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THE CRITICAL ISING MODEL ON TREES, CONCAVE
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We consider the Ising model on a general tree under various boundary
conditions: all plus, free and spin-glass. In each case, we determine when
the root is influenced by the boundary values in the limit as the boundary
recedes to infinity. We obtain exact capacity criteria that govern behavior at
critical temperatures. For plus boundary conditions, an L3 capacity arises. In
particular, on a spherically symmetric tree that has nαbn vertices at level n

(up to bounded factors), we prove that there is a unique Gibbs measure for
the ferromagnetic Ising model at the relevant critical temperature if and only
if α ≤ 1/2. Our proofs are based on a new link between nonlinear recursions
on trees and Lp capacities.

1. Introduction. Let T be a finite rooted tree of depth N . Let |v| denote the
distance from a vertex v ∈ V (T ) to the root o, and write v → w if v is the parent
of w, that is, the neighbor of w closer to the root than w. Consider the space
� = �(T ) = {+1,−1}V (T ) of configurations on the vertices of T . For each w �= o

there is a unique edge vw with v → w; let Jw = J (vw) be a positive number so
that {Jw :o �= w ∈ V (T )} is a fixed set of interaction strengths on the edges of T .
We assume throughout that the interaction strengths are bounded;

0 < Jmin ≤ Jv ≤ Jmax ∀v ∈ V (T ), v �= o.(1.1)

This assumption loses little generality (see the end of Section 4). Fix an inverse
temperature β and define the weight of a configuration η ∈ � to be the following
product over all pairs of neighboring vertices:

W(η) = ∏
v→w

exp(βJwη(v)η(w)).

The Ising model under various boundary conditions can be obtained by restricting
to suitable subsets of � and assigning probabilities proportional to W . Our aim in
this paper is to pinpoint the locations of the phase transitions that occur in these
models as N → ∞. In each case the critical temperature for phase transitions to
occur is known. We refine these results by giving sharp criteria for the existence of
a phase transition in terms of capacities.
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2. Main results. Let T be any tree rooted at a vertex o, and let ∂T denote the
set of maximal paths oriented away from the root; these are either infinite or end
at a leaf of T . For finite trees, we identify ∂T with the set of leaves in T different
from o. For infinite trees, we assume there are no leaves (except possibly o), so all
paths in ∂T are infinite. Let {R(e) : e ∈ E(T )} be a set of resistances (nonnegative
numbers) assigned to the edges of T . Let μ be a flow on T , that is, a nonnegative
function on E(T ) such that at every vertex (except for the root and the leaves)
inflow equals outflow; whenever v → w (v is a parent of w) and w is not a leaf,
we have μ(vw) = ∑

y : w→y μ(wy). Such a flow μ can be identified with a positive
finite measure on ∂T where μ(e) is the measure of the set of paths in ∂T that
traverse e. The total mass of this measure is the outflow from the root, |μ| :=∑

y : o→y μ(oy). Fix p > 1 and set s = p − 1. For y ∈ ∂T , define

Vμ(y) := ∑
e∈y

(μ(e)R(e))s;(2.1)

V (μ) := sup{Vμ(y) :y ∈ ∂T };(2.2)

capp(T ) := sup{|μ| :μ a flow on T with V (μ) = 1}.(2.3)

These capacities have been studied on more general networks as part of dis-
crete nonlinear potential theory [see, e.g., Murakami and Yamasaki (1992), Soardi
(1993, 1994) and the references therein]. However, all the properties of capp that
we will use follow readily from the definition. We note that cap2(T ) reduces to
the electrical conductance between o and ∂T . We also observe that if the tree T

and the resistances are spherically symmetric [i.e., the degree of every vertex w

depends only on |w|, and similarly for the resistance R(vw) between w and its
parent v], then among all flows μ with the same mass |μ|, the equally splitting
flow minimizes V (μ). To see this, given any other μ, choose a path from o to ∂T

by maximizing μ at every step.
For T finite, let P denote the probability measure on �(T ) proportional to W ;

P(η) = W(η)∑
ξ∈� W(ξ)

.

This is a ferromagnetic Ising model with no external field and free boundary con-
ditions. There is another construction of the measure P as a tree-indexed Markov
chain. To the edge leading to a vertex v from its parent, assign the positive bias,

θv = eβJv − e−βJv

eβJv + e−βJv
= tanh(βJv).(2.4)

Let the spin η(o) at the root take the values ±1 with probability 1/2 each. Con-
ditional on η(o), let the spin at every other vertex v be determined recursively, by
copying the sign at the parent with probability (1 + θv)/2 and reversing sign with
probability (1 − θv)/2. When Jv = J does not depend on v, we write θ for the
common bias.
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Now suppose T is an infinite, locally finite tree, rooted at o, and let T (N) be the
induced finite subgraph of T with vertices {v ∈ V (T ) : |v| ≤ N}. Letting P(N) be
the free-boundary Ising measure on T (N), we ask about P(N)(η(0) = +1|η(v) :v ∈
∂T (N)). In particular, this converges in probability to 1/2 if and only if the free
boundary Gibbs measure on T is extremal [see Georgii (1988)]. The question of
extremality of the Gibbs measure with free boundary on regular trees was settled
by Bleher, Ruiz and Zagrebnov (1995) [see also Ioffe (1996a) for an elegant alter-
native proof].

The same question for general trees was solved by Ioffe (1996b) and Evans et
al. (2000) where the critical value is computed for an arbitrary tree. However, the
question of extremality at the critical temperature was left open. In this paper we
settle the critical case by showing that zero L2 capacity (with respect to certain
resistances) implies extremality. For vertices y,w of T , write y ≤ w if y is on the
path from the root o to w. If y ≤ w and y �= w write y < w. In particular, o < y

for every vertex y �= o. We prove:

THEOREM 2.1. Let T be an infinite, locally finite tree, rooted at o, with no
leaves except possibly at o and interaction strengths Jv satisfying (1.1). For ver-
tices y,w, write y ≤ w if y is on the path from o to w. Assign to each edge e = vw

with v → w, the resistance

Rw := R(e) := ∏
o<y≤w

(tanhβJy)
−2.(2.5)

Then the free boundary Gibbs measure at inverse temperature β is extremal if
and only if cap2(T ) = 0.

One direction of this theorem (that extremality implies zero capacity) was al-
ready proved in Evans et al. (2000).

Plus boundary conditions. Consider T finite again. Let �+ = �+(T ) ⊂ �(T )

be the set of configurations with η(v) = +1 for v ∈ ∂T . Then the probability mea-
sure P+ on �+ defined by

P+(η) = W(η)∑
ξ∈�+ W(ξ)

is the Ising model with plus boundary conditions and no external field.
The critical value of the interaction strength here has long been known for reg-

ular trees [see Preston (1974, 1976)]. Lyons (1989) computes the critical tempera-
ture for general trees and allows the interaction strengths to vary as well. We refine
the known results by determining what happens at criticality. The sharp criterion
turns out to involve an “L3-capacity.” We prove:
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THEOREM 2.2. Let T be any infinite, locally finite tree rooted at o and having
no leaves except possibly o. Let {Jv} be bounded interaction strengths, that is,
satisfying (1.1), and assign resistance Rv = ∏

o<y≤v(tanh(βJy))
−1 to the edge

between v and its parent. Then the decreasing limit

lim
N→∞ P(N,+)(η(o) = +1

)

is equal to 1/2 if and only if cap3(T ) = 0.

