u� must solve

(35)

{(
∂t − a(u)≺�

)
u� =
(u)+�

(
a(u),ϑ

)
,

u�(t = 0)= u
�
0 := u0 −≺≺

(
a(u0),ϑ

)
(t = 0) ∈ C α

with 
(u) = a(u) ◦�u+ a(u) ��u, and if we can make sense of the resonant
term a(u) ◦�u, it is reasonable to expect u�(t, ·) ∈ C 2α ∀t ∈ (0, T ]. Indeed, take
U� :=UQ to be the solution of

(36) L U�(η) := (∂t − η�)U�(η)=Q, U�(η, t = 0)= 0

for some Q=Q(u�) to be determined and η ∈ [λ,1]. Using again Lemma 2.6 as
shown in Remark 2.7 we have(

∂t − a(u)≺�
)
≺≺

(
a(u),U�) =Q

(
u�

) −�
(
a(u),U�).

For η ∈ [λ,1], we define P tu
�
0(η) := eη�tu

�
0 so that L (P tu

�
0)= 0, with L as

in (21).
We set

(37) u� :=≺≺
(
a(u),U�) +≺≺

(
a(u),P u

�
0

)
.

Taking

Q
(
u�

) :=
(u)+�
(
a(u),ϑ

) +�
(
a(u),U�) +�

(
a(u),P u

�
0

)
,

we obtain that U� solves equation (36) if and only if u� solves equation (35). As
we will see, Q(u�)(t) belongs to C 2α−2 ∀t ∈ (0, T ] but not uniformly as t → 0.
However, it belongs to C α−2 uniformly as t → 0.
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It remains to control the resonant term a(u) ◦�u appearing in 
(u). We have

a(u) ◦�u= a(u) ◦�θ + a(u) ◦�u�.
By paralinearisation (see Theorem A.8) a(u) = a′(u) ≺ u + Ra(u) with
‖Ra(u)‖C 2α

T
� 1 + ‖u‖2

C α
T

, and then

a(u) ◦�θ = (
a′(u)≺ u

) ◦�θ +Ra(u) ◦�θ.
In order to use the commutator lemma (Lemma A.9), we can estimate a′(u), re-
calling that α ∈ (0,1), as ∥∥a′(u)∥∥C α

T
�

∥∥a′′∥∥L∞‖u‖C α
T

and write

a(u) ◦�θ = a′(u)(u ◦�θ)+C
(
a′(u), u,�θ

) +Ra(u) ◦�θ.
Then Ansatz (34) gives

a(u) ◦�θ = a′(u)(θ ◦�θ)+ a′(u)
(
u� ◦�θ) +C

(
a′(u), u,�θ

) +Ra(u) ◦�θ.
Summarising, we have


(u)= a′(u)(θ ◦�θ)+ a(u)��u+ a′(u)
(
u� ◦�θ)

+C
(
a′(u), u,�θ

) +Ra(u) ◦�θ + a(u) ◦�u�.
Thanks to the nonlinear commutator (Lemma 2.4), we can decompose the resonant
term θ ◦�θ to obtain


(u)= a(u)��u+ a′(u)
(
u� ◦�θ) +C

(
a′(u), u,�θ

) +Ra(u) ◦�θ
+ a′(u)�

(
a(u),ϑ

) + a′(u)♦
(
a(u),�2

) + a(u) ◦�u�
and �(a(u),ϑ) ∈ CT L

∞ if u ∈ L α
T . Here, we defined

(38) �2(η, x) := (ϑ ◦�ϑ)(η, x)= ∑
i∼j

�iϑ(η, ·)(x)�j

[
�ϑ(η, ·)](x).

Finally, recalling the decomposition of u� in two terms (37) we obtain


(u)= a′(u)♦
(
a(u),�2

) +
1(u)+
2(u),

where


1(u) := a(u)��u+C
(
a′(u), u,�θ

) +Ra(u) ◦�θ + a′(u)�
(
a(u),ϑ

)
+ a′(u)

(
≺≺

(
a(u),U�) ◦�θ) + a(u) ◦�≺≺

(
a(u),U�),


2(u) := a′(u)
(
≺≺

(
a(u),P u

�
0

) ◦�θ) + a(u) ◦�≺≺
(
a(u),P u

�
0

)
.
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Thanks to Lemma 2.1 the terms a′(u)♦(a(u),�2) and 
1(u) can be estimated
in C 2α−2

T , provided �2 ∈ C2
ηC

2α−2
T (see Section 5). On the other hand, the term


2(u)(t) can be estimated in C 2α−2 only for strictly positive times t > 0 due to
the lack of regularity of the initial condition u�0 which a priori lives only in C α .

Note moreover that the specific form of 
 allows us to deduce that if we replace
�2 by �̃2 = �2 − H with H ∈ C2

ηC
2α−2
T then this is equivalent to consider an

equation for u of the form

∂tu(t, x)− a
(
u(t, x)

)
�u(t, x)= ξ(x)− a′

(
u(t, x)

)
H

(
a
(
u(t, x)

)
, t, x

)
.

Let us resume this long discussion in the following theorem.

THEOREM 3.2. Assume that ξ ∈ C 0, u0 ∈ C 2,H ∈ C2
ηC

0
T . u ∈ C1

TC 2 is the
classical solution to the equation

(39)
∂tu(t, x)− a

(
u(t, x)

)
�u(t, x)= ξ(x)− a′

(
u(t, x)

)
H

(
a
(
u(t, x)

)
, t, x

)
,

u(0)= u0,

up to time T > 0 if

u=≺≺
(
a(u),ϑ +U� + P u

�
0

)
,

where ϑ is the solution to equation (32) and U� is the solution to the PDE

(40) (∂t − η�)U�(η)= F
(
u,U�,u

�
0

)
, U�(η,0)= 0, η ∈ [λ,1]

with

F
(
u,U�,u0

) = a′(u)♦
(
a(u),�2

) +
1(u)+
2(u)+�
(
a(u),ϑ

)
+�

(
a(u),U�) +�

(
a(u),P u

�
0

)
and �2 = ϑ ◦�ϑ −H .

DEFINITION 3.3. For any α ∈R we define X α ⊆C2
ηC

α ×C2
ηC

2α−2 the clo-
sure of the image of the map

(ρ,H) ∈ C2
ηC

2 ×C2
ηC

0 �→ J (ρ,H)= (ρ,ρ ◦�ρ −H) ∈ C2
ηC

2 ×C2
ηC

0

(in the topology of C2
ηC

α ×C2
ηC

2α−2).

