HIGH LEVEL OCCUPATION TIMES FOR CONTINUOUS GAUSSIAN PROCESSES

BY NORMAN A. MARLOW

Bell Telephone Laboratories, Incorporated

Let $\{y(\tau), 0 \le \tau \le 1\}$ be a sample continuous Gaussian process, and let $T[y, \alpha]$ denote the time that $y(\bullet)$ spends above level α :

$$T[y,\alpha] = \int_0^1 V(y(\tau) - \alpha) d\tau,$$

where V(x) = 0 or 1 according as $x \le 0$ or x > 0. In this paper it is proved that, as $\alpha \to \infty$,

$$P\{T[y, \alpha] > \beta\} = \exp\{-(\alpha^2/2)k_{\beta}(1 + o(1))\}$$

where k_{β} is a particular functional of the covariance function of the process.

1. Introduction. Previous studies of the distribution of the occupation time T for high levels have been made by Volkonskii and Rozanov [8], and Berman [1], [2], [3]. For a zero-mean stationary Gaussian process $\{y(\tau), \tau \geq 0\}$ which satisfies a strong mixing condition, and whose covariance function satisfies a given smoothness condition at the origin, it is shown in [8] that

$$\alpha \int_0^t V(y(\tau) - \alpha) d\tau$$

has a limiting distribution as α and $t=t(\alpha)$ become infinite. A similar result under more general conditions is given in [2]. In [1] and [2], conditions on the covariance of a zero-mean stationary Gaussian process are given, under which the distribution of $\alpha T[y, \alpha]$, conditioned on the event T>0, has a limiting distribution as $\alpha\to\infty$. This is then generalized in [3] to include a wider class of covariances with the normalization $\alpha^c T[y, \alpha]$, and the conditioning events T>0 and $y(0)=\alpha$. The principal differences of the present paper are that the normalization $\alpha^c T[y, \alpha]$ is not used, and that sample continuity is the only condition imposed.

To formulate the result, let $L_2[0, 1]$ denote the Hilbert space of real-valued, square-integrable functions on [0, 1] with inner product $(x, u) = \int_0^1 x(\tau)u(\tau) d\tau$. Denote the covariance function of the process by ρ (necessarily continuous), and let A denote the operator defined by $Ax = \int_0^1 \rho(\cdot, s)x(s) ds$, $x \in L_2[0, 1]$. The space of real-valued, continuous functions on [0, 1] is denoted by C[0, 1], and the supremum norm on C[0, 1] by $||\cdot||$. We define $\inf B = +\infty$ whenever B is the empty set.

Theorem 1.1. As $\alpha \to \infty$

$$P\{T[y, \alpha] > \beta\} = \exp\{-(\alpha^2/2)k_{\beta}(1 + o(1))\}$$

Received May 1, 1972; revised August 25, 1972.

AMS 1970 subject classifications. Primary 60G15; Secondary 41A60.

Key words and phrases. Gaussian processes, high level occupation times, asymptotic distribution.

where

(1)
$$k_{\beta} = \inf \{ (Ax, x) : x \in C[0, 1], T[Ax, 1] > \beta \}.$$

Theorem 1.1 is first proved in the finite-dimensional case; the function space version is obtained by passage to the limit using an estimate of the supremum distribution due to Marcus and Shepp [5].

When $\beta = 0$, $P\{T[y, \alpha] > \beta\}$ is equal to $P\{\sup_{0 \le \tau \le 1} y(\tau) > \alpha\}$. Using results of [5] (see Lemma 3.1), it follows that

$$P\{T[y, \alpha] > 0\} = \exp\{-\alpha^2(2v^2)^{-1}(1 + o(1))\}$$

where $v^2 = \sup_{0 \le \tau \le 1} \operatorname{Var} y(\tau)$. At the other extreme,

$$P\{T[y, \alpha] = 1\} = P\{\inf_{0 \le \tau \le 1} y(\tau) > \alpha\}.$$

In this case, it is known [6] that

$$P\{T[y, \alpha] = 1\} = \exp\{-\alpha^2(4\sigma)^{-1}(1 + o(1))\}$$

where

$$\sigma = \sup_{x \in C[0,1]} \left\{ \inf_{0 \le \tau \le 1} (Ax)(\tau) - \frac{1}{2} (Ax, x) \right\}.$$

The extremal problem (1) is solved for the following class of covariance functions in Section 5: If, for each s, $\rho(\tau, s)$ is non-decreasing (non-increasing) in τ , then $k_{\beta} = 1/\rho(1-\beta, 1-\beta)$ (respectively, $1/\rho(\beta, \beta)$) for all $0 \le \beta < 1$. Note that neither condition is satisfied if ρ is the covariance function of a stationary process, except in the trivial case when $P\{y(\tau) = y(0), 0 \le \tau \le 1\} = 1$. Also, if $1 \le \tau \le 2$, the covariance function

$$\rho(s,\tau) = \frac{1}{2}[s^{\gamma} + \tau^{\gamma} - |s - \tau|^{\gamma}]$$

satisfies the first condition, while for $0 < \gamma < 1$, it satisfies neither.

