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A CLT FOR EMPIRICAL PROCESSES INVOLVING
TIME-DEPENDENT DATA

BY JAMES KUELBS, THOMAS KURTZ1 AND JOEL ZINN2

University of Wisconsin, University of Wisconsin and Texas A&M University

For stochastic processes {Xt : t ∈ E}, we establish sufficient conditions
for the empirical process based on {IXt≤y − Pr(Xt ≤ y) : t ∈ E,y ∈ R} to
satisfy the CLT uniformly in t ∈ E,y ∈ R. Corollaries of our main result
include examples of classical processes where the CLT holds, and we also
show that it fails for Brownian motion tied down at zero and E = [0,1].

1. Introduction. To form the classical empirical process, one starts with i.i.d.
random variables {Xj : j ≥ 1}, with distribution function F , and with

Pn(A) = 1

n

n∑
j=1

IXj∈A,(1)

one considers the process Fn(y) = Pn((−∞, y]).
By the classical Glivenko–Cantelli theorem,

sup
y∈R

|Fn((−∞, y]) − F(y)| −→ 0 a.s.

By Donsker’s theorem, {√
n
(
Fn(y) − F(y)

)
:y ∈ R

}
converges in distribution in a sense described more completely below. Hence limit
theorems for such processes, such as the law of large numbers and the central limit
theorem (CLT), allow one to asymptotically get uniform estimates for the unknown
cdf, F(y) = Pr(X ≤ y), via the sample data.

A more general version of these processes is to replace the indicators of half-
lines in (1) by functions of a “random variable” taking values in some abstract
space (S, S). More specifically,{

1√
n

n∑
j=1

(
f (Xj ) − Ef (X)

)
:f ∈ F

}
,(2)
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where the index set, F , is a subset of L∞(S, S) or an appropriate subset of
L2(S, S,P ). We use the notation Lp(S, S,P ),0 < p < ∞, to denote the S -
measurable functions on S whose absolute value to the pth power is integrable
with respect to P , rather than the equivalence classes of these functions. Of course,
when p = ∞ the functions are S -measurable and uniformly bounded on S. The
standard notation Lp(S, S,P ) is used when we are dealing with equivalence
classes.

However, even in the case that the class of functions is a class of indicators,
unlike the classical case, it is easy to see there are many classes of sets, C , for
which the limit theorem does not hold. As a matter of fact, the limiting Gaussian
may not be continuous, for example, if C = all Borel sets of R or even C = all
finite sets of R. And further, even if the limiting Gaussian process is continuous,
the limit theorem may still fail.

Luckily, in the case of sets, modulo questions of measurability, there are neces-
sary and sufficient conditions for this sequence to converge in distribution to some
mean zero Gaussian process. However, all the nasc’s are described in terms of the
asymptotic behavior of a complicated function of the sample, {Xn}∞n=1. What we
attempt to do in this paper is to obtain additional sufficient conditions that are use-
ful when X takes values in some function space S, and the sets in C involve the
time evolution of the stochastic process X. Of course, C is still a class of sets, but
a primary goal that emerges here is to provide sufficient conditions for a uniform
CLT in terms of the process X = {X(t) : t ∈ E} that depend as little as possible
on the parameter set E. However, classes of sets such as this rarely satisfy the
Vapnik–Červonenkis condition. Also, this class of examples arises naturally from
the study of the median process for independent Brownian Motions [see Swan-
son (2007, 2011)], where he studies the limiting quantile process for independent
Brownian motions. This was observed by Tom Kurtz, and the follow-up questions
led us to start this study. Here we concentrate on empirical process CLTs, and our
main result is Theorem 3 below. Another theorem and some examples showing the
applicability of Theorem 3 appear in Section 7. In Section 8 there are additional
examples which show some obvious conjectures one might be tempted to make,
concerning the CLT formulated here, are false. In particular, the examples in Sec-
tion 8.4 motivate the various assumptions we employ in Theorem 3. As for future
work, an upgraded version of Vervaat (1972) would perhaps allow one to relate
the results obtained here and those of Swanson, but this is something to be done
elsewhere.

2. Previous results and some definitions. Let (S, S,P ) be a probabil-
ity space, and define (�,�,P r) to be the infinite product probability space
(SN, S N,P N). If Xj :� → S are the natural projections of � into the j th copy
of S, and F is a subset of L2(S, S,P ) with

sup
f ∈F

|f (s)| < ∞, s ∈ S,(3)
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then we define

νn(f ) = 1√
n

n∑
j=1

(
f (Xj ) − Ef (X)

)
, f ∈ F .(4)

Let �∞(F ) be the bounded real valued functions on F , with the sup-norm, and
recall that a Radon measure μ on �∞(F ) is a finite Borel measure which is inner
regular from below by compact sets. Then the functions f → f (Xj )−E(f (Xj )),
j ≥ 1, are in �∞(F ), and we say F ∈ CLT(P ) if the stochastic processes {νn(f ),
f ∈ F }, n ≥ 1, converge weakly to a centered Radon Gaussian measure γP on
�∞(F ). More precisely, we have the following definition.

DEFINITION 1. Let F ⊂ L2(P ) and satisfy (3). Then F ∈ CLT(P ), or F is a
P -Donsker class if there exists a centered Radon Gaussian measure γP on �∞(F )

such that for every bounded continuous real valued function H on �∞(F ), we have

lim
n→∞ E

∗(H(νn)) =
∫

H dγP ,

where E
∗H is the usual upper integral of H . If C is a collection of subsets from S ,

then we say C ∈ CLT(P ) if the corresponding indicator functions are a P -Donsker
class.

The probability measure γP of Definition 1 is obviously the law of the centered
Gaussian process GP , indexed by F having covariance function

EGP (f )GP (g) = EP fg − EP f EP g, f, g ∈ F ,

and L2 distance

ρP (f, g) = EP

({(f − g) − EP (f − g)}2)1/2
, f, g ∈ F .

Moreover, if γP is as in Definition 1, then it is known that the process GP admits a
version all of whose trajectories are bounded and uniformly ρP continuous on F .
Hence we also make the following definition.

DEFINITION 2. A class of functions F ⊂ L2(P ) is said to be P -pre-Gaussian
if the mean zero Gaussian process {GP (f ) :f ∈ F } with covariance and L2 dis-
tance as indicated above has a version with all the sample functions bounded and
uniformly continuous on F with respect to the L2 distance ρP (f, g).

Now we state some results which are useful for what we prove in this paper. The
first is important as it helps us establish counterexamples to natural conjectures one
might make in connection to our main result, appearing in Theorem 3 below.
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THEOREM 1 [Giné and Zinn (1984) for sufficiency and Talagrand (1988) for
necessity of the �C condition in (ii)]. Let �C (A) denote the number of distinct
subsets of A obtained when one intersects all sets in C with A. Then, modulo
measurability assumptions, conditions (i) and (ii) below are equivalent.

(i) The central limit theorem holds for the process{
1√
n

n∑
j=1

[IXj∈C − Pr(X ∈ C)] :C ∈ C
}

or more briefly C ∈ CLT(P ).
(ii)

(a)
ln�C ({X1, . . . ,Xn})√

n
→ 0 in (outer) probability and(5)

(b) C is P -pre-Gaussian.(6)

A sufficient condition for the empirical CLT, which is used in the proof of our
main theorem, is given in Theorem 4.4 of Andersen et al. (1988).

THEOREM 2 [Andersen et al. (1988)]. Let

F ⊂ L2(S, S,P ), F = sup
f ∈F

|f (X)|

and P be the distribution of X with respect to Pr, that is, P = Pr ◦ X−1. Also, let
Pf = ∫

f (x)P (dx). Assume that ‖Pf ‖F ≡ supf ∈F |P(f )| < ∞ and:

(i) u2 Pr∗(F > u) → 0 as u → ∞;
(ii) F is P -pre-Gaussian;

(iii) there exists a centered Gaussian process {G(f ) :f ∈ F } with L2 distance
dG such that G is sample bounded and uniformly dG continuous on F , and for
some K > 0, all f ∈ F , and all ε > 0,

[
sup
u>0

u2 Pr∗
(

sup
{g : dG(g,f )<ε}

|f − g| > u
)]1/2 ≤ Kε.

Then F ∈ CLT(P ).

In this paper we take i.i.d. copies {Xj }∞j=1 of a process {X(t) : t ∈ E}, and con-
sider {

1√
n

n∑
j=1

[
IXj (t)≤y − Pr

(
X(t) ≤ y

)]
: t ∈ E,y ∈ R

}
(7)

with the goal of determining when these processes converge in distribution in some
uniform sense to a mean zero Gaussian process. For example, if the process X has
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continuous sample paths on E, then S = C(E) and the class of sets C in (i) of
Theorem 1 consists of the sets {f ∈ C(E) :f (t) ≤ y} for t ∈ E and y ∈ R, and we
examine when C ∈ CLT(P ). As a result of the previous definitions, the limiting
centered Gaussian process has a version with sample paths in a separable subspace
of �∞(C), and as a consequence of the addendum to Theorem 1.5.7 of van der
Vaart and Wellner [(1996), page 37], almost all sample paths are uniformly L2
continuous on C provided we identify the indicator functions of sets in C with C
itself. Furthermore, we also have that C is totally bounded in the L2 distance with
this identification. In addition, the following remark is important in this setting.