Here P(N,+) is the measure on configurations on the first N levels of T with
plus boundary conditions imposed at level N .

For ease of reading, we state the result more explicitly in the special case of
spherically symmetric trees and when the interaction strength is constant.

COROLLARY 2.3. Under the hypotheses of Theorem 2.2, assume spherical
symmetry as well; θv = θ|v| and deg(v) = d|v| depend only on |v|. Then there are
multiple Gibbs states if and only if

∑
n≥1

n∏
i=1

(diθi)
−2 < ∞.(2.6)

In particular, for a spherically symmetric tree T , suppose that the level cardinali-
ties satisfy

|Tn| 
 θ−nnα.(2.7)

Then there is a unique Gibbs state for the Ising model at criticality if and only if
α ≤ 1/2.

Note that for T satisfying (2.7), endowed with edge resistances θ−n at level n,
the standard L2 capacity of T is zero as long as α ≤ 1.

COROLLARY 2.4. Suppose that Jv ≡ J is constant, and let θ := tanh(βJ ).
Then phase transition occurs with plus boundary conditions if and only if
cap3(T ) > 0 with resistances θ−n at distance n from the root. If T is spherically
symmetric, this is equivalent to

∑
n≥1

θ−2n|Tn|−2 < ∞.

(The last statement is also a special case of the previous corollary.)
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Spin-glass boundary conditions. For a tree T of depth N , define a measure Psg

on �(T ) by making the signs η(v) for v ∈ ∂T i.i.d. fair coin flips and requiring
that the measure be proportional to W conditionally on the values on ∂T :

Psg(η) = 2−|∂T | W(η)∑
ξ |∂T =η|∂T

W(ξ)
.

This is equivalent to the following spin-glass model considered by Chayes et al.
(1986): the Hamiltonian has interactions of a fixed magnitude, and no external
field; the signs of the interactions are determined by i.i.d. fair coin flips, and the
boundary conditions are fixed and known (e.g., they are all plus). The question is
whether, conditional upon the signs of the interactions, the sign at the root is influ-
enced at all by the boundary values in the limit as N → ∞. A critical interaction
strength is given in Chayes et al. (1986) for regular trees; we improve this to the
case of general trees and settle what happens at the critical case. The result is a
standard (i.e., L2) capacity criterion, exactly equal to the criterion for the case of
a free boundary.

THEOREM 2.5. Let T be an infinite, locally finite tree, rooted at o, with no
leaves (except possibly o) and interaction strengths Jv satisfying (1.1). Assign re-
sistances

Rv = ∏
0<y≤v

(tanh(βJy))
−2.

Then Psg(η(o) = 1|η|∂T (N)) → 1/2 in law under the spin-glass measure if and only
if cap2(T ) = 0.

Recursions for the log-likelihood. Let xv denote the log-likelihood ratio of
having spin 1 versus −1 at v, given the boundary. The method in the plus boundary
case is to show that {xv :v ∈ V (T )} satisfy a recursion of the form

xv = ∑
v→w

fw(xw).(2.8)

This reduces the problem to the question of whether, on a given infinite tree, this
recursion has a nonzero solution. We give a general solution to this problem, recur-
sively establishing a set of inequalities relating solutions and sub-solutions of these
equations to generalized capacities. In the cases of free and spin-glass boundary
conditions, the log likelihood ratios are random variables {Xv :v ∈ V (T )}, and we
obtain versions of (2.8) for certain moments {mv} of {Xv}.

The rest of the paper is organized as follows. The next section focuses entirely
on the deterministic aspect of the problem, namely, when the recursion (2.8) has a
nontrivial solution or sub-solution. The theorems in this section are broad enough
to handle the recursions arising from the three types of boundary conditions in the
Ising model. Then we spend one section on each of the three models and conclude
with some questions.
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3. Recursions on trees and potential theory. Let T be any locally finite
rooted tree and let {fv :v ∈ V (T )} be a collection of nonnegative functions indexed
by the vertices of T . We are interested in whether the simultaneous inequalities,

xv ≤ ∑
v→w

fw(xw),(3.1)

have any nonzero solutions. A special case of interest is when fv ≡ f does not
depend on v. Our characterization is in terms of generalized capacities, which we
defined in (2.3).

Fix p > 1 and let s = p − 1. We quote several easy and well-known conse-
quences of the definition of capacity:

(i) The supremum in the definition (2.3) of capp is achieved if the set of mea-
sures of bounded potential is nonempty. [Clear by lower semi-continuity of V (μ).]

(ii) Joining several trees at the root sums their capacities.
(iii) Multiplying all resistances by α decreases capacity by a factor of α.
(iv) A single edge of resistance R connected in series to the root of a tree T

yields a tree of capacity,

capp(T )

(1 + Rs capp(T )s)1/s
.

To see (iv), observe that there is a one-to-one correspondence between flows μ

from the root to the boundary in T and flows μR in the enhanced tree, such that
|μR| = |μ| and V (μR) = V (μ) + Rs |μ|s .

These facts yield the following lemma, which we will need below. Denote by
T (v) the subtree of T consisting of v and all vertices that are separated from o

by v.

LEMMA 3.1. Fix p > 1 and s = p − 1. For any vertex v, define

φ(v) := Rv capp(T (v)),

where Ro = 1 by convention. [In particular, φ(v) = Rv if v is a leaf.] Then for any
vertex v,

φ(v) = ∑
v→w

(Rv/Rw)φ(w)

(1 + φ(w)s)1/s
.

PROOF. If w �= o, let T ′(w) be the tree rooted at the parent of w consisting of
T (w) plus the edge between w and its parent. Then

φ(v) = Rv capp(T (v)) = ∑
v→w

Rv capp(T ′(w))

= ∑
v→w

(Rv/Rw)
Rw capp(T (w))

(1 + R(w)s capp(T (w))s)1/s
,
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which gives the desired expression. �

We now relate these computations to the system (3.1). In the following theorem,
f (∞) denotes lim infx→∞ f (x) and s denotes p − 1.