We call the elements in X α enhanced noises. In the next section, we will exploit
the space X α for 2/3 < α < 1 to solve equations (40) and (34).
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4. Local well-posedness. The main result of this section is the local well-
posedness for equations (34) and (40) when (ϑ,�2) ∈X α and u0 ∈ C α for 2/3 <
α < 1. This yields a unique solution to (39), thanks to Theorem 3.2.

THEOREM 4.1. Let α ∈ (2
3 ,1). Then for any (ϑ,�2) ∈X α and u0 ∈ C α there

exists a time T > 0 depending only on ‖(ϑ,�2)‖X α and ‖u0‖α up to which the
system of equations (34) and (40) has a unique solution (u,U�) ∈ L α

T ×C2
ηL

2δ
T

for all δ < α such that 2δ + α > 2. For any fixed τ > 0, there exist a ball Bτ ⊆
C α ×X α such that the solution map

�τ : (u0, ϑ,�2) ∈ Bτ �→ (
u,U�) ∈ L α

τ ×C2
ηL

2δ
τ

is well defined and Lipshitz continuous in the data.

REMARK 4.2. The proof is based on a Picard fixed-point argument. In order to
have a contraction map on a small time interval [0, T ], we carry on our analysis of
U� in the space C2

ηL
2δ
T ⊃ C2

ηL
2α
T and make use of the estimates of Lemma A.4

to obtain a factor T ε for some (small) ε > 0.

THEOREM 4.1. Let GT = L α
T ×C2

ηL
2δ
T . We introduce the map

� : (u,U�) ∈ GT �→ (
�u

(
u,U�),�U�

(
u,U�)) ∈ GT

by

�u
(
u,U�) :=≺≺

(
a(u),ϑ

) +≺≺
(
a(u),�U�

(
u,U�)) +≺≺

(
a(u),P u

�
0

)
and

(∂t − η�)�U�

(
u,U�)(η)= F

(
u,U�,u

�
0

)
with �U�(u,U�)(η)(0) = 0, η ∈ [λ,1]. We will establish that this map is a con-
traction in the space GT .

First we have to show that there exists a ball B ⊂ GT such that �(B)⊆ B . We
have the bound ‖P u

�
0‖C1

ηL α
T
� ‖u�0‖C α

T
. It is easy to obtain, using the estimates

of Section 2 and Lemma A.4:∥∥∥∥
∫ T

0
e−η�(t−s)

[

1(u)+�

(
a(u),ϑ +U� + P u

�
0

)]
s ds

∥∥∥∥
C2
ηL 2δ

T

� T κ(1 + ‖u‖L α
T

)4(
1 + ‖ξ‖C α−2

)2∥∥u�0∥∥
C α

(
1 + ∥∥U�

∥∥
C2
ηL 2δ

T

)
for some κ > 0.

By the assumption that (ϑ,�2) ∈ X α , we deduce that there exists M > 0 such
that ‖�2‖C2

ηC 2α−2
T

≤M . We have∥∥∥∥
∫ T

0
e−η�(t−s)

[
a′(u)♦

(
a(u),�2

)]
s ds

∥∥∥∥
C2
ηL 2δ

T

� T α−δ(1 + ‖u‖C α
T

)2‖�2‖C2
ηC 2α−2

T
.
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To bound the term 
2(u), we observe that ‖P tu
�
0‖C2

ηC 2α � t− α
2 ‖u�0‖C α thanks to

Lemma A.4. This gives∥∥∥∥
∫ T

0
e−η�(t−s)
2(u)s ds

∥∥∥∥
C2
ηL 2δ

T

� T α−δ(1 + ‖u‖C α
T

)(
1 + ‖ξ‖C α−2

)∥∥u�0∥∥
C α

and then �U�(u,U�) is bounded in C2
ηL

2δ
T for T small enough. We have also

∥∥�u(u,U�)∥∥
L α

T
� ‖ξ‖C α−2 + ∥∥u�0∥∥

C α + ∥∥�U�

(
u,U�)∥∥

CηL
α
T

� ‖ξ‖C α−2 + ∥∥u�0∥∥
C α + T

2δ−α
2

∥∥�U�

(
u,U�)∥∥

C2
ηL 2δ

T

and these bounds show that �(B) ⊆ B . The contractivity of �U�(u,U�) can be
obtained in the same way. Now consider �u(u,U�): we have∥∥≺≺

(
a(u1),U

�
1

) −≺≺
(
a(u2),U

�
2

)∥∥
L α

T

� T
2δ−α

2
(∥∥U�

1 −U
�
2‖CηL 2δ + ‖u1 − u2

∥∥
CT L

∞
∥∥U�

2

∥∥
C1
ηL 2δ

)
while for the other terms in �u(u1,U

�
1 )− �u(u2,U

�
2 ) we remark that

sup
s∈[0,t]

‖u1,s − u0 − u2,s + u0‖L∞ � tε/2‖u1 − u2‖Cε/2
[0,t]L∞ .

Then ∀0 < ε < α, using Lemma 2.2 and Lemma A.5:∥∥≺≺
(
a(u1),ϑ

) −≺≺
(
a(u2),ϑ

)∥∥
L α

T
�

∥∥a(u1)− a(u2)
∥∥
CT L

∞‖ϑ‖C1
ηL α

T

� ‖u1 − u2‖CT L∞‖ξ‖C α−2

� T ε/2‖u1 − u2‖Cε/2
T L∞‖ξ‖C α−2

� T ε/2‖u1 − u2‖L α
T
‖ξ‖C α−2 .

With the same reasoning, we estimate∥∥≺≺
(
a(u1),P u

�
0

) −≺≺
(
a(u2),P u

�
0

)∥∥
L α

T

� T ε/2‖u1 − u2‖Cε/2
T L∞

∥∥P u
�
0

∥∥
C1
ηL α

T

� T ε/2‖u1 − u2‖L α
T

∥∥u�0∥∥
C α

T

and then � is a contraction for small times.
The uniqueness of the solution (u,U�) ∈ L α

T ×C2
ηL

2δ
T and the Lipshitz con-

tinuity of the localised solution map �τ can be proved along the same lines via
standard arguments. �
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5. Renormalisation. At this point, we want to construct an enhanced noise �
associated to the white noise ξ . Already in the standard setting of the generalised
PAM model with constant diffusion matrix, the construction of the enhancement
requires a renormalisation since the resonant product ϑ ◦�ϑ is not well defined.