REMARK 1. The assumption that a centered process {X(t) : t ∈ T } with L2
distance d is sample bounded and uniformly continuous on (T , d) is easily seen
to follow if (T , d) is totally bounded and the process is uniformly continuous on
(T , d). Moreover, if the process is Gaussian, the converse also holds using Su-
dakov’s result as presented in Corollary 3.19 of Ledoux and Talagrand (1991).

To state and prove our result, we will make use of a distributional transform that
appears in a number of places in the literature; see Ferguson (1967). Rüschendorf
(2009) provides an excellent introduction to its history, and some uses. In particu-
lar, it is used there to obtain an elegant proof of Sklar’s theorem [see Sklar (1973)],
and also in some related applications.

Given the distribution function F of a real valued random variable Y , let V be
a random variable uniformly distributed on [0,1] and independent of Y . In this
paper we use the distributional transform of F defined as

F̃ (x,V ) = F(x−) + V
(
F(x) − F(x−)

)
,

and Proposition 1 in Rüschendorf (2009) shows that

F̃ (Y,V ) is uniform on [0,1].(8)

Rüschendorf calls F̃ (Y,V ) the distributional transform of Y , and we also note that
F̃ (x,V ) is nondecreasing in x.

3. The main conditions. Let {X(t) : t ∈ E} be a stochastic process as in (7),
and assume

ρ(s, t) = (
E(Ht − Hs)

2)1/2
, s, t ∈ E,

where {H(t) : t ∈ E} is some Gaussian process which is sample bounded and ρ

uniformly continuous on E. In our main result (see Theorem 3 below), we hypoth-
esize the relationship between {X(t) : t ∈ E} and ρ(s, t), s, t ∈ E given in (10).
The importance of this condition in the proof of our theorem is 2-fold. First, it
allows one to establish the limiting Gaussian process for our CLT actually exists.
This verifies condition (ii) in Theorem 2 above, and is accomplished via a subtle
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application of the necessary and sufficient conditions for the existence and sample
function regularity of a Gaussian process given in Talagrand (2005). Second, it
also allows us to verify that the remaining nontrivial condition sufficient for our
CLT, namely condition (iii) of Theorem 2, applies in this setting. This is useful in
applications as condition (iii) is in terms of a single random element involved in
our CLT, and hence is far easier to verify than the typical condition which depends
on the full sample of the random elements as in (5). The reader should also note
that Theorem 2 is a refinement of a number of previous results sufficient for the
CLT, and covers a number of important earlier empirical process papers.

The existence of such a ρ(·, ·) is obtained for a number of specific pro-
cesses {X(t) : t ∈ E} in Section 7. Nevertheless, given the process X, determining
whether a suitable ρ satisfying (10) exists, or does not exist, may be quite difficult.
However, using (12) we may limit our choice for ρ in (10) to be such that

ρ(s, t) ≥ c−1 sup
x∈R

(
E(|IXt≤x − IXs≤x |2))1/2

for all s, t ∈ E and some constant c ∈ (0,∞).
Throughout, ρ(s, t), s, t ∈ E, denotes the L2 metric of a Gaussian process in-

dexed by E and, to simplify notation, we let

F̃t (x) ≡ ˜(Ft )(x,V ), x ∈ R,

be the distributional transform of Ft , the distribution function of Xt . Note that this
simplification of notation also includes using Xt for X(t) when the extra parenthe-
sis make the latter clumsy or unnecessary. Moreover, this variable notation is also
employed for other stochastic processes in the paper. In addition, for each ε > 0,
let

sup
{s,t∈E : ρ(s,t)≤ε}

Pr∗
(|F̃t (Xs) − F̃t (Xt )| > ε2) ≤ Lε2(9)

(the weak L condition)

and

sup
t∈E

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|F̃t (Xs) − F̃t (Xt )| > ε2
)

≤ Lε2(10)

(the L condition).

REMARK 2. In the L conditions the probabilities involve an ε2. However,
since for any constant C ∈ (0,∞), an L2 metric ρ, is pre-Gaussian if and only if
Cρ is pre-Gaussian, WLOG we can change to Cε2. Moreover, note that any con-
stant L sufficient for (10) will also suffice for (9), and hence to simplify notation
we do not distinguish between them.
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LEMMA 1. Let L be as in (9), and take s, t ∈ E. Then, for all x ∈ R,

Pr(Xs ≤ x < Xt) ≤ (L + 1)ρ2(s, t)(11)

and by symmetry,

E|IXt≤x − IXs≤x | = Pr(Xt ≤ x < Xs) + Pr(Xs ≤ x < Xt)
(12)

≤ 2(L + 1)ρ2(s, t).

Further, we have

sup
x

|Ft(x) − Fs(x)| ≤ 2(L + 1)ρ2(s, t).(13)

REMARK 3. As in Lemma 1 and Lemmas 2 and 3 below, use only the weak
L condition (9). Actually, for Lemmas 2 and 3, all we need is Lemma 1. However,
in Lemma 4 we need the stronger form as stated in (10).

PROOF OF LEMMA 1. Since F̃t is nondecreasing and x < y implies Ft(x) ≤
F̃t (y), we have

Pr(Xs ≤ x < Xt) ≤ Pr
(
F̃t (Xs) ≤ F̃t (x),Ft (x) ≤ F̃t (Xt )

)
.

Thus

Pr(Xs ≤ x < Xt) ≤ Pr
(
Ft(x) ≤ F̃t (Xt ) ≤ Ft(x) + ρ2(s, t), F̃t (Xs) ≤ F̃t (x)

)
+ Pr

(
F̃t (Xt ) > Ft(x) + ρ2(s, t), F̃t (Xs) ≤ F̃t (x)

)
and hence

Pr(Xs ≤ x < Xt) ≤ Pr
(
Ft(x) ≤ F̃t (Xt ) ≤ Ft(x) + ρ2(s, t)

)
+ Pr

(|F̃t (Xt ) − F̃t (Xs)| > ρ2(s, t)
)
.

Now (9) implies for all s, t ∈ E that

Pr
(|F̃t (Xt ) − F̃t (Xs)| > ρ2(s, t)

) ≤ Lρ2(s, t),

since its failure for s0, t0 ∈ E and ε = ρ(s0, t0) in (9) implies a contradiction.
Therefore, since F̃t (Xt ) is uniform on [0,1], we have

Pr(Xs ≤ x < Xt) ≤ ρ2(s, t) + Lρ2(s, t).

The last conclusion follows by moving the absolute values outside the expectation.
�
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4. The main result. Recall the relationship of the X process and ρ as de-
scribed at the beginning of Section 3. Then we have:

THEOREM 3. Let ρ be given by ρ2(s, t) = E(H(s) − H(t))2, for some cen-
tered Gaussian process H that is sample bounded and uniformly continuous on
(E,ρ) with probability one. Furthermore, assume that for some L < ∞, and all
ε > 0, the L condition (10) holds, and D(E) is a collection of real valued functions
on E such that Pr(X(·) ∈ D(E)) = 1. If

C = {Cs,x : s ∈ E,x ∈ R},
where

Cs,x = {z ∈ D(E) : z(s) ≤ x}
for s ∈ E,x ∈ R, then C ∈ CLT(P ).

REMARK 4. Note that a sample function of the X-process is in the set Cs,x iff
Xs ≤ x. Hence, if we identify a point (s, x) ∈ E ×R with the set Cs,x , then instead
of saying C ∈ CLT(P ), we will often say

{IXs≤x − Pr(Xs ≤ x) : s ∈ E,x ∈ R}
satisfies the CLT in �∞(C) [or in �∞(E × R)].

REMARK 5. At this point one might guess that the reader is questioning the
various assumptions in Theorem 3. First we mention that D(E) is some convenient
function space. For example, typically the process X has continuous sample paths
on E, so D(E) = C(E) in these situations. More perplexing, at least for most
readers, is probably the appearance of the distributional transforms {F̃t : t ∈ E}
in the L condition (10). If the distribution functions Ft are all continuous, then
Ft = F̃t , t ∈ E, and our proof obviously holds with Ft replacing F̃t in the L con-
dition. However, without all the distribution functions Ft assumed continuous, the
methods required in our proof fail with this substitution. An interesting case where
the distributional transforms are useful occurs when one has a point t0 ∈ E such
that Pr(X(t) = X(t0) for all t in E) = 1, and Ft0 is possibly discontinuous. In this
situation, the L condition (10) holds for the Gaussian process H(t) = g for all
t ∈ E, g a standard Gaussian random variable and X(t0) having any distribution
function Ft0 . Thus Theorem 3 applies and yields the classical empirical CLT when
the set S is the real line, and the class of sets consists of half-lines for all laws Ft0 .
A similar result also applies if E is a finite disjoint union of nonempty sets, and
the process {Xt : t ∈ E} is constant on each of the disjoint pieces of E regardless
of the distribution functions Ft , t ∈ E. More importantly, however, allowing even
a single discontinuous distribution Ft may invalidate the empirical CLT on C . For
example, if {X(t) : t ∈ [0,1]} is standard Brownian motion with P(X(0) = 0) = 1,
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then in Section 8.1 we show the empirical CLT fails, but Corollary 2 shows that it
holds if we allow the distribution at time zero to have a bounded density. Further-
more, in Section 8.4 we provide some additional examples where the empirical
process is pre-Gaussian, and the input process {X(t) : t ∈ E} satisfies a modified
L condition, that is, for all ε > 0, there is an L < ∞ such that

sup
t∈E

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Ft(Xs) − Ft(Xt)| > ε2
)

≤ ε2,

yet the empirical CLT we seek fails. Hence one needs to assume something more,
and our results show that the L condition given in (10) is sufficient for the empiri-
cal CLT.