THEOREM 3.2. Let T be finite. Suppose that there exist κ1 > 0, p = 1+ s > 1
and a collection of positive constants {av :v ∈ V (T )} such that for every v ∈ V (T )

and x ≥ 0,

fv(x) ≤ avx

(1 + (κ1x)s)1/s
.(3.2)

Then any solution to the system

xv = ∑
v→w

fw(xw) with xw = ∞ when w is a leaf,(3.3)

satisfies

xo ≤ capp(T )

κ1
,(3.4)

where the resistances are given by

Rv = ∏
0≤y≤v

a−1
y .(3.5)

Similarly, if (3.3) holds and
avx

(1 + (κ2x)s)1/s
≤ fv(x),(3.6)

then

capp(T )

κ2
≤ xo.(3.7)

PROOF. We first prove that (3.3) and (3.6) imply (3.7). Let g(v) = Rv ×
capp(T (v))/κ2, with g(v) = ∞ if v �= o is a leaf. We show by induction that
g(v) ≤ xv for all v. If v is a leaf, this is true by definition. Assume v is not a leaf
and, by induction, that g(w) ≤ xw for all v → w. Applying the previous lemma
gives

g(v) = ∑
v→w

(Rv/Rw)g(w)

(1 + (κ2g(w))s)1/s
.

Note that Rv/Rw = aw when v → w. By monotonicity of x → x/(1 + (cx)s)1/s ,
and the induction hypothesis,

g(v) ≤ ∑
v→w

awxw

(1 + (κ2xw)s)1/s
.
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This is, at most,
∑

v→w fw(xw) by the assumption (3.6), finishing the induction.
If we assume (3.2) instead of (3.6), an analogous induction yields xv ≤ G(v) for

all v where G(v) = Rv capp(T (v))/κ1. Setting v = o now recovers the statement
of the theorem. �

With regard to sub-solutions, that is, to the system of inequalities (3.1), we have
the following immediate corollary, used in Section 4 to analyze Ising models with
free boundaries.

COROLLARY 3.3. Under the hypothesis (3.2), any solution to

xv ≤ ∑
v→w

fw(xw)

satisfies xo ≤ capp(T )/κ1.

Although the estimate for finite trees in Theorem 3.2 is the most useful, the
following corollary for infinite trees is more elegant. The corollary follows directly
from the fact that capp(T ) is the decreasing limit of capp(T (N)), so we omit the
details.

COROLLARY 3.4. (a) Let T be infinite and locally finite, having no leaves
except possibly the root. Assign resistances according to (3.5). If f satisfies (3.2)
for all v ∈ V (T ), x ≥ 0, then any solution {xv} of (3.1) satisfies xo ≤ capp(T )/κ1.
In particular, if capp(T ) = 0 and (3.2) holds, then there are no nontrivial solutions
to (3.1) on T .

(b) Conversely, if capp(T ) > 0 and f satisfies (3.6) for all v ∈ V (T ) and x ≥ 0,
then there is a solution of (3.1) with the property that xo ≥ capp(T )/κ2. This solu-
tion is given by xv = Rv capp(T (v))/κ2 for all v.

To see the value in what we have proved, we turn to some special cases. Recall
that we denote f (∞) = lim infx→∞ f (x).

COROLLARY 3.5. Suppose that an increasing bounded function f : [0,∞) →
[0,∞) satisfies:

(i) f (x) = ax − �(xp) near 0 for some p > 1;
(ii) 0 < f (x) < ax for all x > 0.

Then there is a nontrivial sub-solution xv ≤ ∑
x→w f (xw) on the vertices of T if

and only if capp(T ) > 0 with resistances a−n at distance n from the root.

REMARKS.

• Assumption (ii) above follows from (i) if f is concave and f (x) > 0 for all
x > 0.
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• Denote by |e| the level of an edge e, so edges adjacent to o have |e| = 1. The
branching number br(T ) of an infinite tree T was defined by Lyons (1990, 1992)
as the infimum of the λ such that T admits a nonzero flow μ that satisfies μ(e) ≤
λ−|e| for all edges e of T . Suppose we assign resistance R(e) = a−|e| to every
edge e of T . If an infinite tree T has br(T ) < a−1 then any positive flow μ on
T must satisfy μ(e) ≥ (a + δ)|e| for some δ > 0 and infinitely many edges e,
whence V (μ) = ∞. Thus

br(T ) < a−1 �⇒ capp(T ) = 0 ∀p > 0.

Conversely,

br(T ) > a−1 �⇒ capp(T ) > 0 ∀p > 0,

since under this assumption, T admits a flow μ with μ(e) ≤ (a − δ)|e| for some
δ > 0 and all edges e.

• Lyons (1990, 1992) proved that for Bernoulli percolation on a tree T with re-
tention probability a for each edge, the probability that the root is in an infinite
cluster satisfies P[o ←→ ∂T ] > 0 iff cap2(T ) > 0 where the resistance of an
edge e is a−|e|. One of the proofs Lyons gave was recursive, and it was refined
by Marchal (1998). This result is covered by our framework (though not with
the optimal constants);

Define xv := − log(1 − P[v ←→ ∂T (v)]) and rewrite the identity

1 − P[v ←→ ∂T (v)] = ∏
{w : v→w}

(
1 − aP[w ←→ ∂T (w)])

in the form

e−xv = ∏
w : v→w

(
1 − a(1 − e−xw)

)
,

that is, xv = ∑
v→w f (xw) where

f (x) = − log[1 − a(1 − e−x)].
It is easy to check that f (x) = ax−�(x2) near 0 and f is concave, so it satisfies
the hypotheses of Corollary 3.5, whence the claimed equivalence for percolation
follows.

COROLLARY 3.6. Suppose that T , an infinite, locally finite, leafless tree, is
spherically symmetric, meaning that the degree of v depends only on v. Suppose
fv = f|v| depends only on |v| as well. Assume the inequalities (3.2) and (3.6). Then
there is a nonzero solution to xv ≤ ∑

v→w fw(xw) if and only if

∞∑
n=1

n∏
j=1

1

(ajdj )s
< ∞.
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We use this in the next section with s = 2 to obtain an exact summability crite-
rion for phase transition of the Ising model with plus boundary conditions on an
arbitrary spherically-symmetric tree. This refines the work of Lyons (1989), who
computed the critical value in terms of the branching number but did not settle the
behavior at criticality.

4. Plus boundary conditions. In this section T is an infinite tree with no
leaves except possibly the root, and T (N) denotes the truncation to distance at
most N from the root. We fix interaction strengths {Jw :o �= w ∈ V (T )} satisfy-
ing (1.1), set θv = tanh(βJv) and consider the family of measures P(N,+) on the
space �+(T (N)) of ±1 configurations on T (N) with plus boundary conditions. The
goal is to determine whether P(N,+)(η(0) = +1) converges to 1/2 or is bounded
below by 1/2 + ε as N → ∞. This is accomplished in the following theorem,
already stated in the Introduction.

THEOREM 4.2. Let T be any infinite, locally finite tree rooted at o and having
no leaves except possibly o. Let {Jv} be bounded interaction strengths, that is,
satisfying (1.1), and assign resistances Rv = ∏

0<y≤v(tanh(βJy))
−1 as in (2.5).

Then the decreasing limit,

lim
N→∞ P(N,+)(η(0) = +1

)
,

is equal to 1/2 if and only if cap3(T ) = 0.

