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MATRICIAL MODEL FOR THE FREE
MULTIPLICATIVE CONVOLUTION

BY GUILLAUME CÉBRON1

Universität des Saarlandes

This paper investigates homomorphisms à la Bercovici–Pata between ad-
ditive and multiplicative convolutions. We also consider their matricial ver-
sions which are associated with measures on the space of Hermitian matrices
and on the unitary group. The previous results combined with a matricial
model of Benaych–Georges and Cabanal–Duvillard allow us to define and
study the large N limit of a new matricial model on the unitary group for free
multiplicative Lévy processes.

1. Introduction. The classical convolution ∗ on R and the classical multi-
plicative convolution � on the unit circle U= {z ∈ C : |z| = 1}, which correspond,
respectively, to the addition and to the product of independent random variables,
have analogues in free probability. Indeed, replacing the concept of classical inde-
pendence by the concept of freeness, Voiculescu defined the free additive convo-
lution � on R, and the free multiplicative convolution � on U (we refer the reader
to [36] for an introduction to free convolutions). A probability measure μ on R

is said to be ∗-infinitely divisible if, for all n ∈ N∗, there exists a probability mea-
sure μn such that μ∗n

n = μ. The set of ∗-infinitely divisible probability measures
endowed with the operation ∗ is a semigroup which we will denote by ID(R,∗),
and we consider analogously the sets ID(U,�), ID(R,�) and ID(U,�).

In [5], Bercovici and Pata identified an isomorphism of semigroups � between
ID(R,∗) and ID(R,�)which has a good behavior with respect to limit theorems:
for all μ ∈ ID(R,∗) and all sequence (μn)n∈N of probability measures on R,

μ∗n
n

(w)−→
n→+∞μ ⇐⇒ μ�n

n

(w)−→
n→+∞�(μ),

where the convergence is the weak convergence of measures. Unfortunately, the
situation is not as symmetric in the multiplicative case. Let M∗ denote the set of
probability measures μ on U such that

∫
U ζ dμ(ζ ) �= 0. In [14], Chistyakov and

Götze proved that, given a sequence (μn)n∈N of probability measures on U, the
weak convergence of μ�n

n to any measure of M∗ implies the weak convergence
of μ�n

n ; but they also proved that the converse is false. It is thus only possible to
define a homomorphism of semigroups � between ID(U,�) and ID(U,�) (see
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Definition 3.3) such that, for all μ ∈ ID(U,�)∩M∗ and all sequence (μn)n∈N of
probability measures on U,

μ�n
n

(w)−→
n→+∞μ 
⇒ μ�n

n

(w)−→
n→+∞�(μ).

Finally, the homomorphism e : x �→ eix from (R,+) to (U,×) induces a homo-
morphism of semigroups e∗ between ID(R,∗) and ID(U,�), given by the push-
forward of measures, which enjoys a similar property: for all μ ∈ ID(R,∗) and
all sequence (μn)n∈N of probability measures on R,

μ∗n
n

(w)−→
n→+∞μ 
⇒ e∗(μn)�n

(w)−→
n→+∞ e∗(μ).

The first aim of this work is to complete the picture which we just sketched. In Def-
inition 3.2, we shall introduce a new homomorphism of semigroups e� between
ID(R,�) and ID(U,�), and which is linked to the previous homomorphisms in
the following way.

THEOREM 1 (see Proposition 3.4 and Theorem 3.9). The map e� : ID(R,
�)→ ID(U,�) is such that:

1. For all μ ∈ ID(R,�) and all sequence (μn)n∈N of probability measures
on R,

μ�n
n

(w)−→
n→+∞μ 
⇒ e∗(μn)�n

(w)−→
n→+∞ e�(μ).

2. The following diagram commutes:

ID(R,∗)
�

e∗

ID(R,�)

e�

ID(U,�) ID(U,�).
�

(1.1)

Another contribution to the question of going from � to � is given by the map
EXP of Friedrich and McKay in [21–23]. Their approach differs from ours in that
they consider general normalized linear functionals on the set of polynomials. We
consider only linear functionals which come from concrete probability measures.
There is a question of positivity which prevents one to consider the restriction
of EXP on ID(R,�) because EXP does not map a priori a measure on R to a
measure on U. The question of finding a nontrivial homomorphism from the set
of probability measures on R to the set of probability measures on U (e.g., as a
restriction of EXP or as an extension of e�) still remains unsolved.
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In the highly noncommutative theory of Lie groups, there is a well-known pro-
cess which connects additive infinitely divisible laws with multiplicative ones. It
consists in passing to the limit the product of multiplicative little increments which
are built from additive increments using the exponential map (see [20]). A natural
question is whether there exists a matrix approximation of e� which arises from
this procedure.

Our starting point is a matricial model for ID(R,�) which has been con-
structed simultaneously by Benaych–Georges and Cabanal–Duvillard in [4, 12].
For all N ∈ N, let us consider the classical convolution ∗ on the set of Hermitian
matrices HN , and denote by IDinv(HN,∗) the set of infinitely divisible probability
measures on HN which are invariant under conjugation by unitary matrices. For all
μ ∈ ID(R,�), Benaych–Georges and Cabanal–Duvillard proved that there exists
an element of IDinv(HN,∗), which we shall denote by �N(μ) (see Section 7.1),
such that:

1. For all μ ∈ ID(R,�), the spectral measure of a random matrix with distri-
bution �N(μ) converges weakly almost surely to μ as N tends to infinity.

2. �N : ID(R,�)→ IDinv(HN,∗) is a homomorphism of semigroups.

On the other hand, the map e : H �→ eiH from HN to the unitary group U(N)

induces, with some care, a homomorphism of semigroups from IDinv(HN,∗)
to the set IDinv(U(N),�) of infinitely divisible measures on U(N) which are
invariant under conjugation. Indeed, for all μ ∈ IDinv(HN,∗), the sequence
(e∗(μ∗1/n)�n)n∈N∗ converges weakly to a measure EN(μ) ∈ IDinv(U(N),�) (see
Proposition–Definition 6.2). The situation can be summed up in the following di-
agram:

ID(R,�)
�N

e�

IDinv(HN,∗)
EN

ID(U,�) IDinv
(
U(N),�

)
.

(1.2)

When N = 1, we have �1 =�−1, E1 = e∗, and consequently the diagram (1.2) is
exactly the top part of the diagram (1.1). The second main result of this work is the
definition of a homomorphism of semigroups �N : ID(U,�)→ IDinv(U(N),�)
which completes the picture as follows (see Section 7.2).

THEOREM 2 (see Proposition 7.5 and Theorem 7.8). The map �N is such
that:

1. For all μ ∈ ID(U,�), the spectral measure of a random matrix U(N) with
distribution �N(μ) converges weakly almost surely to μ, in the sense that, for each
continuous function f on U, one has the almost sure convergence

lim
N→∞

1

N
Tr
(
f
(
U(N)))= ∫

U
f dμ.
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2. The following diagram commutes:

ID(R,�)
�N

e�

IDinv(HN,∗)
EN

ID(U,�)
�N

IDinv
(
U(N),�

)
.

(1.3)

This result can be expressed by saying that the map e� is the limit of the map EN
as N tends to infinity. The first assertion of the theorem above is a generalisation
of a result of Biane: in [9], he proved that the spectral measure of a Brownian
motion on U(N) with adequately chosen speed converges to the distribution of a
free unitary Brownian motion at each fixed time. This convergence can be viewed
as a particular case of Theorem 2.

The proof itself of Theorem 2 is interesting at least for two reasons. It is the
first time that the free log-cumulants, originated in [30], are used for proving an
asymptotic result of random matrices. Second, the proof relies upon a key object,
the symmetric group Sn, which is linked to both the combinatorics of free proba-
bility theory, and the computation of conjugate-invariant measures on U(N). More
precisely, in [25], Lévy established that the asymptotic distribution of a Brownian
motion on the unitary group is closely related to the counting of paths in the Ca-
ley graph of Sn. Similarly, for all μ ∈ ID(U,�), the asymptotic distribution of a
random matrix with law �N(μ) involves the counting of paths in Sn, each step of
which is given by the following generator (see Lemma 7.9):

T (σ)= nLκ1(μ) · σ + ∑
2≤m≤n

c m-cycle of Sn

cσ
σ

Lκm(μ) · cσ,

where (Lκn(μ))n∈N∗ are the free log-cumulants of μ.
In fact, the full Brownian motion on U(N) converges to the free unitary Brow-

nian motion in noncommutative distribution (see [9]). In our framework, as a
�N(μ)-distributed matrix is invariant by conjugation by unitary matrices, the clas-
sical result of asymptotic freeness of Voiculescu induces immediately a similar
convergence, which is stated in Theorem 3 (see Section 7.4 for details).

THEOREM 3. Let (Ut )t∈R+ be a free unitary multiplicative Lévy process with

marginal distributions (μt )t∈R+ in M∗. For all N ∈ N∗, let (U(N)
t )t∈R+ be a Lévy

process with marginal distributions (�N(μt))t∈R+ . Then (U
(N)
t )t∈R+ converges

to (Ut )t∈R+ in noncommutative ∗-distribution. In other words, for each integer
n ≥ 1, for each noncommutative polynomial P in n variables, each choice of n
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nonnegative reals t1, . . . , tn, and each choice of ε1, . . . , εn ∈ {1,∗}, one has the
almost sure convergence

lim
N→∞

1

N
Tr
(
P
((
U
(N)
t1

)ε1, . . . ,
(
U
(N)
tn

)εn))= τ
(
P
(
U
ε1
t1
, . . . ,U

εn
tn

))
.

Moreover, independent copies of (U(N)
t )t∈R+ converge to freely independent copies

of (Ut )t∈R+ .

The rest of the paper is organized as follows. In Section 2, we give an overview
of the theory of infinitely divisible measures. In Section 3, we define e� and �

and we prove Theorem 1. Section 4 is devoted to the notion of free log-cumulants,
which is an important tool for the proof of the asymptotic results of this paper. Sec-
tion 5 presents a description of convolution semigroups on the unitary group, and
studies more precisely those which are invariant by conjugation. Section 6 links
together the measures on the Hermitian matrices with the measures on the unitary
matrices through the stochastic exponentiation EN . Finally, Section 7 provides the
definition of the random matrix models �N and �N , and the proof of Theorems 2
and 3.

2. Infinite divisibility for uni-dimensional convolutions. In this section, we
give the necessary background concerning ID(R,∗), ID(U,�), ID(R,�) and
ID(U,�). In particular, we give a description of the characteristic pair and the
characteristic triplet of an infinitely divisible measure in each case.

We say that a sequence of finite measures (μn)n∈N on C converges weakly to a
measure μ if for all continuous and bounded complex function f ,

lim
n→∞

∫
C
f dμn =

∫
C
f dμ.

2.1. Classical infinite divisibility on R. Let μ ∈ ID(R,∗). There exists a se-
quence (μn)n∈N∗ of probability measures such that, for all n ∈ N∗, μ∗n

n = μ. The
important fact is that the measures

dσn(x)= n
x2

x2 + 1
μn(dx)

converge weakly to a measure σ and the reals

γn = n

∫
R

x

x2 + 1
μn(dx)

converge to a constant γ ∈ R. The pair (γ, σ ) is known as the ∗-characteristic pair
for μ and it is uniquely determined by μ. More generally, we have the following
characterization.
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THEOREM 2.1 ([5], Theorem 3.3). Let μ ∈ ID(R,∗) with ∗-characteristic
pair (γ, σ ). Let k1 < k2 < · · · be natural numbers and (μn)n∈N∗ be a sequence of
probability measures on R. The following assertions are equivalent:

1. The measures μn ∗ · · · ∗μn︸ ︷︷ ︸
kn times

converge weakly to μ.

2. The measures

dσn(x)= kn
x2

x2 + 1
μn(dx)

converge weakly to σ and

lim
n→∞kn

∫
R

x

x2 + 1
μn(dx)= γ.

In addition to [5], we refer the reader to the very complete lecture notes [3]. We
present now two additional properties of the ∗-characteristic pairs. First, there is
a one-to-one correspondence between ∗-infinitely divisible probability measures
and pairs (γ, σ ). Indeed, for all finite measure σ on R, and all constant γ ∈ R,
there exists a unique ∗-infinitely divisible probability measure such that (γ, σ )
is the ∗-characteristic pair for μ. Second, the ∗-characteristic pairs linearize the
convolution: let μ1 and μ2 be two ∗-infinitely divisible measures with respective
∗-characteristic pairs (γ1, σ1) and (γ2, σ2). The measure μ1 ∗ μ2 is a ∗-infinitely
divisible measure with ∗-characteristic pair (γ1 + γ2, σ1 + σ2).

Let us review another, perhaps more classical, characterization of infinitely di-
visible measures. Let μ be ∗-infinitely divisible and (γ, σ ) be its ∗-characteristic
pair. We set

a = σ
({0}), ρ(dx)= 1 + x2

x2 · 1R\{0}(x)σ (dx) and
(2.1)

η = γ +
∫
R
x

(
1[−1,1](x)− 1

1 + x2

)
ρ(dx).

The triplet (η, a, ρ) is called the ∗-characteristic triplet for μ. Observe that ρ
is such that the function x �→ min(1, x2) is ρ-integrable and ρ({0}) = 0. Such a
measure is called a Lévy measure on R. Conversely, for all (η, a, ρ) with η ∈ R,
a ≥ 0 and ρ a Lévy measure on R, there exists a unique ∗-infinitely divisible
probability measure such that (η, a, ρ) is the ∗-characteristic triplet for μ.

EXAMPLE 2.2. Here are three important classes of ∗-infinitely divisible mea-
sures:

1. For any constant η in R, the Dirac distribution δη is in ID(R,∗), and its
∗-characteristic triplet is (η,0,0).
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2. For any constant a > 0, the Gaussian distribution of variance a is

Na(dx)= 1√
2πa

e−x2/(2a) dx ∈ ID(R,∗)

whose ∗-characteristic triplet is (0, a,0).
3. For any constant λ > 0 and any probability measure ρ ∈ P(R), the com-

pound Poisson distribution with rate λ and jump distribution ρ is

Poiss∗
λ,ρ = e−λ∑

n∈N

λn

n! ρ
∗n ∈ ID(R,∗)

whose ∗-characteristic triplet is (λ
∫
[−1,1] xρ(dx),0, λρ|R\{0}). One important par-

ticular case is when ρ = δ1: the Poisson distribution Poiss∗
λ of mean λ is

Poiss∗
λ(dx)= Poiss∗

λ,δ1
(dx)= e−λ∑

n∈N

λn

n! δn ∈ ID(R,∗).

2.2. The Bercovici–Pata bijection. In [5], Bercovici and Pata proved that all
results of the previous section stay true if one replaces the classical convolu-
tion ∗ by the free additive convolution �. This leads to the Bercovici–Pata bi-
jection � from ID(R,∗) to ID(R,�) which maps a ∗-infinitely divisible mea-
sure with ∗-characteristic pair (γ, σ ) to the �-infinitely divisible measure with
�-characteristic pair (γ, σ ). Its importance is due to the following theorem.

THEOREM 2.3 ([5]). The Bercovici–Pata bijection � has the following prop-
erties:

1. For all μ,ν ∈ ID(R,∗), �(μ ∗ ν)=�(μ)��(ν).
2. For all natural numbers k1 < k2 < · · · , all sequence (μn)n∈N∗ of probability

measures on R and all ∗-infinitely divisible measure μ, the measures μ∗kn
n con-

verge weakly to μ if and only if the measures μ�kn
n converge weakly to �(μ).