In Section 7 we will provide another theorem showing how Theorem 3 can be
applied, and hence the examples obtained there are motivation for its formulation
in terms of the L condition (10). The following remark also motivates the presence
of the process {F̃t (Xs) : s ∈ E} and the L condition in our CLT. In particular, we
sketch an argument that for each t ∈ E a symmetric version of this process satisfies
a CLT in �∞(E). This remark is meant only for motivation, and in its presentation
we are unconcerned with a number of details.

REMARK 6. Let

{IXs≤x − Pr(Xs ≤ x) : s ∈ E,x ∈ R}
satisfy the central limit theorem in the closed subspace of �∞(E × R) consisting
of functions whose s-sections are Borel measurable on R. We denote this subspace
by �∞,m(E × R), and also assume the distribution functions Ft are all continuous.
Then, for each fixed t ∈ E, we define the bounded linear operator φ :�∞,m(E ×
R) −→ �∞(E) given by

φ(f )(s) =
∫

f (s, x)Ft (dx).

Now by the symmetrization lemma [Lemma 2.7 in Giné and Zinn (1984)], we
have for a Rademacher random variable ε independent of the empirical pro-
cess variables that {εICs,x : s ∈ E,x ∈ R} satisfy the CLT in �∞(E × R). Taking
f (s, x) = ICs,x , we have for all t ∈ E fixed that

φ(f )(s) = 1 − Ft(z(s)
−) = 1 − Ft(z(s))

as we are assuming the Ft are continuous. Therefore the continuous mapping the-
orem [see, e.g., Theorem 1.3.6 in van der Vaart and Wellner (1996)] implies that
for each t ∈ E,

Zn(s) = 1√
n

n∑
j=1

εj

(
1 − Ft(Xs)

)
, s ∈ E,
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satisfies the CLT in �∞(E). In addition, since we are assuming Ft = F̃t , we should
then have “asymptotically small oscillations;” namely, for every δ > 0 there exists
ε > 0 such that

Pr∗
(

sup
ρ(s,t)≤ε

1√
n

n∑
j=1

εj

(
F̃t (Xs) − F̃t (Xt )

)
> δ

)
≤ δ.

By using standard symmetry arguments this last probability dominates

1

2
Pr∗

(
max
j≤n

sup
ρ(s,t)≤ε

|F̃t (Xs) − F̃t (Xt )| > √
nδ

)
≤ δ,

which (again by standard arguments) implies (modulo multiplicative constants)

nPr∗
(

sup
ρ(s,t)≤ε

|F̃t (Xs) − F̃t (Xt )| > √
nδ

)
≤ δ.

While this is different from the hypotheses in our theorem, it indicates that the
quantity supρ(s,t)≤ε|F̃t (Xs) − F̃t (Xt )| is relevant to any such theorem.

5. Preliminaries for generic chaining. Let T be an arbitrary countable set.
Then, following Talagrand (2005) we have:

DEFINITION 3. An admissible sequence is an increasing sequence (An) of
partitions of T such that

Card An ≤ Nn,

where N0 = 1, and for n ≥ 1, Nn = 22n
. The partitions (An) are increasing if every

set in An+1 is a subset of some set of An.

We also have:

DEFINITION 4. If t ∈ T , we denote by An(t) the unique element of An that
contains t . For a psuedo-metric e on T , and A ⊆ E, we write �e(A) to denote the
diameter of A with respect to e.

Using generic chaining and the previous definitions, Theorem 1.4.1 of Talagrand
(2005) is essentially the following result. Its statement there contains a curious
wording at the end of the first sentence, which suggests that cutting and pasting
led to something being omitted. After closer inspection we observed that the nec-
essary assumption of total boundedness of the parameter space was required, and
it now appears in the statement of the theorem below. Since Theorem 1.4.1 appears
without proof, for completeness the proof can be found in the Appendix.

THEOREM 4. Let {Xt : t ∈ T } be a centered Gaussian process with L2 dis-
tance d(s, t), s, t ∈ T , where T is countable, and (T , d) is totally bounded. Then,
the following are equivalent:
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(i) Xt is uniformly continuous on (T , d) with probability one.
(ii) We have

lim
ε→0

E

(
sup

d(s,t)≤ε

(Xs − Xt)
)

= 0.

(iii) There exists an admissible sequence of partitions of T such that

lim
k→∞ sup

t∈T

∑
n≥k

2n/2�(An(t)) = 0.(14)

Under the assumption that H is centered Gaussian and uniformly continuous
on (T , e), then, recalling Remark 1, it follows that H being sample bounded on T

is equivalent to (T , e) being totally bounded. Also, an immediate corollary of this
result used below is as follows.

PROPOSITION 1. Let H1 and H2 be mean zero Gaussian processes with L2
distances e1, e2, respectively, on T . Furthermore, assume T is countable, and
e1(s, t) ≤ e2(s, t) for all s, t ∈ T . Then, H2 sample bounded and uniformly contin-
uous on (T , e2) with probability one, implies H1 is sample bounded and uniformly
continuous on (T , e1) with probability one.

REMARK 7. One can prove this using Slepian’s lemma [see, e.g., Fernique
(1975)]. However, the immediate conclusion is that H1 is sample bounded and
uniformly continuous on (T , e2). Then, a separate argument is needed to show the
statement in this proposition. Using the more classical formulation for continu-
ity of Gaussian processes involving majorizing measures [see, e.g., Theorem 12.9
of Ledoux and Talagrand (1991)], the result also follows similarly to what is ex-
plained below.

PROOF OF PROPOSITION 1. By the previous theorem {H2(t) : t ∈ T } is sam-
ple bounded and uniformly continuous on (T , e2) with probability one if and only
if there exists an admissible sequence of partitions of T such that

lim
r→∞ sup

t∈T

∑
n≥r

2n/2�e2(An(t)) = 0.

Since �e1(An(t)) ≤ �e2(An(t)), we have

lim
r→∞ sup

t∈T

∑
n≥r

2n/2�e1(An(t)) = 0,

and hence Theorem 4 implies that H1 is sample bounded and uniformly continuous
on (T , e1) with probability one. Thus the proposition is proven. �

6. Proof of Theorem 3. First we establish some necessary lemmas, and the
section ends with the proof of Theorem 3. Throughout we take as given the as-
sumptions and notation of that theorem.
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6.1. Some additional lemmas. In order to simplify notation, we denote the L2
distance on the class of indicator functions

F = {IXs≤x : s ∈ E,x ∈ R}
by writing

τ((s, x), (t, y)) = {
E

(
(IXs≤x − IXt≤y)

2)}1/2

and identifying F with E × R. Our next lemma relates the τ -distance and the
ρ-distance. It upgrades (12) when x �= y.

LEMMA 2. Assume that (9) holds. Then

τ 2((s, x), (t, y)) ≤ min
u∈{s,t}|Fu(y) − Fu(x)| + (2L + 2)ρ2(t, s).(15)

Moreover, if Q denotes the rational numbers, there is a countable dense set E0 of
(E,ρ) such that F0 = {IXs≤x : (s, x) ∈ E0 × Q} is dense in (F , τ ).

PROOF. First observe that by using the symmetry in s and t of the right-hand
term of (15), we have, by applying (11) in the second inequality below, that

τ 2((s, x), (t, y)) = E|IXt≤y − IXs≤x | ≤ E|IXt≤y − IXt≤x | + E|IXt≤x − IXs≤x |
= |Ft(y) − Ft(x)| + Pr(Xs ≤ x < Xt) + Pr(Xt ≤ x < Xs)

≤ |Ft(y) − Ft(x)| + (2 + 2L)ρ2(s, t).

Similarly, we also have by applying (11) again that

τ 2((s, x), (t, y)) ≤ |Fs(y) − Fs(x)| + (2 + 2L)ρ2(s, t).

Combining these two inequalities for τ , the proof of (15) holds. Since (E,ρ) is
assumed totally bounded, there is a countable dense set E0 of (E,ρ), and hence the
right continuity of the distribution functions and (15) then imply the final statement
in Lemma 2. �

Using Lemma 2 and the triangle inequality, we can estimate the τ -diameter of
sets as follows.

COROLLARY 1. If tB ∈ B ⊆ E and D ⊆ R, then

diamτ (B × D) ≤ 2
{
(2L + 2)1/2 diamρ(B) + sup

x,y∈D

|FtB (y) − FtB (x)|1/2
}
.

LEMMA 3. Assume that (s, x) and (t, y) satisfy

τ((s, x), (t, y)) = ‖IXs≤x − IXt≤y‖2 ≤ ε,
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ρ(s, t) ≤ ε, and (9) holds. Then, for c = (2L + 2)1/2 + 1,

|Ft(x) − Ft(y)| ≤ (cε)2

or, in other words,

|Ft(x) − Ft(y)| ≤ (c max{τ((s, x), (t, y)), ρ(s, t)})2.

PROOF. Using (11) in the second inequality below, we have

|Ft(y) − Ft(x)|1/2 = ‖IXt≤x − IXt≤y‖2 ≤ ‖IXs≤x − IXt≤y‖2 + ‖IXs≤x − IXt≤x‖2

≤ ε + (
Pr(Xs ≤ x < Xt) + Pr(Xt ≤ x < Xs)

)1/2

≤ ε + (2Lε2 + 2ε2)1/2 = [(2L + 2)1/2 + 1]ε ≡ cε.