Let ψ ∈ S(T2) be a cutoff function and let ψε(x)= ε−2ψ(x/ε). Then define a
regularised noise by ξε =ψε ∗ ξ and let ϑε = (−η�)−1ξε . Notice that

Hε(η) := E
[
ϑε(η, x) ◦�ϑε(η, x)] = E

[
ϑε(η, x)�ϑε(η, x)

]
= − ∑

k∈Z2\{0}

ψ̂ε(k)
2

η2|k|2 =−σε

η2 ,

where

σε :=
∑

k∈Z2\{0}

ψ̂ε(k)
2

|k|2 � | log ε|

as ε → 0. Subtracting the diverging quantity Hε to ϑε ◦�ϑε and then taking the
limit as ε→ 0 delivers a finite result.

THEOREM 5.1. Take α < 1 and let �ε = (ξε,�2,ε) := (ξε,ϑε ◦�ϑε −Hε).
Then the family (�ε)ε ⊆ X α converges a.s. and in Lp to a random element � =
(ξ,�2) ∈X α .

PROOF. The proof is a mild modification of the proof for PAM [Gubinelli,
Imkeller and Perkowski (2015)]. In order to establish the required C2

ηC
2α−2
T reg-

ularity for �2, we follow the computations for the case where the diffusion coeffi-
cient is constant. We only have to discuss the additional regularity in the parameter
η. In order to do so, observe that

�2,ε(η)=
∑
i∼j

��iϑε(η)�j�ϑε(η)�,

where �·� denotes the Wick product with respect to the Gaussian structure of ξ .
Then we have

∂η�2,ε(η)=
∑
i∼j

��i∂ηϑε(η)�j�ϑε(η)� + ∑
i∼j

��iϑε(η)�j�∂ηϑε(η)�,

and

∂2
η�2,ε(η)=

∑
i∼j

��i∂
2
ηϑε(η)�j�ϑε(η)� + ∑

i∼j
��iϑε(η)�j�∂

2
ηϑε(η)�

+∑
i∼j

2��i∂ηϑε(η)�j�∂ηϑε(η)�.
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Now the computations relative to the regularities of these additional stochastic
objects are equivalent to those for the term �2,ε where one or two instances of
ϑε(η) are replaced by Gaussian fields of similar regularities of the form ∂ηϑε(η)

and ∂2
ηϑε(η). A direct inspection of the proof contained in Gubinelli, Imkeller and

Perkowski (2015) allows us to deduce that we have almost sure C 2α−2 regularity
for these terms and also for random fields ∂nη�2,ε for any finite n. This allows us
also to deduce that the random field is almost surely smooth in the parameter η.
Similar computations allow to prove continuity in ε for ε > 0. The rest of the proof
is standard. �

In conclusion, we see that in order to be able to use this convergence result we
need to modify our approximate PDE and consider instead

∂tuε − a(uε)�uε = ξε − a′(uε)Hε

(
a(uε)

)
which gives the renormalised equation (3).

Our well-posedness results for the paracontrolled formulation of this equation
together with the convergence result of Theorem 5.1 allow to deduce that uε → u

in C δ
T for any 2/3 < δ < α < 1 and that the limiting process u satisfies a modified

version of eq. (1), namely

∂tu− a(u) ��u= ξ, u(0)= u0,

where a(u) ��u denotes a renormalised diffusion term given by

(41) a(u) ��u := a(u)≺�u+ a′(u)♦
(
a(u),�2

) +
1(u)+
2(u).

6. Nonlinear source terms. Let us start by discussing the presence of a u

dependent r.h.s. in equation (1). We want to solve

∂tu− a1(u)�u= a2(u)ξ,

where a1 is a nonlinear diffusion coefficient as before and a2 : R → R is an-
other bounded function with sufficiently many bounded derivatives. We rewrite
this equation as

≺
(
a(u),L

)
u= a2(u)≺ ξ + a1(u) ◦�u+ a2(u) ◦ ξ + a1(u)��u+ a2(u)� ξ,

where now a(u)= (a1(u), a2(u)) is a vector valued nonlinearity. Since we do not
need u to depend on any parameter η= (η1, η2), we have defined L as

L (η) := ∂t − η1�

and used the identity ≺(a(u),L )u = (∂t − a1(u) ≺ �)u, similar to what we
have done in (22).

Notice that the nonlinear paraproduct can be extended trivially to the vector
valued case in such a way that, for example,

≺≺
(
(g1, g2), h

)
(t, x)=∑

i

∫
y,s

Qi,t (s)Pi,x(y)
(
�ih

((
g1(s, y), g2(s, y)

)
, t, ·))(x).
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As before, we make the Ansatz

u=≺≺
(
a(u),ϑ

) + u�,

where now ϑ solves

L (η)ϑ(η)= (∂t − η1�)ϑ(η)= η2ξ,

for η = (η1, η2) ∈ [λ,1] × [−L,L] where L is a large but fixed constant. The
bounded domain is important to be able to have uniform estimates and reuse the
estimates proved above in the simple situation of η2 = 1. The solution of this equa-
tion is

ϑ(η, ·)= η2

∫ ∞
0

eη1�sξ ds =−η2

η1
�−1ξ.

Observe that

≺
(
a(u),L

)
u=≺

(
a(u),L

)
≺≺

(
a(u),ϑ

) +≺
(
a(u),L

)
u�

and recall that by Lemma 2.6

≺
(
a(u),L

)
≺≺

(
a(u),ϑ

) =≺≺
(
a(u),L ϑ

) +�
(
a(u),ϑ

)
.

Now

(L ϑ)(η)= (∂t − η1�)ϑ(η, t, x)=�(η), η= (η1, η2) ∈ [λ,1] × [−L,L]
with �(η)(t, x)= η2ξ(x) and then

≺≺
(
a(u),L ϑ

) =≺≺
(
a(u),�

) = a2(u)≺≺ ξ.