EXAMPLE 2.4. Here are the free analogues of the measures presented in Ex-
ample 2.2:

1. For any constant η in R, we have �(δη) = δη ∈ ID(R,�), and its �-
characteristic triplet is (η,0,0).

2. For any constant a > 0, the semi-circular distribution of variance a is

Sa(dx)= 1

2πa

√
4a − x2 · 1[−2

√
a,2

√
a](x)dx ∈ ID(R,�)

whose characteristic triplet is (0, a,0). We have �(Na)= Sa .
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3. For any constant λ > 0, the free Poisson distribution with mean λ, also called
the Marçenko–Pastur distribution, is

Poiss�
λ,δ1

(dx)=

⎧⎪⎪⎨⎪⎪⎩
(1 − λ)δ0 + 1

2πx

√
(x − a)(b− x)1a≤x≤b dx, if 0 ≤ λ≤ 1,

1

2πx

√
(x − a)(b− x)1a≤x≤b dx, if λ > 1,

where a = (1 −√
λ)2 and b = (1 +√

λ)2. Its �-characteristic triplet is (λ,0, λδ1).
More generally, for any constant λ > 0 and probability measure ρ ∈ P(R), the free
compound Poisson distribution with rate λ and jump distribution ρ is the measure
Poiss�

λ,ρ ∈ ID(R,�) whose �-characteristic triplet is (λ
∫
[−1,1] xρ(dx),0, λρ).

We have �(Poiss∗
λ,ρ)= Poiss�

λ,ρ .

We finish this section with a technical lemma, which is a straightforward refor-
mulation of Theorem 2.1, using the relation given by (2.1).

LEMMA 2.5. Let μ ∈ ID(R,�) and (η, a, ρ) be its �-characteristic triplet.
Let k1 < k2 < · · · be natural numbers and (μn)n∈N∗ a sequence of probability
measures on R such that the measures μ�kn

n converge weakly to μ. Then, for all
f : R→C continuous, bounded, and such that f (x)∼x→0 f0x

2, we have

lim
n→∞kn

∫
R
f dμn =

∫
R
f dρ + af0 and lim

n→∞kn

∫
x1[−1,1](x)dμn(x)= η.

2.3. Classical infinite divisibility on U. As we will now see, the particularity
of ID(U,�) is the existence of idempotent measures, an infinite class which has
no equivalent in ID(R,∗), ID(R,�) or ID(U,�). Our references in this section
are [14, 31, 33].

A probability measure μ on U is said to be idempotent if μ � μ = μ. Each
compact subgroup of U leads to an idempotent measure given by its Haar mea-
sure. More concretely, let m ∈ N. The mth roots of unity form a subgroup of U,
whose Haar measure is denoted by λm. We have λm � λm = λm and consequently
λm ∈ ID(U,�). We denote by λ, or λ∞, the Haar measure on U, which is also
�-infinitely divisible. Fortunately, the measures (λm)m∈N∪{∞} are the unique mea-
sures on U which are idempotent.

How can we identify measures of ID(U,�) which are not idempotent? Recall
that M∗ is the set of probability measures μ on U such that

∫
U ζ dμ(ζ ) �= 0. It

is easy to see that measures in M∗ are not idempotent, with the exception of δ1.
In fact, every measure in ID(U,�) factorizes into the product of an idempotent
measure with a measure in ID(U,�) ∩ M∗. For the study of ID(U,�) ∩ M∗,
it is useful to introduce the characteristic function: for all probability measure μ
on U, it is the function μ̂ : Z →C defined for all k ∈ Z by

μ̂(k)=
∫
U
ζ k dμ(ζ ).
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It is multiplicative for the convolution � in the sense that, for all μ,ν probability
measures on U, and all k ∈ Z, we have

μ̂� ν(k)= μ̂(k) · ν̂(k).(2.2)

For all m ∈N∗ and k ∈ Z, we obviously have λ̂m(k)= 1 if k is divisible by m and 0
if not. Using the characteristic function, we can now characterize the measures in
ID(U,�) ∩ M∗. Let μ ∈ ID(U,�) ∩ M∗. There exists a finite measure ν on U

and a real α ∈ R such that, for all k ∈ Z,

μ̂(k)= eikα exp
(∫

U

ζ k − 1 − ik�(ζ )
1 − �(ζ )︸ ︷︷ ︸

=−k2 if ζ=1

dν(ζ )
)
.

Unfortunately, the pair (eiα, ν) is not unique (see the end of the current section).
We say that (eiα, ν) is a �-characteristic pair for μ. Conversely, for all pair (ω, ν)
such that ω ∈ U and ν is a finite measure on U, there exists a unique �-infinitely
divisible measure μ which admits (ω, ν) as a �-characteristic pair.

Similar to the additive case, we introduce now the characteristic triplet. Let
μ ∈ ID(U,�)∩M∗ and let (ω, ν) be a �-characteristic pair for μ. We set

b = 2ν
({1}) and υ(dζ )= 1

1 − �ζ · 1U\{1}(ζ )ν(dζ ).(2.3)

We have, for all k ∈ Z,

μ̂(k)= ωk exp
(
−1

2
bk2 +

∫
U

(
ζ k − 1 − ik�(ζ ))dυ(ζ )

)
.

We say that (ω, b,υ) is a �-characteristic triplet for μ. Let us remark that
υ({1}) = 0 and

∫
U(1 + �(ζ ))dυ(ζ ) < +∞. Such a measure is called a Lévy

measure on U. As expected, for all (ω, b,υ) with ω ∈ U, b ≥ 0 and υ a Lévy
measure on U, there exists a unique �-infinitely divisible probability measure
such that (ω, b,υ) is a �-characteristic triplet for μ. Moreover, for all μ1 and
μ2 �-infinitely divisible measures with �-characteristic triplets (ω1, b1, υ1) and
(ω2, b2, υ2), we see thanks to (2.2) that μ1 � μ2 ∈ ID(U,�) ∩ M∗ with �-
characteristic triplet (ω1ω2, b1 + b2, υ1 + υ2).

To sum up the previous discussion, for all μ ∈ ID(U,�), there exist m ∈ N ∪
{∞}, ω ∈ U and ν a finite measure on U such that, for all k ∈ Z,

μ̂(k)= λ̂m(k) ·ωk exp
(∫

U

ζ k − 1 − ik�(ζ )
1 − �(ζ )︸ ︷︷ ︸

=−k2 if ζ=1

dν(ζ )
)
.

EXAMPLE 2.6. Here again, we can distinguish three classes of �-infinitely
divisible measures:
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1. For any constant ω ∈ U, (ω,0,0) is a �-characteristic triplet of the Dirac
distribution δω ∈ ID(U,�).

2. For any constant b > 0, the wrapped Gaussian distribution of parameter b is
e∗(Nb) ∈ ID(U,�) whose one �-characteristic triplet is (1, b,0).

3. For any constant λ > 0 and any probability measure υ on U, the compound
Poisson distribution with rate λ and jump distribution υ is

Poiss�
λ,υ = e−λ∑

n∈N

λn

n! υ
�n ∈ ID(U,�)

whose one �-characteristic triplet is (exp(iλ
∫
U �dυ),0, λυ|U\{1}).

We give now a case of �-infinitely divisible measure which admits two different
�-characteristic pairs. Set

μ= e−π
(

cosh(π)+ 1

2
δ1 + cosh(π)− 1

2
δ−1 + sinh(π)

2
δi + sinh(π)

2
δ−i
)
.

For all n ∈ Z, we have μ̂(4n)= 1, μ̂(4n+1)= μ̂(4n+3)= e−π and μ̂(4n+2)=
e−2π . It is immediate that, for υ = πδi or υ = πδ−i , we have

μ̂(n)= exp
(∫

U

(
ζ n − 1 − in�(ζ ))dυ(ζ )

)
.

Thus, the measure μ admits (1,0, πδi) and (1,0, πδ−i) as �-characteristic
triplets. One can also see [14] for others examples.

2.4. The convolution � and the S-transform. The free multiplicative convolu-
tion � can be described succinctly in terms of the S-transform. Let us explain how
it works.

Let μ be a finite measure on U. For all k ∈ N, we set mk(μ) = ∫
C ζ

k dμ(ζ ),
which is finite, and we call (mk(μ))k∈N the moments of μ. We consider the formal
power series

Mμ(z)=
∞∑
k=0

mk(μ)z
k.

Let us assume that μ ∈ M∗. We define Sμ, the S-transform of μ, to be the
formal power series such that zSμ(z)/(1 + z) is the inverse under composition
of Mμ(z)− 1. The S-transform is a �-homomorphism (see [6]): for all μ and
ν ∈ M∗,

Sμ�ν = Sμ · Sν.
For all μ ∈ M∗, the series Sμ(z) is convergent in a neighborhood of 0, and we can
therefore identify Sμ with a function which is analytic in a neighborhood of zero.
Sometimes it will be convenient to use the function

�μ(z)= Sμ
(
z/(1 − z)

)
which is also analytic in a neighborhood of 0.
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2.5. Free infinite divisibility on U. For the free multiplicative convolution, the
existence of different proper subgroups of U does not imply the existence of dif-
ferent idempotent measures. Indeed, the Haar measure λ and δ1 are the unique
probability measures on U which are idempotent. Moreover, λ is an absorbing el-
ement for � and it is the unique �-infinitely divisible measure in ID(U,�) \M∗
according to [6]. Consequently, we will focus our study on ID(U,�)∩M∗.

Let μ ∈ M∗ be a �-infinitely divisible measure. From Theorem 6.7. of [6],
there exists a unique finite measure ν ∈ MU and a real α ∈ R such that

�μ(z)= exp
(
−iα +

∫
U

1 + ζz

1 − ζz
dν(ζ )

)
.

The pair (eiα, ν) is called the �-characteristic pair for μ, and, on the contrary to
the classical case, it is uniquely determined by μ. We have

Sμ(z)= e−iα exp
(∫

U

1 + z+ ζz

1 + z− ζz
dν(ζ )

)
.(2.4)

We observe that, for ζ �= 1, we have

1 + z+ ζz

1 + z− ζz
= 1

1 − �ζ
(
i�(ζ )+ 1 − ζ

1 + z(1 − ζ )

)
,

which implies that, defining ω = eiα , b = 2ν({1}) and υ(dζ ) = 1
1−�ζ ×

1U\{1}(ζ )ν(dζ ), we have

Sμ(z)= ω−1 exp
(
b

2
+ bz+

∫
U
i�(ζ )+ 1 − ζ

1 + z(1 − ζ )
dυ(ζ )

)
.(2.5)

We will call (ω, b,υ) the �-characteristic triplet for μ. Conversely, for all triplet
(ω, b,υ) such that ω ∈ U, b ∈ R+ and υ is a Lévy measure on U, there exists a
unique �-infinitely divisible measure μ whose �-characteristic triplet is (ω, b,υ).
Indeed, according to Theorem 6.7 of [6], if we define

v(z)= −Log(ω)+ b

2
+ bz+

∫
U
i�(ζ )+ 1 − ζ

1 + z(1 − ζ )
dυ(ζ )

using the principal value Log, then the function S(z) = exp(v(z)) is the S-
transform of a unique �-infinitely measure μ ∈ M∗.

Let μ1,μ2 ∈ M∗ be two �-infinitely divisible measures with respective �-
characteristic triplets (ω1, b1, υ1) and (ω2, b2, υ2). The measure μ1 � μ2 ∈ M∗
is a �-infinitely divisible measure with �-characteristic triplet (ω1ω2, b1 + b2,

υ1 + υ2).

EXAMPLE 2.7. The three classes of �-infinitely divisible measures are:

1. For any constant ω ∈ U, (ω,0,0) is a �-characteristic triplet of the Dirac
distribution δω ∈ ID(U,�).
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2. For any constant b > 0, the measure on U analogous to the Gaussian distribu-
tion law is the measure Bb ∈ ID(U,�) whose �-characteristic triplet is (1, b,0);
it is the law of a free unitary Brownian motion at time b.

3. For any constant λ > 0 and any probability measure υ on U, the free
compound Poisson distribution with rate λ and jump distribution υ is the mea-
sure Poiss�

λ,υ ∈ ID(U,�) whose �-characteristic triplet is (exp(iλ
∫
U �dυ),0,

λυ|U\{1}).

3. Homomorphisms between ID(R,∗), ID(U,�), ID(R,�) and
ID(U,�). In this section, we define e� and � and prove Theorem 1. The def-
initions and the commutativity of (1.1) is a routine program. The very difficulty
consists in proving the first item of Theorem 1, or equivalently Theorem 3.9. We
shall do it in Section 3.2.

3.1. Definitions of e� and �. In order to motivate the definition of e�, we
start by indicating how a ∗-characteristic triplet is transformed by the homomor-
phism e∗.

Let us recall that, for all measure μ on R, e∗(μ) denotes the push-forward mea-
sure of μ by the map e : x �→ eix . Let us denote by e∗(μ)|U\{1} the measure induced
by e∗(μ) on U \ {1}.

PROPOSITION 3.1. For all μ ∈ ID(R,∗) with ∗-characteristic triplet (η,
a, ρ),

(ω, b,υ)=
(

exp
(
iη+ i

∫
R

(
sin(x)− 1[−1,1](x)x

)
ρ(dx)

)
, a, e∗(ρ)|U\{1}

)
is a �-characteristic triplet of e∗(μ).

PROOF. First of all, the Fourier transform of a ∗-infinitely divisible measure
is well known (see [5, 32]): for all θ ∈ R, we have∫

R
eiθx dμ(x)= exp

(
iηθ − 1

2
aθ2 +

∫
R

(
eiθx − 1 − iθx1[−1,1](x)

)
dρ(x)

)
.

Let n ∈N. We have

ê∗(μ)(n)=
∫
U
ζ n d

(
e∗(μ)

)
(ζ )=

∫
R
einx dμ(x)

= exp
(
iηn− 1

2
an2 +

∫
R

(
einx − 1 − inx1[−1,1](x)

)
dρ(x)

)
= exp

(
iηn+ in

∫
R

(
sin(x)− 1[−1,1](x)x

)
ρ(dx)− 1

2
an2

+
∫
R

(
einx − 1 − in sin(x)

)
dρ(x)

)
= ωn exp

(
−1

2
bn2 +

∫
U

(
ζ n − 1 − in�(ζ ))dυ(ζ )

)
,

which proves that (ω, b,υ) is a �-characteristic triplet of e∗(μ). �
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We define e� : ID(R,�) → ID(U,�) by analogy with the previous proposi-
tion.

DEFINITION 3.2. For allμ ∈ ID(R,�)with �-characteristic triplet (η, a, ρ),
we define e�(μ) to be the �-infinitely divisible measure on U with �-characteris-
tic triplet

(ω, b,υ)=
(

exp
(
iη+ i

∫
R

(
sin(x)− 1[−1,1](x)x

)
ρ(dx)

)
, a, e∗(ρ)|U\{1}

)
.(3.1)

The definition of � : ID(U,�)→ ID(U,�) is even simpler.

DEFINITION 3.3. For all μ ∈ ID(U,�) ∩ M∗ with characteristic triplet
(ω, b,υ), we define �(μ) to be the �-infinitely divisible measure on U with char-
acteristic triplet (ω, b,υ). Moreover, for λ being the Haar measure of U, we set
�(λ)= λ.

PROPOSITION 3.4. The maps e� and � have the following properties:

1. For all μ and ν ∈ ID(R,�), we have e�(μ� ν)= e�(μ)� e�(ν).
2. For all μ and ν ∈ ID(U,�), we have �(μ� ν)= �(μ)� �(ν).
3. We have � ◦ e� ◦�= e∗.

PROOF. The results follow from the comparison of the different characteristic
triplets. �

We summarize here the successive action of �, e�,� and e∗ on, respectively,
a Dirac measure δη (η ∈ R), a Gaussian measure Nb (b > 0), and a compound
Poisson distribution with rate λ > 0 and jump distribution ρ (Example 2.2). As
expected, their images are, respectively, their free analogues on R (Example 2.4),
their free analogues on U (Example 2.7) and their multiplicative analogues on U

(Example 2.6):

� e� �

δη �−→ δη �−→ δeiη �−→ δeiη

Nb �−→ Sb �−→ Bb �−→ e∗(Nb)

Poiss∗
λ,ρ �−→ Poiss�

λ,ρ �−→ Poiss�
λ,e∗(ρ) �−→ Poiss�

λ,e∗(ρ).