The key to the proof of Theorem 2.2 and to the main results in each of the
next two sections is the following recursive likelihood computation. For any tree
denote by T (v) the subtree rooted at v so that, for |v| ≤ N , the tree T (N)(v)

has vertex set {w ∈ V (T ) :v ≤ w, |w| ≤ N}. Consider a boundary configuration
ξ : ∂T (N) → {±1} and let Pξ denote the Ising measure with boundary condition ξ .
Furthermore, let P(N,ξ)

v denote the Ising measure on T (N)(v) whose boundary con-
dition is ξ|∂T (N)(v).

LEMMA 4.1. For each v �= o let θv = tanh(βJv) ∈ [0,1). Let

x(N)
v = x(N,ξ)

v = log
[

P(N,ξ)
v (η(v) = +1)

P(N,ξ)
v (η(v) = −1)

]

be the log-likelihood ratio at the root given the boundary. Then for |v| < N ,

x(N)
v = ∑

v→w

fw

(
x(N)
w

)
,

where for θ ∈ [0,1) and w ∈ V (T ), we denote

fθ (x) := log
[

cosh(x/2) + θ sinh(x/2)

cosh(x/2) − θ sinh(x/2)

]
and fw(x) := fθw(x).(4.1)
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This lemma is well known; we include its proof for the convenience of the
reader.

PROOF OF LEMMA 4.1. Let η be a configuration on T (N)(v). If |v| < N then
for each child w of v, let ηw be the restriction of η to the subtree T (N)(w). We
may then write

W(η) = ∏
v→w

W(ηw) exp(η(v)η(w)βJw).

Writing Zv for the normalizing factor, we have

P(N,ξ)
v

(
η(v) = +1

) = Z−1
v

∏
v→w

∑
ηw : T (N)(w)→{±1}

W(ηw) exp(η(w)βJw),

which equals

Z−1
v

∏
v→w

[
eβJwZwP(N,ξ)

w

(
η(w) = 1

) + e−βJwZwP(N,ξ)
w

(
η(w) = −1

)]
.(4.2)

Similarly, P(N,ξ)
v (η(v) = −1) equals

Z−1
v

∏
v→w

[
e−βJwZwP(N,ξ)

w

(
η(w) = +1

) + eβJwZwP(N,ξ)
w

(
η(w) = −1

)]
.(4.3)

Divide (4.2) and (4.3) by
∏

v→w ZwP(N,ξ)
w (η(w) = −1) and then consider their

ratio;

P(N,ξ)
v (η(v) = +1)

P(N,ξ)
v (η(v) = −1)

= ∏
v→w

e(βJw+x
(N)
w ) + e−βJw

e(−βJw+x
(N)
w ) + eβJw

= ∏
v→w

cosh(βJw)(ex
(N)
w + 1) + sinh(βJw)(ex

(N)
w − 1)

cosh(βJw)(ex
(N)
w + 1) − sinh(βJw)(ex

(N)
w − 1)

.

Next, divide numerator and denominator by cosh(βJw) and recall that tanh(β ×
Jw) = θw . It follows that the log of the likelihood ratio above satisfy

x(N)
v = ∑

v→w

log
ex

(N)
w + 1 + θw(ex

(N)
w − 1)

ex
(N)
w + 1 − θw(ex

(N)
w − 1)

.(4.4)

Finally, divide numerator and denominator by ex
(N)
w /2 to complete the proof. �

We will need some basic properties of the functions fθ defined in (4.1).

LEMMA 4.2. For θ > 0, the function

fθ (x) := log
[

cosh(x/2) + θ sinh(x/2)

cosh(x/2) − θ sinh(x/2)

]
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is an increasing odd function of x ∈ R which is concave for x > 0. Moreover, for
any compact interval I ⊂ (0,∞), the inequality

θx

(1 + κ2x2)1/2 ≤ fθ (x) ≤ θx

(1 + κ1x2)1/2(4.5)

holds for all x > 0 and θ ∈ I where the constants κ2 ≥ κ1 > 0 depend only on I .

PROOF. First, we differentiate fθ ;

f ′
θ (x) = θ

cosh2(x/2) − θ2 sinh2(x/2)
(4.6)

= θ

1 + (1 − θ2) sinh2(x/2)
∀x ∈ R.

The denominator in (4.6) is positive for all x ∈ R and increasing in x for x > 0, so
fθ (x) is an increasing function of x ∈ R and a concave function for x > 0. Another
consequence of (4.6) is that f ′

θ (x) is an even function of x, whence fθ (x), which
vanishes at x = 0, is an odd function of x.

The denominator in (4.6) has the expansion 1 + (1 − θ2)x2/4 + O(x4) near 0,
where the O(x4) term depends on θ , but is a uniformly bounded multiple of x4 for
θ ∈ I . Inverting and integrating, we see that the Taylor expansion of fθ near 0 has
the form,

fθ (x) = θx − θ(1 − θ2)

12
x3 + O(x5).(4.7)

It remains to prove (4.5). Dividing that inequality by θx, inverting and squaring,
shows that (4.5) is equivalent to 1 + κ1x

2 ≤ ( θx
fθ (x)

)2 ≤ 1 + κ2x
2. In other words,

we must verify that

ψθ(x) := x−2
[(

θx

fθ (x)

)2

− 1
]

satisfies κ1 ≤ ψθ(x) ≤ κ2,(4.8)

for all x > 0 and θ ∈ I , with some κ2 ≥ κ1 > 0 that depend only on I . By (4.6),
for x > 0 we have fθ (x) < θx so ψθ(x) > 0. Therefore ψθ is uniformly bounded
above and below by positive constants if x and θ are restricted to compact intervals
in (0,∞). Since

fθ (x) → log
[

1 + θ

1 − θ

]
as x → ∞ uniformly in θ ∈ I,

we deduce that ψθ(x) converges to a positive limit as x → ∞, uniformly in θ ∈ I .
The expansion (4.7) implies that ψθ(x) → θ(1 − θ2)/6 as x → 0. These consider-
ations prove (4.8) and the lemma. �
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PROOF OF THEOREM 2.2. Specialize to plus boundary conditions. Thus we
write P(N,+)

v for P(N,ξ)
v where ξ ≡ +1. Let

x(N)
v = x(N,+)

v = log
(

P(N,+)
v (η(v) = +1)

P(N,+)
v (η(v) = −1)

)

be the log-likelihood ratio of plus-to-minus at the root of the subtree T (N)(v). Note
that with plus boundary conditions, all the x

(N)
v are positive. Lemma 4.1 shows that

x(N)
v = ∑

v→w

fw

(
x(N)
w

)

with fw = fθw , as in (4.1).
Recall that the interaction strengths Jv are in a bounded interval [Jmin, Jmax] ⊂

(0,∞), and β is fixed. Therefore all the biases θv are in some bounded interval
I ⊂ (0,∞). It follows from Theorem 3.2 and the inequalities in (4.5) that x

(N)
o is

bounded between cap3(T
(N))/κ2 and cap3(T

(N))/κ1 for all N . Taking decreasing
limits finishes the proof of the theorem. �

We conclude this section with a discussion of the boundedness condition (1.1).
Given any tree T with associated interactions {J (e) : e ∈ E(T )}, a new tree T ′ may
be constructed by subdividing edges of T according to the following scheme. Fix
an ε > 0. Replace each edge e with θe < ε by a series of n edges e(1), . . . , e(n),
with θe(j) = θ

1/n
e , where n is the least integer making θ

1/n
e greater than ε.