In conclusion,

≺
(
a(u),L

)
≺≺

(
a(u),ϑ

) = a2(u)≺≺ ξ +�
(
a(u),ϑ

)
and the equation for u� reads

≺
(
a(u),L u�

) = a1(u) ◦�u+ a2(u) ◦ ξ + [
a2(u)≺ ξ − a2(u)≺≺ ξ

]
+ a1(u)��u+ a2(u)� ξ −�

(
a(u),ϑ

)
,

where now all the terms on the r.h.s. can be considered remainder terms. Let us just
remark that the commutation term a2(u) ≺ ξ − a2(u) ≺≺ ξ can be handled easily
via Lemma A.10. Of course, the first two terms in the equation above require to be
treated as resonant terms. Note that modulo terms of order C 3α−2

T (or Eα/2C 2α−2

as defined in Lemma A.4) the terms a1(u) ◦�u+ a2(u) ◦ ξ are equivalent to

a′1(u)♦
(
a(u),ϑ ◦�ϑ) + a′2(u)

(
≺≺

(
a(u),ϑ

) ◦ ξ )
and that by computations similar to those of Lemma 2.4 one can prove that(

≺≺
(
a(u),ϑ

) ◦ ξ ) =♦
(
a(u),ϑ ◦ ξ ) + C 3α−2

T
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so the resonant terms are comparable to the sum of the two terms

a′1(u)♦
(
a(u),ϑ ◦�ϑ) + a′2(u)♦

(
a(u),ϑ ◦ ξ )

which require renormalisation of the form

(42)
a′1(u)a2(u)

2

a1(u)2
σε − a′2(u)a2(u)

a1(u)
σε

and the convergence follows with the same arguments of Section 5.
We remark that the structure of the second renormalisation term, which is due

to the r.h.s. in the equation, is the same of that found by Bailleul, Debussche and
Hofmanová in Bailleul, Debussche and Hofmanová (2016).

REMARK 6.1. Our approach works straightforwardly for equation (8), namely

∂tu(t, x)− aij
(
u(t, x)

)
∂2
ij u(t, x)= g

(
u(t, x)

)
ξ

with a : R → M2(R) such that
∑

i,j a(u)ij xixj ≥ C|x|2 ∀x ∈ R
2 for C > 0 and

∂2
ij := ∂2

∂xi∂xj
.

To see that, let a(u) := (aij (u), g(u)) ∈ R
5 and η = (ηi,j , ηg) ∈ R

5. Let
L (η) := ∂t − ηij ∂

2
ij and �(η) := ηgξ with the uniform ellipticity condition∑

i,j ηij xixj ≥ C|x|2 ∀x ∈R
2. It is easy to verify that Lemma 2.6 and Lemma 2.4

hold within this setting, just considering nonlinear paraproducts for functions de-
pending on 5 parameters. We have then

u=≺≺
(
a(u),ϑ +U� + P u

�
0

)
with ϑ(η) stationary solution of L ϑ(η)= �(η), P tu

�
0 := e

ηij ∂
2
ij tu

�
0 and U�(η),

which solves

L U�(η)=♦
((
a(u), a′(u)

)
,�1

) +♦
((
a(u), a′(u)

)
,�2

) +Q
(
u,U�)

with Q(u,U�) ∈ C 2α−2−ε , �1 ∈ C2
ηC

2
η′C

2α−2 = ϑ(η) ◦ η′ij ∂2
ijϑ(η), �2(η, η

′)=
ϑ(η) ◦ η′gξ and U�(t = 0)= 0. Note that we can write ϑ as

ϑ(η)= ηg

∫ ∞
0

e
tηij ∂

2
ij ξ dt, ϑ̂(k)= ηg

ξ̂ (k)

ηij kikj
, k ∈ Z

2\{0}.
From the uniform ellipticity condition, we have ‖ϑ‖Ck

ηC α � ‖ξ‖C α , and Schauder
estimates analogous to those of Lemma A.4 hold as well.

Now consider the renormalisation. We have

Hε
1
(
η,η′

) := E
(
�1

(
η,η′

)) =−η2
g

∑
k∈Z2\{0}

ψ̂ε(k)
2

∑
i,j η

′
ij kikj

(
∑

i,j ηij kikj )
2 ,

Hε
2
(
η,η′

) := E
(
�2

(
η,η′

)) = ηgη
′
g

∑
k∈Z2\{0}

ψ̂ε(k)
2∑

i,j ηij kikj
.
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The convergence of �ε
1 −Hε

1 , �ε
2 −Hε

2 in Ck
(η,η′)C

2α−2(T2) can be obtained with
the techniques used in Gubinelli, Imkeller and Perkowski (2015), Section 5.2.

7. Full generality. Within the framework of the present work, we are actually
able to treat equations of the form (2), which if a3 takes values in [λ,1] for some
λ > 0 is just

(43) ∂tu(t, x)− a1
(
u(t, x)

)
�u(t, x)= ξ

(
a2

(
u(t, x)

)
, x

)
,

where ξ(η2, x) is a Gaussian process with covariance

E
[
ξ(η2, x)ξ(η̃2, x̃)

] = F(η2, η̃2)δ(x − x̃),

where F is a smooth covariance function. Let as before 2/3 < α < 1. In this case,
we can take as a parametric equation

L (η)ϑ := ∂tϑ(η, t, x)− η1�ϑ(η, t, x)= ξ(η2, x)

whose solution ϑ is a Gaussian process, smooth with respect to the variable
η = (η1, η2) which we assume taking value in a compact subset of R2 for which
η1 ≥ λ > 0 with fixed λ. Letting a(u)= (a1(u), a2(u)) we can rewrite the l.h.s. of
equation (43) in the form

∂tu− a1(u)�u=♦
(
a(u),L u

)
and the r.h.s. as

ξ
(
a2

(
u(t, x)

)
, x

) =♦
(
a(u),�

)
,

where �(η, x)= ξ(η2, x). Now we perform the paraproduct decomposition to get

≺
(
a(u),L u

) −≺
(
a(u),�

) =◦
(
a(u),�

) +◦
(
a(u),Du

)
+�

(
a(u),�

) +�
(
a(u),Du

)
.

We have introduced here the parametric differential operator D(η) := η1� for η=
(η1, η2).

Let P t (η) := etη1� as before, and invoke the paracontrolled Ansatz in the usual
form

u=≺≺
(
a(u),ϑ +U� + P u

�
0

)
.

Using that

≺
(
a(u),L ≺≺

(
a(u),ϑ +U� + P u

�
0

))
=≺≺

(
a(u),L

(
ϑ +U� + P u

�
0

))
+�

(
a(u),ϑ +U� + P u

�
0

)
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and observing that we can take L ϑ =� and that L P u
�
0 = 0 to get

≺≺
(
a(u),L U�) = F

(
u,U�),

where

F
(
u,U�) =◦

(
a(u),�

) +◦
(
a(u),Du

) +�
(
a(u),�

) +�
(
a(u),Du

)
+ [

≺
(
a(u),�

) −≺≺
(
a(u),�

)] −�
(
a(u),ϑ +U� + P u

�
0

)
which is solved by U� satisfying

L U� = F
(
u,U�).

