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CYCLES AND EIGENVALUES OF SEQUENTIALLY GROWING
RANDOM REGULAR GRAPHS1
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Consider the sum of d many i.i.d. random permutation matrices on n la-
bels along with their transposes. The resulting matrix is the adjacency matrix
of a random regular (multi)-graph of degree 2d on n vertices. It is known that
the distribution of smooth linear eigenvalue statistics of this matrix is given
asymptotically by sums of Poisson random variables. This is in contrast with
Gaussian fluctuation of similar quantities in the case of Wigner matrices. It is
also known that for Wigner matrices the joint fluctuation of linear eigenvalue
statistics across minors of growing sizes can be expressed in terms of the
Gaussian Free Field (GFF). In this article, we explore joint asymptotic (in n)
fluctuation for a coupling of all random regular graphs of various degrees
obtained by growing each component permutation according to the Chinese
Restaurant Process. Our primary result is that the corresponding eigenvalue
statistics can be expressed in terms of a family of independent Yule processes
with immigration. These processes track the evolution of short cycles in the
graph. If we now take d to infinity, certain GFF-like properties emerge.

1. Introduction. We consider graphs that have labeled vertices and are regu-
lar, that is, every vertex has the same degree. We allow our graphs to have loops and
multiple edges (such graphs are sometimes called multigraphs or pseudographs).
Additionally, our graphs will be sparse in the sense that the degree will be negli-
gible compared to the order. Every such graph has an associated adjacency matrix
whose (i, j)th element is the number of edges between vertices i and j , with loops
counted twice. When the graph is randomly selected, the matrix is random, and we
are interested in studying the eigenvalues of the resulting symmetric matrix. Note
that, due to regularity, it does not matter whether we consider the eigenvalues of
the adjacency or the Laplacian matrix.

The precise distribution of this random regular graph is somewhat ad hoc. We
will use what is called the permutation model. Consider the permutation digraphs
generated by d many i.i.d. random permutations on n labels. We remove the di-
rection of the edge and collapse all these graphs on one another. This results in
a 2d-regular graph on n vertices, denoted by G(n,2d). At the matrix level this is
given by adding all the d permutation matrices and their transposes.
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Our present work is an extension of the study of eigenvalue fluctuations carried
out in [12]. We are motivated by the recent work by Borodin on joint eigenvalue
fluctuations of minors of Wigner matrices and the (massless or zero-boundary)
Gaussian Free Field (GFF) [6, 7]. Eigenvalues of minors are closely related to
interacting particle systems [18, 19], and the KPZ universality class of random
surfaces [8]. See [21] for more on eigenvalues of minors of GUE and [1] for those
of Dyson’s Brownian motion.

Let us consider a particular but important case of Borodin’s result in [6] (single
sequence, the entire N). An n × n real symmetric Wigner matrix has i.i.d. up-
per triangular off-diagonal elements with four moments identical to the standard
Gaussian. The diagonal elements are usually taken to be i.i.d. with mean zero vari-
ance two. Notice that every principal submatrix (called minors in this context) of
a Wigner matrix is again a Wigner matrix of a smaller order. Thus, on some prob-
ability space one can construct an infinite order Wigner matrix W whose n × n

minor W(n) is a Wigner matrix of order n.
Let z be a complex number in the upper half plane H. Define y = |z|2 and x =

2�(z). Consider the minor W(�ny�), and let N(z) be the number of its eigenvalues
that are greater than or equal to

√
nx. Define the height function

Hn(z) :=
√

π

2
N(z).(1)

Then Borodin shows that {Hn(z) − EHn(z), z ∈ H}, viewed as distributions, con-
verges in law to a generalized Gaussian process on H with a covariance kernel

C(z,w) = 1

2π
ln

∣∣∣∣z − w

z − w

∣∣∣∣.(2)

The above is the covariance kernel for the GFF on the upper half plane.
An equivalent assertion is the following. Let [n] denote the set of integers

{1,2, . . . , n}. Consider the Chebyshev polynomials of the first kind, {Tn,n =
0,1,2, . . .}, on the interval [−1,1]. These polynomials are given by the iden-
tity Tn(cos(θ)) ≡ cos(nθ). We specialize [6], Proposition 3, for the case of GOE
(β = 1). Fix m positive real numbers t1 < t2 < · · · < tm. In the notation of [6], we
take L = n and Bi(n) = [�tin�]. Then, for any positive integers j1, j2, . . . , jm, the
random vector(

trTji

(
W

(�tin�)
/2

√
tin

) − E trTji

(
W

(�tin�)
/2

√
tin

)
, i ∈ [m])

converges in law, as n tends to infinity, to a centered Gaussian vector. For s ≤ t ,

lim
n→∞ Cov

(
trTi

(
W

(�tn�)
/2

√
tn

)
, trTk

(
W

(�sn�)
/2

√
sn

)) = δik

k

2

(
s

t

)k/2

,(3)

which gives the covariance kernel of the limiting vector. In particular, all such
covariances are zero when i �= k. Note that the traces can be expressed as integrals
of the height function of the corresponding submatrices. Thus, by approximating
continuous compactly supported functions of z by a function that is piecewise
constant in y and polynomial in x, one gets the kernel (2).
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1.1. Main results. By a tower of random permutations, we mean a sequence
of random permutations (π(n), n ∈ N) such that:

(i) π(n) is a uniformly distributed random permutation of [n] for each n, and
(ii) for each n, if π(n) is written as a product of cycles then π(n−1) is derived

from π(n) by deletion of the element n from its cycle.

The stochastic process that grows π(n) from π(n−1) by sequentially inserting an el-
ement n randomly is called the Chinese Restaurant Process (CRP). We will review
the basic principles at a later section. In [23] and other related work, a sequence
of permutations satisfying condition (ii) is called a virtual permutation, and the
distribution on virtual permutations satisfying condition (i) is considered as a sub-
stitute for Haar measure on S(∞), the infinite symmetric group. This is used to
study the representation theory of S(∞), with connections to random matrix the-
ory. A recent extension of this idea is [9].

Now suppose we construct a countable collection {�d,d ∈ N} of towers of ran-
dom permutations. We will denote the permutations in �d by {π(n)

d , n ∈ N}. Then
it is possible to model every possible G(n,2d) by adding the permutation matri-
ces (and their transposes) corresponding to {π(n)

j ,1 ≤ j ≤ d}. In what follows, we
will keep d fixed and consider n as a growing parameter. Thus, Gn will represent
G(n,2d) for some fixed d . Here and later, G0 will represent the empty graph. We
construct a continuous-time version of this by inserting new vertices into Gn with
rate n + 1. Formally, define independent times Ti ∼ Exp(i), and let

Mt = max

{
m :

m∑
i=1

Ti ≤ t

}
,

and define the continuous-time Markov chain G(t) = GMt . When d = 1, this pro-
cess is essentially just a continuous-time version of the CRP itself. Though this
case is unusual compared to the rest—for example, G(t) is likely to be discon-
nected when d = 1 and connected when d is larger—our results do still hold.

Our first result is about the process of short cycles in the graph process G(t).
By a cycle of length k in a graph, we mean what is sometimes called a simple
cycle: a walk in the graph that begins and ends at the same vertex, and that other-
wise repeats no vertices. We will give a more formal definition in Section 2.2. Let
(C

(s)
k (t), k ∈ N) denote the number of cycles of various lengths k that are present

in G(s + t). This process is not Markov, but nonetheless it converges to a Markov
process (indexed by t) as s tends to infinity.

To describe the limit, define

a(d, k) =
{

(2d − 1)k − 1 + 2d, when k is even,
(2d − 1)k + 1, when k is odd.

Consider the set of natural numbers N= {1,2, . . .} with the measure

μ(k) = 1
2

[
a(d, k) − a(d, k − 1)

]
, k ∈N, a(d,0) := 0.
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Consider a Poisson point process χ on N×[0,∞) with an intensity measure given
on N× (0,∞) by the product measure μ ⊗ Leb, where Leb is the Lebesgue mea-
sure, and with additional masses of a(d, k)/2k on (k,0) for k ∈ N.

Let P̃x denote the law of an one-dimensional pure-birth process on N given by
the generator:

Lf (k) = k
(
f (k + 1) − f (k)

)
, k ∈ N,

starting from x ∈ N. This is also known as the Yule process.
Suppose we are given a realization of χ . For any atom (k, y) of the countably

many atoms of χ , we start an independent process (Xk,y(t), t ≥ 0) with law P̃k .
Define the random sequence

Nk(t) := ∑
(j,y)∈χ∩{[k]×[0,t]}

1
{
Xj,y(t − y) = k

}
.

In other words, at time t , for every site k, we count how many of the processes that
started at time y ≤ t at site j ≤ k are currently at k. Note that both (Nk(·), k ∈ N)

and (Nk(·), k ∈ [K]), for some K ∈ N, are Markov processes, while Nk(·) for fixed
k is not.

THEOREM 1. As s → ∞, the process (C
(s)
k (t), k ∈ N,0 ≤ t < ∞) converges

in law in DR∞[0,∞) to the Markov process (Nk(t), k ∈ N,0 ≤ t < ∞). The limit-
ing process is stationary.

REMARK 2. In fact, the same argument used to prove Theorem 1 shows
that the process (C

(s)
k (t),−∞ < t < ∞) converges in law to the Markov process

(Nk(t),−∞ < t < ∞) running in stationarity. The same conclusion holds for all
the following theorems in this section.

We now explore the joint convergence across various d’s. Define C
(s)
d,k(t) natu-

rally, stressing the dependence on the parameter d .

THEOREM 3. There is a joint process convergence of (C
(s)
i,k (t), k ∈ N, i ∈

[d], t ≥ 0) to a limiting process (Ni,k(t), k ∈ N, i ∈ [d], t ≥ 0). This limit is a
Markov process whose marginal law for every fixed d is described in Theorem 1.
Moreover, for any d ∈ N, the process (Nd+1,k(·) − Nd,k(·), k ∈ N) is independent
of the process (Ni,k(·), k ∈ N, i ∈ [d]) and evolves as a Markov process. Its gener-
ator (defined on functions dependent on finitely many coordinates) is given by

Lf (x) =
∞∑

k=1

kxk

[
f (x + ek+1 − ek) − f (x)

] +
∞∑

k=1

ν(d, k)
[
f (x + ek) − f (x)

]
,

where x is a nonnegative sequence, (ek, k ∈ N) are the canonical orthonormal
basis of 	2, and

ν(d, k) = 1
2

[
a(d + 1, k) − a(d + 1, k − 1) − a(d, k) + a(d, k − 1)

]
.
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REMARK 4. Theorems 1 and 3 show an underlying branching process struc-
ture. We actually prove a more general decomposition where cycles are tracked by
edge labels. The additive structure also imparts a natural intertwining relationship
between the Markov operators. See [10], Section 2 and [6, 11].

We now focus on eigenvalues of G(t). Note that there is no easy exact rela-
tionship between the eigenvalues of Gn for various n since the eigenvectors play
a role in determining any such identity. In fact, the eigenvalues of Gn and Gn+1
need not be interlaced. However, one can consider linear eigenvalue statistics for
the graph G(n,2d). That is, for any d-regular graph on n vertices G and function
f :R→R, define the random variable

trf (G) :=
n∑

i=1

f̂ (λi),

where λ1 ≥ · · · ≥ λn are the eigenvalues of adjacency matrix of G divided by
2(2d − 1)1/2, and f̂ is f with its constant term adjusted [see (14) for the full
definition]. The scaling is necessary to take a limit with respect to d .

By a polynomial basis we refer to a sequence of polynomials {f0 ≡ 1, f1,

f2, . . .} such that fk is a polynomial of degree k of a single argument over reals. In
the statement below [∞] will refer to N.

THEOREM 5. There exists a polynomial basis {fi, i ∈ N} (depending on d)
such that for any K ∈ N ∪ {∞}, the process (trfk(G(s + t)), k ∈ [K], t ≥ 0) con-
verges in law, as s tends to infinity, to the Markov process (Nk(t), k ∈ [K], t ≥ 0)

of Theorem 1. [The polynomials are given explicitly in (16).] Hence, for any poly-
nomial f , the process (trf (G(s + t))) converges to a linear combination of the
coordinate processes of (Nk(t), k ∈ N).