From the error propagation description of the Ising measure, we see that the
measure on {±1}V (T ), gotten by restricting the Ising measure on T ′ to the vertices
of T , coincides with the Ising measure on T . Distances in T ′ no longer coin-
cide with distances in T , but it is easy to see that the various definitions of phase
transition in this article are unchanged if limits on T ′ are taken with respect to
distances in T . The associated resistor network to T ′ may be described as follows.
Each edge not subdivided retains the same resistance. A subdivided edge with re-
sistance R(e) = A/θe is replaced by n edges in series of resistances Aθ

−j/n
e for

j = 1, . . . , n. Since θ
1/n
e < ε1/2, the effective resistance of these n new edges in

series is less than 1/(1 − √
ε) times the greatest resistance among them which

is A/θe. Thus the resistance of the new network is equal to the old resistance up
to a bounded factor, and hence has capacity within a bounded factor of the origi-
nal capacity. We conclude that no generality is lost by assuming Jv to be bounded
away from zero.

There is some generality lost in assuming Jv to be bounded above, but for good
reason, as shown by the following example. Let T be a spherically symmetric tree
with |Tn| ≈ nα2n for some α > 1/2. As seen in Corollary 2.4, there is a phase
transition on T with constant interaction strength satisfying θ = 1/2. Now replace
each edge in generation n by n edges having θe = 2−1/n. The resistance of each
new series of edges in generation n is of order n times the old resistance, so when
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α ≤ 3/2, the new tree has zero capacity. Thus the capacity criterion breaks down
when the interaction strengths are allowed to have θv → 1, that is, Jv → ∞.

5. Free boundary conditions. The question we ask in this section is: if you
generate a configuration on T (N) from the free boundary measure, then look only
at the boundary, do you have nonvanishing information about the root as N → ∞?
To formalize this, let ξ be the random boundary configuration induced by the free
measure P(N) on configurations on all of T (N). In the notation of Lemma 4.1, let

X(N)
v := x(N,ξ)

v

be the log-likelihood ratio of plus-to-minus at v given the boundary.
We want to know whether the P(N) law of X

(N)
o (the free law) converges weakly

to the point mass at 0 as N → ∞. Evans et al. (2000) showed that X
(N)
o does not

go to zero when T has positive L2 capacity with resistances given by (2.5). As
mentioned in the Introduction, they, as well as Ioffe (1996b) have results in the
other direction which leave the critical case open. We sharpen this by showing

that zero capacity implies X
(N)
o

D−→ 0. The following statement is equivalent to
Theorem 2.1.

THEOREM 2.1′ . Let T be an infinite locally finite tree, rooted at o, with no
leaves except possibly at o and interaction strengths Jv satisfying (1.1) and set
θv = tanh(βJv)). Suppose that cap2(T ) = 0 with resistances as in (2.5). Then X

(N)
o

converges in law to 0.

PROOF. By Lemma 4.1, when |v| < N ,

X(N)
v = ∑

v→w

fw

(
X(N)

w

)
(5.1)

holds pointwise, with fw as in (4.1). To make use of this functional recursion, we
will derive from it a system of real inequalities;

m(N)
v ≤ ∑

v→w

θ2
wm

(N)
w

1 + κm
(N)
w

.(5.2)

The quantity m
(N)
v will be an expectation of X

(N)
v but it is not obvious what

measure should be used to take the expectation. Define the measures QN+
v (re-

spectively, QN−
v ) on the σ -field F (N)

v of boundary values by letting

QN+
v (ξ) := P(N)

v

(
η :η|∂T

(N)
v

= ξ |η(v) = +1
)

be the conditional distribution of the free boundary given a plus at v (respectively,
given a minus at v). Define

m(N)
v :=

∫
X(N)

v dQN+
v = −

∫
X(N)

v dQN−
v .
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The properties of the measures QN±
v summarized in the following lemmas make

these appropriate for the study of the free boundary.

LEMMA 5.1. For any v with |v| < N ,

QN+
v = ∏

v→w

[
(1 + θw)

2
QN+

w + (1 − θw)

2
QN−

w

]
.

In particular, the projection of QN+
v onto boundary configurations on T (N)(w) is

(1 + θw)

2
QN+

w + (1 − θw)

2
QN−

w .

LEMMA 5.2. For any odd function φ,∫
φ

(
X(N)

v

)
dQN+

v =
∫

φ
(∣∣X(N)

v

∣∣) tanh
(∣∣X(N)

v

∣∣/2
)
dP(N)

v .

LEMMA 5.3. There is a positive, continuous function κ such that when fθ is
defined as in (4.1) with θ = θv , then

∫
fθ

(
X(N)

v

)
dQN+

v ≤ θ

∫
X

(N)
v dQN+

v

1 + κ(θ)
∫

X
(N)
v dQN+

v

.

To finish the proof from these lemmas, use (5.1) and Lemma 5.1 to evaluate

m(N)
v = ∑

v→w

∫
fw

(
X(N)

w

)
dQN+

v

= 1

2

∑
v→w

∫
fw

(
X(N)

w

)
d
(
(1 + θw)QN+

w + (1 − θw)QN−
w

)
(5.3)

= ∑
v→w

∫
θwfw

(
X(N)

w

)
dQN+

w .

Apply Lemma 5.3 to see that this is, at most,

∑
v→w

θ2
wm

(N)
v

1 + κ(θv)m
(N)
v

.

By continuity of κ(θ) and the boundedness assumption (1.1), we arrive at (5.2).

Theorem 3.2 now applies to show that m
(N)
o ≤ cap2(T

(N))

κ
with resistances as in the

hypothesis of the theorem. Hence cap2(T ) = 0 implies m
(N)
o → 0 as N → ∞.

Finally, by Lemma 5.2 with φ(x) = x, this implies that X
(N)
o

D−→ 0 as N → ∞,
finishing the proof. �

It remains to prove the lemmas. Lemma 5.1 is immediate from the Markov
property.
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PROOF OF LEMMA 5.2. We first compare QN+
v to the boundary measure in-

duced by the free measure P(N)
v . We claim that

dQN+
v

dP(N)
v

= 1 + tanh
(
X(N)

v /2
)
.(5.4)

Indeed, from Bayes’ rule, one gets

dQN+
v

dP(N)
v

= P(N)
v (η(v) = +1|F (N)

v )

P(N)
v (η(v) = +1)

.

The denominator is 1/2 by symmetry, while the numerator is exp(X
(N)
v )/(1 +

exp(X
(N)
v )) = (1 + tanh(X

(N)
v /2))/2 by the definition of X

(N)
v . This proves the

claim. Now if φ is any odd function, then φ(x) = (φ(x) − φ(−x))/2, and thus∫
φ

(
X(N)

v

)
dQN+

v =
∫ 1

2

(
φ

(
X(N)

v

) − φ
(−X(N)

v

))
dQN+

v

=
∫ (

φ
(
X(N)

v

) − φ
(−X(N)

v

)) eX
(N)
v /2

eX
(N)
v /2 + e−X

(N)
v /2

dP(N)
v

=
∫

φ
(
X(N)

v

)eX
(N)
v /2 − e−X

(N)
v /2

eX
(N)
v /2 + e−X

(N)
v /2

dP(N)
v .