Indeed ≺(a(u),F (u,U�)) = F(u,U�), since F(u,U�) does not depend on the
additional parameter. Remark that the term ≺(a(u),�)−≺≺(a(u),�), which
does not appear in the simpler case, can be treated with Lemma A.11.

It remains now to discuss the handling of the resonant products under the para-
controlled assumption, namely ◦(a(u),�) and ◦(a(u),Du). The next lemma
is a paralinearisation result adapted to our nonlinear context.

LEMMA 7.1. Assume that u ∈ C
ρ
T and Z ∈ C2

ηC
γ
T then if γ +2ρ > 0 we have

C(u,Z) :=◦
(
a(u),Z

) − u ◦≺
((
a(u), a′(u)

)
,DZ

) ∈ C
γ+2ρ
T ,

where DZ((η, η′), t, x) := ∑
i η

′
i∂ηiZ(η, t, x).

PROOF.

◦
(
a(u),Z

)
(t, x)

= ∑
i∼j

∫
y,z

Ki,x(y)Kj,x(z)Z
(
a
(
u(t, y)

)
, t, z

)

= ∑
i∼j,k

∫
y, z′
z, z′′

Ki,x(y)Kj,x(z)Pk,z
(
z′′

)
Kk,z

(
z′

)
Z

(
a
(
u(t, y)

)
, t, z′

)

= ∑
i∼j,k

∫
y, z′
z, z′′

Ki,x(y)Kj,x(z)Pk,z
(
z′′

)
Kk,z

(
z′

)

× [
Z

(
a
(
u(t, y)

)
, t, z′

) −Z
(
a
(
u
(
t, z′′

))
, t, z′

)]
= ∑

i∼j,k

∫
y, z′
z, z′′

Ki,x(y)Kj,x(z)Pk,z
(
z′′

)
Kk,z

(
z′

)

×
[∑

�

a′�
(
u
(
t, z′′

))
δu

ty

tz′′∂a�Z
(
a
(
u
(
t, z′′

))
, t, z′

)]
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+ ∑
i ∼ j

k ∼ j

∫
y, z′
z, z′′

Ki,x(y)Kj,x(z)Pk,z
(
z′′

)
Kk,z

(
z′

)

×O
((
δu

ty

tz′′
)2)

∂2
ηZ

(
a
(
u(t, y)

)
, t, z′

)
and observe that the first term is equal to u ◦ ≺((a(u), a′(u)),DZ) while the
second term can be easily estimated in C

γ+2ρ
T . �

Using this result and Lemma A.11, we can expand in the same way as done for
Lemma 2.4 to obtain

◦
(
a(u),�

) = u ◦≺
((
a(u), a′(u)

)
,D�

) + C 3α−2
T

=≺≺
(
a(u),ϑ

) ◦≺
((
a(u), a′(u)

)
,D�

) + C 3α−2
T

=♦
((
a(u), a′(u)

)
, ϑ ◦D�) + C 3α−2

T .

Similarly, noting that

≺
((
a(u), a′(u)

)
, (DD)u

)
=≺

((
a(u), a′(u)

)
, (DD)≺≺

(
a(u),ϑ

)) + C 3α−2
T

=≺
((
a(u), a′(u)

)
, (DD)ϑ

) + C 3α−2
T ,

where (DD)(η, η′) = η′1�, we have by a straightforward generalisation of
Lemma 2.4:

◦
(
a(u),L u

) = u ◦≺
((
a(u), a′(u)

)
, (DD)u

) + C 3α−2
T

=≺≺
(
a(u),ϑ

) ◦≺
((
a(u), a′(u)

)
, (DD)ϑ

) + C 3α−2
T

=♦
((
a(u), a′(u)

)
, ϑ ◦ (DD)ϑ

) + C 3α−2
T .

Finally, the equation for U� reads

L U� =♦
((
a(u), a′(u)

)
, ϑ ◦D�+ ϑ ◦ (DD)ϑ

) + C 3α−2
T .

This can be solved essentially as we did in the simpler context. We see that the
general enhancement has the form(

ξ,ϑ ◦D�+ ϑ ◦ (DD)ϑ
)

which of course will require renormalisation like we did before. In particular,(
ϑ ◦D�+ ϑ ◦ (DD)ϑ

)(
η,η′

) = ϑ(η) ◦ η′2∂η2ξ(η2, ·)+ ϑ(η) ◦ η′1�ϑ(η)

=−η′2
η1

(
�−1ξ(η2, ·)) ◦ ∂η2ξ(η2, ·)

+ η′1
η2

1

(
�−1ξ(η2, ·)) ◦ ξ(η2, ·),
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where we used that η1�ϑ(η)=−ξ(η2, ·). Now observe that

E
[(
�−1ξε(η2, ·)) ◦ ξε(η2, ·)] =−F(η2, η2)σε

and that

E
[(
�−1ξε(η2, ·)) ◦ ∂η2ξε(η2, ·)] =−(∂1F)(η2, η2)σε

with ∂1F denoting the derivative with respect to the first entry.
In the end, the renormalised enhanced noise is obtained as the limit in X α of

(ξε,�2,ε) where

�2,ε
(
η,η′

) =−η′2
η1

(
�−1ξε(η2, ·)) ◦ ∂η2ξε(η2, ·)

+ η′1
η2

1

(
�−1ξε(η2, ·)) ◦ ξε(η2, ·)−Hε

(
η,η′

)
with

Hε

(
η,η′

) = η′2
η1
(∂1F)(η2, η2)σε − η′1

η2
1

F(η2, η2)σε.

We remark that if we take F(η2, η̃2)= η2η̃2 we obtain again the situation treated
in Section 6. Indeed in this case

♦
((
a(u), a′(u)

)
,Hε

) = a′2(u)a2(u)

a1(u)
σε − a′1(u)a2(u)

2

a1(u)2
σε

which coincides with (42).

REMARK 7.2. Consider the more general equation (2), where the noise de-
pends explicitly on time, for example, with a covariance

E
[
ξ(η, t, x)ξ

(
η′, t ′, x′

)] = F
(
η,η′

)
Q

(
t − t ′, x − x′

)
with F a smooth function and Q a distribution of parabolic regularity ρ >−4/3.
First note that the coefficient a1(u) ∈ [λ,1] in front of the time derivative can be
eliminated trivially by dividing.