3.2. A limit theorem. The definition of � is justified, if needed, by the follow-
ing result of Chistyakov and Götze.

THEOREM 3.5 [14]. For all μ ∈ ID(U,�) ∩ M∗, all natural numbers k1 <

k2 < · · · and all sequence (μn)n∈N∗ of probability measures in M∗ such that the
measuresμ�kn

n converge weakly toμ, the measuresμ�kn
n converge weakly to �(μ).
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The rest of this section is devoted to proving an analogous theorem for e�.
This goal is achieved in Theorem 3.9. Let us start by a key result, interesting in its
own, about the convergence toward a �-infinitely divisible measure. The following
proposition is the analogue of Theorem 2.1 for the convolution �. We refer the
reader to Theorem 4.3 of [7] and Theorem 2.3 of [14] for other similar criterions.
The major difference between these results and ours is the shift of μn considered:
in Proposition 3.6, we consider the angular part ωn = m1(μn)/|m1(μn)| of the
mean of μn.

For all measure μn on U, all ωn ∈ U and all kn ∈ N, we denote by kn(1 −
�(ζ ))dμn(ωnζ ) the measure such that, for all bounded Borel functions f on U,∫

U
f (ζ )kn

(
1 − �(ζ ))dμn(ωnζ )= kn

∫
U
f
(
ω−1
n ζ

)(
1 − �(ω−1

n ζ
))

dμn(ζ ).

PROPOSITION 3.6. Let μ ∈ ID(U,�) with �-characteristic pair (ω, ν). Let
k1 < k2 < · · · be a sequence of natural numbers. Let (μn)n∈N be a sequence of
measures in M∗ and (ωn)n∈N a sequence of elements of U such that, for all n ∈ N,
ωn =m1(μn)/|m1(μn)|. The following assertions are equivalent:

1. The measures μn � · · · �μn︸ ︷︷ ︸
kn times

converge weakly to μ.

2. The measures

dνn(x)= kn
(
1 − �(ζ ))dμn(ωnζ )

converge weakly to ν and

lim
n→∞ωknn = ω.

In concrete cases, the second item is often easier to verify. For example, it allows
us to infer that, for any constant λ > 0 and any probability measure υ on U, the
measure Poiss�

λ,υ is the weak limit of ((1 − λ/n)δ1 + (λ/n)υ)�n as n tends to ∞.
We would point out the recent work [1] which proves that the convergence of

Proposition 3.6 above implies local convergences of the probability densities.

PROOF OF PROPOSITION 3.6. Let n ∈ N. We set rn = |m1(μn)|, so that
m1(μn) = rnωn. We define also μ◦

n ∈ M∗ such that dμ◦
n(ζ ) = dμn(ωnζ ). The

measure μ◦
n will be the link between μn and νn. Observe that Mμ◦

n
(z) =

Mμn(ω
−1
n z), which implies that Sμ◦

n
(z) = ωnSμn(z). The first step of the proof

is to write Mνn with the help of Mμ◦
n
. For all ζ ∈ U and z ∈ C sufficiently small,

we have

2
1 − �ζ
1 − ζz

= (z− 1)
[
(1 − z)

ζ

1 − ζz
− 1

]
+ 1 − ζ̄ .
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Integrating with respect to μ◦
n, and remarking that∫

U
ζ̄ dμ◦

n(ζ )=
∫
U
ζ dμn(ζ )/ωn = r̄n = rn,

we deduce that
2

kn
Mνn = (z− 1)

[
1 − z

z

(
Mμ◦

n
− 1 − z

1 − z

)]
+ (1 − rn).(3.2)

Let us recall the useful information about the S-transform: it is a �-homo-
morphism and zS(z)/(1 + z) is the inverse under composition of M(z) − 1 (see
Section 2.4). Moreover, we need also the following general result.

PROPOSITION 3.7 ([6]). Let (μn)n∈N be a sequence of measures in M∗ and
μ ∈ M∗. Then the weak convergence of (μn)n∈N to μ is equivalent to the uniform
convergence of Sμn in some neighborhood of 0.

Let us suppose that the measures μ�kn
n converge weakly to μ. Then the series

S
μ

�kn
n

= (Sμn)
kn converges uniformly to Sμ in some neighborhood of 0. There-

fore, we have limn→∞m1(μn)
−kn = limn→∞ Sknμn(0) = Sμ(0). Thanks to (2.4),

we know that Sμ(0) = ω−1eν(U), which implies that limn→∞ω
kn
n = ω and

limn→∞ r
kn
n = e−ν(U). Of course, it implies that limn→∞ kn(rn − 1) = −ν(U).

It remains now to prove that νn converges weakly to ν. Let us denote by u(z) the
series

u(z)=
∫
U

1 + z+ ζz

1 + z− ζz
dν(ζ ).

Thanks to (2.4), we have ωSμ(z) = exp(u(z)), and consequently, Sμ◦
n
(z)kn =

ω
kn
n Sμn(z)

kn converges uniformly to ωSμ(z)= exp(u(z)) in a neighborhood of 0.
Thus, in some neighborhood of 0, the only possible limit of the sequence Sμ◦

n
(z) is

1, the S-transform of δ1. From the compactness of the set of probability measures
on U with respect to the weak convergence and Proposition 3.7, we deduce that
the measures μ◦

n converge weakly to this unique cluster point δ1, and that Sμ◦
n
(z)

converges uniformly to 1 in a neighborhood of 0. For sufficiently large n, the prin-
cipal branch log(Sμ◦

n
(z)) is defined for z in a neighborhood of 0, and kn log(Sμ◦

n
(z))

converges uniformly to u(z). Since log(w)∼ω→1 w− 1, we conclude that

lim
n→∞kn

(
S◦
μn
(z)− 1

)= u(z)(3.3)

uniformly in a neighborhood of 0. At this stage of the proof, we need to inverse
formal series, at least asymptotically, in order to have the relation (3.3) in terms of
Mμ◦

n
(z). Let us set χn(z)= zSμ◦

n
/(z+ 1) and ψn(z)=Mμ◦

n
(z)− 1, in such a way

that, in a neighborhood of 0, we have z = χn(ψn(z)) = ψn(χn(z)). Observe that
limn→∞ χn(z) = z/(1 + z), limn→∞ χ ′

n(z) = 1/(1 + z)2 in a neighborhood of 0,
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while limn→∞ψn(z)= z/(1 − z) (this follows from the weak convergence of μ◦
n

to 1). We denote, respectively, by χ∞(z), χ ′∞(z) and ψ∞(z) those three limits.
One hand, using the mean value theorem for the real part and the imaginary

part of t �→ χn(tψn(z)+ (1 − t)ψ∞(z))/(ψn(z)−ψ∞(z)), we observe that �n(z)

defined as

�n(z)= 1ψn(z) �=ψ∞(z)

χn(ψn(z))− χn(ψ∞(z))

ψn(z)−ψ∞(z)
+ 1ψn(z)=ψ∞(z)χ

′
n

(
ψ∞(z)

)
converges to χ ′∞(ψ∞(z))= (1 − z)2, as n tends to ∞, for z in some neighborhood
of 0 (at this stage of the proof, the uniform convergence is no longer necessary). On
the other hand, we can rewrite (3.3) as limn→∞ kn(χn(ψ∞(z))− χ∞(ψ∞(z))) =
zu(ψ∞(z)). Now,

0 = lim
n→∞kn(z− z)

= lim
n→∞kn

(
χn
(
ψn(z)

)− χ∞
(
ψ∞(z)

))
= lim

n→∞�n(z) · kn(ψn(z)−ψ∞(z)
)+ lim

n→∞kn
(
χn
(
ψ∞(z)

)− χ∞
(
ψ∞(z)

))
= χ ′∞

(
ψ∞(z)

) · lim
n→∞kn

(
ψn(z)−ψ∞(z)

)+ zu
(
ψ∞(z)

)
from which we deduce that limn→∞ kn(ψn(z)−ψ∞(z))= −zu(ψ∞(z))/(1− z)2,
or equivalently, that

lim
n→∞kn

(
Mμ◦

n
(z)− 1 − z

1 − z

)
= −z
(1 − z)2

u

(
z

1 − z

)
pointwise in some neighborhood of 0. This limit and the limit −ν(U)= limn→∞ kn(rn−
1) put together in (3.2) yields

lim
n→∞ 2Mνn = u

(
z

1 − z

)
+ ν(U).

But we have u(z/(1 − z)) + ν(U) = ∫
U

2
1−ζz dν(ζ ) = 2Mν , which implies that

limn→∞Mνn =Mν pointwise in some neighborhood of 0. Consequently, ν is the
unique cluster point of {νn}n∈N. Because supn∈N νn(U) = supn∈NMνn(0) < ∞,
the set {νn}n∈N is compact for the weak convergence, and finally, the measures νn
converge weakly to ν.

Conversely, let us suppose the weak convergence of νn to ν and limn→∞ω
kn
n =

ω. We can basically retrace our steps in order to arrive at limn→∞ S
μ

�kn
n

= Sμ

pointwise in some neighborhood of 0. Proposition 3.7 and the compactness of the
set of probability measures on U with respect to the weak convergence allow us to
conclude that the sequence μ�kn

n converges weakly to its unique cluster point μ.
�
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COROLLARY 3.8. Let μ ∈ ID(U,�) with �-characteristic triplet (ω, b,υ).
Let k1 < k2 < · · · be a sequence of natural numbers. Let (μn)n∈N be a sequence of
measures in M∗ and (ωn)n∈N be such that, for all n ∈ N, ωn =m1(μn)/|m1(μn)|.
The following assertions are equivalent:

1. The measures μn � · · · �μn︸ ︷︷ ︸
kn times

converge weakly to μ.

2. limn→∞ω
kn
n = ω and the measures dνn(x) = kn(1 − �(ζ ))dμn(ωnζ ) con-

verge weakly to (1 − �(ζ ))dυ(ζ )+ b
2δ1.

We are now ready to prove the first main theorem of this paper.

THEOREM 3.9. For all μ ∈ ID(R,�), all natural numbers k1 < k2 < · · · and
all sequence (μn)n∈N∗ of probability measures on R such that the measures μ�kn

n

converge weakly to μ, the measures e∗(μn)�kn converge weakly to e�(μ).

Let us derive right now some consequences of this theorem. It allows us to trans-
fer limit theorems about � into limit theorem about �. For example, for all b > 0,
the semi-circular measure is such that S�n

b/n = Sb. We deduce that Bb = e�(Sb),
which is the law of a free unitary Brownian motion at time b, is the weak limit
of the measures e∗(Sb/n)�n. Using Theorem 2.3, we know also that the mea-
sures N�n

b/n converge weakly to Sb. By consequence, Bb is also the weak limit

of e∗(Nb/n)
�n as n tends to ∞.

PROOF OF THEOREM 3.9. Let (η, a, ρ) be the �-characteristic triplet of μ,
and (ω, b,υ) be the �-characteristic triplet of e�(μ) given by (3.1). In order to
use Corollary 3.8, we first prove that e∗(μn) ∈ M∗ for n sufficiently large.

Because eix − 1 = ix1[−1,1](x)+ (eix − 1 − ix1[−1,1](x)), we have(∫
R
eix dμn(x)− 1

)
= i

∫
R
x1[−1,1](x)dμn(x)+

∫
R

(
eix − 1 − ix1[−1,1](x)

)
dμn(x).

We use Lemma 2.5, and the fact that eix −1− ix1[−1,1](x)∼x→0 −1
2x

2, to deduce
that

lim
n→∞kn

(∫
R
eix dμn(x)− 1

)
= iη− a

2
+
∫ (

eix − 1 − 1[−1,1](x)ix
)
ρ(dx).(3.4)

Consequently, m1(e∗(μn)) = ∫
R e

ix dμn(x) tends to 1 as n tends to ∞, and
e∗(μn) ∈ M∗ for n sufficiently large. Without loss of generality, we assume that
e∗(μn) is in M∗ for all n ∈ N. We set (rn,ωn)n∈N the sequence of [0,1] × U

such that, for all n ∈ N, we have m1(e∗(μn)) = rnωn. Thanks to Corollary 3.8,
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it suffices to prove that limn→∞ω
kn
n = ω and to prove that the measure kn(1 −

�(ζ ))d(e∗(μn))(ωnζ ) converge weakly to (1 − �(ζ ))dυ + b
2δ1 to conclude.

From (3.4), we deduce that

lim
n→∞ rknn ωknn = lim

n→∞

(∫
R
eix dμn(x)

)kn
= exp

(
iη− a

2
+
∫ (

eix − 1 − 1[−1,1](x)ix
)
ρ(dx)

)
,

and this result can be split into

lim
n→∞ rknn = exp

(
−a

2
+
∫ (

cos(x)− 1
)
ρ(dx)

)
and

lim
n→∞ωknn = exp

(
iη+ i

∫ (
sin(x)− 1[−1,1](x)x

)
ρ(dx)

)
= ω.

Using the real logarithm, we deduce that, as n tends to ∞,

r−1
n = 1 + 1

kn

(
a

2
−
∫ (

cos(x)− 1
)
ρ(dx)

)
+ o

(
1

kn

)
.(3.5)

Using ωn = r−1
n

∫
R e

ix dμn(x), (3.4) and (3.5), it follows that, as n tends to ∞,

ωn = 1 + i

kn

(
η+

∫ (
sin(x)− 1[−1,1](x)x

)
ρ(dx)

)
+ o

(
1

kn

)
.(3.6)

In order to prove that the measures kn(1 − �(ζ ))de∗μn(ωnζ ) converge weakly to
(1 − �(ζ ))dυ + b

2δ1, we shall use the method of moments and prove that, for all
m ∈ N,

lim
n→∞kn

∫
U
ζm
(
1 − �(ζ ))d

(
e∗(μn)

)
(ωnζ )=

∫
U
ζm
(
1 − �(ζ ))dυ(ζ )+ b

2
.

Let n ∈N. We have

kn

∫
U
ζm
(
1 − �(ζ ))d

(
e∗(μn)

)
(ωnζ )

= kn

∫
U
ω−m
n ζm

(
1 − �(ω−1

n ζ
))

d
(
e∗(μn)

)
(ζ )

= knω
−m
n

∫
R
eimx

(
1 − �(ω−1

n eix
))

dμn(x)

= knω
−m
n

∫
R
eimx

(
1 − �(ωn) cos(x)− �(ωn) sin(x)

)
dμn(x).
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Let us decompose the integral under study into four terms:

kn

∫
U
ζm
(
1 − �(ζ ))d

(
e∗(μn)

)
(ωnζ )

= knω
−m
n �(ωn)

∫
R
eimx

(
1 − cos(x)

)
dμn(x)

+ kn
(
1 − �(ωn))ω−m

n

∫
R
eimx dμn(x)

+ kn�(ωn)ω−m
n

∫
R

(
x1[−1,1](x)− eimx sin(x)

)
dμn(x)

− kn�(ωn)ω−m
n

∫
R
x1[−1,1](x)dμn(x).

Thanks to Lemma 2.5, and because limn→∞ωn = 1, we know the limit of the first
term:

lim
n→∞knω

−m
n �(ωn)

∫
R
eimx

(
1 − cos(x)

)
dμn(x)=

∫
R
eimx

(
1 − cos(x)

)
dρ(x)+ b

2

=
∫
U
ζ n
(
1 − �(ζ ))dυ(ζ )+ b

2
.