The Markov property is especially intriguing since, to the best of our knowl-
edge, no similar property of eigenvalues of the standard Random Matrix ensem-
bles is known. For the special case of minors of the Gaussian Unitary/Orthogonal
Ensembles, the entire distribution of eigenvalues across minors of various sizes
do satisfy a Markov property. However, this is facilitated by the known symme-
try properties of the eigenvectors, and do not extend to other examples of Wigner
matrices.

For our final result, we will take d to infinity. We will make the following no-
tational convention: for any polynomial f , we will denote the limiting process of
(trf (G(s + t)), t ≥ 0) by (trf (G(∞ + t)), t ≥ 0). Recall that this process is a
linear combination of (Nk(t), k ∈N, t ≥ 0).

THEOREM 6. Let {Tk, k ∈ N} denote the Chebyshev orthogonal polynomials
of the first kind on [−1,1]. As d tends to infinity, the collection of processes(

trTk

(
G(∞ + t)

) − E trTk

(
G(∞ + t)

)
, t ≥ 0, k ∈ N

)
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converges weakly in D∞[0,∞) to a collection of independent Ornstein–Uhlenbeck
processes (Uk(t), t ≥ 0, k ∈ N), running in equilibrium. Here the equilibrium dis-
tribution of Uk is N(0, k/2) and Uk satisfies the stochastic differential equation

dUk(t) = −kUk(t) dt + k dWk(t), t ≥ 0,

and (Wk, k ∈ N) are i.i.d. standard one-dimensional Brownian motions.
Thus, the collection of random variables (trTk(G(∞+ t))−E trTk(G(∞+ t))),

indexed by k and t , converges as d tends to infinity to a centered Gaussian process
with covariance kernel given by

lim
d→∞ Cov

(
trTi

(
G(∞ + t)

)
, trTk

(
G(∞ + s)

)) = δik

k

2
ek(s−t)(4)

for s ≤ t .

A comparison of (4) with Borodin’s result (3) shows that the above limit cap-
tures a key property of the GFF covariance structure. The appearance of the expo-
nential is merely due to a deterministic time-change of the process. A somewhat
more detailed discussion can be found in the following section.

REMARK 7. A common model for random regular graphs is the configuration
model or pairing model (see [34] for more information). The model is defined as
follows: Start with n buckets, each containing d prevertices. Then, separate these
dn prevertices into pairs, choosing uniformly from every possible pairing. Finally,
collapse each bucket into a single vertex, making an edge between one vertex
and another if a prevertex in one bucket is paired with a prevertex in the other
bucket. This model has the advantage that choosing a graph from it conditional on
it containing no loops or parallel edges is the same as choosing a graph uniformly
from the set of graphs without loops and parallel edges. The model also allows for
graphs of odd degrees, unlike the permutation model.

It is possible to construct a process of growing random regular graphs simi-
lar to the one in this paper using a dynamic version of this model. Given some
initial pairing of prevertices labeled {1, . . . , dn}, extend it to a random pair-
ing of {1, . . . , dn + 2} by the following procedure: Choose X uniformly from
{1, . . . , dn + 1}. Pair dn + 2 with X. If X = dn + 1, leave the other pairs un-
changed; if not, pair the previous partner of X with dn + 1. This is an analogue of
the CRP in the setting of random pairings, in that if the initial pairing is uniformly
chosen, then so is the extended one.

If d is odd, we repeat this procedure a total of d times to extend a random d-
regular graph on n vertices to have n + 2 vertices (when d is odd, the number
of vertices in the graph must be even). When d is even, repeat d/2 times to add
one new vertex to a random graph. In this way, we can construct a sequence of
growing random regular graphs. We believe that all the results of this paper hold
in this model with minor changes, with similar proofs.
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1.2. Existing literature. The study of the spectral properties of sparse regu-
lar random graphs is motivated by several different problems. These matrices do
not fall within the purview of the standard techniques of Random Matrix Theory
(RMT) due to their sparsity and lack of independence between entries. However,
extensive simulations [20] point to conjectures that these matrices still belong to
the universality class of random matrices. For example, it is conjectured via simu-
lations [25] that the distribution of the second largest eigenvalue (in absolute value)
is given by the Tracy–Widom distribution. In the physics literature, eigenvalues of
random regular graphs have been considered as a toy model of quantum chaos [26,
27, 30]. Simulations suggest that the eigenvalue spacing distribution has the same
limit as that of the Wigner matrices. A limiting Gaussian wave character of eigen-
vectors have also been conjectured [14–16]. Some fine properties of eigenvalues
and eigenvectors can indeed be proved for a single permutation matrix; see [33]
and [4].

Somewhat complicating the matter is the fact that when the degree d is kept
fixed and we let n go to infinity, several classical results about random matrix en-
sembles fail. A bit more elaboration on this point is needed. The two parameters
in the ensemble of random graphs are the degree d and the order n. In the permu-
tation model it is possible to construct random regular graphs for every possible
value of (d, n) where d is an even positive integer and n is any positive integer.
Hence, one can consider various kinds of limits of these parameters. We will re-
fer as the diagonal limit the procedure of having a sequence of (d, n) where both
these parameters simultaneously go to infinity. To maintain sparsity,2 it is usually
assumed that d is at most poly-logarithmic in n. No lower bound on the growth
rate of d is assumed. However, results are often easier to prove when d is kept
fixed and we let n go to infinity. Suppose for each d one gets a limiting object (say
a probability distribution); one can now take d to infinity and explore limits of
the sequence of these objects. We will refer to this procedure (limd→∞ limn→∞)
as the triangular limit. The triangular limit is often identical to the diagonal limit
irrespective of the sequence through which the diagonal limit is taken, while main-
taining sparsity. Moreover, these limiting statistics frequently match with those of
the GOE ensemble and the real symmetric Wigner matrices. This is true, for ex-
ample, for the empirical spectral distribution [13, 32] and fluctuations of smooth
linear eigenvalue statistics [12].

Our present result is a triangular limit result. Let us first explain the connec-
tion with the massless GFF. We follow Definition 2.12 and the first example in
Section 2.5 of [29]. Consider the space of smooth real functions compactly sup-
ported on H with the Dirichlet inner product 〈f,g〉 = ∫

H
∇f · ∇g dz. Let H be

the completion of this pre-Hilbert space. The GFF can be thought of as a random

2The nonsparse can be typically absorbed within standard techniques of RMT by comparing with
a corresponding Erdős–Rényi graph whose adjacency matrix has independent entries.
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distribution h which associates with every f ∈ H a mean zero Gaussian random
variable 〈h,f 〉 that is an L2 isometry in the sense that Cov(〈h,f 〉, 〈h,g〉) = 〈f,g〉.
Now, one can perform the integration of a function f with h by first integrating
their traces over semicircular arcs of a fixed radius, and then a further integral over
the radius. Over the semicircular arcs Fourier transforms (or Chebyshev Polynomi-
als, for real functions) provide an orthogonal basis for this Gaussian field. As one
parametrizes the radius properly, one obtains independent Ornstein–Uhlenbeck
processes for each Chebyshev polynomial. Hence, these OU processes completely
determine the GFF covariance structure. This explains the word “equivalent” on
page 2, paragraph 4, and is the essence of the calculations done in [6]. See also [31]
for a similar formalism for Dyson’s Brownian motion on the circle.

One of the reasons why we cannot prove a full GFF convergence is that the
parameters d and n behave independently of one another. The degree d determines
the support of the spectral distribution [−2

√
2d − 1,2

√
2d − 1], asymptotically

independent of n. For Wigner matrices, the dimension itself determines the length
of the spectral support. This results in the parametrization of (1). It should be
possible to extend our results to a GFF convergence by either letting d grow with n

in the graph, or, even by letting d grow with time for the limiting Poisson structure
in Theorem 1. Though we have not attempted this in the present article, we prove
a result along these lines in [22].

2. Preliminaries.

2.1. A primer on the Chinese Restaurant Process. The CRP, introduced by
Dubins and Pitman, is a particular example of a two parameter family of stochas-
tic processes that constructs sequentially random exchangeable partitions of the
positive integers via the cyclic decomposition of a random permutation. Our short
description is taken from [28], Section 3.1.

An initially empty restaurant has an unlimited number of circular tables num-
bered 1,2, . . . , each capable of seating an unlimited number of customers. Cus-
tomers numbered 1,2, . . . arrive one by one and are seated at the tables according
to the following plan. Person 1 sits at table 1. For n ≥ 1 suppose that n customers
have already entered the restaurant, and are seated in some arrangement, with at
least one customer at each of the tables j for 1 ≤ j ≤ k (say), where k is the num-
ber of tables occupied by the first n customers to arrive. Let customer n+1 choose
with equal probability to sit at any of the following n + 1 places: to the left of cus-
tomer j for some 1 ≤ j ≤ n, or alone at table k + 1. Define π(n) : [n] → [n] as the
permutation whose cyclic decomposition is given by the tables; that is, if after n

customers have entered the restaurant, customers i and j are seated at the same
table, with i to the left of j , then π(n)(i) = j , and if customer i is seated alone
at some table then π(n)(i) = i. The sequence (π(n)) then has features (i) and (ii)
mentioned in the first paragraph of Section 1.1.
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2.2. Combinatorics on words. The graph Gn, formed from the independent
permutations π

(n)
1 , . . . , π

(n)
d , can be considered as a directed, edge-labeled graph

in a natural way. For convenience, drop superscripts and let πl = π
(n)
l . If πl(i) =

j , then by definition Gn contains an edge between i to j . When convenient, we
consider this edge to be directed from i to j and to be labeled by πl .

Consider a walk on Gn, viewed in this way, and imagine writing down the label
of each edge as it is traversed, putting πi or π−1

i according to the direction we
walk over the edge. We call a walk closed if it starts and ends at the same vertex,
and we call a closed walk a cycle it never visits a vertex twice (besides the first and
last one), and it never traverses an edge more than once in either direction. Thus
the word w = w1 · · ·wk formed as a cycle is traversed is cyclically reduced, that
is, wi �= w−1

i+1 for all i, considering i modulo k. For example, following an edge
and then immediately backtracking does not form a 2-cycle, and the word formed
by this walk is πiπ

−1
i or π−1

i πi for some i, which is not cyclically reduced. We
consider two cycles equivalent if they are both walks on an identical set of edges;
that is, we ignore the starting vertex and the direction of the walk.

Let Wk denote the set of cyclically reduced words of length k. We would like to
associate each k-cycle in Gn with the word in Wk formed by the above procedure,
but since we can start the walk at any point in the cycle and walk in either of two
directions, there are actually up to 2k different words that could be formed by it.
Thus, we identify elements of Wk that differ only by rotation and inversion (e.g.,
π1π

−1
2 π1π2 and π−1

1 π2π
−1
1 π−1

2 ) and denote the resulting set by Wk/D2k , where
D2k is the dihedral group acting on the set Wk in the natural way.

DEFINITION 8 (Properties of words). For any k-cycle in Gn, the element of
Wk/D2k given by walking around the cycle is called the word of the cycle (see
Figure 1). For any word w, let |w| denote the length of w. Let h(w) be the largest
number m such that w = um for some word u. If h(w) = 1, we call w primitive. For
any w ∈ Wk , the orbit of w under the action of D2k contains 2k/h(w) elements,
a fact which we will frequently use. Let c(w) denote the number of pairs of double
letters in w, that is, the number of integers i modulo |w| such that wi = wi+1.

FIG. 1. A cycle whose word is the equivalence class of π2π−1
1 π2π1π2π−1

3 in W6/D12.
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If w has length 1, then we define c(w) = 0. For example, c(π1π1π
−1
2 π−1

2 π1) = 3.
We will also consider | · |, h(·), and c(·) as functions on Wk/D2k , since they are
invariant under cyclic rotation and inversion.

To more easily refer to words in Wk/D2k , choose some canonical representa-
tive w1 · · ·wk ∈ Wk for every w ∈ Wk/D2k . Based on this, we will often think of
elements of Wk/D2k as words instead of equivalence classes, and we will make
statements about the ith letter of a word in Wk/D2k . For w = w1 · · ·wk ∈ Wk/D2k ,
let w(i) refer to the word in Wk+1/D2k+2 given by w1 · · ·wiwiwi+1 · · ·wk . We re-
fer to this operation as doubling the ith letter of w. A related operation is to halve a
pair of double letters, for example producing π1π2π3π4 from π1π2π3π4π1. (Since
we apply these operations to words identified with their rotations, we do not need
to be specific about which letter of the pair is deleted.) The following technical
lemma underpins most of our combinatorial calculations.