In order to handle the time dependence of the noise, the framework of this paper
will still apply, provided we consider space-time paraproducts instead of paraprod-
ucts which act only on the space variable. This can be done exactly following the
lines of the paper Gubinelli, Imkeller and Perkowski (2015), where time paraprod-
ucts are employed in the paracontrolled approach to solutions to SDE driven by
Gaussian signals.

The constraint of regularity ρ >−4/3 does allow to treat a noise which is white
in time and smooth in space, but not a space-time white noise. It is well known that
the first-order paracontrolled approach on which the present paper is based does
not allow to treat this kind of irregular signals in full generality.
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APPENDIX: BESOV SPACES AND LINEAR PARAPRODUCTS

In this Appendix, we collect some classical results from harmonic analysis
needed in the paper. For a gentle introduction to Littlewood–Paley theory and
Besov spaces, see the recent monograph [Bahouri, Chemin and Danchin (2011)],
where most of our results are taken from. There the case of tempered distri-
butions on R

d is considered. The Schauder estimates for the heat semigroup
(Lemma A.4) are classical and can be found in Gubinelli, Imkeller and Perkowski
(2015), Gubinelli and Perkowski (2015).

Fix d ∈ N and denote by T
d = (R/(2πZ))d the d-dimensional torus. We focus

here on distributions and SPDEs on the torus, but everything in this Appendix ap-
plies mutatis-mutandis on the full space Rd ; see Gubinelli, Imkeller and Perkowski
(2015). The space of distributions D ′ = D ′(Td) is defined as the set of linear maps
f from C∞ = C∞(Td,C) to C, such that there exist k ∈N and C > 0 with∣∣〈f,ϕ〉∣∣ := ∣∣f (ϕ)∣∣ ≤ C sup

|μ|≤k
∥∥∂μϕ∥∥

L∞(Td )

for all ϕ ∈ C∞. In particular, the Fourier transform F f : Zd → C, F f (k) =
〈f, e−ik·〉, is defined for all f ∈ D ′, and it satisfies |F f (k)| ≤ |P(k)| for a suitable
polynomial P . We will also write f̂ (k)= F f (k). Conversely, if (g(k))k∈Zd is at
most of polynomial growth, then its inverse Fourier transform

F −1g = (2π)−d
∑
k∈Zd

ei〈k,·〉g(k)

defines a distribution, and we have F −1F f = f as well as F F −1g = g. To see
this, it suffices to note that the Fourier transform of ϕ ∈ C∞ decays faster than any
rational function (we say that it is of rapid decay). Indeed, for μ ∈ N

d
0 we have

|kμĝ(k)| = |F (∂μg)(k)| ≤ ‖∂μg‖L1(Td ) for all k ∈ Z
d . As a consequence, we get

the Parseval formula 〈f,ϕ〉 = (2π)−d ∑
k f̂ (k)ϕ̂(k) for f ∈ D ′ and ϕ ∈ C∞.

Linear maps on D ′ can be defined by duality: if A : C∞ → C∞ is such
that for all k ∈ N there exists n ∈ N and C > 0 with sup|μ|≤k ‖∂μ(Aϕ)‖L∞ ≤
C sup|μ|≤n ‖∂μϕ‖, then we set 〈tAf,ϕ〉 = 〈f,Aϕ〉. Differential operators are de-
fined by 〈∂μf,ϕ〉 = (−1)|μ|〈f, ∂μϕ〉. If ϕ : Zd → C grows at most polynomially,
then it defines a Fourier multiplier

ϕ(D)f = F −1(ϕF f ),

which gives us a distribution ϕ(D)f ∈ D ′ for every f ∈ D ′.
Littlewood–Paley blocks give a decomposition of any distribution on D ′ into

an infinite series of smooth functions.

DEFINITION A.1. A dyadic partition of unity consists of two nonnegative ra-
dial functions χ,ρ ∈ C∞(Rd,R), where ρ is supported in a ball B = {|x| ≤ c}
and ρ is supported in an annulus A = {a ≤ |x| ≤ b} for suitable a, b, c > 0, such
that:
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1. χ + ∑
j≥0 ρ(2

−j ·)≡ 1 and
2. χρ(2−j ·) ≡ 0 for j ≥ 1 and ρ(2−i ·)ρ(2−j ·) ≡ 0 for all i, j ≥ 0 with |i −

j |> 1.

We will often write ρ−1 = χ and ρj = ρ(2−j ·) for j ≥ 0.

Dyadic partitions of unity exist [Bahouri, Chemin and Danchin (2011)]. The
reason for considering smooth partitions rather than indicator functions is that in-
dicator functions do not have good Fourier properties. We fix a dyadic partition of
unity (χ,ρ) and define the dyadic blocks

�jf = ρj (D)f = F −1(ρj f̂ ), j ≥−1.

We also use the notation

Sjf = ∑
i<j−1

�if

and notice that

�jf (x)=
∫
Kj,x(y)f (y)dy,

Sjf (x)=
∫
Pj,x(y)f (y)dy

with Kj,x(y)= 2djK(2j (x − y)), Pj,x(y)= ∑
i<j−1Ki,x(y), K radial with zero

mean.
Every dyadic block has a compactly supported Fourier transform and, therefore,

it belongs to C∞. It is easy to see that f = ∑
j≥−1�jf = limj→∞ Sjf for all

f ∈ D ′.
For α ∈R, the Hölder–Besov space C α is given by C α = Bα∞,∞(Td,R), where

for p,q ∈ [1,∞] we define

Bα
p,q = Bα

p,q

(
T
d,R

)
=

{
f ∈ D ′ : ‖f ‖Bα

p,q
=

( ∑
j≥−1

(
2jα‖�jf ‖Lp )q)1/q

<∞
}
,

with the usual interpretation as �∞ norm in case q = ∞. Then Bα
p,q is a Banach

space and while the norm ‖·‖Bα
p,q

depends on (χ,ρ), the space Bα
p,q does not, and

any other dyadic partition of unity corresponds to an equivalent norm.
If α ∈ (0,∞) \ N, then C α is the space of �α times differentiable functions

whose partial derivatives of order �α are (α − �α )-Hölder continuous [see p. 99
of Bahouri, Chemin and Danchin (2011)]. Note, however, that for k ∈N the space
C k is strictly larger than Ck , the space of k times continuously differentiable func-
tions.