The three others terms tend to 0. Indeed, (3.6) implies that kn(1 − �(ωn)) =
o(1/kn) and �(ωn) = O(1/kn) when n tends to ∞. We know that ω−m

n = O(1)
and

∫
R e

imx dμn(x) = O(1) when n tends to ∞. Finally, Lemma 2.5 tells us that∫
R(x1[−1,1](x) − eimx sin(x))dμn(x) = O(1/kn) and

∫
R x1[−1,1](x)dμn(x) =

O(1/kn) as n tends to ∞. Thus,

kn
(
1 − �(ωn))ω−m

n

∫
R
eimx dμn(x),

kn�(ωn)ω−m
n

∫
R

(
x1[−1,1](x)− eimx sin(x)

)
dμn(x)

and

−kn�(ωn)ω−m
n

∫
R
x1[−1,1](x)dμn(x)

are o(1) as n tends to ∞, and the result follows. �

4. Free log-cumulants. We are at the beginning of the second part of the
paper, the aim of which is to prove Theorems 2 and 3. This goal is achieved in
Section 7. While Sections 5 and 6 investigates the distributions of certain classes of
random matrices, the current section is devoted to establish Proposition 4.1 which
is the result of free probability needed for the asymptotic theorems proved in the
last section of the paper. As a consequence, Section 4 can be read independently
of Sections 5 and 6.
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Mastnak and Nica explain in [30] that, in order to treat the multi-dimensional
free multiplicative convolution, it is preferable to work with a logarithmic version
of the S-transform. This leads to a sequence of coefficients which in [13] are called
the free log-cumulants. In this section, we use the theory of free log-cumulants
to establish Proposition 4.1 which links in an explicit formula the moments of a
�-infinitely divisible measure to its �-characteristic triplet. We start by stating
Proposition 4.1, after which we introduce the free log-cumulants, which will be
used only in the proof of Proposition 4.1.

4.1. Moments of a �-infinitely divisible measure. Proposition 4.1 involves
combinatorics on the symmetric group Sn. We first present the poset structure
of Sn.

Let n ∈ N∗. Let Sn be the group of permutations of {1, . . . , n}. For all per-
mutation σ ∈ Sn, we denote by �(σ ) the numbers of cycles of σ and we set
|σ | = n− �(σ ). The minimal number of transpositions required to write σ is |σ |
and we have |σ | = 0 if and only if σ is the identity 1Sn

. We define a distance on
Sn by d(σ1, σ2) = |σ−1

1 σ2|. The set Sn can be endowed with a partial order by
the relation σ1 
 σ2 if d(1Sn

, σ1)+d(σ1, σ2)= d(1Sn
, σ2), or similarly if σ1 is on

a geodesic between 1Sn
and σ2. The minimal element of Sn is thus 1Sn

.
For all σ ∈ Sn, we denote by [1Sn

, σ ] the segment between 1Sn
and the σ ,

that is, the set {π ∈ Sn : π 
 σ }. It is a lattice with respect to the partial order.
A (l + 1)-tuple � = (σ0, . . . , σl) of [1Sn

, σ ] such that

σ0 ≺ σ1 ≺ · · · ≺ σl 
 σ

is called a simple chain if and only if, for all 1 ≤ i ≤ l, σ−1
i−1σi is a nontrivial cycle.

The length k of a k-cycle c will be denoted by �c. We are now ready to state the
main result of this section.

PROPOSITION 4.1. Let μ ∈ ID(U,�) with �-characteristic triplet (ω, b,υ).
For all n ∈N∗ and all σ ∈ Sn, we have

∏
c cycle of σ

m�c(μ)= enLκ1(μ) · ∑
� simple chain in [1Sn ,σ ]
�=(σ0,...,σ|�|),σ|�|=σ

1

|�|!
|�|∏
i=1

Lκd(σi ,σi−1)+1(μ),

where:

1. Lκ1(μ)= Log(ω)− b/2 + ∫U(�(ζ )− 1)dυ(ζ ),
2. Lκ2(μ)= −b+ ∫U(ζ − 1)2 dυ(ζ )
3. and Lκn(μ)= ∫

U(ζ − 1)n dυ(ζ ) for all n≥ 3.

The proof of Proposition 4.1 requires the notion of free log-cumulants and we
postpone it until Section 4.4. In the mean time, we review the properties of the free
log-cumulants that we shall use.
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4.2. The noncrossing partitions. The definition of the free log-cumulants in-
volves combinatorial formulae which are related to noncrossing partitions. We de-
scribe here the poset structure of the set of noncrossing partitions NC(n), and we
shall see that it is intimately linked to the poset structure of Sn.

A partition of the set {1, . . . , n} is said to have a crossing if there exist 1 ≤ i <

j < k < l ≤ n, such that i and k belong to some block of the partition and j and
l belong to another block. If a partition has no crossings, it is called noncrossing.
The set of all noncrossing partitions of {1, . . . , n} is denoted by NC(n). It is a
lattice with respect to the relation of fineness defined as follows: for all π1 and
π2 ∈NC(n), we declare that π1 
 π2 if every block of π1 is contained in a block
of π2. We denote, respectively, by 0n and 1n the minimal element {{1}, . . . , {n}} of
NC(n), and the maximal element {{1, . . . , n}} of NC(n).

In [10], Biane describes an isomorphism between the posets NC(n) and
[1Sn

, (1 · · ·n)] ⊂ Sn. It consists simply in defining, from every partition π ∈
NC(n), the permutation σπ which is the product, over all blocks {i1 < · · · < ik}
of π , of the k-cycle (i1 · · · ik). In other words, take the cycles of σπ to be the
blocks of π with the cyclic order induced by the natural order of {1, . . . , n}. Note
that σ0n = 1Sn

and σ1n = (1 · · ·n).

LEMMA 4.2. The function π �→ σπ is a poset isomorphism between NC(n)

and [1Sn
, (1 · · ·n)].

Let π ∈ NC(n). It is immediate that the map σ �→ σ−1σπ is an order-
reversing bijection of [1Sn

, σπ ]. The corresponding decreasing bijection Kπ of
{π ′ ∈NC(n) : π ′ 
 π} is called the Kreweras complementation map with respect
to π . If π = 1n, we set K(σ)=K1n(σ ).

Let n ∈ N. A chain in the lattice NC(n) is a (l + 1)-tuple of the form � =
(π0, . . . , πl) with π0, . . . , πl ∈ NC(n) such that π0 ≺ π1 ≺ · · · ≺ πl (notice that
we do not impose π0 = 0n nor πl = 1n, unlike in [30]). The positive integer l ap-
pearing is called the length of the chain, and is denoted by |�|. If, for all 1 ≤ i ≤ l,
Kπi (πi−1) has exactly one block which has more than two elements, we say that
� is a simple chain in NC(n). This way, we have a one-to-one correspondence
between simple chains in NC(n) and simple chains in [1Sn

, (1 · · ·n)] via the iso-
morphism of Lemma 4.2.

4.3. Free log-cumulants. Let μ ∈ M∗. We denote by Wμ(z) the inverse un-
der composition of zMμ(z), and we denote by Cμ(z) the formal power series
Mμ(Wμ(z)). The coefficients (κk(μ))k∈N∗ of

Cμ(z)= 1 +
∞∑
k=1

κk(μ)z
k
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are known as the free cumulants of μ. Let π ∈NC(n). We set

κ[π ](μ)= ∏
B block of π

κ|B|(μ).

For all n≥ 2, we set

Lκn(μ)=m1(μ)
−n ∑

� chain in NC(n)

�=(π0,...,π|�|)
π0=0n,π|�|=1n

(−1)1+|�|

|�|
|�|∏
i=1

κ
[
Kπi (πi−1)

]
(μ).

We shall call the coefficients (Lκk(μ))n≤2 the free log-cumulants of μ. We define
also the LS-transform of μ by

LSμ(z)=
∞∑
n=2

Lκn(μ)z
n.

Let us define also Lκ1(μ), or Lκ(μ), the free log-cumulant of order 1 of μ, by
Log(m1(μ)), where Log is the principal logarithm.

REMARK 4.3. From Proposition 4.5 of [30], we see that this definition of LSμ
extends the definition of the LS-transform of μ given by Definition 1.4 of [30]
in the case m1(μ) �= 1. The definition of the free log-cumulants (Lκn(μ))n∈N∗
follows [13], but we observe that Lκn(μ) would be denoted by Lκn(A) in [13],
where A would be a random variable whose law is μ.

As the free cumulants linearize �, the free log-cumulants linearize �.

PROPOSITION 4.4 (Corollary 1.5 of [30], Proposition 2.11 of [13]). For all
μ,ν ∈ M∗, we have Lκ1(μ � ν) ≡ Lκ1(μ) + Lκ1(ν) (mod 2iπ) and, for all
n≥ 2,

Lκn(μ� ν)=Lκn(μ)+Lκn(ν).

For concrete calculations, one would prefer to have an analytical description of
the free log-cumulants. We have Sμ(0) = 1/m1(μ) and by consequence, we can
define the formal logarithm of m1(μ) · Sμ as the formal series log(m1(μ) · Sμ)=
−∑∞

n=1
1
n
(1 −m1(μ)Sμ(z))

n.

PROPOSITION 4.5 (Corollary 6.12 of [30]). Let μ ∈ M∗. We have

LSμ(z)= −z log
(
m1(μ) · Sμ(z)).
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REMARK 4.6. Technically, Corollary 6.12 of [30] only deals with measures,
or more precisely linear functionals on C[X], such that m1(μ)= 1. One can adapt
the proof presented in [30]. Alternatively, argue as follows. From a measure μ ∈
M∗, we can define ϕμ :C[X] → C such that ϕμ(Xk)=m1(μ)

−kmk(μ). Then we
observe that Sϕμ =m1(μ) · Sμ(z) and LSϕμ = LSμ. As a consequence, LSμ(z)=
LSϕμ = −z log(Sϕμ)= −z log(m1(μ) · Sμ(z)).

Let π ∈ NC(n) be such that π has exactly one block which has at least two
elements. Let {j1, . . . , jN } be this block of π , with j1 < · · · < jN . Let us denote
by Lκ[π ](μ) the free log-cumulant LκN(μ).

PROPOSITION 4.7 (Corollary 2.9 of [13]). Let μ ∈M∗ and n ∈ N∗. We have

mn(μ)= enLκ1(μ) · ∑
� simple chain in NC(n)

�=(π0,...,π|�|),π0=0n

1

|�|!
|�|∏
i=1

Lκ
[
Kπi (πi−1)

]
(μ).(4.1)

4.4. Proof of Proposition 4.1. Let us formulate a more general formula
than (4.1) with the help of the symmetric group.

LEMMA 4.8. Let μ ∈ M∗ and n ∈N∗. For all σ ∈ Sn, we have∏
c cycle of σ

m�c(μ)

(4.2)

= enLκ1(μ) · ∑
� simple chain in [1Sn ,σ ]
�=(σ0,...,σ|�|),σ|�|=σ

1

|�|!
|�|∏
i=1

Lκd(σi ,σi−1)+1(μ).

PROOF. The analogue formula of (4.1) for simple chains in [1Sn
, (1 · · ·n)] is

obtained via the isomorphism of Lemma 4.2, remarking that, for a l-cycle σ−1
1 σ2

of [1Sn
, (1 · · ·n)], we have l = n−�(σ−1

1 σ2)+1 = d(σ1, σ2)+1. By consequence,
we have

mn(μ)= enLκ1(μ) · ∑
� simple chain in [1Sn ,(1···n)]

�=(σ0,...,σ|�|),σ0=1

1

|�|!
|�|∏
i=1

Lκd(σi ,σi−1)+1(μ).

Applying the Kreweras complementation σ �→ σ−1(1 · · ·n) which is an isomor-
phism and preserves simple chains, we obtain

mn(μ)= enLκ1(μ) · ∑
� simple chain in [1Sn ,(1···n)]
�=(σ0,...,σ|�|),σ|�|=(1···n)

1

|�|!
|�|∏
i=1

Lκd(σi,σi−1)+1(μ).
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We now use the fact that for a cycle c of length �c, the segment [1Sn
, c] ⊂ Sn

is isomorphic as a lattice to [1S�c
, (1 · · · �c)] ⊂ S�c, and by consequence, (4.2) is

true if σ is a cycle.
For an arbitrary permutation σ , we decompose it into cycles c1, . . . , c�(σ ). Con-

structing a simple chain of length k ending at σ is equivalent to constructing �(σ )
simple chains ending, respectively, at c1, . . . , c�(σ ), whose lengths l1, . . . , l�(σ )
add up to k, and shuffling the steps of these paths, that is choosing a sequence
(C1, . . . ,C�(σ)) of subsets of {1, . . . , k} which partition {1, . . . , k} and whose car-
dinals are l1, . . . , l�(σ ), respectively. Using the formula (4.2) for cycles, this remark
leads to (4.2) for an arbitrary σ ∈Sn. �

In order to complete the proof of Proposition 4.1, it suffices to compute explic-
itly the free log-cumulants of a �-infinitely divisible measure.

PROPOSITION 4.9. Let μ ∈ ID(U,�) with �-characteristic triplet (ω, b,υ).
We have:

1. Lκ1(μ)= Log(ω)− b/2 + ∫U(�(ζ )− 1)dυ(ζ ),
2. Lκ2(μ)= −b+ ∫U(ζ − 1)2 dυ(ζ )
3. and Lκn(μ)= ∫

U(ζ − 1)n dυ(ζ ) for all n≥ 3.

PROOF. The data of Sμ(z) is given by (2.5). We first remark that

m1(μ)= Sμ(0)
−1 = ωe−b/2−∫

U
(i�(ζ )+1−ζ )dυ(ζ ),

from which we deduce that Lκ1(μ)= Log(m1(μ))= Log(ω)− b/2 + ∫U(�(ζ )−
1)dυ(ζ ). We also have m1(μ)Sμ(z) = Sμ(z)/Sμ(0) = exp(bz + ∫

U
1−ζ

1+z(1−ζ ) −
(1 − ζ )dυ(ζ )). Therefore,

LSμ(z)= −z log
(
m1(μ) · Sμ(z))= −bz2 +

∫
U

z2(ζ − 1)2

1 − z(ζ − 1)
dυ(ζ ).

We identify (Lκn(μ))n≥2 as the coefficients of LSμ(z)=∑∞
n=2Lκn(μ)z

n. �

5. Convolution semigroups on U(N). In this section, we define and study
the convolution semigroups on the unitary group U(N). More precisely, we are
interested in computing

∫
U(N) g

⊗n dμ(g) for μ arising from a convolution semi-
group. In Propositions 5.2 and 5.8, we shall express this quantity in two different
ways. The technique of proof is in the spirit of [25]. It relies on a detailed compre-
hension of the generator of a convolution semigroup on U(N) (see [29]), and on
the Schur–Weyl duality (see Section 5.4, and [15, 16]).

Let N ∈ N and let MN(C) be the space of matrices of dimension N . If M ∈
MN(C), we denote by M∗ the adjoint of M . Let us denote by Tr : MN(C) → C
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the unnormalized trace. The identity matrix is denoted by IN . We consider the
unitary group

U(N)= {
U ∈MN(C) :U∗U = IN

}
.

The �-convolution of two probability measures μ and ν on U(N) is defined to
be the unique probability measure μ� ν on U(N) such that

∫
U(N) f d(μ� ν) =∫

U(N) f (gh)μ(dg)ν(dh) for all bounded Borel function f on U(N). Let us denote
by ID(U(N),�) the space of infinitely divisible probability measures on U(N)

and by IDinv(U(N),�) the subspace of measures μ in ID(U(N),�) which are
invariant by unitary conjugation, that is, such that for all bounded Borel function
f on U(N) and all g ∈U(N), we have∫

U(N)
f dμ=

∫
U(N)

f
(
ghg∗)dμ(h).

5.1. Generators of semigroups. Let μ = (μt )t∈R+ be a weakly continuous
convolution semigroup on U(N) starting at μ0 = δe. We define the transition semi-
group (Pt )t∈R+ as follows: for all t ∈ R+, all bounded Borel function f on U(N)
and all h ∈ U(N), we set Ptf (h) = ∫

U(N) f (hg)μt(dg). The generator of μ, is
defined to be the linear operator L on C(U(N)) such as Lf = limt→0(Ptf −f )/t

whenever this limit exists.
In order to describe the generator of a semigroup, we shall successively intro-

duce in the three next paragraphs the Lie algebra u(N) of U(N), a scalar product
on u(N) and the notion of Lévy measure on U(N).