The integrand is a product of two odd functions, whence it is an even function
of X

(N)
v . Inserting absolute values yields the desired conclusion. �

PROOF OF LEMMA 5.3. Abbreviate the notation by writing X for X
(N)
v , E for

integration against P(N)
v and E+ for integration against QN+

v . First, for any c > 0,
the product,

E+fθ (X)(1 + cE+X) = E+fθ (X) + c(E+fθ (X))(E+X),

is equal, by Lemma 5.2, to the sum

E[fθ (|X|) tanh|X/2|] + E[fθ (|X|) tanh|X/2|)] · E[c|X| tanh|X/2|].
Since the functions fθ (x) tanh(x/2) and cx tanh(x/2) are both nondecreasing on
[0,∞), they are positively correlated functions of |X| (under P(N)

v or any other
law), and hence

(E+fθ (X))(1 + cE+X) ≤ E[fθ(|X|) tanh|X/2|] + E[c|X|fθ (|X|) tanh2|X/2|]
= E[fθ(|X|) tanh|X/2|(1 + c|X| tanh|X/2|)].

Recall that tanh(x) = x − �(x3). Refer to the Taylor expansion for fθ = fv in
(4.7) to see that for κ(θ) sufficiently small, there is a range x ∈ [0, δ] for which

fθ (x)
(
1 + κ(θ)x tanh(x/2)

)
< θx.(5.5)
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Since fθ is itself bounded and less than θx − ε(θ)x on [δ,∞), we may choose
κ(θ) smaller, if necessary, so that (5.5) holds for all x ≥ 0. Clearly the choice of κ

can be made continuously in θ . It follows that

(E+fθ (X))
(
1 + κ(θ)E+X

) ≤ E[θ |X| tanh|X/2|] = θE+X,

by Lemma 5.2. Dividing by (1 + κ(θ)E+X) proves the lemma. �

6. Spin-glasses. Let P(N,sg)
v denote the spin-glass measure Psg on configura-

tions on the tree T (N)(v) (see Section 1 for definitions). Our object in this section is
to determine when the conditional probability P(N,sg)

o (η(o) = +1|F (N)) converges
in distribution to a point mass at 1/2 where F (N) = F (N)

o is the σ -field generated
by boundary values on T (N). By the Markov random field property (or by the de-
finitions of P and Psg), the measures P(N) and P(N,sg) agree when conditioned on
the boundary, so the functions X

(N)
v of the previous section compute conditional

probabilities with respect to P(N,sg). Thus our task is to see when X
(N)
o

D−→ 0
under the laws P(N,sg).

THEOREM 2.5. Let T be an infinite, locally finite tree, rooted at o, with no
leaves except possibly at o and interaction strengths Jv satisfying (1.1) and set

θv = tanh(βJv). Then X
(N)
o

D−→ 0 under the spin-glass measure if and only if
cap2(T ) = 0 with resistances Rv = ∏

y≤v θ−2
y as assigned in (2.5).

PROOF. The structure of the proof is similar to that of Theorem 2.1. We begin
with (5.1),

X(N)
v = ∑

v→w

fw

(
X(N)

w

)
.

Let U
(N)
v := (X

(N)
v )2 and

u(N)
v :=

∫
U(N)

v dP(N,sg)
v ,

where the integrating measure in this case is just i.i.d. fair coin-flips on the bound-
ary of T (N)(v). In place of Lemma 5.1 we have the observation that the random
variables X

(N)
w have mean zero and are independent as w ranges over the children

of a fixed v. Lemmas 5.2 and 5.3 are replaced by the following two lemmas. Define

gv(x) := (
fv

(√
x
))2

.

LEMMA 6.1. For all v and all N > |v|,
E

(
U(N)

v

)2 ≤ 3
(
EU(N)

v

)2
.
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LEMMA 6.2. There are continuous functions κ2(c, θv) ≥ κ1(c, θv) > 0 such
that for any random variable V satisfying EV 2 ≤ c(EV )2, one has

h2(EV ) ≤ Egv(V ) ≤ h1(EV )(6.1)

with hi(x) = θ2
v x/(1 + κi(c, θv)x).

From these two lemmas the proof is finished as follows. Let E denote expecta-
tion with respect to i.i.d. unbiased (spin-glass) boundary conditions. Since each fv

is an odd function, the quantities f (X
(N)
w ) are independent mean-zero as w varies

over the children of v, which gives rise to the recursive formula

u(N)
v = E

(
X(N)

v

)2

= E
( ∑

v→w

fv

(
X(N)

w

))2

= ∑
v→w

Efv

(
X(N)

w

)2

= ∑
v→w

Egv

(
U(N)

w

)
.

Apply Lemma 6.2 with V = U
(N)
v and c = 3 (obtaining the hypothesis from Lem-

ma 6.1), to get ∑
v→w

h2
(
u(N)

w

) ≤ u(N)
v ≤ ∑

v→w

h1
(
u(N)

w

)
.

By continuity and the boundedness assumption (1.1), we may take κi in the de-
finition of hi to be constants independent of v. By Theorem 3.2 we see that
limN→∞ u

(N)
o is estimated up to a constant factor by cap2(T ) with resistances as

stated in the hypothesis of the theorem. Since X
(N)
o has mean zero and is bounded

by
∑

o→v log[(1 + θv)/(1 − θv)], it follows that the random variables X
(N)
o con-

verge in distribution to 0 if and only if their variances u
(N)
o go to zero. This com-

pletes the proof of Theorem 2.5. �

It remains to prove Lemmas 6.1 and 6.2. Before proving Lemma 6.1, we record
some preliminary facts.

LEMMA 6.3. Suppose f is a differentiable, weakly increasing and concave
function on [0,∞) with f (0) = 0. Then x2 ◦ f ◦ √

x is concave.

PROOF. Let ϕ(x) = f (x0) + (x − x0)f
′(x0) be the tangent line for f at x0.