The following lemma gives useful characterisation of Besov regularity for func-
tions that can be decomposed into pieces which are localised in Fourier space.
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LEMMA A.2. 1. Let A be an annulus, let α ∈ R, and let (uj ) be a se-
quence of smooth functions such that F uj has its support in 2jA , and such that
‖uj‖L∞ � 2−jα for all j . Then

u= ∑
j≥−1

uj ∈ C α and ‖u‖α � sup
j≥−1

{
2jα‖uj‖L∞

}
.

2. Let B be a ball, let α > 0, and let (uj ) be a sequence of smooth functions
such that F uj has its support in 2jB , and such that ‖uj‖L∞ � 2−jα for all j .
Then

u= ∑
j≥−1

uj ∈ C α and ‖u‖α � sup
j≥−1

{
2jα‖uj‖L∞

}
.

The Bernstein inequalities of the next lemma are extremely useful when dealing
with functions with compactly supported Fourier transform.

LEMMA A.3. Let A be an annulus and let B be a ball. For any k ∈ N0,
λ > 0, and 1 ≤ p ≤ q ≤∞ we have that

(i) if u ∈ Lp is such that supp(F u)⊆ λB , then

max
μ∈Nd :|μ|=k

∥∥∂μu∥∥
Lq �k λ

k+d( 1
p
− 1

q
)‖u‖Lp ;

(ii) if u ∈ Lp is such that supp(F u)⊆ λA , then

λk‖u‖Lp �k max
μ∈Nd :|μ|=k

∥∥∂μu∥∥
Lp .

We recall some standard heat kernel estimations [see Bahouri, Chemin and
Danchin (2011), Chapter 2, and Gubinelli, Imkeller and Perkowski (2015),
Gubinelli and Perkowski (2015)].

LEMMA A.4 (Schauder estimates). Let Vt = ∫ t
0 e

η(t−s)�vs ds and P tu0 =
eη�tu0, with η ≥ λ. We define L α

T and Ck
ηL

α
T , Ck

ηC
α
T for k ∈ N as in (9), (10)

and introduce the norm

‖v‖EδT C α = sup
t∈[0,T ]

tδ
∥∥v(t, ·)∥∥C α .

Then for any γ ∈ [0,1) and α ∈R:

sup
t∈[0,T ]

tγ ‖Vt‖Ck
ηC α−2β � sup

t∈[0,T ]
tγ+β‖vt‖C α−2 ∀β ∈ [0,1),

‖V ‖
Ck
ηL

α−2β
T

� T β‖v‖C α−2
T

∀β ∈ [0,1),

‖V ‖
Ck
ηL

α−2β
T

� T β−δ‖v‖EδT C α−2 ∀β ∈ [0,1),∀δ ∈ [0, β],
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‖V ‖Ck
ηL

γ
T
� T

ρ−γ
2 +1−δ‖v‖EδT C ρ

∀ρ ∈ [γ − 2, γ ),∀δ ∈ [
0, (ρ − γ )/2 + 1

]
,

‖P tu0‖Ck
ηC α � t−

α−β
2 ‖u0‖C β ∀β < α,

‖P tu0 − P su0‖Ck
ηC α � s−δ|t − s| β−α2 +δ‖u0‖C β

∀t != s ∈R
+, β ≤ α+ 2, δ ∈ [

0,1 − (β − α)/2
]
.

We need the following interpolation lemma.

LEMMA A.5. Let γ ∈ (0,2), 0 < ε < γ and u ∈ L
γ
T . Then

‖u‖
C
γ/2−ε/2
T L∞ � ‖u‖L

γ
T
.

PROOF.

sup
s !=t

‖ut − us‖L∞

|t − s|γ /2−ε/2 ≤ sup
s !=t

[∑
i≤n

‖�iut −�ius‖L∞

|t − s|γ /2−ε/2 + ∑
i>n

‖�iut −�ius‖L∞

|t − s|γ /2−ε/2

]

and choosing 2−n−1 ≤ |t − s|1/2 ≤ 2−n we obtain∑
i<n

‖�iut −�ius‖L∞

|t − s|γ /2−ε/2 � ‖u‖
C
γ/2
T C 0

∑
i≤n

|t − s|ε/2,

∑
i≥n

‖�iut −�ius‖L∞

|t − s|γ /2−ε/2 � ‖u‖C
γ
T

∑
i>n

2−γ i2−(γ+ε)n

and this yields the result. �

Terms of the type ‖a(u(t, x))‖C 0 with a : R→ R cannot be estimated directly
with their Hölder norm. In the following lemma, we prove some bounds used in
Section 4.

LEMMA A.6. Let a ∈ C3
b uniformly bounded and u ∈ L α

T = C α
T ∩C

α/2
T C 0,

then ∥∥a(u)∥∥L α
T
� ‖a‖L∞ + ∥∥a′∥∥L∞

(‖u‖
C
α/2
T C 0 + ‖u‖C α

T

)
+ ∥∥a′′∥∥L∞‖u‖

C
α/2
T C 0‖u‖C α

T

� 1 + ‖u‖L α
T
+ ‖u‖2

L α
T
,

∥∥a(u1)− a(u2)
∥∥
L α

T
� ‖u1 − u2‖L α

T

(
1 + ‖u1‖C α

T
+ ‖u2‖C α

T

)2
,∥∥a(u1)− a(u2)

∥∥
C 0

T
� ‖u1 − u2‖C 0

T

(
1 + ‖u1‖C α

T
+ ‖u2‖C α

T

)
.
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PROOF. The bound on ‖a(u)‖C α
T

is trivial. We estimate ‖a(ut )−a(us)‖C 0 as∣∣∣∣
∫
z
Ki,x(z)

[
a
(
u(t, z)

) − a
(
u(s, z)

)]∣∣∣∣
=

∣∣∣∣
∫
z,τ∈[0,1]

Ki,x(z)a
′(δτutzsz)[u(t, z)− u(s, z)

]∣∣∣∣
≤

∣∣∣∣
∫
z,w,τ∈[0,1]

Ki,x(z)
∑

j�k∼i

[
�ju(t, z)−�ju(s, z)

]
Kk,z(w)a

′(δτutwsw)∣∣∣∣
+

∣∣∣∣
∫
z,w,τ∈[0,1]

Ki,x(z)
∑

k�j∼i

[
�ju(t, z)−�ju(s, z)

]
Kk,z(w)a

′(δτutwsw)∣∣∣∣
+

∣∣∣∣
∫
z,w,τ∈[0,1]

Ki,x(z)
∑

k∼j�i

[
�ju(t, z)−�ju(s, z)

]
Kk,z(w)a

′(δτutwsw)∣∣∣∣.
If k >−1, we have∫

w
Kk,z(w)a

′(δτutwsw) = ∫
w
Kk,z(w)

[
a′

(
δτu

tw
sw

) − a′
(
δτu

tz
sz

)]
and then the first term above becomes∣∣∣∣

∫
z,w,τ,σ

Ki,x(z)
∑

j�k∼i

[
�ju(t, z)

−�ju(s, z)
]
Kk,z(w)a

′′(δσ (
δτu

t
s

)w
z

)[
δutwtz − δuswsz

]∣∣∣∣
�

∥∥a′′∥∥L∞‖ut − us‖C 0

∑
j�k∼i

∫
w

∣∣Kk,z(w)
∣∣|w− z|α‖u‖C α

T

� i2−αi∥∥a′′∥∥L∞‖ut − us‖C 0‖u‖C α
T
.