The unitary group U(N) is a compact real Lie group of dimension N2,
whose Lie algebra u(N) is the real vector space of skew-Hermitian matrices:
u(N)= {M ∈MN(C) :M∗ +M = 0}. We consider also the special unitary group
SU(N) = {U ∈ U(N) : detU = 1}, whose Lie algebra is su(N) = {M ∈ u(N) :
Tr(U)= 0}. We remark that u(N)= su(N)⊕(iRIN). Any Y ∈ u(N) induces a left
invariant vector field Y l on U(N) defined for all g ∈ U(N) by Y l(g) = DLg(Y )

where DLg is the differential map of h �→ gh.
We consider the following inner product on u(N):

(X,Y ) �→ 〈X,Y 〉u(N) = Tr
(
X∗Y

)= −Tr(XY).

It is a real scalar product on u(N) which is invariant under the adjoint action of
U(N), and its restriction to su(N) is also a real scalar product which is invari-
ant by unitary conjugation on both argument. Let us fix an orthonormal basis
{Y1, . . . , YN2−1} of su(N) and set YN2 = i√

N
IN . This way, {Y1, . . . , YN2} is an

orthonormal basis of u(N).
It is convenient now to introduce an arbitrary auxiliary set of local coordi-

nates around IN . Let �,� : U(N) → MN(C) be such that for all U ∈ U(N),
we have �(U) = (U + U∗)/2 and �(U) = (U − U∗)/2i. Note that i� takes
its values in u(N). A Lévy measure � on U(N) is a measure on U(N) such
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that �({IN }) = 0, for all neighborhood V of IN , we have �(V c) < +∞ and∫
U(N) ‖i�(x)‖2

u(N)�(dx) <∞.
The following theorem gives us a characterization of the generator of such semi-

groups.

THEOREM 5.1 ([2, 29]). Let μ = (μt )t∈R+ be a weakly continuous convolu-
tion semigroup on U(N) starting at μ0 = δe. There exist an element Y0 ∈ u(N),
a symmetric positive semidefinite matrix (yi,j )1≤i,j≤N2 and a Lévy measure � on
U(N) such that the generator L of μ is the left-invariant differential operator
given, for all f ∈C2(U(N)) and all h ∈U(N), by

Lf (h)= Y l
0f (h)+ 1

2

N2∑
i,j=1

yi,jY
l
i Y

l
j f (h)

(5.1)
+
∫
U(N)

f (hg)− f (h)− (i�(g))lf (h)�(dg).
Conversely, given such a triplet (Y0, (yi,j )1≤i,j≤N2,�), it exists a unique weakly
continuous convolution semigroup onU(N) starting at δe whose generator is given
by (5.1).

The triplet (Y0, (yi,j )1≤i,j≤N2,�) is called the characteristic triplet of (μt )t∈R+ ,
or of L. Let μ ∈ ID(U(N),�) be such that it exists a weakly continuous convo-
lution semigroup (μt )t∈R+ with μ1 = μ and μ0 = δIN . In this case, we say that the
characteristic triplet of (μt )t∈R+ is a characteristic triplet of μ. It is not unique but
it completely characterizes the measure μ. Conversely, every triplet of this form is
a characteristic triplet of a unique measure in ID(U(N),�).

5.2. Expected values of polynomials of the entries. Let n ∈ N∗. In this sec-
tion, we give a formula for

∫
U(N) g

⊗n dμ(g) when μ arises from a convolution
semigroup. Consider the representation ρnU(N) of the Lie group U(N) on the vec-

tor space (CN)⊗n given by

ρnU(N)(g)= g ⊗ · · · ⊗ g︸ ︷︷ ︸
n times

∈U(N)⊗n ⊂ End
((
CN )⊗n).

Set dρnU(N)(L) = L(ρnU(N))(IN) ∈ End((CN)⊗n), where ρnU(N) is seen as an ele-

ment of C2(U(N))⊗ End((CN)⊗n).

PROPOSITION 5.2. Let (μt )t∈R+ be a weakly continuous convolution semi-
group on U(N) starting at μ0 = δe with generator L and characteristic triplet
(Y0, (yi,j )1≤i,j≤N2,�). For all t ∈R+, we have the equality in End((CN)⊗n)∫

U(N)
g⊗n dμt(g)= exp

(
tdρnU(N)(L)

)
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with

dρnU(N)(L)= ∑
1≤k≤n

Id⊗k−1
N ⊗ Y0 ⊗ Id⊗n−k

N + 1

2

N2∑
i,j=1

yi,j

× ∑
1≤k,l≤n

(
Id⊗k−1
N ⊗ Yi ⊗ Id⊗n−k

N

) ◦ (Id⊗l−1
N ⊗ Yj ⊗ Id⊗n−l

N

)
+
∫
U(N)

(
g⊗n − Id⊗n

N − ∑
1≤k≤n

Id⊗k−1
N ⊗ i�(g)⊗ Id⊗n−k

N

)
�(dg).

PROOF. Let denote by U : U(N) → MN(C) the identity function of U(N).
We compute

L
(
ρnU(N)

)= Y l
0
(
U⊗n)+ 1

2

N2∑
i,j=1

yi,jY
l
i Y

l
j

(
U⊗n)

+
∫
U(N)

(Ug)⊗n −U⊗n − (i�(g))l(U⊗n)�(dg)
and using that, for all Y ∈ u(N), we have Y l(U⊗n)=U⊗n ·∑1≤k≤n Id⊗k−1

N ⊗Y ⊗
Id⊗n−k
N ,

L
(
ρnU(N)

)
=U⊗n · ∑

1≤k≤n
Id⊗k−1
N ⊗ Y0 ⊗ Id⊗n−k

N + 1

2
U⊗n

×
N2∑

i,j=1

yi,j
∑

1≤k,l≤n

(
Id⊗k−1
N ⊗ Yi ⊗ Id⊗n−k

N

) · (Id⊗l−1
N ⊗ Yj ⊗ Id⊗n−l

N

)
+U⊗n ·

∫
U(N)

(
g⊗n − Id⊗n

N − ∑
1≤k≤n

Id⊗k−1
N ⊗ i�(g)⊗ Id⊗n−k

N

)
�(dg).

Hence, dρnU(N)(L) = L(ρnU(N))(e) leads to the expression of dρnU(N)(L) given
above. We conclude by remarking that

t →
∫
U(N)

g⊗n dμt(g)=
∫
U(N)

ρnU(N)(g)dμt(g)

and t → exp(tdρnU(N)(L)) are both the unique solution to the differential equation{
y(0)= I⊗n

N ,

y′ = y · dρnU(N)(L). �
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We now give an alternative expression of dρnU(N)(L). Let m ≥ 0. For all 1 ≤
k1 < · · · < km ≤ n, let us denote by ι

MN(C)
⊗n

k1,...,km
: MN(C)

⊗m → MN(C)
⊗n (or more

simply ιk1,...,km) the mapping defined by

ιk1,...,km(X1 ⊗· · ·⊗Xm)= I
⊗k1−1
N ⊗X1 ⊗ I

⊗k2−k1−1
N ⊗X2 ⊗· · ·⊗Xm ⊗ I

⊗n−km
N ,

that is to say in words that ιk1,...,km(X1 ⊗ · · · ⊗ Xm) is the tensor product of
X1, . . . ,Xm at the places k1, . . . , km and IN at the other places.

PROPOSITION 5.3. Let L be a generator with characteristic triplet (Y0,

(yi,j )1≤i,j≤N2,�). We have

dρnU(N)(L)= ∑
1≤k≤n

ιk

(
Y0 +

∫
U(N)

(�(g)− IN
)
�(dg)

)

+ 1

2

N2∑
i,j=1

yi,j · ∑
1≤k,l≤n

ιk(Yi) ◦ ιl(Yj )

+ ∑
2≤m≤n

1≤k1<···<km≤n

ιk1,...,km

(∫
U(N)

(g − IN)
⊗m�(dg)

)
.

PROOF. Our starting point is the expression of dρnU(N)(L) given by Proposi-
tion 5.8. Let us remark that

g⊗n = (g − IN + IN)
⊗n

= I⊗n
N + ∑

1≤m≤n
1≤k1<···<km≤n

ιk1,...,km

(
(g − IN)

⊗m),
from which we deduce that∫

U(N)

(
g⊗n − Id⊗n

N − ∑
1≤k≤n

Id⊗k−1
N ⊗ i�(g)⊗ Id⊗n−k

N

)
�(dg)

=
∫
U(N)

( ∑
1≤k≤n

ιk
(
g − IN − i�(g))

+ ∑
2≤m≤n

1≤k1<···<km≤n

ιk1,...,km

(
(g − IN)

⊗m))�(dg)
= ∑

1≤k≤n
ιk

(∫
U(N)

(�(g)− IN
)
�(dg)

)

+ ∑
2≤m≤n

1≤k1<···<km≤n

ιk1,...,km

(∫
U(N)

(g − IN)
⊗m�(dg)

)
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because all the integrand are equivalent to ‖i�(g)‖2
u(N) in a neighborhood of IN ,

and hence integrable with respect to �. Replacing the last term by this new ex-
pression in Proposition 5.2 yields to the result. �

5.3. Conjugate invariant semigroups on U(N). A weakly continuous convo-
lution semigroup (μt )t∈R+ on U(N) starting at μ0 = δe is said conjugate invariant
if all μt belong to IDinv(U(N),�).

PROPOSITION 5.4. Let (μt )t∈R+ be a weakly continuous convolution semi-
group starting at μ0 = δe which is conjugate invariant. Let (Y0, (yi,j )1≤i,j≤N,�)
be its characteristic triplet. The differential operator 1

2
∑N2

i,j=1 yi,jY
l
i Y

l
j and the

measure � are both conjugate invariant. Moreover, there exists three constants
y0, α and β ∈ R such that Y0 = iy0IN and

(yi,j )1≤i,j≤N2 =

⎛⎜⎜⎝
α 0

. . .

α

0 β

⎞⎟⎟⎠ .
PROOF. Thanks to [29], if we denote by (Y0, (yi,j )1≤i,j≤N2,�) the character-

istic triplet of μ, the differential operator 1
2
∑N2

i,j=1 yi,jY
l
i Y

l
j and the measure � are

both conjugate invariant. The map i� is equivariant by a unitary conjugation and
following the proof of Proposition 4.2.2 of [26], we deduce that Y0 is in the center
of u(N): there exists y0 ∈ R such that Y0 = iy0IdN .

Because {Y1, . . . , YN2−1} is a basis of the conjugate invariant Lie sub-algebra
su(N), {yi,N , yN,i : 1 ≤ i ≤N2} = {0}, and because su(N) is simple, there exists
α ∈ R such that (yi,j )1≤i,j≤(N−1)2 = αIN−1. We set β = yN,N . �

Thus, the invariance by conjugation of μ implies that its generator L is a bi-
invariant pseudo-differential operator. In this particular case, the expression of
dρnU(N)(L) can be described with the help of the symmetric group. It is the ob-
ject of the next section to use the Schur–Weyl duality in order to formulate a new
expression of dρnU(N)(L).

5.4. Schur–Weyl duality. The Schur–Weyl duality is a deep relation between
the actions of U(N) and Sn on (CN)⊗n which allows one to transfer some ele-
ments relative to U(N) to elements relative to Sn (see [15–17, 25]). Let us spell
out this fruitful duality.

Let n ∈ N. Define the action ρ
Sn

N of Sn on (CN)⊗n as follows: for all σ ∈ Sn

and x1, . . . , xn ∈CN , we set(
ρ
Sn

N (σ )
)
(x1 ⊗ · · · ⊗ xn)= xσ−1(1) ⊗ · · · ⊗ xσ−1(n).
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Let us denote by C[Sn] the group algebra of Sn. The action ρSn

N determines a ho-

momorphism of associative algebra dρSn

N : C[Sn] → End((CN)⊗n). The Schur–
Weyl duality asserts that the sub-algebras of End((CN)⊗n) generated by the ac-
tion of U(N) and Sn are each other’s commutant. In particular, any element of
End((CN)⊗n) which commutes with ρnU(N)(g) for all g ∈ U(N) is an element of

the algebra generated by ρSn

N (Sn), that is to say an element of dρSn

N (C[Sn]).
For all A ∈ End((CN)⊗n), we define

E(A)=
∫
U(N)

g⊗n ◦ A ◦ (g∗)⊗n dg ∈ End
((
CN )⊗n),

where the integration is taken with respect to the Haar measure of U(N). Obvi-
ously, E(A) commutes with ρnU(N)(g) for all g ∈ U(N), and due to the Schur–

Weyl duality, E(A) has to lie in dρSn

N (C[Sn]). In Proposition 2.4 of [16], Collins
and Śniady answered the question of determining an element of C[Sn] which is
mapped on E(A), as follows. Set

�(A)= ∑
σ∈Sn

Tr
(
A ◦ ρSn

N

(
σ−1)) · σ ∈ C[Sn]

and define Wg = ∑
σ∈Sn

Wg(σ ) · σ ∈ C[Sn] such that dρSn

N (�(Id⊗n
N ) · Wg) =

Id⊗n
N . If n ≤ N , the element �(Id⊗n

N ) is invertible and Wg must be �(Id⊗n
N )−1.

If N < n, one can choose any pseudo-inverse of the symmetric element �(Id⊗n
N )

to be Wg. Let us insist on the fact that Wg depends on both n and N , even if for
convenience, this dependence is not explicit in the notation.

PROPOSITION 5.5 ([16]). For all A ∈ End((CN)⊗n), we have E(A) =
dρ

Sn

N (�(A)Wg).

Very succinctly, the argument is as follows:

ρ
Sn

N

(
�(A)

)= ρ
Sn

N

(
�
(
E(A)

))= ρ
Sn

N

(
�
(
E(A) · Id⊗n

N

))=E(A) · ρSn

N

(
�
(
Id⊗n
N

))
.

It allows us to write explicitly elements of the commutant of the algebra generated
by ρnU(N) as elements of dρSn

N (C[Sn]). Indeed, if A commutes with ρnU(N)(g) for
all g ∈U(N), we have

A =E(A)= dρ
Sn

N

(
�(A)Wg

)
.

Moreover, they give an asymptotic of the Weingarten function.

PROPOSITION 5.6 ([16]). For all σ ∈ Sn, we have Wg(σ ) = O(N−n−|σ |)
when N tends to ∞. We have also Wg(1Sn

) = N−n +O(N−n−2) when N tends
to ∞.
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EXAMPLE 5.7. 1. For n = 1: we have Wg = 1Sn
/N and therefore, for all

A ∈ End(CN),

E(A)= 1

N
Tr(A)IN .

2. For n = 2: we have Wg = 1
N2−1

(1Sn
− 1

N
(1,2)), and thus, for all A,B ∈

End(CN),

E(A⊗B)= 1

N2 − 1

((
Tr(A)Tr(B)− Tr(AB)/N

) · I⊗2
N

+ (Tr(AB)− Tr(A)Tr(B)/N
) · dρSn

N

(
(1,2)

))
.

The generator L of a conjugate invariant convolution semigroup is a pseudo-
differential operator which is bi-invariant, and by consequence the element
dρnU(N)(L) commutes with ρnU(N)(g) for all g ∈ U(N). Thus, it is an element of

dρ
Sn

N (C[Sn]). Let Tn be the subset of Sn consisting of all the transpositions. For

all 1 ≤ k1 < · · · < km ≤ n, let us denote by ι
Sn

k1,...,km
: Sm → Sn (or more simply

ιk1,...,km) the mapping defined by

ιk1,...,km(σ ) :
∣∣∣∣ki �→ kσ(i),

i �→ i, for i /∈ {k1, . . . , km}.
This map is such that ρSn

N ◦ ιSn

k1,...,km
= ι

MN(C)
⊗n

k1,...,km
◦ ρSm

N . We are now ready to state
the main result of this section.

PROPOSITION 5.8. Let y0, α,β ∈ R and� be a Lévy measure onU(N) which
is conjugate invariant. Let μ ∈ ID(U(N),�) with characteristic triplet⎛⎜⎜⎝iy0IN,

⎛⎜⎜⎝
α 0

. . .