LEMMA 9. Let u ∈ Wk/D2k and w ∈ Wk+1/D2k+2. Suppose that a letters in
u can be doubled to form w, and b pairs of double letters in w can be halved to
form u. Then

a

h(u)
= b

h(w)
.

REMARK 10. At first glance, one might expect that a = b. The example u =
π1π2π1π1π2 and w = π1π1π2π1π1π2 shows that this is wrong, since only one
letter in u can be doubled to give w, but two different pairs in w can be halved to
give u.

PROOF. Let Orb(u) and Orb(w) denote the orbits of u and w under the action
of the dihedral group in Wk and Wk+1, respectively. When we speak of halving a
pair of letters in a word in Orb(w), always delete the second of the two letters (e.g.,
π1π2π1 becomes π1π2, not π2π1). When we double a letter in a word in Orb(u),
put the new letter after the doubled letter (e.g., doubling the second letter of π1π

−1
2

gives π1π
−1
2 π−1

2 , not π−1
2 π1π

−1
2 ).

For each of the 2k/h(u) words in Orb(u), there are a doubling operations yield-
ing a word in Orb(w). For each of the (2k + 2)/h(w) words in Orb(w), there are
b halving operations yielding a word in Orb(u). For every halving operation on a
word in Orb(w), there is a corresponding doubling operation on a word in Orb(u)

and vice versa, except for halving operations that straddle the ends of the word, as
in π1π2π1. There are 2b/h(w) of these, giving us

2ka

h(u)
= (2k + 2)b

h(w)
− 2b

h(w)

= 2kb

h(w)
,
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and the lemma follows from this. �

Let W ′ = ⋃∞
k=1 Wk/D2k , and let W ′

K = ⋃K
k=1 Wk/D2k . We will use the previ-

ous lemma to prove the following technical property of the c(·) statistic.

LEMMA 11. In the vector space with basis {qw}w∈W ′
K

,

∑
w∈W ′

K−1

|w|∑
i=1

1

h(w)
qw(i) = ∑

w∈W ′
K

c(w)

h(w)
qw.

PROOF. Fix some w ∈ Wk/D2k , and let a(u) denote the number of letters of
u that can be doubled to give w, for any u ∈ Wk−1/D2k−2. We need to prove that∑

u∈Wk−1/D2k−2

a(u)

h(u)
= c(w)

h(w)
.

Let b(u) be the number of pairs in w that can be halved to give u. By Lemma 9,∑
u∈Wk−1/D2k−2

a(u)

h(u)
= ∑

u∈Wk−1/D2k−2

b(u)

h(w)
,

and
∑

u∈Wk−1/D2k−2
b(u) = c(w). �

3. The process limit of the cycle structure. As the graph G(t) grows, new
cycles form, which we can classify into two types. Suppose a new vertex numbered
n is inserted at time t , and this insertion creates a new cycle. If the edges entering
and leaving vertex n in the new cycle have the same edge label, then the new
cycle has “grown” from a cycle with one fewer vertex, as in Figure 2. If the edges
entering and leaving n in the cycle have different labels, then the cycle has formed
“spontaneously” as in Figure 3, rather than growing from a smaller cycle. This
classification will prove essential in understanding the evolution of cycles in G(t).

Once a cycle comes into existence in G(t), it remains until a new vertex is in-
serted into one of its edges. Typically, this results in the cycle growing to a larger
cycle, as in Figure 2. If a new vertex is simultaneously inserted into multiple edges
of the same cycle, the cycle is instead split into smaller cycles as in Figure 4. These
new cycles are spontaneously formed, according to the classification of new cycles
given in the previous paragraph. Tracking the evolution of these smaller cycles in
turn, we see that as the graph evolves, a cycle grows into a cluster of overlapping
cycles. However, it will follow from Proposition 19 that for short cycles, this be-
havior is not typical. Thus in our limiting object, cycles will grow only into larger
cycles.
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FIG. 2. The vertex 6 is inserted between vertices 2 and 3 in π1, causing the above cycle to grow.

3.1. Heuristics for the limiting process. We give some estimates that will mo-
tivate the definition of the limiting process in Section 3.2. This section is entirely
motivational, and we will not attempt to make anything rigorous.

Suppose that vertex n is inserted into G(t) at some time t . First, we consider
the rate that cycles form spontaneously with some word w ∈ Wk/D2k . There are
2k/h(w) words in the orbit of w under the action of D2k , and out of these, 2(k −
c(w))/h(w) have nonequal first and last letters. For each such word u = u1 · · ·uk ,
we can give a walk on the graph by starting at vertex n and following the edges
indicated by u, going from n to u1(n) to u2(u1(n)) and so on. If this walk happens
to be a cycle, the condition u1 �= uk implies that it would be spontaneously formed.

In a short interval �t when G(t) has n−1 vertices, the probability that vertex n

is inserted is about n�t . For any word u, the walk from vertex n generated by u is
a cycle with probability approximately 1/n, since after applying the random per-
mutations u1, . . . , uk in turn, we will be left at an approximately uniform random
vertex. Any new spontaneous cycle formed with word w will be counted by one
of these walks, with u in the orbit of w, and it will be counted again by the walk
generated by u−1

k · · ·u−1
1 . The expected number of spontaneous cycles formed in

FIG. 3. A cycle forms “spontaneously” when the vertex 6 is inserted into the graph.
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FIG. 4. The vertex 6 is inserted into the cycle in two different places in the same step, causing the
cycle to split in two. Note that each new cycle would be classified as spontaneously formed.

a short interval �t is then approximately

1

h(w)

(
k − c(w)

)n�t

n
= 1

h(w)

(
k − c(w)

)
�t.

Thus, we will model the spontaneous formation of cycles with word w by a Poisson
process with rate (k − c(w))/h(w).

Next, we consider how often a cycle with word w ∈ Wk grows into a larger
cycle. Suppose that G(t) has n− 1 vertices, and that it contains a cycle of the form

When vertex n is inserted into the graph, the probability that it is inserted after
si−1 in permutation wi is 1/n. Thus, after a spontaneous cycle with word w has
formed, we can model the evolution of its word as a continuous-time Markov chain
where each letter is doubled with rate one.

3.2. Formal definition of the limiting process. Consider the measure μ on W ′
given by

μ(w) = |w| − c(w)

h(w)
.

Consider a Poisson point process χ on W ′ × [0,∞) with an intensity measure
given by the product measure μ⊗Leb, where Leb refers to the Lebesgue measure.
Each atom (w, t) of χ represents a new spontaneous cycle with word w formed at
time t .
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Now, we define a continuous-time Markov chain on the countable space W ′
governed by the following rates: From state w ∈ Wk/D2k , jump with rate one to
each of the k words in Wk+1/D2k+2 obtained by doubling a letter of w. If a word
can be formed in more than one way by doubling a letter in w, then it receives a
correspondingly higher rate. For example, from w = π1π1π2, the chain jumps to
π1π1π1π2 with rate two and to π1π1π2π2 with rate one. Let P̃w denote the law of
this process started from w ∈ W ′.

Suppose we are given a realization of χ . For any atom (w, s) of the countably
many atoms of χ , we start an independent process (Xw,s(t), t ≥ 0) with law P̃w .
Define the stochastic process

Nw(t) := ∑
(u,s)∈χ

s≤t

1
{
Xu,s(t − s) = w

}
.

Interpreting these processes as in the previous section, Nw(t) counts the number of
cycles formed spontaneously at time s that have grown to have word w at time t .

The fact that the process exists is obvious since one can define the countably
many independent Markov chains on a suitable product space. The following
lemma establishes some of its key properties.

LEMMA 12. Recall that W ′
L = ⋃L

k=1 Wk/D2k . We have the following conclu-
sions:

(i) For any L ∈ N, the stochastic process {(Nw(t),w ∈ W ′
L), t ≥ 0} is a time-

homogeneous Markov process with respect to its natural filtration, with RCLL
paths.

(ii) Recall that for w ∈ Wk/D2k , the element w(i) ∈ Wk+1/D2k+2 is the word
formed by doubling the ith letter of w. The generator for the Markov process
{(Nw(t),w ∈ W ′

L), t ≥ 0} acts on f at x = (xw,w ∈ W ′
L) by

Lf (x) = ∑
w∈W ′

L

|w|∑
i=1

xw

[
f (x − ew + ew(i)) − f (x)

]

+ ∑
w∈W ′

L

|w| − c(w)

h(w)

[
f (x + ew) − f (x)

]
,

where ew is the canonical basis vector equal to one at entry w and equal to zero
everywhere else. For a word u of length greater than L, take eu = 0.

(iii) The product measure of Poi(1/h(w)) over all w ∈ W ′
L is the unique in-

variant measure for this Markov process.

PROOF. Conclusion (i) follows from construction, as does conclusion (ii). To
prove conclusion (iii), we start by the fundamental identity of the Poisson distri-
bution: if X ∼ Poi(λ), then for any function f , we have

EXg(X) = λEg(X + 1).(5)
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We need to show that if the coordinates of X = (Xw,w ∈W ′
L) are independent

Poisson random variables with EXw = 1/h(w), then

ELf (X) = 0.(6)

Since the process is an irreducible Markov chain on countable state space, the
existence of one invariant distribution shows that the chain is positive recurrent
and that the invariant distribution is unique.

To argue (6), we will repeatedly apply identity (5) to functions g constructed
from f by keeping all but one coordinate fixed. Thus, for any w ∈ W ′

L and 1 ≤
i ≤ |w|, we condition on all Xu with u �= w and hold those coordinates of f fixed
to obtain,

EXwf (X − ew + ew(i)) = 1

h(w)
Ef (X + ew(i))

taking ew(i) = 0 when |w| = L. In the same way,

EXwf (X) = 1

h(w)
Ef (X + ew).

By these two equalities,

E
∑

w∈W ′
L

|w|∑
i=1

Xw

[
f (X − ew + ew(i)) − f (X)

]

= ∑
w∈W ′

L

|w|∑
i=1

1

h(w)
E

[
f (X + ew(i)) − f (X + ew)

]

= ∑
w∈W ′

L−1

|w|∑
i=1

1

h(w)
Ef (X + ew(i)) + ∑

w∈WL/D2L

|w|
h(w)

Ef (X)

− ∑
w∈W ′

L

|w|
h(w)

Ef (X + ew).

Specializing Lemma 11 to qw = Ef (X + ew), the first sum is∑
w∈W ′

L−1

|w|∑
i=1

1

h(w)
Ef (X + ew(i)) = ∑

w∈W ′
L

c(w)

h(w)
Ef (X + ew),

which gives us

E
∑

w∈W ′
L

|w|∑
i=1

Xw

[
f (X − ew + ew(i)) − f (X)

]

= ∑
w∈W ′

L

c(w) − |w|
h(w)

Ef (X + ew) + ∑
w∈WL/D2L

|w|
h(w)

Ef (X).
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All that remains in proving (6) is to show that∑
w∈W ′

L

|w| − c(w)

h(w)
= ∑

w∈WL/D2L

|w|
h(w)

.

Specializing Lemma 11 to qw = 1 shows that
∑

w∈W ′
L
c(w)/h(w) =∑

w∈W ′
L−1

|w|/h(w). Thus,

∑
w∈W ′

L

|w| − c(w)

h(w)
= ∑

w∈W ′
L

|w|
h(w)

− ∑
w∈W ′

L−1

|w|
h(w)

= ∑
w∈WL/D2L

|w|
h(w)

,

establishing (6) and completing the proof. �

From now on, we will consider the process (Nw(t), k ∈ N, t ≥ 0) to be running
under stationarity, that is, with marginal distributions given by conclusion (iii) of
the last lemma. This process is easily constructed as described above, but with
additional point masses of weight 1/h(w) for each w ∈ W ′ at (w,0) added to the
intensity measure of χ , thus giving us the correct distribution at time zero.

3.3. Time-reversed processes. Fix some time T > 0. We define the time-
reversal

←−
N w(t) := Nw(T − t) for 0 ≤ t ≤ T .

LEMMA 13. For any fixed L ∈ N, the process {(←−N w(t),w ∈ W ′
L),0 ≤ t ≤ T }

is a time-homogenous Markov process with respect to the natural filtration. A triv-
ial modification at jump times renders RCLL paths. The transition rates of this
chain are given as follows. Let u ∈ Wk−1/D2k−1 and w ∈ Wk/D2k , and suppose
that u can be obtained from w by halving b different pairs. Let x = (xw,w ∈W ′

L).