The second term is∣∣∣∣
∫
z,w,τ∈[0,1]

Ki,x(z)
∑
j∼i

[
�ju(t, ·)−�ju(s, ·)](z)Pj,z(w)a′(δτutwsw)∣∣∣∣

� ‖ut − us‖C 0
∥∥Pj,z(w)a′(δτutwsw)∥∥

L∞ � ‖ut − us‖C 0
∥∥a′∥∥L∞ .

The third term can be estimated as the first one when k > −1. Otherwise, we
just bound it as∣∣∣∣

∫
z,w,τ∈[0,1]

Ki,x(z)
∑
j≤N

[
�ju(t, ·)−�ju(s, ·)](z)K−1,z(w)a

′(δτutwsw)∣∣∣∣
� ‖ut − us‖C 0

∥∥a′∥∥L∞ .
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For the three terms together, we have the bound∥∥a(ut )− a(us)
∥∥
C 0 � ‖ut − us‖C 0

(∥∥a′∥∥L∞ + ∥∥a′′∥∥L∞‖u‖C α
T

)
.

With the same technique, we obtain∥∥a(u1)− a(u2)
∥∥
C
α/2
T C 0 �

∥∥a′∥∥L∞‖u1 − u2‖Cα/2
T C 0

+ ∥∥a′′∥∥L∞‖u1 − u2‖Cα/2
T C 0‖u1 − u2‖C α

T

+ ∥∥a′′′∥∥L∞‖u1 − u2‖Cα/2
T C 0‖u1 − u2‖2

C α
T

and this gives the second estimate. The third one can be obtained easily. �

A.1. Bony’s paraproduct. In terms of Littlewood–Paley blocks, the product
of two smooth functions fg can be decomposed as

fg = ∑
j≥−1

∑
i≥−1

�if�jg = f ≺ g+ f � g + f ◦ g,

where the paraproducts f ≺ g and f � g and the resonant product f ◦ g are
defined as

f ≺ g = g � f := ∑
j≥−1

j−2∑
i=−1

�if�jg and f ◦ g := ∑
|i−j |≤1

�if�jg.

We will often use the shortcuts
∑

i∼j for
∑

|i−j |≤1 and
∑

i�j for
∑

i<j−1. Of
course, the decomposition depends on the dyadic partition of unity used to define
the blocks �j , and also on the particular choice of the pairs (i, j) in the diagonal
part. The choice of taking all (i, j) with |i − j | ≤ 1 into the diagonal part corre-
sponds to property 2 of Definition A.1 (definition of dyadic partitions of unity).

Bony’s crucial observation [Bony (1981), Meyer (1980)] is that the paraproduct
f ≺ g (and thus f � g) is always a well-defined distribution. Heuristically, f ≺ g

behaves at large frequencies like g (and thus retains the same regularity), and f

provides only a frequency modulation of g. The only difficulty in constructing fg
for arbitrary distributions lies in handling the resonant product f ◦ g. The basic
result about these bilinear operations is given by the following estimates.

THEOREM A.7 (Paraproduct estimates). For any β ∈ R and f,g ∈ D ′, we
have

(44) ‖f ≺ g‖C β �β ‖f ‖L∞‖g‖C β ,

and for α < 0, furthermore,

(45) ‖f ≺ g‖C α+β �α,β ‖f ‖C α‖g‖C β .

For α+ β > 0, we have

(46) ‖f ◦ g‖C α+β �α,β ‖f ‖C α‖g‖C β .
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Bony proved also a basic paralinearisation result, soon after improved by
Meyer. We give here a particular version suited to our purposes.

THEOREM A.8. Let α ∈ (0,1), f ∈ (C α)k and F ∈ C3(Rk;R) then

RF (f ) := F(f )− F ′(f )≺ f ∈ C 2α

with ∥∥RF (f )
∥∥
C 2α � ‖F‖C2

(
1 + ‖f ‖C α

)2
.

Moreover, the map f �→RF (f ) is locally Lipshitz and∥∥RF (f )−RF (f̃ )
∥∥
C 2α � ‖F‖C3

(
1 + ‖f ‖C α + ‖f̃ ‖C α

)2‖f̃ − f ‖C α .

The additional key ingredient at the core of the paracontrolled approach
is a commutation result proved in Gubinelli, Imkeller and Perkowski (2015),
Lemma 2.4:

LEMMA A.9. Assume that α,β, γ ∈R are such that α + β + γ > 0 and β +
γ < 0. Then for f,g,h ∈C∞, the trilinear operator

C(f,g,h) := (
(f ≺ g) ◦ h) − f (g ◦ h)

allows for the bound

(47)
∥∥C(f,g,h)∥∥C β+γ � ‖f ‖C α‖g‖C β‖h‖C γ ,

and can thus be uniquely extended to a bounded trilinear operator

C : C α×C β×C α → C β+γ .

We will need the following two lemmas to compare standard and time-smoothed
paraproducts. The first one has essentially the same proof as Gubinelli, Imkeller
and Perkowski (2015), Lemma 5.1.

LEMMA A.10. Let ρ ∈ (0,2), γ ∈R. Then for every ε > 0 we have the bound

‖g ≺ h− g ≺≺ h‖
C

ρ+γ−ε
T

� ‖g‖
C
ρ/2
T C 0‖h‖C

γ
T
.

The second lemma has a standard proof.

LEMMA A.11. Let g ∈ L
ρ
T , h ∈ C1

ηC
γ
T with ρ ∈ (0,1), γ ∈ R. We have,

∀ε > 0, ∥∥≺(g,h)−≺≺(g,h)
∥∥
C

ρ+γ−ε
T

� ‖g‖L
ρ
T
‖h‖C1

ηC
γ
T
.
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