α

0 β

⎞⎟⎟⎠ ,�
⎞⎟⎟⎠ .

We have
∫
U(N) g

⊗n dμ(g)= dρ
Sn

N (eL̃), where

L̃=
(
niy0 − n2

N

β

2
+
(
n2

N
− nN

)
α

2
+ n

N

∫
U(N)

Tr
(�(g)− 1

)
�(dg)

)
1Sn

− α
∑
τ∈Tn

τ + ∑
2≤m≤n

1≤k1<···<km≤n

∑
σ,π∈Sm

Wg
(
σ−1π

)

×
∫
U(N)

∏
c cycle of σ

Tr
(
(g − 1)�c

)
�(dg) · ιk1,...,km(π).
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PROOF. Let (μt )t∈R+ be the weakly continuous convolution semigroup whose
characteristic triplet is⎛⎝iy0IN,

⎛⎝α 0
. . .

α 0 β

⎞⎠ ,�
⎞⎠ ,

and let L be its generator. By definition, μ= μ1, and thanks to Proposition 5.2, we
know that ∫

U(N)
g⊗n dμ(g)= exp

(
dρnU(N)(L)

)
.

To conclude, it suffices to prove that dρnU(N)(L)= dρ
Sn

N (L̃). We start from Propo-
sition 5.3. We have

dρnU(N)(L)= ∑
1≤k≤n

ιk

(
iny0 +

∫
U(N)

(�(g)− IN
)
�(dg)

)

+ α

2

N2−1∑
i=1

· ∑
1≤k,l≤n

ιk(Yi) ◦ ιl(Yi)+ β

2

∑
1≤k,l≤n

ιk(YN2) ◦ ιl(YN2)

+ ∑
2≤m≤n

1≤k1<···<km≤n

ιk1,...,km

(∫
U(N)

(g − IN)
⊗m�(dg)

)
.

Thanks to the invariance under conjugation of � and
∑N2−1

i=1 Yi ⊗ Yi , we know
from Example 5.7 that∫

U(N)

(�(g)− IN
)
�(dg)=

∫
U(N)

E
(�(g)− IN

)
�(dg)

=
∫
U(N)

1

N
Tr
(�(g)− 1

)
�(dg)

and

N2−1∑
i=1

Yi ⊗ Yi =E

(
N2−1∑
i=1

Yi ⊗ Yi

)
= 1

N
I⊗2
N − ρ

Sn

N

(
(1,2)

)
.

We also deduce from Proposition 5.5 that∫
U(N)

(g − IN)
⊗m�(dg)

=
∫
U(N)

E
(
(g − IN)

⊗m)�(dg)
=
∫
U(N)

∑
σ,π∈Sm

Wg
(
σ−1π

) ∏
c cycle of σ

Tr
(
(g − 1)�c

) · dρSm

N (π)�(dg).
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Thus, we have

dρnU(N)(L)

=
(
niy0 − n2

N

β

2
+
(
n2

N
− nN

)
α

2
+ n

N

∫
U(N)

Tr
(�(g)− 1

)
�(dg)

)
I⊗n
N

− α

N2−1∑
i=1

· ∑
1≤k<l≤n

ιk,l ◦ ρS2
N

(
(1,2)

)
+ ∑

2≤m≤n
1≤k1<···<km≤n

∑
σ,π∈Sm

Wg
(
σ−1π

) · ∫
U(N)

∏
c cycle of σ

Tr
(
(g − 1)�c

)
�(dg)

× ιk1,...,km ◦ ρSm

N (π),

from which we deduce that dρnU(N)(L)= dρ
Sn

N (L̃). �

6. The stochastic exponential EN . In this section, we shall describe EN ,
a map which connects the infinitely divisible measures on the space of Hermitian
matrices HN and the infinitely divisible measures on U(N). We start by presenting
EN in Proposition–Definition 6.2, and the rest of the section is devoted to the proof
of Proposition–Definition 6.2.

We consider the Hilbert space of Hermitian matrices

HN = {
x ∈MN(C) : x∗ = x

}
.

We denote by ∗ the classical convolution on the vector space HN : given two proba-
bility measures μ and ν on HN , the convolution μ∗ν is such that

∫
HN

f d(μ∗ν)=∫
HN

∫
HN

f (x+y)μ(dx)ν(dy) for all bounded Borel function f on HN . Let us de-
note by ID(HN,∗) the space of infinitely divisible probability measures on HN

and by IDinv(HN,∗) the subspace of measures μ in ID(HN,∗) which are invari-
ant by unitary conjugation, that is, such that for all bounded Borel function f on
HN and all g ∈U(N), we have∫

HN

f dμ=
∫
HN

f
(
gxg∗)dμ(x).

6.1. Infinite divisibility on HN . The advantage of ID(HN,∗) is that each in-
finitely divisible measure arises from a unique convolution semigroup, and by con-
sequence, is characterized by a unique generator. In order to describe this genera-
tor, we introduce now an inner product on HN and we define the notion of Lévy
measure.

We endow HN with the following inner product:

(x, y) �→ 〈x, y〉HN
= Tr

(
x∗y

)= Tr(xy).
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It is a real scalar product on HN which is invariant by unitary conjugation. We
remark that iHN = u(N). Thus, the family {X1, . . . ,XN2} = {−iY1, . . . ,−iYN2}
is an orthonormal basis of HN such that XN2 = 1√

N
IN . It is now useful to fix one

compact neighborhood B of 0: we choose to set B = B(0,1), the closed unit ball
of HN . A Lévy measure � on HN is a measure on HN such that both �({0})= 0
and such that

∫
B ‖x‖2

HN
�(dx) and �(Bc) are finite.

Let C2
b(HN) be the space of function f ∈ C2(HN) with bounded first- and

second-order partial derivatives.

THEOREM 6.1 [29, 32]. Let μ ∈ ID(HN,∗). There exists a unique weakly
continuous semigroup (μ∗t )t∈R+ such that μ∗0 = δ0 and μ∗1 = μ. There exist an
element X0 ∈ HN , a symmetric positive semidefinite matrix (yi,j )1≤i,j≤N2 and a
Lévy measure � on HN such that the generator L of (μ∗t )t∈R+ is given for all
f ∈ C2

b(HN) and all y ∈ HN by

Lf (y)= ∂X0f (y)+ 1

2

N2∑
i,j=1

yi,j ∂Xi
∂Xj

f (y)

(6.1)
+
∫
HN

f (y + x)− f (y)− 1B(x) ∂xf (y)�(dx).

The triplet (X0, (yi,j )1≤i,j≤N2,�) is called the characteristic triplet of μ, and
its associated generator L is called the generator of μ. Conversely, given such a
triplet (X0, (yi,j )1≤i,j≤N2,�), there exists a unique infinitely divisible measure μ
whose generator is given by (6.1).

Let us remark that the functions e and sin make sense on HN . For all x ∈ HN ,
we have

e(x)= exp(ix) ∈U(N) and sin(x)= � ◦ e = (
eix − e−ix)/2i ∈ HN.

As previously, for all measure � on HN , the measure e∗(�) denotes the
push-forward � on HN by the mapping e : HN → U(N), and the measure
e∗(�)|U(N)\{IN } is the measure on U(N) \ {IN } induced by e∗(�). We are now
able to formulate the main result of this section.

PROPOSITION–DEFINITION 6.2. For all μ ∈ ID(HN,∗) with characteristic
triplet (

X0, (yi,j )1≤i,j≤N2,�
)
,

we define EN(μ) to be the measure of ID(U(N),�) with characteristic triplet(
iX0 + i

∫
HN

(
sin(x)− 1B(x)x

)
�(dx), (yi,j )1≤i,j≤N2, e∗(�)|U(N)\{IN }

)
.

The map EN : ID(HN,∗) → ID(U(N),�) is called the stochastic exponential
and has the following properties:
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1. For all μ ∈ ID(HN,∗), the measures (e∗(μ∗1/n))�n converge weakly to
EN(μ).

2. The stochastic exponential maps IDinv(HN,∗) to IDinv(U(N),�), and for
all μ, ν measures of IDinv(HN,∗), we have

EN(μ ∗ ν)= EN(μ)� EN(ν).

The tool used to prove this proposition is the Fourier transform of a measure on
U(N). Before proving Proposition 6.2 in Section 6.3, let us introduce this notion.

6.2. Fourier transform on U(N). The set Û (N) of isomorphism classes of ir-
reducible representations of U(N) is in bijection with the set ZN↓ of nonincreasing

sequences of integers α = (α1 ≥ · · · ≥ αN). For all α ∈ ZN↓ , let πα ∈ Û (N) be a
unitary representation in the corresponding class, acting on a vector space Eα , and
let χα be its character, that is to say the function Tr ◦πα . We will also consider the
normalized character ψα(·)= χα(·)/χα(IN).

Let μ be a probability measure on U(N). The Fourier transform μ̂ of μ is
defined for all α ∈ ZN↓ by μ̂(α) = ∫

U(N) π
α(g)μ(dg) ∈ End(Eα). Here are three

properties of the Fourier transform (see [24, 34]).

1. For all probability measures μ and ν, and for all α ∈ ZN↓ we have μ̂� ν(α)=
μ̂(α)̂ν(α).

2. A sequence of probability measures (μn)n∈N converges weakly to a measure
μ if and only if for all α ∈ ZN↓ , the sequence (μ̂n(α))n∈N converges to μ̂(α).

3. A probability measure μ is central, or conjugate invariant, if and only
if for all α ∈ ZN↓ , μ̂(α) is a homogeneous dilation, and in this case μ̂(α) =
(
∫
U(N) ψα(g)μ(dg))IdEα .

The following proposition gives the Fourier transform of a measure arising from a
convolution semigroup.

PROPOSITION 6.3. Let (μt )t∈R+ be a weakly continuous convolution semi-
group on U(N) starting at μ0 = δe with generator L. For all t ≥ 0, and all
α ∈ ZN↓ , we have μ̂t (α) = etLπ

α(IN ). Moreover, if μ is conjugate invariant, we

have μ̂t (α)= etLψα(IN )IdEα .

PROOF. For all α ∈ ZN↓ , we have μ̂t (α) = ∫
U(N) π

α(g)μt(dg) = IdEα + t ·
Lπα(IN)+ ot→0(t), which implies that μ̂t (α) = lims→0 μ̂s(α)

t/s = etLπ
α(IN ). If

μ is conjugate invariant, then, for all t ∈ R+, μt is conjugate invariant, and we can
replace πα by ψα in the previous computation. �
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COROLLARY 6.4. Let (μt )t∈R+ and (νt )t∈R+ be two weakly continuous con-
jugate invariant convolution semigroups on U(N) starting at μ0 = δe, with respec-
tive characteristic triplets(

Y0, (yi,j )1≤i,j≤N2,�
)

and
(
Y ′

0,
(
y′
i,j

)
1≤i,j≤N2,�

′).
Then (μt � νt )t∈R+ is a weakly continuous convolution semigroup on U(N) start-
ing at μ0 = δe, with characteristic triplet(

Y0 + Y ′
0,
(
yi,j + y′

i,j

)
1≤i,j≤N2,�+�′).

PROOF. Remark that (yi,j + y′
i,j )1≤i,j≤N2 is a symmetric positive semidefi-

nite matrix and that � + �′ is a Lévy measure. Let L and L′ be the respective
generators of (μt )t∈R+ and (νt )t∈R+ given by (5.1). Thanks to Proposition 6.3 and
to the conjugation invariance, for all α ∈ ZN↓ , we have

μ̂t ∗ νt (α)= μ̂t (α) · ν̂t (α)= etLψα(IN )etL
′ψα(IN )IdEα = et(L+L′)ψα(IN )IdEα .

To conclude, observe that, for each time t ∈ R+, the measure at time t of the
weakly continuous semigroup whose characteristic triplet is (Y0 + Y ′

0, (yi,j +
y′
i,j )1≤i,j≤N2,�+�′) has the same Fourier transform as μt � νt . �

LEMMA 6.5. Let μ and ν ∈ IDinv(U(N),�) with characteristic triplet
(Y0, (yi,j )1≤i,j≤N2,�) and (Y ′

0, (y
′
i,j )1≤i,j≤N2,�′). Then, (Y0 + Y ′

0, (yi,j +
y′
i,j )1≤i,j≤N2,� + �′) is a characteristic triplet of μ � ν. In particular, for all
k ∈ Z, (Y0 + 2ikπIN, (yi,j )1≤i,j≤N2,�) is also a characteristic triplet of μ.

PROOF. The first assertion follows from Corollary 6.4. For the second asser-
tion, we remark that (δe2ikt�IN

)t∈R+ is a weakly continuous convolution semi-
group with characteristic triplet (2ikπ,0,0). By consequence, (Y0 + 2ikπIN,
(yi,j )1≤i,j≤N2,�) is a characteristic triplet of μ� δe2ikπ IN

= μ. �

We are now ready to prove Proposition–Definition 6.2.

6.3. Proof of Proposition–Definition 6.2. First of all, we remark that the sine
function is bounded and sin(x)− x ∼x→0 x

3/6, which implies that
∫
HN

(sin(x)−
1B(x)x)�(dx) exists.

We start by proving the first item. Let μ ∈ ID(HN,∗). Let us denote by Lμ the
generator of μ and by LEN(μ) the generator of EN(μ). Let α ∈ ZN↓ . We have

̂e∗
(
μ∗1/n

)
(α)=

∫
HN

πα(e(x))μ∗1/n(dx)

= IdEα +Lμ
(
πα ◦ e

)
(0)/n+ on→∞(1/n),
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which implies that limn→∞ ̂(e∗(μ∗1/n))�n(α) = limn→∞( ̂e∗(μ∗1/n)(α))n =
eLμ(π

α◦e)(0). Let us compute

Lμ
(
πα ◦ e

)
(0)= ∂X0

(
πα ◦ e

)
(0)+ 1

2

N2∑
i,j=1

yi,j ∂Xi
∂Xj

(
πα ◦ e

)
(0)

+
∫
HN

πα(ei(x+0))− πα(ei0)− 1B(x) ∂x
(
πα ◦ e

)
(0)�(dx).

Recall that, for all Y ∈ u(N), Y l is the left invariant vector field on U(N) in-
duced by Y . Using the fact that, for all x ∈ HN , ∂x(πα ◦ e)(0)= d

dt |t=0π
α(eitx)=

(ix)lπα(IN), we infer

Lμ
(
πα ◦ e

)
(0)= (iX0)

l(πα)(IN)+ 1

2

N2∑
i,j=1

yi,jY
l
i Y

l
j

(
πα)(IN)

+
∫
HN

πα(eix)− IdEα − 1B(x)(ix)
lπα(IN)�(dx)

= (iX0)
l(πα)(IN)+

∫
HN

(
i sin(x)− i1B(x)x

)l
πα(IN)�(dx)

+ 1

2

N2∑
i,j=1

yi,jY
l
i Y

l
j

(
πα)(IN)

+
∫
HN

πα(e(x))− IdEα − (i�(e(x)))lπα(IN)�(dx)

= LEN(μ)π
α(IN).

Finally, for all α ∈ ZN↓ , the sequence ̂(e∗(μ∗1/n))∗n(α) converges to

e
LEN (μ)π

α(IN ) = ÊN(μ)(α) and consequently the sequence (e∗(μ∗1/n))�n con-
verges to EN(μ).

For the proof of the second item, we use the Fourier transform of a measure in
ID(HN,∗), which is given by the following proposition.