(i) The chain jumps from x to x + eu − ew with rate bxw .
(ii) The chain jumps from x to x − ew with rate (k − c(w))xw .

(iii) If w ∈ WL/D2L, then the chain jumps from x to x + ew with rate L/h(w).

PROOF. Any Markov process run backwards under stationarity is Markov. If
the chain has transition rate r(x, y) from states x to y, then the transition rate
of the backwards chain from x to y is r(y, x)ν(y)/ν(x), where ν is the station-
ary distribution. We will let ν be the stationary distribution from Lemma 12(iii)
and calculate the transition rates of the backwards chain, using the rates given in
Lemma 12(ii).

Let a denote the number of letters in u that give w when doubled. The transition
rate of the original chain from x + eu − ew to x is a(xu + 1), so the transition rate
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of the backwards chain from x to x + eu − ew is

a(xu + 1)
ν(x + ek−1,c−1 − ek,c)

ν(x)
= ah(w)xw

h(u)
,

and this is equal to bxw by Lemma 9. A similar calculation shows that the transition
rate from x to x − ew is

(k − c(w))ν(x − ew)

h(w)ν(x)
= (

k − c(w)
)
xw,

proving (ii). The transition rate from x to x + ew for w ∈ WL/D2L is

ν(x + ew)

ν(x)
(xw + 1)L = L

h(w)
,

which completes the proof. �

By definition,
←−
N w(t) = ∑

(u,s)∈χ

s≤T −t

1
{
Xu,s(T − t − s) = w

}
.

We will modify this slightly to define the process
←−
Mw(t) := ∑

(u,s)∈χ

s≤T −t

1
{
Xu,s(T − t − s) = w and

∣∣Xu,s(T − s)
∣∣ ≤ L

}
.

The idea is that
←−
Mw(t) is the same as

←−
N w(t), except that it does not count cycles

at time t that had more than L vertices at time zero. The process (
←−
Mw(t),w ∈W ′

L)

is a Markov chain with the same transition rates as (
←−
N w(t),w ∈ W ′

L), except that
it does not jump from x to x + ew for w ∈ WL/D2L. These two chains also have
the same initial distribution, but (

←−
Mw(t),w ∈ W ′

L) is not stationary (in fact, it is
eventually absorbed at zero).

4. Process convergence. Recall that C
(s)
k (t) is the number of cycles of

length k in the graph G(s+ t), defined on page 1398. For w ∈W ′, let C
(s)
w (t) be the

number of cycles in G(s + t) with word w. We will prove that (C
(s)
w (·),w ∈ W ′)

converges to a distributional limit, from which the convergence of (C
(s)
k (·), k ∈ N)

will follow. The proof depends on knowing the limiting marginal distribution of
C

(s)
w (t). We provide this and more in the following theorem, which should be of

independent interest.

THEOREM 14. Let Gn = G(n,2d), a 2d-regular random graph on n vertices
from the permutation model. For any k, let Ik be the set of all cycles of length k
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on the complete graph Kn with edge labels that form a cyclically reduced word;
these are the possible k-cycles that might appear in Gn. Let I = ⋃r

k=1 Ik for some
integer r .

For any cycle α ∈ I , let Iα = 1{Gn contains α}, and let I = (Iα,α ∈ I). Let
Z = (Zα,α ∈ I) be a vector whose coordinates are independent Poisson random
variables with EZα = 1/[n]k for α ∈ Ik . Then for all d ≥ 2 and n, r ≥ 1,

dTV(I,Z) ≤ c(2d − 1)2r−1

n

for some absolute constant c, where dTV(X,Y ) denotes the total variation distance
between the laws of X and Y .

COROLLARY 15. Let {Zw,w ∈ W ′
K} be a family of independent Poisson ran-

dom variables with EZw = 1/h(w). For any fixed integer K and d ≥ 1,

(i) as t → ∞, (
Cw(t),w ∈ W ′

K

) L−→ (
Zw,w ∈ W ′

K

);
(ii) as t → ∞, the probability that there exist two cycles of length K or less

sharing a vertex in G(t) approaches zero.

We give the proofs in the Appendix, along with some further discussion. Now,
we turn to the convergence of the processes.

THEOREM 16. The process (C
(s)
w (·),w ∈ W ′) converges in law as s → ∞ to

(Nw(·),w ∈ W ′).

PROOF. The main difficulty in turning the intuitive ideas of Section 3.1 into an
actual proof is that (C

(s)
w (t),w ∈ W ′) is not Markov. We now sketch how we evade

this problem. We will run our chain backwards, defining
←−
G s(t) = G(s + T −

t) for some fixed T > 0. Then, we ignore all of
←−
G s(0) except for the subgraph

consisting of cycles of size L and smaller, which we will call
←−
 s(0). The graph←−

 s(t) is the evolution of this subgraph as time runs backward, ignoring the rest
of

←−
G s(t). Then, we consider the number of cycles with word w in

←−
 s(t), which

we call φw(
←−
 s(t)). Choose K � L. Then φw(

←−
 s(t)) is likely to be the same

as C
(s)
w (T − t) for any word w with |w| ≤ K . The remarkable fact that makes

φw(
←−
 s(t)) possible to analyze is that if

←−
 s(0) consists of disjoint cycles, then

(φw(
←−
 s(t)),w ∈ W ′

L) is a Markov chain governed by the same transition rates as
(
←−
Mw(t),w ∈ W ′

L).
Another important idea of the proof is to ignore the vertex labels in

←−
G s(t), so

that we do not know in what order the vertices will be removed. Thus, we can
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view
←−
Gs(t) as a Markov chain with the following description: Assign each vertex

an independent Exp(1) clock. When the clock of vertex v goes off, remove it from
the graph, and patch together the πi -labeled edges entering and leaving v for each
1 ≤ i ≤ d .

STEP 1 [Definitions of
←−
 s(t) and φw and analysis of (φw(

←−
 s(t)),w ∈ W ′

L)].
Fix T > 0 and define

←−
Gs(t) = G(s + T − t). As mentioned above, we

will consider
←−
G s(t) only up to relabeling of vertices, which makes it a pro-

cess on the countable state space consisting of all edge-labeled graphs on
finitely many unlabeled vertices. With respect to its natural filtration, it is a
Markov chain in which each vertex is removed with rate one, as described
above.

To formally define
←−
 s(t), fix integers L > K and let

←−
 s(0) be the sub-

graph of
←−
G s(0) made up of all cycles of length L or less. We then evolve←−

 s(t) in parallel with
←−
G s(t). When a vertex v is deleted from

←−
G s(t), the cor-

responding vertex v in
←−
 s(t) is deleted if it is present. If v has a πi -labeled

edge entering and leaving it in
←−
 s(t), then these two edges are patched to-

gether. Other edges in
←−
 s(t) adjacent to v are deleted. This makes

←−
 s(t)

a subgraph of
←−
G s(t), as well as a continuous-time Markov chain on the

countable state space consisting of all edge-labeled graphs on finitely many
unlabeled vertices. The transition probabilities of

←−
 s(t) do not depend on

s.
From Corollary 15, we can find the limiting distribution of

←−
 s(0). Suppose that

γ is a graph in the process’s state space that is not a disjoint union of cycles. By
Corollary 15(ii),

lim
s→∞ P

[←−
 s(0) = γ

] = 0.

Suppose instead that γ is made up of disjoint cycles, with zw cycles of word w for
each w ∈ W ′

L. By Corollary 15(i),

lim
s→∞ P

[←−
 s(0) = γ

] = ∏
w∈W ′

L

P[Zw = zw],(7)

where (Zw,w ∈ W ′
L) are independent Poisson random variables with EZw =

1/h(w). Thus,
←−
 s(0) converges in law as s → ∞ to a limiting distribution sup-

ported on the graphs made up of disjoint unions of cycles. For different values of s,
the chains

←−
 s(t) differ only in their initial distributions, and the convergence in

law of
←−
 s(0) as s → ∞ induces the process convergence of {←− s(t),0 ≤ t ≤ T }

to a Markov chain {←− (t),0 ≤ t ≤ T } with the same transition rates whose initial
distribution is the limit of

←−
 s(0).

For any finite edge-labeled graph G, let φw(G) be the number of cycles in
G with word w. By the continuous mapping theorem, the process (φw(

←−
 s(t)),

w ∈ W ′
L) converges in law to (φw(

←−
 (t)),w ∈ W ′

L) as s → ∞.
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We will now demonstrate that this process has the same law as (
←−
Mw(t),w ∈

W ′
L). The graph

←−
 (t) consists of disjoint cycles at time t = 0, and as it evolves,

these cycles shrink or are destroyed. The process (φw(
←−
 (t)),w ∈ W ′

L) jumps
exactly when a vertex in a cycle in

←−
 (t) is deleted. If the deleted vertex

lies in a cycle between two edges with the same label, the cycle shrinks. If
the deleted vertex lies in a cycle between two edges with different labels, the
cycle is destroyed. The only relevant consideration in where the process will
jump at time t is the number of vertices of these two types in

←−
 (t), which

can be deduced from (φw(
←−
 (t)),w ∈ W ′

L). Thus, this process is a Markov
chain.

Consider two words u,w ∈ W ′
K such that w can be obtained from u by dou-

bling a letter. Suppose that u can be obtained from w by halving any of b pairs
of letters. Suppose that the chain is at state x = (xv, v ∈ W ′

L). There are bxw ver-
tices that when deleted cause the chain to jump from x to x − ew + eu, each of
which is removed with rate one. Thus, the chain jumps from x to x − ew + eu

with rate bxw . Similarly, it jumps to x − ew with rate (|w| − c(w))xw . These are
the same rates as the chain (

←−
Mw(t),w ∈ W ′

L) from Section 3.3. The initial distri-
bution given by (7) is also the same as that of (

←−
Mw(t),w ∈ W ′

L), demonstrating
that the two processes (φw(

←−
 (t)),w ∈ W ′

L) and (
←−
Mw(t),w ∈ W ′

L) have the same
law.

STEP 2 [Approximation of
←−
C

(s)
w (t) by φw(

←−
 s(t))].

We will compare the two processes {(←−C (s)
w (t),w ∈ W ′

K),0 ≤ t ≤ T } and
{(φw(

←−
 s(t)),w ∈ W ′

K),0 ≤ t ≤ T } and show that for sufficiently large L, they
are identical with probability arbitrarily close to one.

Consider some cycle in
←−
G s(t); we can divide its vertices into those that lie

between two edges of the cycle with different labels, and those that lie between
two edges with the same label. We call this second class the shrinking vertices of
the cycle, because if one is deleted from

←−
G s(t) as it evolves, the cycle shrinks. We

define Es(L) to be the event that for some cycle in
←−
Gs(0) of size l > L, at least

l − K of its shrinking vertices are deleted by time T .
We claim that outside of the event Es(L), the two processes {(←−C (s)

w (t),w ∈
W ′

K),0 ≤ t ≤ T } and {(φw(
←−
 s(t)),w ∈ W ′

K),0 ≤ t ≤ T } are identical. Suppose
that these two processes are not identical. Then there is some cycle α of size K or
less present in

←−
G s(t) but not in

←−
 s(t) for 0 < t ≤ T . As explained in Section 3,

as a cycle evolves (in forward time), it grows into an overlapping cluster of cy-
cles. Thus,

←−
G s(0) contains some cluster of overlapping cycles that shrinks to α at

time t . One of the cycles in this cluster has length greater than L, or the cluster
would be contained in

←−
 s(0) and α would have been contained in

←−
 s(t).

To see that l − K shrinking vertices must be deleted from this cycle, consider
the evolution of α into the cluster of cycles in both forward and reverse time. If a
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vertex is inserted into a single edge of a cycle in forward time, we see in reverse
time the deletion of a shrinking vertex. If a vertex is simultaneously inserted into
two edges of a cycle, causing the cycle to split, we see in reverse time the deletion
of a nonshrinking vertex of a cycle. As α grows, a cycle of size greater than L can
form only by single-insertion of at least l − K vertices into the eventual cycle. In
reverse time, this is seen as deletion of l −K shrinking vertices. This demonstrates
that Es(L) holds.