Hence the lemma is proven. �

The next lemma is an important step in verifying the weak-L2 condition in item
(iii) of Theorem 2 above; for example, see Theorem 4.4 of Andersen et al. (1988).

LEMMA 4. If (10) holds, c is as in Lemma 3, and

λ((s, x), (t, y)) = max{τ((s, x), (t, y)), ρ(s, t)};
then for all (t, y) and ε > 0,

Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

|IXt≤y − IXs≤x | > 0
)

≤ 2(c2 + L + 1)ε2.

PROOF. First we observe that

Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

|IXt≤y − IXs≤x | > 0
)

= Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

IXt≤y,Xs>x + IXs≤x,Xt>y > 0
)
.

Again, using the fact that x < y implies Ft(x) ≤ F̃t (y), we have

Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

|IXt≤y − IXs≤x | > 0
)

≤ Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

I
F̃t (Xt )≤F̃t (y),Ft (x)≤F̃t (Xs)

> 0
)

+ Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

I
F̃t (Xs)≤F̃t (x),Ft (y)≤F̃t (Xt )

> 0
)

= I + II,

where

I = Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

I
F̃t (Xt )≤F̃t (y),Ft (x)≤F̃t (Xs)

> 0
)

(16)
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and

II = Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

I
F̃t (Xs)≤F̃t (x),Ft (y)≤F̃t (Xt )

> 0
)
.(17)

At this point we use Lemma 3 to see that in (16) we can use

inf{(s,x) : λ((t,y),(s,x))≤ε}Ft(x) ≥ Ft(y) − (cε)2.

Therefore, since F̃t (x) ≤ Ft(x) for all x and again using (10)

I ≤ Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

I
F̃t (Xt )≤Ft (y),Ft (y)−(cε)2≤F̃t (Xs)

> 0
)

≤ Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

I
F̃t (Xt )≤Ft (y),Ft (y)−(cε)2≤F̃t (Xt )+ε2 > 0

)
+ Lε2

≤ Pr
(
Ft(y) − (cε)2 − ε2 ≤ F̃t (Xt ) ≤ Ft(y)

) + Lε2

≤ (c2 + L + 1)ε2 by (8).

Now, we estimate II in (17). Again using the fact that F̃t (x) ≤ Ft(x) for all x,
Lemma 3, and our definition of L, we therefore have

Pr∗
(

sup
{(s,x) : λ((t,y),(s,x))≤ε}

I
F̃t (Xs)≤F̃t (x),Ft (y)≤F̃t (Xt )

> 0
)

≤ Pr
(
F̃t (Xt ) − ε2 ≤ Ft(y) + (cε)2,Ft (y) ≤ F̃t (Xt )

) + Lε2

≤ (c2 + L + 1)ε2. �

6.2. The construction and the proof of Theorem 3. Since (E,ρ) is totally
bounded by Remark 1, take E0 to be any countable dense subset of E in the ρ

distance. Then by Theorem 4, Talagrand’s continuity theorem, there exists an ad-
missible sequence of partitions, Bn of E0, for which

lim
r→∞ sup

t∈E0

∑
n≥r

2n/2�ρ(Bn(t)) = 0.(18)

Fix n. Then, for each B ∈ Bn−1 choose tB ∈ B . Fix the distribution function
FB := FtB and μB the associated probability measure. Put α = (�ρ(B) + 2−n)2

and set z1 = sup{x ∈ R :FB(x) < α}. We consider two cases:

• FB(z1) ≤ α and
• FB(z1) > α.

In the first case FB(z1) = α. If FB(z1) < α, then by right continuity there exist
w > z1 such that FB(w) < α, which contradicts the definition of z1. In this case
we consider C1 = (−∞, z1] and D1 = ∅.

In the second case we let C1 = (−∞, z1) and D1 = {z1}. In either case μB(C1 ∪
D1) ≥ α.
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If μB((z1,∞)) ≥ α, let z2 = sup{x > zk :FB(x) − FB(z1) < α}. If z2 = ∞, we
set C2 = (z1,∞) and D2 = ∅. Otherwise, if z2 < ∞, there are two cases. That is,
we have:

• FB(z2) − FB(z1) ≤ α and
• FB(z2) − FB(z1) > α.

In the first case we consider C2 = (z1, z2] and D2 = ∅. In the second case we let
C2 = (z1, z2) and D2 = {z2}. As before, μB(C2 ∪ D2) ≥ α.

Now assume that we have constructed C1, . . . ,Ck and D1, . . . ,Dk in this man-
ner. Therefore we have zk . If μB((zk,∞)) ≥ α, let zk+1 = sup{x > zk :FB(x) −
FB(zk) < α}. If zk+1 = ∞, we set Ck+1 = (zk,∞) and Dk+1 = ∅. Otherwise, if
zk+1 < ∞, there are two cases. That is, we have:

• FB(zk+1) − FB(zk) ≤ α and
• FB(zk+1) − FB(zk) > α.

In the first case we consider Ck+1 = (zk, zk+1] and Dk+1 = ∅. In the second case
we let Ck+1 = (zk, zk+1) and Dk+1 = {zk+1}. As before, μB(Ck+1 ∪ Dk+1) ≥ α.
Hence, there can be at most 1

α
+1 steps before {Ck,Dk}k cover R. Therefore, after

eliminating any empty set, we have a cover of R with at most 2
α

+ 2 sets. By our
choice of α the cover has at most 22n+1 + 2 sets. Hence since we have B ∈ Bn−1,
the number of sets used to cover E0 ×R of the form B ×Ck or B ×Dk is less than
or equal to 22n−1

(22n+1 + 2). The reader should note that the points {zk} depend
on the set B , but we have suppressed that to simplify notation. We now check the
τ -diameters of the nonempty B × Ck and B × Dk .

Estimating these diameters by doubling the radius of the sets, the triangle in-
equality allows us to upper bound their radius using one of s and t to be tB . Also
note that in Lemma 2, or Corollary 1, the term which contains |FtB (y) − FtB (x)|
would cause trouble in the case Dk �= ∅, since this is only known to be ≥ α. Luck-
ily it does not appear when Dk �= ∅.

First we consider the τ -diameter of sets of the form B ×Ck when Dk = ∅. Then
Ck = (zk−1,B, zk,B]. Hence for (s, x), (t, y) ∈ B × Ck , Corollary 1 implies

�τ

(
B × (zB,k−1, zB,k]) ≤ 2

(
(2L + 2)1/2�ρ(B) + �ρ(B) + 1

2n

)
.

When Dk �= ∅, then Ck = (zk−1,B, zk,B), so again by Corollary 1 the τ -diameter
of B × Ck has an upper bound as in the previous case.

If Dk �= ∅, then the only element of Dk is zk,B , and by Corollary 1 we have

�τ(B × Dk) ≤ 2(2L + 2)1/2 diamρ(B).

So, in either case,

�τ(B × CB,k or DB,k) ≤ 2
(
(2L + 2)1/2�ρ(B) + �ρ(B) + 1

2n

)
.(19)
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LEMMA 5. Let Gn be a sequence of partitions of an arbitrary parameter set
T with pseudo metric e on T satisfying both:

(1) Card(Gn) ≤ 22n
and

(2) limr→∞ supt∈T

∑
n≥r 2n/2�e(Gn(t)) = 0,

and set Hn := P(
⋃

1≤k≤n−1 Gk), where P(D) denotes the minimal partition gen-
erated by the sets in D. Then the sequence Hn (notice the n − 1 in the union) also
satisfies those conditions.

PROOF. The first condition holds since a simple induction on n implies the
minimal partition

Hn = P
( ⋃

1≤k≤n−1

Gk

)

has cardinality at most
∏n−1

k=1 22k ≤ 22n
. The second condition holds since

the partitions are increasing collections of sets, and hence diame(Hn(t)) ≤
diame(Gn−1(t)). �

LEMMA 6. Let E0 be a countable dense subset of (E,ρ). Then there exists an
admissible sequence of partitions {An :n ≥ 0} of E0 × R such that

lim
r→∞ sup

(t,y)∈E0×R

∑
n≥r

2n/2�τ(An((t, y))) = 0.(20)

PROOF. We construct the admissible sequence of partitions An as above.
More precisely, let {Bn :n ≥ 0} be an increasing sequence of partitions of E0 such
that (18) holds, and after the construction above we also have (19). That is, for
k ≥ 1 let

Gk = {B × F :B ∈ Bk−1,F ∈ E B},
where

EB = {Cj,B,Dj,B all sets nonempty}
and Cj,B,Dj,B are constructed from B ∈ Bk−1 as above. Then, for n ≥ 4 set

An = P
( ⋃

3≤k≤n−1

Gk

)
,

where P(D) is the minimal partition generated by the sets in D, and for n = 1,2,3
we take An to be the single set E0 × R. Since the cardinality of the partitions Gk

defined above is less than or equal to 22k−1
(22k+1 + 2), then for n ≥ 4 a simple

computation implies the minimal partition

An = P
( ⋃

3≤k≤n−1

Gk

)



TIME-DEPENDENT EMPIRICAL PROCESSES 801

has cardinality at most
∏n−1

k=3 22k−1
(22k+1 + 2) ≤ ∏n−1

k=3 22k−1
22k+2 ≤ 22n

. By (19)
and Lemma 5 we have

sup
(t,y)

∑
n≥r

2n/2�τ(An(t, y)) ≤ C

{
sup

t

∑
n≥r

2n/2�ρ(Bn(t)) + ∑
n≥r

2n/22−n

}
.