Concavity implies that ϕ(x) ≥ f (x) for all x ≥ 0 and that ϕ′(x0) ≤ f (x0)/x0. Thus
ϕ(x) = ax +b with b ≥ 0, whence x2 ◦ϕ ◦√

x is a concave support function, lying
above x2 ◦f ◦√

x with equality at x2
0 . We conclude that x2 ◦f ◦√

x is the minimum
of a family of concave functions. �
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LEMMA 6.4. Let g : [0,∞) → [0,∞) be concave with g(0) = 0, and let Y be
a nonnegative random variable with positive finite variance. Then

E[g(Y )2]
[Eg(Y )]2 ≤ EY 2

(EY)2 .(6.2)

PROOF. Let Z = Y/EY and h(z) = g(zEY)/E(g(Y )). Then EZ = Eh(Z) =
1, so there must exist z1, z2 > 0 such that h(z1) ≥ z1 and h(z2) ≤ z2. Note that (6.2)
is equivalent to E[h(Z)2] ≤ E[Z2]. We may assume that h(z) is not identically
equal to z, and thus, by concavity, there is a unique fixed point x > 0 for which
h(x) = x. For any z ≥ 0,

|h(z) − x| ≤ |z − x|,
and therefore,

E[h(Z)2] = E
(
h(Z) − x

)2 + 2x − x2 ≤ E(Z − x)2 + 2x − x2 = EZ2,

proving the lemma. �

LEMMA 6.5. For any nonnegative random variable X ∈ L4, and any concave
function f with f (0) = 0,

Ef 4(X)

(Ef 2(X))2 ≤ EX4

(EX2)2 .

PROOF. by Lemma 6.3, the function g := x2 ◦ f ◦ √
x is concave. Applying

Lemma 6.4 to the function g and the random variable Y = X2 ∈ L2 gives

Ef 4(X)

(Ef 2(X))2 = Eg2(Y )

[Eg(Y )]2 ≤ EY 2

(EY)2 = EX4

(EX2)2 ,

proving the lemma. �

REMARK. As noted by the referee, Lemmas 6.2, 6.4 and 6.5 are valid for quite
general random variables; it would be interesting to apply them to more general
situations.

PROOF OF LEMMA 6.1. Recall the definitions of U
(N)
v and u

(N)
v and define

the fourth moment s
(N)
v :

U(N)
v = (

X(N)
v

)2;
u(N)

v = EU(N)
v ;

s(N)
v = E

(
U(N)

v

)2 = E
(
X(N)

v

)4
.
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For any v, the random variables {fw(X
(N)
w ) :v → w} are independent with mean

zero, so any monomial of these will have mean zero unless all exponents are even.
The basic recursion (5.1) yields

u(N)
v = E

( ∑
v→w

fw

(
X(N)

w

))2

= ∑
v→w

Efw

(
X(N)

w

)2
.

Hence (
u(N)

v

)2 = ∑
v→w

(
Efw

(
X(N)

w

)2)2 + ∑
v→{w,w′}

2Efw

(
X(N)

w

)2Efw′
(
X

(N)
w′

)2
.(6.3)

The fourth power expands similarly:

s(N)
v = E

( ∑
v→w

fw

(
X(N)

w

))4

(6.4)
= ∑

v→w

Efw

(
X(N)

w

)4 + ∑
v→{w,w′}

6Efw

(
X(N)

w

)2Efw′
(
X

(N)
w′

)2
.

It is required to show that s
(N)
v ≤ 3(u

(N)
v )2.

Proceed by induction on N − |v|. First suppose N − |v| = 1 and that v has d

children. Then X
(N)
v is the sum of d independent mean-zero random variables,

each equal to ± log(p/(1 − p)). In this case, s
(N)
v /(u

(N)
v )2 = 3 − 2/d < 3. Now

suppose N − |v| > 1. By induction, sw ≤ 3u2
w for each child w of v. Applying

Lemma 6.5, we see that for each such w,

Efw

(
X(N)

w

)4 ≤ 3
(
Efw

(
X(N)

w

)2)2
.

Plugging this into (6.4) and comparing with (6.3) shows that s
(N)
v ≤ 3(u

(N)
v )2, com-

pleting the induction. �

PROOF OF LEMMA 6.2. We observed in the proof of Lemma 6.5 that gv is
concave. For the upper bound, first note that

gv(x) ≤ h(x) := θ2
v x

1 + κ(θv)x
,

for some κ(θ) is bounded above and below by positive constants for θ in a com-
pact interval. The proof of this is the same as the proof of (4.5), using the Taylor
expansion [that follows from (4.7)]

gv(x) = θ2
v x − θ2

v (1 − θ2
v )x2/6 + O(x3),

together with boundedness and concavity of gv . Jensen’s inequality gives

Egv(V ) ≤ Eh(V ) ≤ h(EV ),
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which proves the upper bound with κ1 = κ .
For the lower bound, since gv(x) = θ2

v x −O(x2) near 0, we have gv(x) ≥ θ2
v x −

λx2 for some λ and all x in some interval [0, δ]. Choosing λ larger if necessary,
we can ensure that gv(x) ≥ θ2

v x − λx2 for all x ≥ 0. Hence

Egv(V ) ≥ θ2
v EV − cλ(EV )2.

Choose δ(θv) > 0 so that the right-hand side is positive for x ∈ (0, δ(θv)). Choose
κ2(θv) so that

θ2
v x

1 + κ2(θv)x
≤ [θ2

v x − λx2] ∧ gv(δ/2)

4c
.

This satisfies (6.1) when EV ≤ δ. But when EV > δ, then the hypothesis on V im-
plies that P(V > δ/2) ≥ 1/(4c) and therefore that Egv(V ) ≥ gv(δ/2)/(4c). Hence
(6.1) is valid for all x ≥ 0. Together with the evident continuous dependence of κi

on θv , this proves the lemma. �

7. Concluding remarks. Although we have in general no explicit probabilis-
tic interpretation of Lp capacities, in the case of integer values of p there is a more
probabilistic formulation. Positive Lp capacity is equivalent to the existence of a
probability measure μ on ∂T such that p independent paths picked from μ will
coincide along a path of finite average resistance. This corresponds to the repre-
sentation of Lp-energy as a p-fold integral over ∂T .

Finally, we note that other statistical mechanical models lead to recursions simi-
lar to (5.1) but with functions fv that are not necessarily concave. The Potts model
with 1 < q < 2 is essentially similar to the Ising model, but when q > 2, the func-
tions fv are not concave and qualitatively different behavior arises. See Häggström
(1996) for a discussion of this as pertains to the random cluster model.

REMARK. Since the first draft of this paper was circulated in 1996, there have
been many developments on the reconstruction problem, some of them influenced
by that draft. As suggested by the referee, we summarize some of these develop-
ments here. Pemantle and Steif (1999) analyzed the Heisenberg model and other
continuous-state models on general trees. They also introduced the important no-
tion of “Robust reconstruction” where the boundary data is noisy. This notion was
analyzed later in great generality by Janson and Mossel (2004). Census recon-
struction on regular trees (where only the number of particles of each type on the
boundary is given) was considered by Mossel and Peres (2003). A comprehensive
survey of the area up to 2004 was written by Mossel (2004). A connection between
reconstruction on trees and Glauber dynamics was found by Kenyon, Mossel and
Peres (2001) [see also Berger et al. (2005)], and this theme was developed further
by Martinelli, Sinclair and Weitz (2004). Notable progress on the reconstruction
problem for the asymmetric Ising model was made by Borgs et al. (2006) and for
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the Potts model by Sly (2009). The arguments in Section 5 were extended to other
boundary conditions in Ding, Lubetzky and Peres (2009) and used there to bound
the relaxation time for Glauber dynamics at the critical temperature.