We will now show that for any ε > 0, there is an L sufficiently large that
P[Es(L)] < ε for any s. Let w ∈ Wl/D2l with l > L, and let I ⊆ [l] such that
|I | = l −K and wi = wi−1 for all i ∈ I , considering indices modulo l. For any cy-
cle in

←−
G s(0) with word l, the set I corresponds to a set of l −K shrinking vertices

of the cycle.
We define F(w, I) to be the event that

←−
G s(0) contains one or more cycles with

word w, and that the vertices corresponding to I in one of these cycles are all
deleted within time T . By a union bound,

P
[
Es(L)

] ≤ ∑
w,I

P
[
F(w, I)

]
.(8)

We proceed by enumerating all pairs of w and I . For any pair w,I , deleting the
letters in w at positions given by I results in a word u ∈ WK/D2K . For any given
u = u1 · · ·uK ∈ WK/D2K , the word w ∈ Wl/D2l must have the form

w = u1 · · ·u1︸ ︷︷ ︸
a1 times

u2 · · ·u2︸ ︷︷ ︸
a2 times

· · · · · ·uK · · ·uK︸ ︷︷ ︸
aK times

,

with ai ≥ 1 and a1 + · · ·+ aK = l. The number of choices for a1, . . . , aK is
( l−1
K−1

)
,

the number of compositions of l into K parts, and each of these corresponds to a
choice of w and I . There are fewer than a(d,K) choices for u, giving us a bound
of a(d,K)

( l−1
K−1

)
choices of pairs w and I for any fixed l > L.

Next, we will show that for any pair w and I with |w| = l,

P
[
F(w, I)

] ≤ (
1 − e−T )l−K

.(9)

Condition on
←−
G s(0) having n vertices. Consider any of the [n]l possible sequences

of l vertices. Choose some representative w′ ∈ Wl of w. For each of these se-
quences, the probability that it forms a cycle with word w′ is at most 1/[n]l (recall
the original definition of our random graphs in terms of random permutations).
Given that the sequence forms a cycle, the probability that the vertices of the cycle
at positions I are all deleted within time T is (1 − e−T )l−K . Hence

P
[
F(w, I)|←−G s(0) has n vertices

] ≤ [n]l 1

[n]l
(
1 − e−T )l−K

,

≤ (
1 − e−T )l−K

.
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This holds for any n, establishing (9).
Applying all of this to (8),

P
[
Es(L)

] ≤
∞∑

l=L+1

a(d,K)

(
l − 1
K − 1

) (
1 − e−T )l−k

.

This sum converges, which means that for any ε > 0, we have P[Es(L)] < ε for
large enough L, independent of s.

STEP 3 [Approximation of
←−
N w(t) by

←−
Mw(t)].

Recall that we defined the processes {(←−Mw(t),w ∈ W ′
K),0 ≤ t ≤ T } and

{(←−N w(t),w ∈ W ′
K),0 ≤ t ≤ T } on the same probability space. We will show that

for sufficiently large L, the two processes are identical with probability arbitrarily
close to one.

By their definitions, these two processes are identical unless one of the processes
Xu,s(·) started at each atom of χ grows from a word of size K or less to a word of
size L + 1 before time T ; we call this event E(L). Let

Y = ∣∣{(u, s) ∈ χ : |u| ≤ K,s ≤ T
}∣∣,

the number of processes starting from a word of size K or less before time T .
Suppose that X(·) has law P̃w for some word w ∈ Wk/D2k . We can choose L

large enough that P[|X(T )| > L] < ε for all k ≤ K . Then P[E(L)|Y ] < εY by
a union bound, and so P[E(L)] < εEY . Since EY < ∞, we can make P[E(L)]
arbitrarily small by choosing sufficiently large L.

STEP 4 [Weak convergence of {(←−C (s)
w (t),w ∈ W ′

K),0 ≤ t ≤ T } to {(←−N w(t),

w ∈W ′
K),0 ≤ t ≤ T }].

If two processes are identical with probability 1 − ε, then the total variation
distance between their laws is at most ε. Thus, by steps 2 and 3, we can choose
L large enough that the laws of the processes {(←−C (s)

w (t),w ∈ W ′
K),0 ≤ t ≤ T }

and {(φw(
←−
 s(t),w ∈ W ′

K),0 ≤ t ≤ T )} are arbitrarily close in total variation dis-
tance, uniformly in s, and so that the laws of {(←−Mw(t),w ∈ W ′

K),0 ≤ t ≤ T }
and {(←−N w(t),w ∈ W ′

K),0 ≤ t ≤ T }} are arbitrarily close in total variation dis-
tance. Since total variation distance dominates the Prokhorov metric (or any other
metric for the topology of weak convergence), we can choose L such that these
two pairs are each within ε/3 in the Prokhorov metric. Since {(φw(

←−
 s(t)),w ∈

W ′
K),0 ≤ t ≤ T } converges in law to {(←−Mw(t),w ∈ W ′

K),0 ≤ t ≤ T } as s → ∞,
there is an s0 such that for all s ≥ s0, the laws of these processes are within ε/3
in the Prokhorov metric. We have thus shown that for every ε > 0, the laws of
{(←−C (s)

w (t),w ∈ W ′
K),0 ≤ t ≤ T } and {(←−N w(t),w ∈ W ′

K),0 ≤ t ≤ T } are within ε

for sufficiently large s, which proves that the first random vector converges in law
to the second as s → ∞.
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STEP 5 [Weak convergence of {(C(s)
w (t),w ∈ W ′), t ≥ 0} to {(Nw(t),w ∈

W ′), t ≥ 0}].
It follows immediately from the previous step that the (not time-reversed) pro-

cess {(C(s)
w (t),w ∈ W ′

K),0 ≤ t ≤ T } converges in law to {(Nw(t),w ∈ W ′
K),0 ≤

t ≤ T } for any T > 0. By Theorem 16.17 in [5], {(C(s)
w (t),w ∈ W ′

K), t ≥ 0} con-

verges in law to {(Nw(t),w ∈ W ′
K), t ≥ 0}, which also proves that {(C(s)

w (t),w ∈
W ′), t ≥ 0} converges in law to {(Nw(t),w ∈ W ′), t ≥ 0}. �

PROOF OF THEOREM 1. We now consider the case of short cycles in the
graph. We will express these as functionals of (C

(s)
w (t),w ∈ W ′). For example,

consider the count of cycles of size k ∈ N. Then C
(s)
k (t) = ∑

w∈Wk/D2k
C

(s)
w (t) is

the number of k-cycles in G(s + t), and let

Nk(t) = ∑
w∈Wk/D2k

Nw(t).

It follows immediately from the continuous mapping theorem that {(C(s)
k (t), k ∈

N), t ≥ 0} converges in law to {(Nk(t), k ∈N), t ≥ 0} as s → ∞.
It is not hard to see that this limit is Markov and admits the following rep-

resentation: Cycles of size k appear spontaneously with rate
∑

w∈Wk/D2k
μ(w).

The size of each cycle then grows as a pure birth process with generator Lf (i) =
i(f (i + 1) − f (i)). The only thing we need to verify is that∑

w∈Wk/D2k

μ(w) = ∑
w∈Wk/D2k

k − c(w)

h(w)
= (

a(d, k) − a(d, k − 1)
)
/2.(10)

However, this follows from Lemma 11 in the following way. From that lemma,
we get ∑

w∈Wk/D2k

c(w)

h(w)
= (k − 1)

∑
w∈Wk−1/D2(k−1)

1

h(w)
.

Thus, ∑
w∈Wk/D2k

μ(w) = ∑
w∈Wk/D2k

k

h(w)
− ∑

w∈Wk−1/D2(k−1)

k − 1

h(w)
.

However, the two terms on the right-hand side of the above equation are simply
half the total number of cyclically reduced words possible, of size k and k − 1,
respectively. The total number of cyclically reduced words of size k on an alphabet
of size d is a(d, k) (see Appendix of [12]). This shows (10) and completes the
proof. �

We end with the following corollary.
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COROLLARY 17. For any s < t and j, k ∈ N, one has:

Cov
(
Nk(t),Nj (s)

)
=

⎧⎨⎩
a(d, j)

2j

(
k − 1
k − j

)
pj (1 − p)k−j , p = es−t , if k ≥ j,

0, otherwise.

PROOF. We will refer to the Yule processes counted by Nk(t) as cycles of
length k present at time t , even though these “cycles” in the limiting process have
no connection to graphs. If k < j , every cycle that is of length j at time s cannot
grow to a cycle of length k at time t . Thus, Nk(t) depends on cycles that are
independent of those that make up Nj(s). Hence Nk(t) is independent of Nj(s).

If k ≥ j , notice that one has the following decomposition:

Nk(t) =
k∑

j=1

α(j, k)Nj (s) + Z,(11)

where α(j, k) is the proportion of one-dimensional pure-birth Yule processes that
were at state j at time s and grew to state k at time t , and Z is a random vari-
ables that counts the number of new births in the time interval (s, t) that grew to
state k at time t . Note that, under our invariant distribution all random variables
{Z,Nj (s),1 ≤ j ≤ k} are independent of one another. Thus, our conclusion fol-
lows once we show

Eα(j, k) =
(

k − 1
k − j

)
pj (1 − p)k−j , p = es−t .(12)

The expected proportion Eα(j, k) is the probability that a one-dimensional pro-
cess Xj,k , with law of an Yule process starting at j , is at state k at time (t − s). If
ξj , . . . , ξk are independent exponential random variables with rates j, . . . , k, then

Eα(j, k) = P
[{ξj + · · · + ξk−1 ≤ t − s} ∩ {ξj + · · · + ξk > t − s}].

We now use the Rényi representation: suppose Y1, Y2, . . . , Yk are i.i.d. Exp(1) ran-
dom variables. Define the order statistics Y(1) ≥ Y(2) ≥ · · · ≥ Y(k). Then, the fol-
lowing equality holds in distribution

(Y(i) − Y(i+1), j ≤ i ≤ k) = (ξi, j ≤ i ≤ k).

Here we have defined Y(k+1) ≡ 0. Thus, in distribution,

ξj + · · · + ξk−1 = Y(j) − Y(k), ξj + · · · + ξk = Y(j).

Thus,

Eα(j, k) = P(t − s < Y(j) ≤ Y(k) + t − s).
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Note that, by an elementary symmetry argument, for any u > (t − s), we have

P
[
Y(j) ∈ (u,u + du),Y(j) − Y(k) < t − s

]
= P

[
Yi = u for some i, exactly j − 1 of Y1, . . . , Yk are greater than u,

and the rest of Y1, . . . , Yk are in [u − t + s, u]] du

= ke−u

(
k − 1
j − 1

)
e−(j−1)u[

e−u+t−s − e−u]k−j du

= k

(
k − 1
j − 1

)
e−ku(

et−s − 1
)k−j du.

Integrating out u in the interval (t − s,∞), we get

P[t − s < Y(j) < Y(k) + t − s] =
(

k − 1
j − 1

) (
et−s − 1

)k−j
∫ ∞
t−s

ke−ku du

=
(

k − 1
j − 1

) (
et−s − 1

)k−j
e−k(t−s)

=
(

k − 1
j − 1

)
ej (s−t)(1 − es−t )k−j

.

This shows (12) and completes the proof of the corollary. �

4.1. Two-dimensional convergence. So far, we have considered d as a con-
stant. We now view it as a parameter of the graph and allow it to vary. Recall
that (�d, d ∈ N) are independent towers of random permutations, with �d =
(π

(n)
d , n ∈ N), and that G(n,2d) is defined from π

(n)
1 , . . . , π

(n)
d . For each d , we

follow the construction used to define G(t) and construct G2d(t), a continuous-
time version of (G(n,2d), n ∈ N). Let W ′(d) be the set of equivalence classes of
cyclically reduced words as before, with the parameter d made explicit. Define
C

(s)
d,k(t) as the number of k-cycles in G2d(s + t) and consider the convergence of

the two-dimensional field {(C(s)
d,k(t), d, k ∈ N), t ≥ 0} as s → ∞.

Again, we will consider this process as a functional of another one. Define
W ′(∞) = ⋃∞

d=1 W ′(d), noting that W ′(1) ⊆ W ′(2) ⊆ · · ·. For any w ∈ W ′(d),
the number of cycles in G2d ′(s + t) with word w is the same for all d ′ ≥ d . We
define C

(s)
w (t) by this, so that

C
(s)
d,k(t) = ∑

w∈W ′(d)

|w|=k

C(s)
w (t).

Then we will prove convergence of {(C(s)
w (t),w ∈ W ′(∞)), t ≥ 0} as s → ∞.