Thus (18) implies that τ satisfies (20) with respect to the sequence of admissible
partitions An on E0 × R. �

PROOF OF THEOREM 3. Let Q denote the rational numbers. Then, if we re-
strict the partitions An of E0 × R in Lemma 6 to E0 × Q, we immediately have

lim
r→∞ sup

(t,y)∈E0×Q

∑
n≥r

2n/2�τ(An((t, y))) = 0,(21)

and (E0 ×Q,τ) is totally bounded. Now let {G(s,x) : (s, x) ∈ E ×R} be a centered
Gaussian process with E(G(s,x)G(t,y)) = Pr(Xs ≤ x,Xt ≤ y). Then, G has L2 dis-
tance τ , and by (21) and Theorem 4, it is uniformly continuous on (E0 × Q,τ).
Hence if {H(s,x) : (s, x) ∈ E0 × Q} is a centered Gaussian process with

E
(
H(s,x)H(t,y)

) = Pr(Xs ≤ x,Xt ≤ y) − Pr(Xs ≤ x)Pr(Xt ≤ y),

then

E
((

H(s,x) − H(t,y)

)2) = τ 2((s, x), (t, y)) − (
Pr(Xs ≤ x) − Pr(Xt ≤ y)

)2
.

Hence the L2 distance of H is smaller than that of G, and therefore Proposition 1
implies the process H is uniformly continuous on (E0 ×Q,dH ). By Lemma 2 the
set E0 × Q is dense in (E × R, τ ), and since

dH ((s, x), (t, y)) ≤ τ((s, x), (t, y)),

we also have that E0 × Q is dense in (E × R, dH ). Thus the Gaussian process
{H(s,x) : (s, x) ∈ E ×R} has a uniformly continuous version, which we also denote
by H , and since (E,dH ) is totally bounded, the sample functions are bounded on
E with probability one.

If F = {IXs≤x : (s, x) ∈ E × R)}, then since

dH ((s, x), (t, y)) = ρP (IXs≤x, IXt≤y),

the continuity of H on (E×R, dH ) implies condition (ii) in Theorem 2 is satisfied.
Since IXt≤y is bounded, condition (i) in Theorem 2 is also satisfied. Therefore,
Theorem 3 follows once we verify condition (iii) of Theorem 2.

To verify (iii) we use Lemma 4. As before, we identify the function f = IXs≤x ∈
F with the point (s, x) ∈ E × R. Hence, for the centered Gaussian process

{Gf :f ∈ F }
in (iii) of Theorem 2, for (s, x) ∈ E × R, we take the process

G̃(s,x) = G(s,x) + H̃s.
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In our definition of G̃ we are assuming:
(a) {H̃s : s ∈ E} is a Gaussian process whose law is that of the process {Hs : s ∈

E} given in the theorem, and independent of everything in our empirical model,
and

(b) {G(s,x) : (s, x) ∈ E × R} is a uniformly continuous and sample bounded ver-
sion of the Gaussian process, also denoted by G(s,x), but defined above on E0 ×Q.
The extension to all of E × R again follows by the fact that E0 × Q is dense in
(E × R, τ ).

Therefore, G̃ is sample bounded and uniformly continuous on E × R with re-
spect to its L2 distance

d
G̃
((s, x), (t, y)) = {τ 2((s, x), (t, y)) + ρ2(s, t)}1/2.

Condition (iii) of Theorem 2 now follows easily from Lemma 4 since for (t, y)

fixed,

{(s, x) :λ((s, x), (t, y)) ≤ ε} ⊇ {(s, x) :d
G̃
((s, x), (t, y)) ≤ ε},

and for a random variable Z bounded by one, we have

sup
t>0

t2 Pr(|Z| > t) ≤ Pr(|Z| > 0). �

7. Another theorem and some examples. Let {Xt : t ∈ E} be a sample con-
tinuous process such that:

(I) supt∈E |Ft(x) − Ft(y)| ≤ k|x − y|β for all x, y ∈ R and some k < ∞ and
some β ∈ (0,1]. Note that this condition implies that for every t,Ft is continuous
and hence that F̃t = Ft .

(III) |Xt − Xs | ≤ �φ(s, t) for all s, t ∈ E, and for some η > 0 and all x ≥ x0

Pr(� ≥ x) ≤ x−η.

(III) For β as in (I), and η as in (II), there exists α ∈ (0, β/2) such that

η

(
1

α
− 2

β

)
≥ 2

and (φ(s, t))α ≤ ρ(s, t), s, t ∈ E, where ρ(s, t) is the L2 distance of a sample
bounded, uniformly continuous, centered Gaussian process on (E,ρ), which we
denote by {H(t) : t ∈ E}.

THEOREM 5. Let {Xt : t ∈ E} be a sample continuous process satisfying (I)–
(III) above. Then

{IXs≤x − Pr(Xs ≤ x) : s ∈ E,x ∈ R}
satisfies the central limit theorem in �∞(E × R). This CLT also holds under
(I)–(II), provided (II) is strengthened to hold for all η > 0 and x ≥ xη, and for some
α ∈ (0, β/2), we have (φ(s, t))α ≤ ρ(s, t), s, t ∈ E, where ρ(s, t) is as in (III).
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REMARK 8. If the process {Xt : t ∈ E} in Theorem 5 is a Gaussian process,
then the CLT of Theorem 5 holds provided (I) is satisfied, (II) is such that |Xt −
Xs | ≤ �φ(s, t) for all s, t ∈ E and � < ∞ and and for some α ∈ (0, β/2), we have
(φ(s, t))α ≤ ρ(s, t), s, t ∈ E, where ρ(s, t) is as in (III).

PROOF OF THEOREM 5. The theorem follows by verifying the L condition in
Theorem 3 with respect to ρ and {H(t) : t ∈ E} as given in (III). Since (I) implies
the distribution functions Ft are all continuous, the distributional transforms in
(10) are simply the distributions themselves. Therefore, applying (I), with α and ρ

as given in (III), we have for all t ∈ E that

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Ft(Xs) − Ft(Xt)| ≥ ε2
)

(22)

≤ Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Xs − Xt | ≥
(

ε2

k

)1/β)
.

Hence (II) implies

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Ft(Xs) − Ft(Xt)| ≥ ε2
)

(23)

≤ Pr
(
� ≥

(
ε2

k

)1/β(
sup

{s : ρ(s,t)≤ε}
φ(s, t)

)−1
)

and since α > 0 is such that η( 1
α

− 2
β
) ≥ 2 and(

sup
{s : ρ(s,t)≤ε}

φ(s, t)
)−1 ≥

(
sup

{s : ρ(s,t)≤ε}
ρ(s, t)

)−1/α ≥ ε−1/α,

(III) therefore implies that

sup
t∈E

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Ft(Xs) − Ft(Xt)| ≥ ε2
)

≤ kη/βε−2η/βεη/α ≤ kη/βε2,(24)

provided 0 < ε < ε0 is sufficiently small to imply k−1/βε2/β−1/α > x0. To ob-
tain the final conclusion of the theorem assume α ∈ (0, β/2) and η is suffi-
ciently large that η(1/α − 2/β) > 2. Then, for 0 < ε < εη sufficiently small that
k−1/βε2/β−1/α > xη we again have (24). Since these estimates are uniform in
ε ∈ (0, ε0 ∧ εη), (24) then implies the L condition, and the proof is complete.

�

COROLLARY 2. Let {Yt : t ∈ [0, T ]} be a sample continuous γ -fractional
Brownian motion for 0 < γ < 1 such that Y0 = 0 with probability one, and set
Xt = Yt + Z, where Z is independent of {Yt : t ∈ [0, T ]} and has a bounded den-
sity function. Then,

{IXs≤x − Pr(Xs ≤ x) : s ∈ [0, T ], x ∈ R}
satisfies the central limit theorem in �∞([0, T ] × R).
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REMARK 9. The addition of the random variable Z in the previous corollary
implies the densities of Yt +Z, t ∈ E are all bounded by the same bound as that of
the density of Z, and hence condition (I) holds with β = 1. In particular, Z is not
used in any other way. Furthermore, below we will see that something of this sort
is necessary, since we will show that the CLT of the previous corollary fails for the
fractional Brownian motion process Y itself, that is, when Z = 0.

PROOF OF COROLLARY 2. The L2 distance for {Xt : t ∈ [0, T ]} is given by

E
(
(Xs − Xt)

2)1/2 = cγ |s − t |γ , s, t ∈ [0, T ],(25)

and without loss of generality we may assume the process to be normalized so that
cγ = 1. Furthermore, it is well known that these processes are Hölder continuous
on [0, T ]; that is, for every θ < γ we have

|Xt − Xs | ≤ �|t − s|θ , s, t ∈ [0, T ],(26)

where

E(exp{c�2}) < ∞(27)

for some c > 0. That � has exponential moments is due to the Fernique–Landau–
Shepp theorem, and hence the corollary follows as in Remark 8, provided we take
the Gaussian process H to be an αθ fractional Brownian motion for any fixed
θ < γ and any fixed α ∈ (0, 1

2) as β = 1. Hence the corollary is proven. �

COROLLARY 3. Let I = [0, T ] and {Y(s,t) : (s, t) ∈ I × I } be a sample con-
tinuous Brownian sheet, that is, the centered Gaussian process on I × I with co-
variance E(Y(s,t)Y(u,v)) = (s ∧ u)(t ∧ v) such that with probability one Y(0,t) =
Y(s,0) = 0 for s, t ∈ I . Also, set X(s,t) = Y(s,t) + Z, where Z is independent of
{Y(s,t) : (s, t) ∈ I × I } and has a bounded density function. Then,{

IX(s,t)≤x − Pr
(
X(s,t) ≤ x

)
: (s, t) ∈ I × I, x ∈ R

}
satisfies the central limit theorem in �∞((I × I ) × R).