PROPOSITION 6.6 ([32]). Let μ ∈ ID(HN,∗) with characteristic triplet
(X0, (yi,j )1≤i,j≤N2,�). We have

∫
HN

ei Tr(xy)μ∗t (dx)= exp(tϕμ(y)) with

ϕμ(y)= i Tr(X0y)− 1

2

N2∑
i,j=1

yi,j Tr(Xiy)Tr(Xjy)

+
∫
HN

ei Tr(xy) − 1 − i1B(x)Tr(xy)�(dx).
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Let μ ∈ IDinv(HN,∗). We claim that, for all t ≥ 0, μ∗t ∈ IDinv(HN,∗). As-
suming for a moment that this claim is proved, let us explain how it leads to the
result: in this case, each measure (e∗(μ∗1/n))�n is conjugate invariant and so is the
limit EN(μ). In addition, for all μ, ν ∈ IDinv(HN,∗), the characteristic triplets
of EN(μ ∗ ν) and of EN(μ) � EN(ν) coincide thanks to Corollary 6.4, and thus
EN(μ ∗ ν)= EN(μ)� EN(ν).

Thus, it remains to prove that, for all t ≥ 0, μ∗t ∈ IDinv(HN,∗). For this, we
prove that the Fourier transform of μ∗t is conjugate invariant. First, ϕμ is conjugate
invariant. Indeed, for all g ∈U(N), we have

exp◦ϕμ(gyg∗)= ∫
HN

ei Tr(xgyg∗) dμ(x)=
∫
HN

ei Tr(g∗xgy) dμ(x)

=
∫
HN

ei Tr(xy) dμ(x)= exp ◦ ϕμ(y).

We deduce that ϕμ is conjugate invariant since it is continuous and exp◦ϕμ is con-
jugate invariant. Consequently,

∫
HN

ei Tr(xg·g∗) dμ∗t (x)= exp(tϕμ(·)) is conjugate
invariant, which is sufficient to conclude.

7. Random matrices. In this last section, we shall define the mappings �N

and �N . Then we prove Theorem 2, and in particular our main result, the con-
vergence of the empirical spectral measures of random matrices distributed over
�N(μ) for some μ ∈ ID(U,�) (see Theorem 7.8). We finish the section by the
proof of Theorem 3.

7.1. The matrix model �N . Recall that the covariance matrix, which corre-
sponds to the diffuse part of an infinitely divisible measure, depends on the choice
of a basis of HN (see Section 6.1). In this article, we fixed an orthonormal basis
{X1, . . . ,XN2} of HN such that XN2 = 1√

N
IN .

DEFINITION 7.1. Let μ ∈ ID(R,�) and let (η, a, ρ) be its �-characteristic
triplet. The distribution �N(μ) ∈ IDinv(HN,∗) is defined to be the infinitely di-
visible measure with characteristic triplet (ηIN, aN,ρN), where aN is the N2 ×
N2-matrix

aN =

⎛⎜⎜⎜⎜⎜⎝

a

N + 1
0

. . .
a

N + 1
0 a

⎞⎟⎟⎟⎟⎟⎠ ,
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and ρN is the Lévy measure on HN which is the push-forward measure of Nρ ⊗
Haar by the mapping from R×U(N) to HN defined by

(x, g) �→ g

⎛⎜⎜⎜⎝
x 0 · · · 0

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0

⎞⎟⎟⎟⎠g∗.

The application �N : ID(R,�) → IDinv(HN,∗) is obviously a homomor-
phism of semigroups and we have �1 =�−1. Moreover, �N is a matricial model
for ID(R,�) in the sense of the following theorem.

THEOREM 7.2 ([4, 12]). Let μ ∈ ID(R,�). For all N ∈N∗, let HN be a ran-
dom matrix whose law is �N(μ), and let μHN

be its empirical spectral measure,
that is to say

μHN
= 1

N

∑
eigenvalue λ of HN

(with multiplicity)

δλ.

Then the measures μHN
converge weakly almost surely to μ when N tends to ∞.

In [4, 12], the model is in fact defined starting from a measure μ ∈ ID(R,∗).
More precisely, for all μ ∈ ID(R,∗) with ∗-characteristic triplet (η, a, ρ) and
Lévy exponent

ϕμ(θ)=
(
iηθ − 1

2
aθ2 +

∫
R

(
eiθx − 1 − iθx1[−1,1](x)

)
dρ(x)

)
,

Benaych–Georges and Cabanal–Duvillard defined �N(μ) ∈ IDinv(HN,∗) by its
Fourier transform: for x, y ∈ HN , we have∫

HN

ei Tr(xy)�N(μ)(dx)= exp
(
ϕ�N(μ)(y)

)
,

where ϕ�N(μ)(y) = NE[ϕμ(〈u,yu〉)], with u uniformly distributed on the unit
sphere of CN . More explicitly,

ϕ�N(μ)(y)= iηTr(y)− a

2(N + 1)

(
Tr(y)Tr(y)+ Tr

(
y2))

+
∫
HN

ei Tr(xy) − 1 − i1B(x)Tr(xy)�(dx).

Using Proposition 6.6, we see that it is exactly the Fourier transform of the in-
finitely divisible measure of IDinv(HN,∗) with characteristic triplet (ηIN, aN,
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ρN). Consequently, we have �N = �N ◦ �, or �N = �N ◦ �−1 which can be
expressed as the commutativity of the following diagram:

ID(R,∗)
�N

�

IDinv(HN,∗) ID(R,�)
�N

.

Nevertheless, we prefer to use �N which turns out to be more suitable for our
present purposes (see Theorem 2). One can consult also [18, 19] for further infor-
mation about this model.

7.2. The matrix model �N . Here again, observe that the data of a covariance
matrix of u(N) depends on the basis chosen, and recall that we fixed an orthonor-
mal basis {Y1, . . . , YN2} of u(N) such that YN2 = i√

N
IN (see Section 5.1).

DEFINITION 7.3. Let μ ∈ ID(U,�) and let (ω, b,υ) be its �-characteristic
triplet. The distribution �N(μ) ∈ IDinv(U(N),�) is defined to be the infinitely
divisible measure with characteristic triplet (Log(ω)IN, bN,υN), where Log is the
principal logarithm, bN is the N2 ×N2-matrix

bN =

⎛⎜⎜⎜⎜⎜⎜⎝

b

N + 1
0

. . .
b

N + 1
0 b

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and υN is the Lévy measure on U(N) which is the push-forward measure of Nυ⊗
Haar by the mapping from U×U(N) to U(N) defined by

(ζ, g) �→ g

⎛⎜⎜⎜⎝
ζ 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

⎞⎟⎟⎟⎠g∗.

If λ is the Haar measure on U, then we agree to define �N(λ) to be the Haar
measure of U(N).

From this definition, we deduce right now the second half of Theorem 2, as a
consequence of the following propositions.

PROPOSITION 7.4. For all μ and ν ∈ ID(U,�), we have �N(μ � ν) =
�N(μ)� �N(ν).
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PROOF. Let μ and ν ∈ ID(U,�). If μ or ν is equal to λ, we have μ� ν = λ.
In this case, �N(μ) or �N(ν) is the Haar measure on U(N) and consequently,
Haar = �N(μ� ν)= �N(μ)� �N(ν).

If μ,ν ∈ ID(U,�)∩M∗, with respective �-characteristic triplets (ω1, b1, υ1)

and (ω2, b2, υ2), the measure μ� ν ∈ M∗ is a �-infinitely divisible measure with
�-characteristic triplet (ω1ω2, b1 +b2, υ1 +υ2). We denote by (Y0, (yi,j )1≤i,j≤N2,

�) and (Y ′
0, (y

′
i,j )1≤i,j≤N2,�′) the respective characteristic triplets of �(μ � ν)

and �(μ) � �(ν). It is straightforward to verify that ((yi,j )1≤i,j≤N2,�) =
((y′

i,j )1≤i,j≤N2,�′), and it remains to compare Y0 and Y ′
0. We have Y0 =

Log(ω1ω2)IN and Y0 = (Log(ω1)+Log(ω2))IN . As a consequence, Y0 and Y ′
0 dif-

fer by a multiple of 2iπIN . Using Lemma 6.5, we deduce that (Y0, (yi,j )1≤i,j≤N2,

�) and (Y ′
0, (y

′
i,j )1≤i,j≤N2,�′) are characteristic triplets of the same measure. In

other words, �(μ� ν)= �(μ)� �(ν). �

PROPOSITION 7.5. For all μ ∈ ID(R,�), we have �N ◦ e�(μ) = EN ◦
�N(μ).

PROOF. Let (η, a, ρ) be the �-characteristic triplet of μ. We denote by
(Y0, (yi,j )1≤i,j≤N2,�) and (Y ′

0, (y
′
i,j )1≤i,j≤N2,�′) the respective characteristic

triplets of �N ◦ e�(μ) and EN ◦�N(μ). We remark first that, following the defi-
nitions,

(yi,j )1≤i,j≤N2 = (
y′
i,j

)
1≤i,j≤N2

=

⎛⎜⎜⎜⎜⎜⎝

a

N + 1
0

. . .
a

N + 1
0 a

⎞⎟⎟⎟⎟⎟⎠
and � = �′ = M|U(N)\{IN } where M is the push-forward measure of Nρ ⊗ Haar
by the mapping from R×U(N) to U(N) given by

(x, g) �→ g

⎛⎜⎜⎜⎝
eix 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

⎞⎟⎟⎟⎠g∗.

To conclude, it remains to compare Y0 and Y ′
0. We have

Y0 = Log◦ exp
(
iη+ i

∫
R

(
sin(x)− 1[−1,1](x)x

)
ρ(dx)

)
IN
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and

Y ′
0 = iηIN + i

∫
HN

(
sin(x)− 1U(x)x

)
dρN(x)

= iηIN + iN

∫
R

∫
U(N)

g

⎛⎜⎜⎝
(
sin(x)− 1[−1,1](x)x

)
0

0
. . .

0 0

⎞⎟⎟⎠g∗ dgρ(dx)

= iηIN + iN

∫
R

1

N

(
sin(x)− 1[−1,1](x)x

)
ρ(dx)

=
(
iη+ i

∫
R

(
sin(x)− 1[−1,1](x)x

)
ρ(dx)

)
IN,

where we have used that E(A)= 1
N

Tr(A)IN (see Example 5.7) for the integration
with respect to the Haar measure of U(N). The difference between Y0 and Y ′

0 is a
multiple of 2iπIN . Using Lemma 6.5, we deduce that (Y0, (yi,j )1≤i,j≤N2,�) and
(Y ′

0, (y
′
i,j )1≤i,j≤N2,�′) are characteristic triplets of the same measure. In other

words, �N ◦ e�(μ)= EN ◦�N(μ). �

7.3. The large-N limit. We are now ready to prove the first half of Theorem 2,
and we begin with a concentration result, very similar to [12], Theorem III.4. For
all f : U → R, the map trf : U → tr(f (U)) is defined on U(N) by spectral cal-
culus.

THEOREM 7.6. Let μ ∈ ID(U,�)∩M∗. For all N ∈ N∗, let UN be a random
matrix whose law is �N(μ). Let us consider f : U → R a Lipschitz continuous
function. Then, for all ε > 0, there exists K > 0 such that, for all N ∈ N∗,

P
[∣∣trf (UN)−E

[
trf (UN)

]∣∣≥ ε
]≤ 2e−NK.

PROOF. We adapt the proof of [12], Theorem III.4, in our multiplicative case.
First of all, f is almost everywhere differentiable. The derivative f ′ of f and the
Lipschitz norm ‖f ‖Lip of f are defined as follows:

f ′(z)= lim
h→0

|f (zeih)− f (z)|
h

and ‖f ‖Lip = sup
x �=y∈R

|f (eix)− f (eiy)|
|x − y| .

Let (ω, b,υ) be the �-characteristic triplet of μ. The distribution �N(μ) is
the infinitely divisible measure with characteristic triplet (Log(ω)IN, bN,υN)
where bN and υN are obtained from b and υ as in Definition 7.3. We consider
a weakly continuous convolution semigroup (μt )t∈R+ with characteristic triplet
(Log(ω)IN, bN,υN), in such a way that μ1 = �N(μ) and μ0 = δIN . We consider
the transition semigroup (Pt )t∈R+ of (μt )t∈R+ : for all t ∈ R+, all bounded Borel
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function f on U(N), and all h ∈ U(N), Ptf (h) = ∫
U(N) f (hg)μt(dg). The gen-

erator L of (Pt )t∈R+ is explicitly given by (5.1).
We can assume without loss of generality that E[trf (UN)] = 0. Let us set, for

any λ ∈R and t ∈ [0,1],
φλ(t)= Pt

(
exp
(
λP1−t (trf )

))
(IN).

We have in particular φλ(0)= 1 and φλ(1)= E[exp(λ trf (UN))]. Using the com-
mutativity of L and Pt , we write

φ′
λ(t)= Pt ◦L(eλP1−t (trf ))(IN)− λPt

(
L
(
P1−t (trf )

) · eλP1−t (trf ))(IN).
We replace L by its definition (5.1). Denoting P1−t (trf ) by Ft and V �→ Ft(VU)

by Ft(·U), it leads to the noncancelable terms

φ′
λ(t)= Pt

(
λ2b

2(N + 1)

N2−1∑
i=1

(
Y l
i Ft
)2 · eλFt

)
(IN)

+ Pt

(
λ2b

2

(
Y l
N2Ft

)2 · eλFt
)
(IN)(7.1)

+ Pt

(∫
U(N)

(
eλFt (·U)−λFt − 1 − λFt(·U)− λFt

)
dυN(U) · eλFt

)
(IN).

Let us examine the first two terms. In [28], Proof of the second assertion of Propo-

sition 3.1, Lévy and Maïda proved that the quantity
∑N2

i=1(Y
l
i Ft )

2 is less than
‖f ‖2

Lip/N . We retrace briefly the structure of their proof, and refer to [28] for
the detailed steps (note that the norm on u(N) we choose differs from the norm
in [28] by a 1/N factor). We have almost everywhere on U(N)

N2∑
i=1

(
Y l
i Ft
)2 =

N2∑
i=1

(
P1−t ◦ Y l

i (trf )
)2 ≤

N2∑
i=1

P1−t
((
Y l
i (trf )

)2)

= P1−t
(
N2∑
i=1

(
tr
(
f ′Yi

))2)= 1

N
P1−t

(
tr
(
f ′2))≤ 1

N
‖f ‖2

Lip.

They used the nonobvious facts that Y l
i (trf )= tr(f ′Yi) and that

∑N2

i=1(tr(XYi))
2=

tr(X2)/N . The same argument with Yn2 = −iIN/
√
N shows that, almost every-

where,

(
Y l
N2Ft

)2 = (
P1−t ◦ Y l

N2(trf )
)2 ≤

N2∑
i=1

P1−t
((
Y l
N2(trf )

)2)
= 1

N
P1−t

((
trf ′)2)≤ 1

N
‖f ‖2

Lip.
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Finally, by continuity, we infer that∣∣∣∣∣ λ2b

2(N + 1)

N2−1∑
i=1

(
Y l
i Ft
)2 + λ2b

2

(
Y l
N2Ft

)2∣∣∣∣∣≤ λ2b

2N
‖f ‖2

Lip.(7.2)

For the third term, we will need the following result. The nuclear norm, or
Schatten 1-norm, is defined, for all A ∈ MN(C), as ‖A‖1 = Tr(

√
A∗A) =∑

σ singular value of A |σ |.

LEMMA 7.7. For all Lipschitz continuous function f :U →R, and all U,V ∈
U(N), we have

∣∣tr(f (U))− tr
(
f (V )

)∣∣≤ 1

N

(
π

2

)2

‖f ‖Lip‖U − V ‖1.