To define a limit for this process, we extend μ to a measure on all of W ′(∞)

and define the Poisson point process χ on W ′(∞) × [0,∞). The rest of the
construction is identical to the one in Section 3.2, giving us random variables
(Nw(t),w ∈W ′(∞)).
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THEOREM 18. The process (C
(s)
w (·),w ∈ W ′(∞)) converges in law as s →

∞ to (Nw(·),w ∈ W ′(∞)).

PROOF. It suffices to prove that (C
(s)
w (·),w ∈ W ′(d)) converges in law as s →

∞ to (Nw(·),w ∈ W ′(d)) for each d , which we did in Theorem 16. �

PROOF OF THEOREM 3. Let

Nd,k(t) = ∑
w∈W ′(d)

|w|=k

Nw(t).

By the continuous mapping theorem, (Nd,k(·), d, k ∈ N) is the limit of (C
(s)
d,k(·),

d, k ∈ N) as s → ∞.
Let us now describe what the limiting process is. It is obvious that (Nd,k(·), k ∈

N, d ∈ N) is jointly Markov. For every fixed d , the law of the corresponding
marginal is given by Theorem 1. To understand the relationship across d , notice
that cycles of size k for (d + 1) consist of cycles of size k for d and the extra ones
that contain an edge labeled by πd+1 of π−1

d+1. Thus

Nd+1,k(t) − Nd,k(t) = ∑
w∈W ′(d+1)\W ′(d)

|w|=k

Nw(t).

This process is independent of (Ni,·, i ∈ [d]), since the set of words involved are
disjoint. Moreover, the rates for this process are clearly the following: cycles of
size k grow at rate k and new cycles of size k appear at rate [a(d + 1, k) − a(d +
1, k − 1) − a(d, k) + a(d, k − 1)]/2. This completes the proof of the result. �

5. Process limit for linear eigenvalue statistics. Let us recall some of the
basic facts established in [12], Sections 3 and 5, that connect linear eigenvalue
statistics with cycle counts. A closed nonbacktracking walk is a walk that begins
and ends at the same vertex, and that never follows an edge and immediately fol-
lows that same edge backwards. If the last step of a closed nonbacktracking walk
is anything other than the reverse of the first step, we say that the walk is cyclically
nonbacktracking. Cyclically nonbacktracking walks on Gn are exactly the closed
nonbacktracking walks whose words are cyclically reduced. Let CNBW(n)

k denote
the number of closed cyclically nonbacktracking walks of length k on Gn.

Cyclically nonbacktracking walks are useful because they can be enumerated
by linear functionals of a graph’s eigenvalues. Let {Tn(x)}n∈N be the Chebyshev
polynomials of the first kind on the interval [−1,1]. We define a set of polynomials

0(x) = 1,

2k(x) = 2T2k(x) + 2d − 2

(2d − 1)k
∀k ≥ 1,

2k+1(x) = 2T2k+1(x) ∀k ≥ 0.
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Let An be the adjacency matrix of Gn, and let λ1 ≥ · · · ≥ λn be the eigenvalues
of (2d − 1)−1/2An/2. Then

n∑
i=1

k(λi) = (2d − 1)−k/2CNBW(n)
k .(13)

Suppose that f (x) is a polynomial with the expansion f (x) = ∑k
j=0 ajj (x). We

define trf (Gn) as

trf (Gn) :=
n∑

i=1

f (λi) − na0.(14)

Subtracting off the constant term a0 keeps trf (Gn) of constant order as n grows.
Now, for any cycle in Gn of length j |k, we obtain 2j nonbacktracking walks

of length k by choosing a starting point and direction and then walking around the
cycle repeatedly. In [12], Corollary 18, it is shown that with certain conditions on
the growth of d and r , all cyclically nonbacktracking walks of length r or less have
this form with high probability. Thus, the random vectors (CNBW(n)

k ,1 ≤ k ≤ r)

and (
∑

j |k 2jC
(n)
k ,1 ≤ k ≤ r) have the same limiting distribution, and the problem

of finding the limiting distributions of polynomial linear eigenvalue statistics is
reduced to finding limiting distributions of cycle counts. We will prove Theorem 5
by arguing that this holds for the entire process (G(t), t ≥ 0).

Call a cyclically nonbacktracking walk bad if it is anything other than a repeated
walk around a cycle.

PROPOSITION 19. Fix an integer K . There is a random time T , almost surely
finite, such that there are no bad cyclically nonbacktracking walks of length K or
less in G(t) for all t ≥ T .

PROOF. We will work with the discrete-time version of our process (Gn,n ∈
N). We first define some machinery introduced in [24]. Consider some cyclically
nonbacktracking walk of length k on the edge-labeled complete graph Kn of the
form

s0
w1−→ s1

w2−→ s2
w3−→· · · wk−→ sk = s0.

Here, si ∈ [n] and w = w1 · · ·wk is the word of the walk (i.e., each wi is πj or
π−1

j for some j , indicating which permutation provided the edge for the walk).
We say that Gn contains the walk if the random permutations π1, . . . , πd satisfy
wi(si−1) = si . In other words, Gn contains a walk if considering both as edge-
labeled directed graphs, the walk is a subgraph of Gn.

If (s′
i ,0 ≤ i ≤ k) is another walk with the same word, we say that the two walks

are of the same category if si = sj ⇐⇒ s′
i = s′

j . In other words, two walks are
of the same category if they are identical up to relabeling vertices. The probability



CYCLES AND EIGENVALUES 1423

that Gn contains a walk depends only on its category. If a walk contains e distinct
edges, then Gn contains the walk with probability at most 1/[n]e.

Let X
(n)
k be the number of bad walks of length k in Gn that start at vertex n.

We will first prove that with probability one, X
(n)
k > 0 for only finitely many n.

Call a category bad if the walks in the category are bad. Let Tk,d be the number of
bad categories of walks of length k. For any particular bad category whose walks
contain v distinct vertices, there are [n − 1]v−1 walks of that category whose first
vertex is n. Any bad walk contains more edges than vertices, so

EX
(n)
k ≤ Tk,d [n − 1]v−1

[n]v+1
≤ Tk,d

n(n − k)
.

Since X
(n)
k takes values in the nonnegative integers, P[X(n)

k > 0] ≤ EX
(n)
k . By the

Borel–Cantelli lemma, X
(n)
k > 0 for only finitely many values of n.

Thus, for any fixed r + 1, there exists a random time N such that there are no
bad walks on Gn of length r + 1 or less starting with vertex n, for n ≥ N . We
claim that for n ≥ N , there are no bad walks at all on Gn with length r or less.
Suppose that Gm contains some bad walk of length k ≤ r , for some m ≥ N . As
the graph evolves, it is easy to compute that with probability one, a new vertex is
eventually inserted into an edge of this walk. But at the time n > m ≥ N when this
occurs, Gn will contain a bad walk of length r + 1 or less starting with vertex n,
a contradiction. Thus, we have proven that Gn eventually contains no bad walks
of length r or less. The equivalent statement for the continuous-time version of the
graph process follows easily from this. �

PROOF OF THEOREM 5. Let CNBW(s)
k (t) denote the number of cyclically

nonbacktracking walks of length k in G(s + t). We decompose these into those
that are repeated walks around cycles of length j for some j dividing k, and the
remaining bad walks, which we denote B

(s)
k (t), giving us

CNBW(s)
k (t) = ∑

j |k
2jC

(s)
j (t) + B

(s)
k (t).

Proposition 19 implies that

lim
s→∞ P

[
B

(s)
k (t) = 0 for all k ≤ K , t ≥ 0

] = 1.

By Theorem 1 together with the continuous mapping theorem and Slutsky’s theo-
rem, as s tends to infinity,(

CNBW(s)
k (·),1 ≤ k ≤ K

) L−→
(∑

j |k
2jNj (·),1 ≤ k ≤ K

)
.(15)

Now, we modify the polynomials k to form a new basis {fk, k ∈ N} with the
right properties, which amounts to expressing each Nk(t) as a linear combination
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of terms
∑

j |l 2jNj (t). We do this with the Möbius inversion formula. Define the
polynomial

fk(x) = 1

2k

∑
j |k

μ

(
k

j

)
(2d − 1)j/2j(x),(16)

where μ is the Möbius function, given by

μ(n) =
{

(−1)a, if n is the product of a distinct primes,
0, otherwise.

The theorem then follows from (13), (15), and the continuous mapping theorem.
�

PROOF OF THEOREM 6. We start by recalling that, for any fixed d ,

2 trTi

(
G(∞ + t)

) = (2d − 1)−i/2
∑
k|i

2kNk(t).

Now, we will prove finite-dimensional convergence to the stated Ornstein–
Uhlenbeck process. Consider two time points s ≤ t and two positive inte-
gers i, k. We will first show that, for any i, k ∈ N, the pair ((2d − 1)−i/2(Ni(s) −
ENi(s)), (2d − 1)−k/2(Nk(t) − ENk(t))) converges to a Gaussian limit as d tends
to infinity. When s = t , this trivially follows via the central limit theorem and their
independent Poisson joint distribution.

When s < t , observe from (11) that

Nk(t) =
k∑

j=1

α(j, k)Nj (s) + Z.

Here α(j, k)Nj (s), j ∈ [k], and Z are independent Poisson random variables of
various means. Moreover, Z is independent of the history of the process till time s.
Under the stationary law, the vector (Nj (s), j ∈ N) are independent Poisson ran-
dom variables. Thus, if i > k, then Ni(s) is independent of Nk(t). Otherwise, by
the thinning property of Poisson, α(i, k)Ni(s) is independent of (1−α(i, k))Ni(s).
Therefore, Nk(t) − α(i, k)Ni(s), α(i, k)Ni(s), and (1 − α(i, k))Ni(s) are three in-
dependent Poisson random variable.

By the normal approximation to Poisson, we get the appropriate distributional
convergence to corresponding independent Gaussian random variables. This shows
the joint convergence of (Ni(s),Nk(t)) to Gaussian after centering and scaling.

A similar Gram–Schmidt orthogonalization can be carried out for the case of
time points t1 ≤ t2 ≤ · · · ≤ tm and corresponding positive integers j1, j2, . . . , jm.
This proves the joint Gaussian convergence of any finite collection of (Nji

(ti), i ∈
[m]) under centering and suitable scaling. Since the traces of Chebyshev polyno-
mials are linear combinations of coordinates of N , the joint Gaussian convergence
extends to them by an argument invoking the continuous mapping and Slutsky’s
theorems.
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For a fixed d , the covariance computation follows from Corollary 17 and (13).
Hence, if s < t , then

Cov
(
trTi

(
G(∞ + t)

)
, trTj

(
G(∞ + s)

))
(17)

= 1

4
(2d − 1)−(i+j)/2

∑
k|i,l|j

4lk Cov
(
Nk(t),Nl(s)

)
.

Here

Cov
(
Nk(t),Nl(s)

) =
⎧⎨⎩

a(d, l)

2l

(
k − 1
k − l

)
pl(1 − p)k−l , p = es−t , if k ≥ l,

0, otherwise.

We now fix any i, j, t, s and take d to infinity. Any term a(d, r) is asymptoti-
cally the same as (2d − 1)r . Thus, the highest order term (in d) on the right-hand
side of (17) is (2d − 1)min(i,j). Unless i = j , this term is negligible compared to
(2d − 1)(i+j)/2. This shows that the limiting covariance is zero unless i = j .

On the other hand, when i = j , every term on the right-hand side of (17) van-
ishes, except when k = i = l = j . Hence,

lim
d→∞ Cov

(
trTi

(
G(∞ + t)

)
, trTi

(
G(∞ + s)

)) = 1

4
2ipi = i

2
ei(s−t).

Finally, we prove the process convergence. One simply needs to argue tightness.
Fix a K ∈ N and, for every d , consider the process(

Xk(t) := (2d − 1)−k/2(
2kNk(t) − a(d, k)

)
, k ∈ [K], t ≥ 0

)
.

We claim that it suffices to show tightness for this process. This follows, since
then, due to unequal scaling, the difference between this process and the centered
and scaled traces go to zero in probability as d tends to infinity.