PROOF. First of all observe that since Z has a bounded density, and is inde-
pendent of the Brownian sheet Y , we have (I) holding with β = 1. Furthermore,
from Theorem 1 in the paper Yeh (1960), these processes are Hölder continuous
on I × I ; that is, for (s, t), (u, v) ∈ I × I and 0 < γ < 1/2, we have∣∣X(s,t) − X(u,v)

∣∣ ≤ �φ((s, t), (u, v)),(28)

where

φ((s, t), (u, v)) =
((

u − s

T

)2

+
(

v − t

T

)2)γ /2
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and

E(exp{c�2}) < ∞(29)

for some c > 0. That � has exponential moments is due to the Fernique–Landau–
Shepp theorem, and hence the corollary will follow as in Remark 8, provided we
take the Gaussian process H(s,t) to be

H(s,t) = Ys + Zt, (s, t) ∈ I × I,(30)

where the processes {Ys : s ∈ I } and {Zt : t ∈ I } are independent θ -fractional Brow-
nian motions. To determine θ we fix γ = 1/4, and normalizing the Ys and Zt

processes suitably, we have

ρ2((s, t), (u, v)) = E
((

H(u,v) − H(s,t)

)2) =
(∣∣∣∣u − s

T

∣∣∣∣
2θ

+
∣∣∣∣v − t

T

∣∣∣∣
2θ)

.

Hence for any α ∈ (0,1/2) and γ = 1/4, we take θ ∈ (0, α/4), which implies that

φα((s, t), (u, v)) ≤ ρ((s, t), (u, v)).

Since each such θ yields suitable fractional Brownian motion choices for Y and Z,
the corollary is proven. �

8. Examples where our CLT fails.

8.1. Fractional Brownian motions. Since the class of sets in our CLT arises
using the Vapnik–Cervonenkis class of half lines, one might think that perhaps if
i.i.d. copies of the process {Xt : t ∈ E} satisfied the CLT in C(E), then the class
of sets C of Theorem 3 would satisfy the CLT(P ). Our first example shows this
fails, even if the process Xt is Brownian motion on [0,1] tied down at t = 0. In
this example the process fails condition (I) in Theorem 5 since Pr(X0 = 0) = 1. To
prove this we show the necessary condition for C to satisfy the CLT(P ) appearing
in (ii)(a) of Theorem 1 fails. More precisely, since measurability is an issue here,
the next lemma shows that there is a countable subclass CQ of sets in C such that
by Theorem 3 of Talagrand (1988), CQ /∈ CLT(P ). Thus C fails the CLT(P ), as
otherwise all subclasses also are in CLT(P ).

LEMMA 7. Let C = {Ct,x : 0 ≤ t ≤ 1,−∞ < x < ∞}, where Ct,x = {z ∈
C[0,1] : z(t) ≤ x}, and assume {Xt : t ∈ [0,1]} is a sample continuous Brownian
motion tied down at zero. Also, let CQ denote the countable subclass of C given by
CQ = {Ct,y ∈ C : t, y ∈ Q}, where Q denotes the rational numbers. Then, for each
integer n ≥ 1, with probability one

�CQ({B1, . . . ,Bn}) = 2n,

where �CQ({B1, . . . ,Bn}) = card{C ∩ {B1, . . . ,Bn} :C ∈ CQ}, and B1, . . . ,Bn are
independent copies of {Xt : t ∈ [0,1]}.
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PROOF. Fix k,1 ≤ k ≤ n, and integers 1 ≤ j1 < · · · < jk ≤ n. The first thing
we want to show is that with probability one there are suitable Ct,x ∈ CQ such that
the k functions {Bj1, . . . ,Bjk

} = Ct,x ∩ {B1, . . . ,Bn}. Of course, since the func-
tions {Bj1, . . . ,Bjk

} are random, the choice of Ct,x also may need be random, and
for this we use the law of the iterated logarithm (LIL). This will show that with
probability one all nonempty subsets of {B1, . . . ,Bn} are in �CQ({B1, . . . ,Bn}),
and to get the empty set with probability one is trivial, that is, the sample func-
tions are continuous on [0,1], but the choice of x in Ct,x can be made arbitrarily
negative. Now for the details.

Let

u = (u1, . . . , un),

where uj1 = uj2 = · · · = ujk
= 1 and all other uj = 2. Then ‖u‖ = (

∑n
j=1 u2

j )
1/2 =

(4n − 3k)1/2. Now set v = (v1, . . . , vn), where

vj1 = vj2 = · · · = vjk
= 1

2(4n − 3k)1/2

and all other vj = 1
(4n−3k)1/2 . Then v = u/(2‖u‖) and ‖v‖ = 1/2.

For x > 0, let Lx = loge x and set

W(s) = (B1(s), . . . ,Bn(s))

(2sLL(1/s))1/2

for 0 < s ≤ 1. Then the multi-dimensional compact LIL implies with probability
one that

lim inf
s↓0

‖v − W(s)‖ = 0,

and hence with probability one there are infinitely many rational numbers t ↓ 0
such that

Ct,x(t) ∩ {B1, . . . ,Bn} = {Bj1, . . . ,Bjk
},

where x(t) ∈ Q for t ∈ Q and∣∣∣∣x(t) − 3(2tLL(1/t))1/2

4(4n − 3k)1/2

∣∣∣∣ <
(2tLL(1/t))1/2

16(4n − 3k)1/2 .

Since k and the set {j1, . . . , jk} were arbitrary, and with probability one we can
pick out the subset {Bj1, . . . ,Bjk

}; the lemma follows as the intersection of 2n

subsets of probability one has probability one. �

The failure of the CLT also holds for all sample continuous fractional Brow-
nian motions {XH(t) : t ∈ [0,1]} which are tied down at zero. The proof of this
again depends on the law of the iterated logarithm for n independent copies of this
process at t = 0, which then allows us to prove an analog of the previous lemma.
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The LIL result at t = 0 for a single copy follows, for example, by Theorem 4.1
of Goodman and Kuelbs (1991), and then one can extend that result to n indepen-
dent copies by classical proofs as in Kuelbs (1976). The details of this last step
are lengthy, but at this stage are more or less routine in the subject, and hence are
omitted. Of course, the CLT for i.i.d. copies of these processes is obvious as they
are Gaussian.

8.2. A uniform CLT example. In the previous examples, when the distribution
function Ft of Xt jumped, the oscillation of the processes at that point caused a
failure of our CLT. Hence one other possible idea is that if the process {Xt : t ∈
[0,1]} is Lip-1 on [0,1], then our CLT might hold. For example, this is true for the
Lip-1 process Xt = tU, t ∈ [0,1], where U is uniform on [0,1]. Moreover, in this
example the densities of Ft still are unbounded near t = 0.

To see this let Xt,j , j = 1, . . . , n, t ∈ [0,1], be i.i.d. copies of Xt = tU, t ∈
[0,1], and define

Wn(Ct,y) = 1√
n

n∑
j=1

[
I
(
X(·),j ∈ Ct,y

) − Pr
(
X(·),j ∈ Ct,y

)]
,

where C = {Ct,y : t ∈ [0,1], y ∈ R} and Ct,y = {z ∈ C[0,1] : z(t) ≤ y}. Therefore,
Wn(Ct,y) = 0 for all y ∈ R when t = 0, and also when y/t ≥ 1. Moreover, if we
define G = {(−∞, r] : 0 ≤ r ≤ 1}, and

φ(ICt,y ) = I(−∞,1] if y/t > 1,0 ≤ t ≤ 1, or y = 0 and t = 0,

φ(ICt,y ) = I(∞,0] if y/t ≤ 0 but not y = 0 and t = 0

and

φ(ICt,y ) = I(−∞,y/t] if 0 < y/t < 1,0 < y < 1,0 < t < 1.

Then φ(C) = {IU≤r : 0 ≤ r ≤ 1} ≡ G and φ maps L2 equivalence classes of C onto
G with respect to the law of {Xt : t ∈ [0,1]} for sets in C , and the law of U for
sets in G . Now G satisfies the CLT(L(U)) by the classical empirical CLT [e.g.,
see Theorem 16.4 of Billingsley (1968)], and since φ preserves covariances we
thus have Wn(Ct,y) converges weakly to the Gaussian centered process W(Ct,y) =
Y(φ(Ct,y)) on C , where Y((−∞, s]) = B(s) − sB(1) is the tied down Wiener
process on [0,1]; that is, B(·) is a Brownian motion.