PROOF. Let us state the Hoffman–Wiedlandt inequality for unitary matrices
(see [8], Theorem 5.2, for a proof): there exists a way of ordering the eigen-
values λ1(U), . . . , λn(U) of U and the eigenvalues λ1(V ), . . . , λn(V ) such that∑N

i=1 |λi(U)− λi(V )| ≤ (π/2)‖U − V ‖1.
For all ζ1, ζ2 ∈ U, we have |f (ζ1) − f (ζ2)| ≤ ‖f ‖Lipd(ζ1, ζ2) ≤ (π/2) ×

‖f ‖Lip|ζ1 − ζ2|. Therefore,∣∣tr(f (U))− tr
(
f (V )

)∣∣
= 1

N

∣∣∣∣∣
N∑
i=1

f
(
λi(U)

)− f
(
λi(V )

)∣∣∣∣∣≤ 1

N

N∑
i=1

∣∣f (λi(U))− f
(
λi(V )

)∣∣
≤ 1

N

π

2
‖f ‖Lip

N∑
i=1

∣∣λi(U)− λi(V )
∣∣≤ 1

N

(
π

2

)2

‖f ‖Lip‖U − V ‖1. �

Set K1 = (π/2)2‖f ‖Lip ≥ 0. Because P1−t does not increase the uniform norm,
the lemma above implies that |Ft(·U)− Ft | ≤K1‖U − IN‖1/N . Since |eu − 1 −
u| ≤ u2

2 e
|u| for all u ∈ R, we get

∣∣eλFt (·U)−λFt − 1 − λFt(·U)− λFt
∣∣≤ λ2

2N2K
2
1‖U − IN‖2

1e
λK1‖U−IN‖1/N .

Let us integrate with respect to dυN(U) thanks to Definition 7.3. Remark first that,
for all (ζ, g) ∈ U×U(N), we have∥∥∥∥∥∥∥∥∥g

⎛⎜⎜⎜⎝
ζ 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

⎞⎟⎟⎟⎠g∗ − IN

∥∥∥∥∥∥∥∥∥
1

= |ζ − 1| ≤ 2.
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Consequently, ∫
U(N)

∣∣eλFt (·U)−λFt − 1 − λFt(·U)− λFt
∣∣dυN(U)

(7.3)

≤ λ2

2N
K2

1

∫
U

|ζ − 1|2 dυ(ζ )e2λK1/N .

Finally, denoting K2 = b‖f ‖Lip/2 ≥ 0 and K3 =K2
1

∫
U |ζ − 1|2 dυ(ζ )/2 ≥ 0, we

deduce from (7.1), (7.2) and (7.3) that

φ′
λ(t)≤ λ2

N

(
K2 +K3e

2λK1/N
)
φλ(t).

Integrating this inequality leads to

E
[
exp
(
λ trf (UN)

)]= φλ(1)≤ exp
(
λ2

N

(
K2 +K3e

2λK1/N
))
.

We deduce that, for all ε > 0,

P
[
trf (UN)≥ ε

]≤ E
[
exp
(
λ trf (UN)− λε

)]
≤ exp

(
−N

(
λ

N
ε− λ2

N2

(
K2 +K3e

2λK1/N
)))

.

Notice that supλ∈R(λε− λ2(K2 +K3e
2λK1)) > 0, so if we define K > 0 to be this

supremum, we have

P
[
trf (UN)≥ ε

]≤ e−NK.

To complete the proof, we apply this inequality to −f , and the result follows. �

THEOREM 7.8. Let μ ∈ ID(U,�). For all N ∈ N∗, let UN be a random ma-
trix whose law is �N(μ), and whose empirical spectral measure is

μUN = 1

N

∑
eigenvalue λ of UN

(with multiplicity)

δλ.

Then the measures μUN converge weakly almost surely to μ when N tends to ∞.

PROOF. If μ is the Haar measure λ of U, then �N(μ) is the Haar measure on
U(N) for which the result is well known. Let us assume that μ ∈ ID(U,�)∩M∗,
and let (ω, b,υ) be its �-characteristic triplet. Due to the concentration result of
Theorem 7.6, it remains to establish the convergence of the deterministic measure
E[μUN ] to μ. We verify the convergence of moments. As in Section 2, for all n ∈
N,mn(μ) is the nth moment of μ. Let n ∈ N. We want to prove that mn(E[μUN ])=
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E[Tr((UN)
n)]/N tends to mn(μ) as N tends to ∞. We will prove the result under

the following stronger form: for all σ ∈Sn,

lim
N→∞E

[
N−�(σ ) ∏

c cycle of σ

Tr
(
U
�c
N

)]= ∏
c cycle of σ

m�c(μ).

Thanks to Definition 7.3, we know that a characteristic triplet of �N(μ) is given
by ⎛⎜⎜⎝iy0IN,

⎛⎜⎜⎝
α 0

. . .

α

0 β

⎞⎟⎟⎠ ,�
⎞⎟⎟⎠ ,

where y0 = −i Log(ω), α = b/(N+1), β = b and � is the Lévy measure obtained
from υ as in Definition 7.3.

Fix σ ∈Sn. Using the notation of Section 5, we observe that, for all U ∈U(N)

and σ ∈Sn, we have∏
c cycle of σ

Tr
(
U�c)= Tr(CN)⊗n

(
U⊗n ◦ ρSn

N (σ )
)
.(7.4)

In order to use Proposition 5.8, we define L̃N ∈ C[Sn] by

L̃N =
(
niy0 − n2

N

β

2
+
(
n2

N
− nN

)
α

2
+ n

N

∫
U(N)

Tr
(�(g)− 1

)
�(dg)

)
1Sn

− α
∑
τ∈Tn

τ + ∑
2≤m≤n

1≤k1<···<km≤n

∑
π ′,π∈Sm

Wg
(
π ′−1π

)

×
∫
U(N)

∏
c cycle of σ

Tr
(
(g − 1)�c

)
�(dg) · ιk1,...,km(π)

=
(
nLog(ω)− n2

N
b+

(
n2

N
− nN

)
b

2(N + 1)
+ n

∫
U

(�(ζ )− 1
)
υ(dζ )

)
1Sn

− b

N + 1

∑
τ∈Tn

τ

+ ∑
2≤m≤n

1≤k1<···<km≤n

∑
π ′,π∈Sm

Wg
(
π ′−1π

)
N

∫
U
(ζ − 1)mυ(dζ ) · ιk1,...,km(π).

Using Proposition 5.8, we have

E

[
N−�(σ ) ∏

c cycle of σ

Tr
(
U
�c
N

)]=N−�(σ ) Tr(CN)⊗n
(
E
[
U⊗n
N

] ◦ ρSn

N (σ )
)

=N−�(σ ) Tr(CN)⊗n
(
ρ
Sn

N

(
eL̃N σ

))
.
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From (7.4), we deduce also that, for all σ ∈ Sn, we have

Tr(CN)⊗n
(
ρ
Sn

N (σ )
)=N�(σ).

We denote by N� (resp., N−�) the linear operator on C[Sn] defined by N�(σ)=
N�(σ)σ [resp., N−�(σ ) = N−�(σ )σ ] and by φ the linear functional defined by
φ(σ)= 1. This way, we have Tr(CN)⊗n ◦ρSn

N = φ ◦N�. Let us also denote by TN

the linear operator on C[Sn] of multiplication by L̃N , defined by TN(σ)= L̃Nσ .
We can rewrite

E

[
N−�(σ ) ∏

c cycle of σ

Tr
(
U
�c
N

)]= Tr(CN)⊗n
(
ρ
Sn

N

(
eL̃NN−�(σ )σ

))
= φ

(
N�eTNN−�(σ )

)
= φ

(
eN

�TNN
−�
(σ )
)
.

We take the limit with the help of the following lemma. Recall that (Lκn(μ))n∈N∗
are the free log-cumulants of μ (see Section 4), which are given by:

1. Lκ1(μ)= Log(ω)− b/2 + ∫U(�(ζ )− 1)dυ(ζ ),
2. Lκ2(μ)= −b+ ∫U(ζ − 1)2 dυ(ζ )
3. and Lκn(μ)= ∫

U(ζ − 1)n dυ(ζ ) for all n≥ 2.

LEMMA 7.9. When N tends to ∞, the operator N�TNN
−� converges to an

operator T which is such that, for all σ ∈ Sn,

T (σ)= nLκ1(μ) · σ + ∑
2≤m≤n

c m-cycle of Sn

cσ
σ

Lκm(μ) · cσ.

PROOF. We shall prove that, for a fixed σ ∈ Sn, limN→∞N�TNN
−�(σ ) =

T (σ). Let us compute

N�TNN
−�(σ )=N�(σ)N�(L̃σ ).

Replacing L̃ by its value gives us N�(σ)N�(L̃σ )= (I + II + III)σ , with

I =
(
nLog(ω)− n2

N
b+

(
n2

N
− nN

)
b

2(N + 1)
+ n

∫
U

(�(ζ )− 1
)
υ(dζ )

)
1Sn

,

II = − b

N + 1

∑
τ∈Tn

N�(τσ)−�(σ )τ,

and

III = ∑
2≤m≤n

1≤k1<···<km≤n

∑
π∈Sm

∫
U
(ζ − 1)m υ(dζ ) ·

( ∑
π ′∈Sm

Wg
(
π ′−1

π
))

×N1+�(ιk1,...,km(π)σ )−�(σ ) · ιk1,...,km(π).
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The first limit is immediate:

lim
N→∞ I =

(
nLog(ω)− n

2
b+ n

∫
U

(�(ζ )− 1
)
υ(dζ )

)
1Sn

= nLκ1(μ)1Sn
.

For the second and the third term, we recall that for all π ∈ Sn, we have

d(1, σ )≤ d(1, πσ)+ d(πσ,σ )

with equality if and only if πσ 
 σ (see Section 4.1).
Let us focus on II. We fix τ ∈ Tn. We know that d(1, σ )≤ d(1, τσ )+d(τσ,σ ).

In term of numbers of cycles, it means that n − �(σ ) ≤ n − �(τσ ) + n − �(τ ).
Because �(τ ) = n − 1, we have �(τσ ) − �(σ ) ≤ 1 with equality if and only if
τσ 
 σ . By consequence,

lim
N→∞ II = −b ∑

τ∈Tn
τσ
σ

τσ.

A similar reasoning can be made for III. Let us fix 2 ≤ m ≤ n,1 ≤ k1 < · · · <
km ≤ n and π ∈ Sm. We denote by c the permutation ιk1,...,km(π). On one hand,
Proposition 5.6 gives us Wg(π ′−1

π) = O(N−m−1) if π �= π ′ and Wg(π ′−1
π) =

N−n +O(N−n−1) if π = π ′, and by consequence,∑
π ′∈Sm

Wg
(
π ′−1

π
)=N−m +O

(
N−m−1).

On the other hand, we know that d(1, σ )≤ d(1, cσ )+ d(cσ,σ ). In terms of
numbers of cycles, it means that n − �(σ ) ≤ n − �(cσ ) + n − �(c). Because
�(c)= �(ιk1,...,km(π))= n−m+ �(π), we have 1+ �(cσ )− �(σ )≤ 1+m− �(π).
Thus, we have

1 + �(cσ )− �(σ )≤m

with equality if and only if we have both cσ 
 σ and �(π)= 1. Consequently, the
term ∑

π ′∈Sm

Wg
(
π ′−1

π
)
N1+�(ιk1,...,km(π)σ )−�(σ )

is equal to 1 +O(N−1) if we have both cσ 
 σ and �(π)= 1, but it is O(N−1) if
not. Finally,

lim
N→∞ III = ∑

2≤m≤n
1≤k1<···<km≤n

∑
π m-cycle of Sm

ιk1,...,km(π)σ
σ

∫
U
(ζ − 1)mυ(dζ ) · ιk1,...,km(π)σ

= ∑
2≤m≤n

∑
c m-cycle of Sn

cσ
σ

∫
U
(ζ − 1)mυ(dζ ) · cσ.
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Thus, we have

lim
N→∞ I + II + III = nLκ1(μ) · σ + ∑

2≤m≤n
c m-cycle of Sn

cσ
σ

Lκm(μ) · cσ = T (σ).

�

As a consequence, we have

lim
N→∞E

[
N−�(σ ) ∏

c cycle of σ

Tr
(
U
�c
N

)]

= φ
(
eT (σ )

)= φ
(
enLκ1(μ)eT−nLκ1(μ)(σ )

)
= φ

(
enLκ1(μ)

∑
� simple chain in [1,σ ]
�=(σ0,...,σ|�|),σ|�|=σ

1

|�|!
|�|∏
i=1

Lκd(σi ,σi−1)+1(μ) · σ0

)

= enLκ1(μ)
∑

� simple chain in [1,σ ]
�=(σ0,...,σ|�|),σ|�|=σ

1

|�|!
|�|∏
i=1

Lκd(σi,σi−1)+1(μ).

Using (4.1) on the right-hand side, we conclude that

lim
N→∞E

[
N−�(σ ) ∏

c cycle of σ

Tr
(
U
�c
N

)]= ∏
c cycle of σ

m�c(μ).
�

REMARK 7.10. In fact, the proof can be easily extended to a more general
situation. Let μ ∈ ID(U,�) and let (ω, b,υ) be its �-characteristic triplet. For all
N ∈ N∗, let y(N)0 , α(N), β(N) ∈ R and �(N) be a Lévy measure on U(N) which is
conjugate invariant. We suppose that:

1. limN→∞ eiy
(N)
0 = ω, α(N) ∼N→∞ b/N and β(N) =O(1) as N tends to ∞.

2. For all k ≥ 2,

lim
N→∞

1

N

∫
U(N)

Tr
(
(g − IN)

k)�(N)(dg)=
∫
U
(ζ − 1)kυ(dζ ).

3. For all k1, . . . , kn ∈ N∗ such that k1 + · · · + kn ≥ 2, we have, as N tends to
infinity,

1

N

∫
U(N)

Tr
(
(g − IN)

k1
) · · ·Tr

(
(g − IN)

kn
)
�(N)(dg)=O(1).



2476 G. CÉBRON

Then the conclusion of Theorem 7.8 is still true whenever UN is a random matrix
whose law is an infinitely divisible measure which admits⎛⎜⎜⎝iy(N)0 IN,

⎛⎜⎜⎝
α(N) 0

. . .

α(N)

0 β(N)

⎞⎟⎟⎠ ,�(N)

⎞⎟⎟⎠
as a characteristic triplet.

7.4. Proof of Theorem 3. We refer the reader to [36] for the main definitions
of free probability spaces. We call free unitary multiplicative Lévy process a family
(Ut )t∈R+ of unitary elements of a noncommutative probability space (A, τ ) such
that:

1. U0 = 1A.
2. For all 0 ≤ s ≤ t , the distribution of UtU

−1
s depends only on t − s.

3. For all 0 ≤ t1 < · · · < tn, the elements Ut1,Ut2U
−1
t1
, . . .UtnU

−1
tn−1

are freely
independent.

4. The distribution of Ut converge weakly to δ1 as t tends to 0.

Notice that this definition differs from the definition in [11] by the first and the
fourth items.

Let (Ut )t∈R+ be a free unitary multiplicative Lévy process with marginal dis-
tributions (μt )t∈R+ in M∗. Then, (μt )t∈R+ is a weakly continuous semigroup of
measures for the convolution � on U. Moreover, there exists α ∈ R and b ≥ 0 and
υ a Lévy measure on U such that, for all t ≥ 0, (eiαt , tb, tυ) is a �-characteristic
triplet of Ut (see [6]). Using Lemma 6.5, it is straightforward to verify that the
weakly continuous semigroup whose characteristic triplet is (iαIN, bN,υN) co-
incides with (�N(μt))t∈R+ . Therefore, there exists a Lévy process (U(N)

t )t∈R+ in

U(N) such that �N(μt) is the distribution of U(N)
t for each t ∈ R+ (see [29]).

We already know that, for each fixed t ∈ R+, the element U(N)
t converges almost

surely to Ut in noncommutative ∗-distribution, in the sense that, for each noncom-
mutative polynomial P in two variables, one has the almost sure convergence

lim
N �→∞

1

N
Tr
(
P
(
U
(N)
t ,U

(N)
t

∗))= τ
(
P
(
Ut,U

∗
t

))
.

Since the increments of (Ut )t∈R+ are freely independent, to prove the convergence

of the whole process, it suffices to prove that the increments of (U(N)
t )t∈R+ are

asymptotically free. This is a well-known consequence of the fact that the incre-

ments of (U(N)
t )t∈R+ are independent and invariant under conjugation by unitary

matrices (see, e.g., [15, 35–37], or the Appendix of [27] for a concise treatment).
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