We sketch a proof of tightness for this process; more details appear in [22]. Fix k

and d . Let Y(t) and Z(t) be counting processes starting at 0. Define Y(t) and Z(t)

to jump at points of increase and decrease, respectively, of Nk(t). We then have
Nk(t) = Y(t) − Z(t), and it is not difficult to show that Y(t) and Z(t) are both
Poisson processes with rate a(d, k)/2. Scaled by (2d − 1)−k/2 and normalized,
each converges in law to Brownian motion. Thus for each k, we can write Xk(t)

as a sum of processes converging in law to a limit in C[0,∞), and from here one
can obtain the desired tightness of (Xk(t), k ∈ [K], t ≥ 0) in DRK [0,∞). �

APPENDIX: A BROAD POISSON APPROXIMATION RESULT

This Appendix provides the proofs of Theorem 14 and Corollary 15. A less
general version of Theorem 14 can be found in [12], Theorem 11; we show in
Corollary 24(i) how it follows from Theorem 14. Our theorem here also improves



1426 T. JOHNSON AND S. PAL

the total variation bound from O((2d − 1)2r/n) to O((2d − 1)2r−1/n). We con-
jecture that Theorem 14 is sharp.

As in the proof of Theorem 11 in [12], the main tool is the Stein–Chen method
for Poisson approximation by size-biased couplings as described in [3], which uses
the following idea: Recall the definition of (Iβ, β ∈ I) from Theorem 14. For each
α ∈ I , let (Jβα,β ∈ I) be distributed as (Iβ, β ∈ I) conditioned on Iα = 1. The
goal is to construct a coupling of (Iβ, β ∈ I) and (Jβα,β ∈ I) so that the two
random vectors are “close together”. We hope that for each α ∈ I , the cycles in
I \ {α} can be partitioned into two sets I−

α and I+
α such that

Jβα ≤ Iβ, if β ∈ I−
α ,(18)

Jβα ≥ Iβ, if β ∈ I+
α .(19)

If this is the case, then one can approximate (Iβ, β ∈ I) by a Poisson process by
calculating Cov(Iα, Iβ) for every α,β ∈ I , according to the following proposition.

PROPOSITION 20 (Corollary 10.B.1 in [3]). Suppose that I = (Iα,α ∈ I) is
a vector of 0–1 random variables with EIα = pα . Suppose that (Jβα,β ∈ I) is
distributed as described above, and that for each α there exists a partition and a
coupling of (Jβα,β ∈ I) with (Iβ, β ∈ I) such that (18) and (19) are satisfied.

Let Y = (Yα,α ∈ I) be a vector of independent Poisson random variables with
EYα = pα . Then

dTV(I,Y) ≤ ∑
α∈I

p2
α + ∑

α∈I

∑
β∈I−

α

∣∣Cov(Iα, Iβ)
∣∣ + ∑

α∈I

∑
β∈I+

α

Cov(Iα, Iβ).(20)

We introduce two lemmas, whose proofs we will defer to the end of the Ap-
pendix. The first will let us approximate I by Z rather than by Y, and the second
provides a technical bound that we need.

LEMMA 21. Let Y = (Yα,α ∈ I) and Z = (Zα,α ∈ I) be vectors of indepen-
dent Poisson random variables. Then

dTV(Y,Z) ≤ ∑
α∈I

|EYα − EZα|.

LEMMA 22. Let a and b be d-dimensional vectors with nonnegative integer
components, and let 〈a, b〉 denote the standard Euclidean inner product.

d∏
i=1

1

[n]ai+bi

−
d∏

i=1

1

[n]ai
[n]bi

≤ 〈a, b〉
n

d∏
i=1

1

[n]ai+bi

.

PROOF OF THEOREM 14. We will give the proof in three sections: First, we
make the coupling and show that it satisfies (18) and (19). Next, we apply Proposi-
tion 20 to approximate I by Y, a vector of independent Poissons with EYα = EIα .
Last, we approximate Y by Z to prove the theorem.
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If d > n1/2 or r > n1/10, then c(2d − 1)2r−1/n > 1 for a sufficiently large
choice of c, and the theorem holds trivially. Thus, we will assume throughout that
d ≤ n1/2 and r ≤ n1/10 (the choice of 1/10 here is completely arbitrary). The ex-
pression O(f (d, r, n)) should be interpreted as a function of d , r , and n whose
absolute value is bounded by Cf (d, r, n) for some absolute constant C, for all d ,
r , and n satisfying 2 ≤ d ≤ n1/2 and r ≤ n1/10.

STEP 1 (Constructing the coupling).
Fix some α ∈ I . We will construct a random vector (Jβα,β ∈ I) distributed as

(Iβ, β ∈ I) conditioned on Iα = 1. We do this by constructing a random graph G′
n

distributed as Gn conditioned to contain the cycle α. Once this is done, we will
define Jβα = 1{G′

n contains cycle β}.
Let π1, . . . , πd be the random permutations that give rise to Gn. We will alter

them to form permutations π ′
1, . . . , π

′
d , and we will construct G′

n from these. Let
us first consider what distributions π ′

1, . . . , π
′
d should have. For example, suppose

that α is the cycle

1
π3−→2

π1←−3
π3−→4

π1−→ = 1.

Then π ′
1 should be distributed as a uniform random n-permutation conditioned to

make π ′
1(3) = 2 and π ′

1(4) = 1, and π ′
3 should be distributed as a uniform random

n-permutation conditioned to make π ′
3(1) = 2 and π ′

3(3) = 4, while π ′
2 should just

be a uniform random n-permutation. A random graph constructed from π ′
1, π ′

2,
and π ′

3 will be distributed as Gn conditioned to contain α.
We now describe the construction of π ′

1, . . . , π
′
d . Suppose α is the cycle

s0
w1 s1

w2 s2
w3 · · · wk sk = s0(21)

with each edge directed according to whether wi(si−1) = si or wi(si) = si−1. Fix
some 1 ≤ l ≤ d , and suppose that the edge-label πl appears M times in the cycle α.
Let (am, bm) for 1 ≤ m ≤ M be these directed edges. We must construct π ′

l to have
the uniform distribution conditioned on π ′

l (am) = bm for 1 ≤ m ≤ M .
We define a sequence of random transpositions by the following algorithm: Let

τ1 swap πl(a1) with b1. Let τ2 swap τ1πl(a2) with b2, and so on. We then define
π ′

l = τM · · · τ1πl . This permutation satisfies π ′
l (am) = bm for 1 ≤ m ≤ M , and it

is distributed uniformly, subject to the given constraints, which can be proven by
induction on each swap. We now define G′

n from the permutations π ′
1, . . . , π

′
d in

the usual way. It is defined on the same probability space as Gn, and it is distributed
as Gn conditioned to contain α, giving us a random vector (Jβα,β ∈ I) coupled
with (Iβ, β ∈ I).

Now, we will give a partition I− ∪ I+ = I \ {α} satisfying (18) and (19). Sup-

pose that Gn contains an edge si
wi+1−→v with v �= si+1, or an edge v

wi+1−→ si+1 with
v �= si . The graph G′

n cannot contain this edge, since it contains α. In fact, edges
of this form are the only ones found in Gn but not G′

n:
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LEMMA 23. Suppose there is an edge i
πl−→ j contained in Gn but not in G′

n.

Then α contains either an edge i
πl−→v with v �= j , or α contains an edge v

πl−→ j

with v �= i.

PROOF. Suppose πl(i) = j , but π ′
l (i) �= j . Then j must have been swapped

when making π ′
l , which can happen only if πl(am) = j or bm = j for some m. In

the first case, am = i and α contains the edge i
πl−→bm with bm �= j , and in the

second α contains the edge am
πl−→ j with am �= i. �

Define I−
α as all cycles in I that contain an edge si

wi+1−→v with v �= si+1 or an

edge v
wi+1−→ si+1 with v �= si , and define I+

α to be the rest of I \ {α}. Since G′
n

cannot contain any cycle in I−
α , we have Jβα = 0 for all β ∈ I−

α , satisfying (18).
For any β ∈ I+

α , Lemma 23 shows that if β appears in Gn, it must also appear in
G′

n. Hence Jβα ≥ Iβ , and (19) is satisfied.

STEP 2 (Approximation of I by Y).
The conditions of Proposition 20 are satisfied, and we need only bound the sums

in (20). Let pα = EIα , the probability that cycle α appears in Gn. Recall that this
equals

∏d
i=1 1/[n]ei

, where ei is the number of times πi and π−1
i appear in the

word of α. This means that

1

nk
≤ pα ≤ 1

[n]k ,(22)

where k = |α|, the length of cycle α.
We bound the first sum in (20) by

∑
α∈I

p2
α =

r∑
k=1

∑
α∈Ik

p2
α ≤

r∑
k=1

∑
α∈Ik

1

[n]2
k

=
r∑

k=1

( [n]ka(d, k)

2k

)(
1

[n]2
k

)
(23)

≤
r∑

k=1

2d(2d − 1)k−1

2k[n]k = O

(
d

n

)
.

To bound the second sum in (20), we investigate the size of I−
α . Suppose

that α ∈ Ik , and α has the form given in (21). Any β ∈ I−
α must contain an

edge si
wi+1−→v with v �= si+1, or an edge v

wi+1−→ si+1 with v �= si , and there are
at most 2k(n − 1) edges of this form. For any given edge, there are at most
[n − 2]j−2(2d − 1)j−1 cycles in Ij that contain that edge, for any j ≥ 2.
Thus for any α ∈ Ik , the number of cycles of length j ≥ 2 in I−

α is at most
2k[n − 1]j−1(2d − 1)j−1, and this bound also holds for j = 1.
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For any β ∈ I−
α , it holds that E[IαIβ] = 0, so that Cov(Iα, Iβ) = −pαpβ .

Putting this all together and applying (22), we have∑
α∈I

∑
β∈I−

α

∣∣Cov(Iα, Iβ)
∣∣ =

r∑
k=1

∑
α∈Ik

r∑
j=1

∑
β∈I−

α ∩Ij

pαpβ

≤
r∑

k=1

|Ik| 1

[n]k
r∑

j=1

∣∣I−
α ∩ Ij

∣∣ 1

[n]j(24)

≤
r∑

k=1

a(d, k)

2k

r∑
j=1

2k(2d − 1)j−1

n

=
r∑

k=1

a(d, k)O

(
(2d − 1)r−1

n

)
= O

(
(2d − 1)2r−1

n

)
.

The final sum in (20) is the most difficult to bound. We partition I+
α into sets

I+
α = I0

α ∪ · · · ∪ I |α|−1
α , where I l

α is all cycles in I+
α that share exactly l labeled

edges with α. For any β ∈ I+
α ,

E[IαIβ] = P[G contains α and β] =
d∏

i=1

1

[n]ei

,

where ei is the number of πi-labeled edges in α ∪ β . Thus for β ∈ I l
α ,

1

n|α|+|β|−l
≤ E[IαIβ] ≤ 1

[n]|α|+|β|−l

.(25)

We start by seeking estimates on the size of I l
α for l ≥ 1. Fix some choice of

l edges of α. We start by counting the cycles in I l
α that share exactly these edges

with α. We illustrate this in Figure 5. Call the graph consisting of these edges H ,
and suppose that H has p components. Since it is a forest, H has l + p vertices.

Let A1, . . . ,Ap be the components of H . We can assemble any element β ∈
I l

α that overlaps with α in H by stringing together these components in some
order, with other edges in between. Each component can appear in β in one of two
orientations. Since the vertices in β have no fixed ordering, we can assume without
loss of generality that β begins with component A1 with a fixed orientation. This
leaves (p − 1)!2p−1 choices for the order and orientation of A2, . . . ,Ap in β .

Imagine now the components laid out in a line, with gaps between them, and
count the number of ways to fill the gaps. Suppose that β is to have length j . Each
of the p gaps must contain at least one edge, and the total number of edges in all
the gaps is j − l. Thus, the total number of possible gap sizes is the number of
compositions of j − l into p parts, or

(j−l−1
p−1

)
.

Now that we have chosen the number of edges to appear in each gap, we choose
the edges themselves. We can do this by giving an ordered list j −p − l vertices to
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The cycle α, with H dashed. Step 1. We lay out the components

The subgraph H has components A1, . . . ,Ap . We can order and orient

A1, . . . ,Ap . In this example, the A2, . . . ,Ap however we would like, for

number of components of H is a total of (p − 1)!2p−1 choices. Here, we

p = 3, the size of α is k = 11, and have ordered the components A1,A3,A2,

the number of edges in H is l = 4. and we have reversed the orientation

In this example, we will construct of A3.

a cycle β of length j = 10 that

overlaps with α at H .

Step 2. Next, we choose how many edges Step 3. We can choose the new vertices in

will go in each gap between components. [n − p − l]j−p−l ways, and we can direct

Each gap must contain at least one edge, and give labels to the new edges in at

and we must add a total of j − l edges, most (2d − 1)j−l ways.

giving us
(j−l−1

p−1
)

choices.