8.3. A Lip-1 example without the CLT. In this example we see that the Lip-1
property for {Xt : t ∈ [0,1]} is not always sufficient for our CLT. Here X0 = 0, and
for 0 < t ≤ 1, we define

Xt = t

∞∑
j=1

(
αj (t) + 2

)
IEj

(t)U,

where:
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(i) Ej = (2−j ,2−(j−1)] for j ≥ 1.
(ii) {αj (t) : j ≥ 1} are independent random processes with αj (·) defined on Ej

such that for j ≥ 1,

Pr
(
αj (t) = sin(2π2j t), t ∈ Ej

) = 1/2

and

Pr
(
αj (t) = sin(2π2j+1t), t ∈ Ej

) = 1/2.

(iii) U is a uniform random variable on [3/2,2], independent of the {αj }.
Since the αj ’s are zero at endpoints of the Ej and we have set X(0) = 0, it is

easy to see X(t) has continuous paths on [0,1]. Moreover, X(t) is Lip-1 on [0,1],
and X(t) has a density for each t ∈ (0,1], but our CLT fails.

The failure of the empirical CLT can be shown by verifying a lemma of the
sort we have above for Brownian motion, and again we see the lack of uniformly
bounded densities is a determining factor.

For each integer n ≥ 1, let X1, . . . ,Xn be independent copies of X, and again
take C = {Ct,x : 0 ≤ t ≤ 1,∞ < x < ∞}, where Ct,x = {z ∈ C[0,1] : z(t) ≤ x}.
Also, define CQ as in Lemma 7. Then, we have the following lemma, and combined
with the argument in Section 8.1, we see the empirical CLT fails when this X(·) is
used.

LEMMA 8. For each integer n ≥ 1, with probability one

�CQ({X1, . . . ,Xn}) = 2n,

where �CQ({X1, . . . ,Xn}) = card{C ∩ {X1, . . . ,Xn} :C ∈ CQ}.
PROOF. As in the proof of Lemma 7, assume one wants the k functions

{Xi1, . . . ,Xik } with probability one, where 1 ≤ i1 < i2 < · · · < ik ≤ n. If we write

Xi(t) = t

∞∑
j=1

(
αi,j (t) + 2

)
IEj

(t)Ui,

where the {αi,j : j ≥ 1} are independent copies of {αj (t) : j ≥ 1} and {Ui : i ≥ 1}
are independent copies of U , independent of all the αi,j ’s, then this can be arranged
by taking

αi,j (t) = sin(2π2j+1t), i ∈ {i1, . . . , ik},
and

αi,j (t) = sin(2π2j t), i ∈ {1, . . . , n} ∩ {i1, . . . , ik}c,
provided we set t = tj = 2−j + 1

4(2−(j−1) − 2−j ). The probability of this configu-
ration on the interval Ej is 1/2n, and hence with probability one the Borel–Cantelli
lemma implies there are infinitely many (random) {tj ↓ 0} such that

αi1,j (tj ) = · · · = αik,j (tj ) = 0
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and

αi,j (tj ) = 1

for all other i ∈ {1, . . . , n}. Thus with probability one there are infinitely many
rational numbers t ↓ 0 such that

Ct,x(t) ∩ {X1, . . . ,Xn} = {Xi1, . . . ,Xik },
provided

x = x(t) = 17t

4
.

Of course, x(t) is then also in Q, and since k and the set {i1, . . . , ik} were arbi-
trary, and we can pick out {Xi1, . . . ,Xik} with probability one using sets in CQ, the
lemma follows as the intersection of 2n subsets of probability one has probability
one.

To see X(t) is Lip-1 on [0,1], observe that the intervals {Ej : j ≥ 1} are disjoint,
X(t) is differentiable on their interiors and an easy computation implies

sup
j≥1

sup
2−j <t<2−(j−1)

|X′(t)| ≤ [4π + 3]U.

Furthermore, X(t) is continuous on [0,1], so the mean value theorem and an ele-
mentary argument shows X(t) is Lip-1 on [0,1], with Lipschitz constant bounded
by (4π + 3)U with probability one. Furthermore, since U is uniform on [3/2,2]
and independent of the {αj }, then X(t) has a density for each t ∈ (0,1]. �

8.4. Variations of the L condition and the CLT. Here we produce examples
where the sets C , or more precisely the class of indicator functions given by C ,
are P -pre-Gaussian, and yet C /∈ CLT(P ). More importantly, they also satisfy the
modified L condition, that is, we say {Xs : s ∈ E} satisfies the modified L condition
if for all ε > 0, there exists L < ∞ such that

sup
t∈E

Pr∗
(

sup
ρ(s,t)≤ε

|Ft(Xs) − Ft(Xt)| > ε2
)

≤ Lε2.(31)

Of course, if the distribution functions {Ft : t ∈ E} are all continuous, this is the
L condition. Hence these examples also provide motivation for the use of the dis-
tributional transforms in the L condition of (10) used in Theorem 3.

Notation for the examples in this subsection is as follows. Let E = {1,2,3, . . .},
and assume D(E) = {z : z(t) = 0 or 1, t ∈ E} with C = {Ct,y : t ∈ E,y ∈ R}, where
Ct,y = {z ∈ D(E) : z(t) ≤ y}. Then, since the functions in D(E) take only the
values zero and one, we have

C = C0 ∪ {{D(E)}},
where C0 = {C̃t,0 : t ∈ E} and for t ∈ E, C̃t,0 = {z ∈ D(E) : z(t) = 0}. Also, let �

denote the minimal sigma-field of subsets of D(E) containing C , and let P denote
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the probability on (D(E),�) such that Pr(C̃t,0) = pt and the events {C̃t,0 : t ∈ E}
are independent events, that is, P is a product measure on the coordinate spaces of
D(E) = {0,1}N with the t th coordinate of D(E) having the two point probability
that puts mass pt on zero, and 1 − pt on one.

PROPOSITION 2. Let C be defined as above. Then:

(i) C is P -pre-Gaussian whenever pt = o((log(t + 2))−1) as t → ∞.
(ii) C ∈ CLT(P ) if and only if for some r > 0,

∞∑
t=1

(
pt(1 − pt)

)r
< ∞.

(iii) If pt = (log(t + 2))−2, and {H(t) : t ∈ E} consists of centered independent
Gaussian random variables with E(H(t)2) = (log(t + 2))−3/2, then {Xs : s ∈ E}
satisfies the modified L condition, C is P -pre-Gaussian and C /∈ CLT. In particular,
in view of Theorem 3, it does not satisfy the L condition.

PROOF. Since C differs from C0 by the single set D(E) and P(D(E)) = 1, it
is easy to see that C ∈ CLT(P ) if and only if C0 ∈ CLT(P ). Therefore, since the
events of C0 are independent, Theorem 3.9.1 in Dudley [(1999), page 122] implies
that C0 ∈ CLT(P ) if and only if for some r > 0,

∞∑
t=1

(
pt(1 − pt)

)r
< ∞.

Hence (ii) holds.
Now the centered Gaussian process {GP (C) :C ∈ C0} = {GP (Ct,0) : t ∈ E}, and

since the random variables {GP (Ct,0) : t ∈ E} are mean zero and E(GP (Ct,0)
2) =

pt(1 − pt), we have C0 is P -pre-Gaussian provided

pt = o
((

log(t + 2)
)−1)

as t → ∞.

Hence C is P -pre-Gaussian whenever pt = o((log(t + 2))−1) as t → ∞, and (i)
holds. To verify (iii) we take pt = (log(t + 2))−2, and {H(t) : t ∈ E} to be cen-
tered independent Gaussian random variables with E(H(t)2) = (log(t + 2))−3/2.
If ρ2(s, t) = E((H(s) − H(t))2), then, for s �= t ,

ρ2(s, t) = (
log(s + 2)

)−3/2 + (
log(t + 2)

)−3/2

≥ max
{(

log(s + 2)
)−3/2

,
(
log(t + 2)

)−3/2}
.

In addition, we have |Ft(Xs) − Ft(Xt)| = 0 if Xs = Xt = 0 or Xs = Xt = 1, and
|Ft(Xs) − Ft(Xt)| = pt if Xt �= Xs .

Therefore, for all t ∈ E fixed and ε > 0, we have

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Ft(Xs) − Ft(Xt)| > ε2
)

= 0 if pt ≤ ε2
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and

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Ft(Xs) − Ft(Xt)| > ε2
)

≤ Pr∗
(

sup
{s : ρ(s,t)≤ε}

IXt �=Xs > 0
)

for pt > ε2.

Of course, E countable makes the outer probabilities in the above, ordinary prob-
abilities, but for simplicity we retained the outer probability notation used in (9)
and (10). Now ρ(s, t) ≤ ε implies

max
{(

log(s + 2)
)−3/4

,
(
log(t + 2)

)−3/4} ≤ ε.

Thus if pt = (log(t +2))−2 > ε2, we have {sup{s : ρ(s,t)≤ε} IXt �=Xs > 0} = ∅. Com-
bining the above we have for each fixed t ∈ E and ε > 0 that

Pr∗
(

sup
{s : ρ(s,t)≤ε}

|Ft(Xs) − Ft(Xt)| > ε2
)

= 0,

and hence the modified L condition for {Xs : s ∈ E} holds. Thus (iii) follows. �

APPENDIX: TALAGRAND’S CONTINUITY RESULT FOR
GAUSSIAN PROCESSES

The proof of Theorem 4 in Section 5 is as follows.