Acknowledgments. Much of the research presented here was performed at
the Mittag Leffler Institute. We are grateful to E. B. Dynkin for telling us about Lp

capacities. We thank Manjunath Krishnapur, Gabor Pete, Antar Bandyopadhyay
and the referee for helpful comments and corrections.

REFERENCES

BERGER, N., KENYON, C., MOSSEL, E. and PERES, Y. (2005). Glauber dynamics on trees and
hyperbolic graphs. Probab. Theory Related Fields 131 311–340. MR2123248

BLEHER, P. M., RUIZ, J. and ZAGREBNOV, V. A. (1995). On the purity of the limiting Gibbs state
for the Ising model on the Bethe lattice. J. Stat. Phys. 79 473–482. MR1325591

BORGS, C., CHAYES, J., MOSSEL, E. and ROCH, S. (2006). The Kesten–Stigum reconstruction
bound is tight for roughly symmetric binary channels. In IEEE Foundations of Computer Science
(FOCS) 518–530. FOCS, Los Alamitos, CA.

CHAYES, J. T., CHAYES, L., SETHNA, J. P. and THOULESS, D. J. (1986). A mean field spin glass
with short-range interactions. Comm. Math. Phys. 106 41–89. MR853978

DING, J., LUBETZKY, E. and PERES, Y. (2009). The mixing time evolution of Glauber dynamics
for the mean-field Ising model. Comm. Math. Phys. 289 725–764. MR2506768

EVANS, W., KENYON, C., PERES, Y. and SCHULMAN, L. J. (2000). Broadcasting on trees and the
Ising model. Ann. Appl. Probab. 10 410–433. MR1768240

GEORGII, H.-O. (1988). Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics
9. De Gruyter, Berlin. MR956646

HÄGGSTRÖM, O. (1996). The random-cluster model on a homogeneous tree. Probab. Theory Re-
lated Fields 104 231–253. MR1373377

IOFFE, D. (1996a). On the extremality of the disordered state for the Ising model on the Bethe lattice.
Lett. Math. Phys. 37 137–143. MR1391195

IOFFE, D. (1996b). Extremality of the disordered state for the Ising model on general trees. In Trees
(Versailles, 1995). Progress in Probability 40 3–14. Birkhäuser, Basel. MR1439968

JANSON, S. and MOSSEL, E. (2004). Robust reconstruction on trees is determined by the second
eigenvalue. Ann. Probab. 32 2630–2649. MR2078553

KENYON, C., MOSSEL, E. and PERES, Y. (2001). Glauber dynamics on trees and hyperbolic graphs.
In 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001) 568–578.
IEEE Computer Soc., Los Alamitos, CA. MR1948746

MARTINELLI, F., SINCLAIR, A. and WEITZ, D. (2004). Glauber dynamics on trees: Boundary
conditions and mixing time. Comm. Math. Phys. 250 301–334. MR2094519

LYONS, R. (1989). The Ising model and percolation on trees and tree-like graphs. Comm. Math.
Phys. 125 337–353. MR1016874

LYONS, R. (1990). Random walks and percolation on trees. Ann. Probab. 18 931–958. MR1062053
LYONS, R. (1992). Random walks, capacity and percolation on trees. Ann. Probab. 20 2043–2088.

MR1188053
MARCHAL, P. (1998). The best bounds in a theorem of Russell Lyons. Electron. Comm. Probab. 3

91–94. MR1650563
MOSSEL, E. (2004). Survey: Information flow on trees. In Graphs, Morphisms and Statistical

Physics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 63 155–
170. Amer. Math. Soc., Providence, RI. MR2056226

http://www.ams.org/mathscinet-getitem?mr=2123248
http://www.ams.org/mathscinet-getitem?mr=1325591
http://www.ams.org/mathscinet-getitem?mr=853978
http://www.ams.org/mathscinet-getitem?mr=2506768
http://www.ams.org/mathscinet-getitem?mr=1768240
http://www.ams.org/mathscinet-getitem?mr=956646
http://www.ams.org/mathscinet-getitem?mr=1373377
http://www.ams.org/mathscinet-getitem?mr=1391195
http://www.ams.org/mathscinet-getitem?mr=1439968
http://www.ams.org/mathscinet-getitem?mr=2078553
http://www.ams.org/mathscinet-getitem?mr=1948746
http://www.ams.org/mathscinet-getitem?mr=2094519
http://www.ams.org/mathscinet-getitem?mr=1016874
http://www.ams.org/mathscinet-getitem?mr=1062053
http://www.ams.org/mathscinet-getitem?mr=1188053
http://www.ams.org/mathscinet-getitem?mr=1650563
http://www.ams.org/mathscinet-getitem?mr=2056226


206 R. PEMANTLE AND Y. PERES

MOSSEL, E. and PERES, Y. (2003). Information flow on trees. Ann. Appl. Probab. 13 817–844.
MR1994038

MURAKAMI, A. and YAMASAKI, M. (1992). Nonlinear potentials on an infinite network. Mem. Fac.
Sci. Shimane Univ. 26 15–28. MR1212945

PEMANTLE, R. and STEIF, J. E. (1999). Robust phase transitions for Heisenberg and other models
on general trees. Ann. Probab. 27 876–912. MR1698979

PRESTON, C. J. (1974). Gibbs States on Countable Sets. Cambridge Univ. Press, London.
MR0474556

PRESTON, C. (1976). Random Fields. Lecture Notes in Math. 534. Springer, Berlin. MR0448630
SLY, A. (2009). Reconstruction for the potts model. In Forty first ACM Symposium on Theory of

Computing (STOC), 581–590.
SOARDI, P. M. (1993). Morphisms and currents in infinite nonlinear resistive networks. Potential

Anal. 2 315–347. MR1245897
SOARDI, P. M. (1994). Potential Theory on Infinite Networks. Lecture Notes in Math. 1590. Springer,

Berlin. MR1324344

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF PENNSYLVANIA

209 SOUTH 33RD STREET

PHILADELPHIA, PENNSYLVANIA 19104
USA
E-MAIL: pemantle@math.upenn.edu

MICROSOFT RESEARCH

1 MICROSOFT WAY

REDMOND, WASHINGTON 98052
USA
E-MAIL: peres@microsoft.com

http://www.ams.org/mathscinet-getitem?mr=1994038
http://www.ams.org/mathscinet-getitem?mr=1212945
http://www.ams.org/mathscinet-getitem?mr=1698979
http://www.ams.org/mathscinet-getitem?mr=0474556
http://www.ams.org/mathscinet-getitem?mr=0448630
http://www.ams.org/mathscinet-getitem?mr=1245897
http://www.ams.org/mathscinet-getitem?mr=1324344
mailto:pemantle@math.upenn.edu
mailto:peres@microsoft.com

	Introduction
	Main results
	Plus boundary conditions
	Spin-glass boundary conditions
	Recursions for the log-likelihood

	Recursions on trees and potential theory
	Plus boundary conditions
	Free boundary conditions
	Spin-glasses
	Concluding remarks
	Acknowledgments
	References
	Author's Addresses