In this example, we have added one edge

after A1, three after A3, and two after A2.

FIG. 5. Assembling an element β ∈ Il
α that overlaps with α at a given subgraph H .

go in the gaps, along with a label and an orientation for each of the j − l edges this
gives. There are [n − p − l]j−p−l ways to choose the vertices. We can give each
new edge any orientation and label subject to the constraint that the word of the
cycle we construct must be reduced. This means we have at most 2d − 1 choices
for the orientation and label of each new edge, for a total of at most (2d − 1)j−i .

All together, there are at most (p − 1)!2p−1(j−l−1
p−1

)[n−p − l]j−p−l(2d − 1)j−l

elements of Ij that overlap with the cycle α at the subgraph H . We now calculate
the number of different ways to choose a subgraph H of α with l edges and p
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components. Suppose α is given as in (21). We first choose a vertex si0 . Then, we
can specify which edges to include in H by giving a sequence a1, b1, . . . , ap, bp

instructing us to include in H the first a1 edges after si0 , then to exclude the next b1,
then to include the next a2, and so on. Any sequence for which ai and bi are
positive integers, a1 + · · · + ap = l, and b1 + · · · + bp = k − l gives us a valid
choice of l edges of α making up p components. This counts each subgraph H

a total of p times, since we could begin with any component of H . Hence, the
number of subgraphs H with l edges and p components is (k/p)

( l−1
p−1

)(k−l−1
p−1

)
.

This gives us the bound

∣∣I l
α ∩ Ij

∣∣ ≤
l∧(j−l)∑

p=1

(k/p)

(
l − 1
p − 1

) (
k − l − 1

p − 1

)
(p − 1)!

× 2p−1
(

j − l − 1
p − 1

)
[n − p − l]j−p−l(2d − 1)j−l .

We apply the bounds (
l − 1
p − 1

)
≤ rp−1

(p − 1)! ,(
k − l − 1

p − 1

)
,

(
j − l − 1

p − 1

)
≤ (

er/(p − 1)
)p−1

,

to get ∣∣I l
α ∩ Ij

∣∣ ≤ k(2d − 1)j−l[n − 1 − l]j−1−l

×
(

1 +
i∧(k−i)∑

p=2

1

p

(
2e2r3

(p − 1)2

)p−1 1

[n − 1 − l]p−1

)
.

Since r ≤ n1/10, the sum in the above equation is bounded by an absolute constant.
Applying this bound and (25), for any α ∈ Ik and l ≥ 1,∑

β∈Il
α

Cov(Iα, Iβ) ≤
r∑

j=l+1

∑
β∈Il

α∩Ij

1

[n]k+j−l

≤
r∑

j=l+1

O

(
k(2d − 1)j−l

nk+1

)

= O

(
k(2d − 1)r−l

nk+1

)
.

Therefore,∑
α∈I

∑
l≥1

∑
β∈Il

α

Cov(Iα, Iβ) =
r∑

k=1

∑
α∈Ik

k−1∑
l=1

∑
β∈Il

α

Cov(Iα, Iβ)

≤
r∑

k=1

∑
α∈Ik

k−1∑
l=1

O

(
k(2d − 1)r−l

nk+1

)
(26)
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=
r∑

k=1

[n]ka(d, k)

2k
O

(
k(2d − 1)r−1

nk+1

)

=
r∑

k=1

O

(
(2d − 1)r+k−1

n

)

= O

(
(2d − 1)2r−1

n

)
.

Last, we must bound
∑

α∈I
∑

β∈I0
α

Cov(Iα, Iβ). For any word w, let ew
i be the

number of appearances of πi and π−1
i in w. Let α and β be cycles with words w

and u, respectively, and let k = |α| and j = |β|. Suppose that β ∈ I0
α . Then

Cov(Iα, Iβ) =
d∏

i=1

1

[n]ew
i +eu

i

−
d∏

i=1

1

[n]ew
i
[n]eu

i

≤ 〈ew, eu〉
n

d∏
i=1

1

[n]ew
i +eu

i

≤ 〈ew, eu〉
n[n]k+j

by Lemma 22. For any pair of words w ∈ Wk and u ∈ Wj , there are at most
[n]k[n]j pairs of cycles α,β ∈ I with words w and u, respectively. Enumerating
over all w ∈ Wk and u ∈ Wj , we count each pair of cycles α,β exactly 4kj times.
Thus, ∑

α∈Ik

∑
β∈I0

α∩Ij

Cov(Iα, Iβ) ≤ [n]k[n]j
4kjn[n]k+j

∑
w∈Wk

∑
u∈Wj

〈
ew, eu〉

≤ 1 + O(r2/n)

4kjn

〈 ∑
w∈Wk

ew,
∑

u∈Wj

eu

〉
.

The vector
∑

w∈Wk
ew has every entry equal by symmetry, as does

∑
u∈Wj

eu.
Thus, each entry of

∑
w∈Wk

ew is ka(d, k)/d , and each entry of
∑

u∈Wj
eu is

ja(d, j)/d . The inner product in the above equation comes to kja(d, k)a(d, j)/d ,
giving us ∑

α∈Ik

∑
β∈I0

α∩Ij

Cov(Iα, Iβ) ≤ a(d, k)a(d, j)(1 + O(r2/n))

4dn

= O

(
(2d − 1)j+k−1

n

)
.

Summing over all 1 ≤ k, j ≤ r ,∑
α∈I

∑
β∈I0

α

Cov(Iα, Iβ) =
(

(2d − 1)2r−1

n

)
.(27)
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We can now combine equations (23), (24), (26), and (27) with Proposition 20 to
show that

dTV(I,Y) = O

(
(2d − 1)2r−1

n

)
.(28)

STEP 3 (Approximation of Y by Z).
By Lemma 21 and (22),

dTV(Y,Z) ≤ ∑
α∈I

|EYα − EZα| ≤
r∑

k=1

∑
α∈Ik

(
1

[n]k − 1

nk

)

=
r∑

k=1

a(d, k)

2k

(
1 − [n]k

nk

)
.

Since [n]k ≥ nk(1 − k2/2n),

dTV(Y,Z) ≤
r∑

k=1

a(d, k)k

4n
= O

(
r(2d − 1)r

n

)
.

Together with (28), this bounds the total variation distance between the laws of I
and Z and proves the theorem. �

The distributions of any functionals of I and Z satisfy the same bound in total
variation distance. This gives us several results as easy corollaries, including an
improvement on [12], Theorem 11.

COROLLARY 24. (i) Let (Zk,1 ≤ k ≤ r) be a vector of independent Poisson
random variables with EZk = a(d, k)/2k. Let Ck denote the number of k-cycles in
Gn, a 2d-regular permutation random graph on n vertices. Then for some absolute
constant c,

dTV
(
(Ck,1 ≤ k ≤ r), (Zk,1 ≤ k ≤ r)

) ≤ c(2d − 1)2r−1

n
.

(ii) Let (Zw,w ∈ W ′
K) be a vector (ii) of independent Poisson random vari-

ables with EZw = 1/h(w). Let Cw denote the number of cycles with word w in
Gn, a 2d-regular permutation random graph on n vertices. Then for some absolute
constant c,

dTV
((

Cw,w ∈ W ′
K

)
,
(
Zw,w ∈W ′

K

)) ≤ c(2d − 1)2K−1

n
.
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PROOF. Observe that Ck = ∑
α∈Ik

Iα , and that if we define Zk = ∑
α∈Ik

Zα ,
then (Zk,1 ≤ k ≤ r) is distributed as described. Thus (i) follows from Theorem 14.

To prove (ii), note that Cw = ∑
α Iα , where the sum is over all cycles in I with

word w. We then define Zw as the analogous sum over Zα . Since the number of
cycles in I with word w is [n]k/h(w), we have EZw = 1/h(w), and the total
variation bound follows from Theorem 14. �

We can also use Theorem 14 to bound the likelihood that Gn contains two over-
lapping cycles of size r or less.

COROLLARY 25. Let Gn be a 2d-regular permutation random graph on n

vertices. Let E be the event that Gn contains two cycles of length r or less with a
vertex in common. Then for some absolute constant c′, for all d ≥ 2 and n, r ≥ 1,

P[E] ≤ c′(2d − 1)2r

n
.

PROOF. Let E′ be the event that Zα = Zβ = 1 for two cycles α,β ∈ I that
have a vertex in common. By Theorem 14,

P[E] ≤ P
[
E′] + c(2d − 1)2r−1

n
.

For any cycle α ∈ Ik , there are at most k[n − 1]j−1a(d, j) cycles in Ij that share
a vertex with α. For any such cycle β , the chance that Zα = 1 and Zβ = 1 is less
than 1/[n]k[n]j . By a union bound,

P
[
E′] ≤

r∑
k=1

a(d, k)[n]k
2k

r∑
j=1

k[n − 1]j−1a(d, j)

[n]k[n]j

≤
r∑

k=1

r∑
j=1

a(d, k)a(d, j)

2n
= O

(
(2d − 1)2r

n

)
.

�

PROOF OF COROLLARY 15. When d = 1, there is only one word of each
length in W ′

K , and statement (i) reduces to the well-known fact that the cycle
counts of a random permutation converge to independent Poisson random variables
(see [2] for much more on this subject). In this case, G(t) is made up of disjoint
cycles for all times t , so that statement (ii) is trivially satisfied.

When d ≥ 2, let C
(n)
w be the number of cycles with word w in Gn, as in Corol-

lary 24(ii). The random vector (Cw(t),w ∈ W ′
K) is a mixture of the random vec-

tors (C
(n)
w ,w ∈ W ′

K) over different values of n. That is,

P
[(

Cw(t),w ∈ W ′
K

) ∈ A
] =

∞∑
n=1

P[Mt = n]P[(
C(n)

w ,w ∈W ′
K

) ∈ A
]
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for any set A, recalling that G(t) = GMt . Corollary 24(ii) together with the fact
that P[Mt > N ] → 1 as t → ∞ for any N imply that (Cw(t),w ∈ W ′

K) converges
in law to (Zw,w ∈ W ′

K), establishing statement (i). Statement (ii) follows in the
same way from Corollary 25. �

PROOF OF LEMMA 21. We will apply the Stein–Chen method directly. Define
the operator A by

Ah(x) = ∑
α∈I

E[Zα](h(x + eα) − h(x)
) + ∑

α∈I
xα

(
h(x − eα) − h(x)

)
for any h :Z|I|

+ → R and x ∈ Z
|I|
+ . This is the Stein operator for the law of Z, and

EAh(Z) = 0 for any bounded function h. By Proposition 10.1.2 and Lemma 10.1.3
in [3], for any set A ⊆ Z

|I|
+ , there is a function h such that

Ah(x) = 1{x ∈ A} − P[Z ∈ A],
and this function has the property that

sup
x∈Z|I|

+
α∈I

∣∣h(x + eα) − h(x)
∣∣ ≤ 1.(29)

Thus we can bound the total variation distance between the laws of Y and Z by
bounding |EAh(Y)| over all such functions h.

We write Ah(Y) as

Ah(Y) = ∑
α∈I

E[Yα](h(Y + eα) − h(Y)
) + ∑

α∈I
Yα

(
h(Y − eα) − h(x)

)
+ ∑

α∈I
(EZα − EYα)

(
h(Y + eα) − h(Y)

)
.

The first two of these sums have expectation zero, so∣∣EAh(Y)
∣∣ ≤ ∑

α∈I
|EZα − EYα|E∣∣h(Y + eα) − h(Y)

∣∣.
By (29), |h(Y + eα) − h(Y)| ≤ 1, which proves the lemma. �

PROOF OF LEMMA 22. We define a family of independent random maps σi

and τi for 1 ≤ i ≤ d . Choose σi uniformly from all injective maps from [ai] to [n],
and choose τi uniformly from all injective maps from [bi] to [n]. Effectively, σi

and τi are random ordered subsets of [n]. We say that σi and τi clash if their images
overlap.

P[σi and τi clash for some i] = 1 −
d∏

i=1

[n]ai+bi

[n]ai
[n]bi

.
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For any 1 ≤ i ≤ d , 1 ≤ j ≤ ai , and 1 ≤ k ≤ bi , the probability that σi(j) = τi(k) is
1/n. By a union bound,

P[σi and τi clash for some i] ≤
d∑

i=1

aibi

n
= 〈a, b〉

n
.

We finish the proof by dividing both sides of this inequality by
∏d

i=1[n]ai+bi
. �
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