PROOF OF THEOREM 4. First we will show (i) and (ii) are equivalent. If (ii)
holds, then by Fatou’s lemma we have

0 = lim
n→∞ E

(
sup

d(s,t)≤1/n

|Xs − Xt |
)

≥ E

(
lim inf
n→∞ sup

d(s,t)≤1/n

|Xs − Xt |
)
.

Thus, with probability one

lim inf
n→∞ sup

d(s,t)≤1/n

|Xs − Xt | = 0,

and since the random variables supd(s,t)≤1/n|Xs −Xt | decrease as n increases, this
implies with probability one

lim
n→∞ sup

d(s,t)≤1/n

|Xs − Xt | = 0,

which implies (i).
If we assume (i), then since (T , dX) is assumed totally bounded, we have

Z = sup
t∈T

|Xt | < ∞
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with probability one, and the Fernique–Landau–Shepp theorem implies Z is inte-
grable. Since

sup
d(s,t)≤ε

|Xs − Xt | ≤ 2Z,

and (i) implies

lim
ε→0

sup
d(s,t)≤ε

|Xs − Xt | = 0

with probability one, the dominated convergence theorem implies (ii). Thus (i) and
(ii) are equivalent.

Now we assume (i) and (ii), and choose εk ↓ 0 such that

sup
s

E sup
{t : d(t,s)≤εk}

Xt ≤ sup
s

E sup
{t : d(t,s)≤εk}

(Xt − Xs) ≤ E sup
d(s,t)≤εk

(Xt − Xs) ≤ 2−k.

Since we are assuming (i) and that (T , d) is totally bounded, the sample paths of
{Xt : t ∈ E} are uniformly continuous and bounded on (T , d). Hence by Sudakov’s
inequality, if N(T ,d, ε) equals the minimal number of open balls of radius ε that
cover (T , d), then

lim
ε↓0

ε(logN(T ,d, ε))1/2 = 0.

Therefore, we also are free to assume the εk are such that for all k ≥ 1 we have
εk(logN(εk))

1/2 ≡ εk(log(N(T , d, εk))
1/2 < 1

2 . Moreover, since (T , d) is totally
bounded, and (i) holds, by Theorem 2.1.1 of Talagrand (2005) there exists an ad-
missible sequence of partitions {Ãn :n ≥ 0} of (T , d) such that for a universal
constant L we have

1

2L
sup
t∈T

∑
n≥k

2n/2�(An(t)) ≤ E

(
sup
t∈T

Xt

)
.

Now choose {nk :k ≥ 1} to be a strictly increasing sequence of integers such
that n1 > 4 and

2
∑

2≤j≤k 1/ε2
j ≤ nk−1.(32)

Based on the nk’s we define an increasing sequence of partitions, Bn. For 0 ≤
n ≤ n1 we let Bn = Ãn. For n1 < n ≤ n2 we proceed as follows.

First we choose a maximal set {s1, . . . , sN(ε2)} of (T , d) for which d(si ,
sj ) ≥ ε2. Furthermore, by our choice of {εk :k ≥ 1} via Sudakov’s inequality, we

have that N(ε2) ≤ 21/ε2
2 . To define the partitions for n1 < n ≤ n2 we next consider

the partition of T formed by the sets

Cj = B(sj , ε2) ∩
(j−1⋃

k=1

B(sk, ε2)

)c

, 1 ≤ j ≤ N(ε2),(33)
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and the sets B(s, ε) are ε balls centered at s. Then by Theorem 2.1.1 of Talagrand
(2005) for every integer 1 ≤ j ≤ N(ε2) there exists an admissible sequence of
partitions for (Cj , d), which we denote by Bsj

n1,n, such that

2−2 ≥ E sup
{t∈Cj }

Xt ≥ 1

2L
sup

{t∈Cj }

∑
n≥0

2n/2�(B
sj
n1,n(t))

≥ 1

2L
sup

{t∈Cj }

∑
n1<n≤n2

2n/2�
(
An1(t) ∩ B

sj
n1,n(t)

)
.

Since the sets Cj form a partition of T , if Bn1,n is one of the sets, B
sj
n1,n(t), then

2−2 ≥ 1

2L
sup
t∈T

∑
n1<n≤n2

2n/2�
(
An1(t) ∩ Bn1,n(t)

)
,

and we define the increasing sequence of partitions Bn1,n to be all sets of the form
An1(t) ∩ Bn1,n(t), where t ∈ T and Bn1,n ∈ Bsj

n1,n(t) for some j ∈ [1,N(ε2)]. Fur-
thermore, since the Cj ’s are disjoint, for n1 < n ≤ n2 we have

Card(Bn1,n) ≤ 22n1 22n

N(ε2) ≤ 22n+1
21/ε2

2 ≤ 22n+1
n1 ≤ 22n+1

22n = 22n+2
,(34)

and for n1 < n ≤ n2 we define Bn = Bn1,n.
Iterating what we have done for n1 < n ≤ n2, we have increasing partitions

Bnk−1,n, nk−1 < n ≤ nk , for which

(2L)2−k ≥ sup
t

∑
n≥0

2n/2�(Bnk−1,n)

≥ sup
t

∑
nk−1<n≤nk

2n/2�
(
Bnk−1,n(t) ∩ Bnk−2,nk−1(t) ∩ · · ·

∩ Bn1,n2(t) ∩ An1(t)
)
,

and for nk−1 < n ≤ nk we define Bn = Bnk−1,n. Therefore, we now have an in-
creasing sequence of partitions {Bn :n ≥ 0} such that

(2L)
∑
k≥r

2−k ≥ ∑
k≥r

sup
t

∑
nk−1<n≤nk

2n/2�

(
Bnk−1,n(t) ∩

(
k−1⋂
j=2

Bnj−1,nj
(t)

)
∩ An1(t)

)

≥ sup
t

∑
k≥r

∑
nk−1<n≤nk

2n/2�

(
Bnk−1,n(t) ∩

(
k−1⋂
j=2

Bnj−1,nj
(t)

)
∩ An1(t)

)

and, letting Bn(t) denote the generic set of Bn containing t , we have

(2L)
∑
k≥r

2−k ≥ sup
t

∑
k≥r

∑
nk−1<n≤nk

2n/2�(Bn(t)).(35)
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Now we count the number of elements in each partition. Since (1) holds, the par-
titions Bsj

nk−1,n are assumed admissible, and the Cj ’s used at the subsequent itera-
tions are always disjoint, we have for nk−1 < n ≤ nk that

Card(Bnk−1,n) ≤ 22n1

[
k−1∏
j=2

22nj
N(εj )

]
22n

N(εk) ≤ 2
∑

1≤j≤k−1 2nj +2n

nk−1 ≤ 22n+2
.

Given the increasing sequence of partitions {Bn :n ≥ 0}, we now define the par-
titions An to be the single set T for n = 0,1 and An = Bn−2 for n ≥ 2. Since we
have Card(Bn) ≤ 22n+2

for n ≥ 0 we thus have that the An’s are admissible and
using (35) above they satisfy (iii).

Now assume (iii) holds and (T , d) is totally bounded. We give a sketch of the
case (iii) implies (ii). Corollary 1.6 in Fernique (1985) reduces our task to showing

lim
η→0

sup
t

E sup
s∈Bd(t,η)

(Xs − Xt) = 0(36)

and

lim
δ→0

δ2 log2 N(T , δ) = 0.(37)

In the computation below the existence of K follows from Theorem 2.1.1 of
Talagrand (2005). To show (36) we estimate

sup
t

E sup
s∈Bd(t,η)

(Xs − Xt) = sup
t

E sup
s∈Bd(t,η)

Xs

≤ K sup
t

∑
n≥0

2n/2�
(
An(t) ∩ Bd(t, η)

)

≤ K

(
sup

t

∑
0≤n≤k

2n/2�
(
An(t) ∩ Bd(t, η)

)

+ sup
t

∑
k<n

2n/2�
(
An(t) ∩ Bd(t, η)

))

≤ K

(
(2η)C2k/2 + sup

t

∑
k<n

2n/2�
(
An(t) ∩ Bd(t, η)

))

≤ K

(
(2η)C2k/2 + sup

t

∑
k<n

2n/2�(An(t))

)
,

where in the third inequality C is such that
∑

0≤n≤k 2n/2 ≤ C2k/2. Hence,

lim
η→0

sup
t

E sup
s∈Bd(t,η)

(Xs − Xt) ≤ sup
t

K
∑
k<n

2n/2�(An(t)) for every k.

By the hypothesis, this last quantity converges to 0 as k → ∞.
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To handle (37), by the hypothesis we can choose k such that

sup
t∈T

∑
n≥k

2n/2�(An(t)) ≤ ε.(38)

Hence,

2k/2 sup
t∈T

�(Ak(t)) = 2k/2 sup
B∈Ak

�(B) ≤ ε.

For each B ∈ Ak pick a point, tk,B . Let δk = 2 supB∈Ak
�(B). Then, if Bd(t, δ) =

{s ∈ T :d(s, t) ≤ δ} and 2ε
2k/2 = δ′

k , we have

B(tk,B) ⊆ Bd(tk,B, δk) ⊆ Bd(tk,B, δ′
k) for every B ∈ Ak.

Since Ak is a partition, T = ⋃
B∈Ak

Bd(tk,B, δ′
k). Hence,

log2 N (T , δ′
k) ≤ log2(2

2k

) =
(

2ε

δ′
k

)2

.

By interpolating we get (37). �
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