2. Finite-dimensional results. If $x \in \mathcal{R}^{n+1}$ is a column vector with components x_0, \dots, x_n , we denote the transpose of x by x^T and define $|x| = \max_{0 \le k \le n} |x_k|$. For each $x \in \mathcal{R}^{n+1}$ with components x_0, \dots, x_n we define the polygonal function $x^{n+1} \in C[0, 1]$ where

$$x^{n+1}(\tau) = (j - n\tau)x_{j-1} + (n\tau - j + 1)x_j,$$

$$j - 1 \le n\tau \le j; j = 1, 2, \dots, n; 0 \le \tau \le 1.$$

If $x \in \mathcal{R}^{n+1}$, we define $t_n(x, \alpha) = T[x^{n+1}, \alpha]$ and $t_n(|x|, \alpha) = T[||x^{n+1}||, \alpha]$.

LEMMA 2.1. Let y_0, \dots, y_n be zero-mean, jointly Gaussian random variables with nonsingular covariance matrix H. Write $y = (y_0, \dots, y_n)$. Then

$$\lim_{\alpha \to \infty} (1/\alpha^2) \log P\{t_n(y, \alpha) > \beta\} = -\frac{1}{2} \inf \{x^T H x : x \in \mathcal{R}^{n+1}, t_n(H x, 1) > \beta\}.$$

PROOF. Let $P(\alpha) = P\{t_n(y, \alpha) > \beta\}$. Since H is nonsingular,

$$P(\alpha) = C_n \int_{t_n(u,\alpha)>\beta} \exp\left\{-\frac{1}{2}u^T H^{-1}u\right\} du$$

where $C_n = (\det H)^{-\frac{1}{2}}(2\pi)^{-(n+1)/2}$. Making the linear transformation $u = \alpha x$, and

using $t_n(\alpha x, \alpha) = t_n(x, 1), \alpha > 0$, we obtain

$$P(\alpha) = \alpha^{n+1}C_n \int_{\Lambda} \exp\left\{-\left(\alpha^2/2\right)x^T H^{-1}x\right\} dx,$$

where $\Lambda = \{x : t_n(x, 1) > \beta\}$. We shall assume that Λ is not empty since the conclusion of the lemma is clearly true when Λ is empty. Since the L_p norm converges to the L_∞ norm as $p \to \infty$, we have (with $p = \alpha^2$)

$$\lim_{\alpha\to\infty}(1/\alpha^2)\log P(\alpha)=\mathrm{ess\,sup}_{x\in\Lambda}\left\{-\tfrac{1}{2}x^TH^{-1}x\right\}.$$

Because Λ is open, and $x^TH^{-1}x$ is continuous on Λ , it follows that the essential supremum equals the supremum. Nonsingularity of H then implies that

$$\inf \{x^T H^{-1}x : t_n(x, 1) > \beta\} = \inf \{x^T Hx : t_n(Hx, 1) > \beta\},\$$

and the proof is complete.

The next two lemmas will be used to remove the nonsingularity assumption of Lemma 2.1.

LEMMA 2.2. Let y_0, \dots, y_n be zero-mean, jointly Gaussian random variables, and let z_0, \dots, z_n be independent, standard normal random variables with (y_0, \dots, y_n) and (z_0, \dots, z_n) independent. Then

$$\lim_{\varepsilon \downarrow 0} \lim_{\alpha \to \infty} (1/\alpha^2) \log P\{t_n(y + \varepsilon z, \alpha) > \beta\}$$

$$= \lim_{\alpha \to \infty} (1/\alpha^2) \log P\{t_n(y, \alpha) > \beta\}.$$

PROOF. Note first that

(2)
$$\lim_{\alpha\to\infty} (1/\alpha^2) \log P\{|z| > \alpha\} = -\frac{1}{2}.$$

Let p > 0, q > 0, p + q = 1. If $\epsilon > 0$,

(3)
$$t_{n}(y + \varepsilon z, \alpha) \leq t_{n}(y, \alpha p) + t_{n}(\varepsilon z, \alpha q) \\ \leq t_{n}(y, \alpha p) + t_{n}(\varepsilon |z|, \alpha q) \\ = t_{n}(y, \alpha p) + V(|z| - (\alpha q/\varepsilon)).$$

Similarly,

(4)
$$t_n(y, \alpha) \leq t_n(y + \varepsilon z, \alpha p) + V(|z| - (\alpha q/\varepsilon)).$$

If ξ and η are real numbers, then $\xi + \eta > \beta$ implies that $\xi > \beta$ or $\eta > 0$. Thus, from (3) and (4)

(5)
$$P\{t_n(y+\varepsilon z,\alpha)>\beta\}\leq P\{t_n(y,\alpha p)>\beta\}+P\{|z|>(\alpha q/\varepsilon)\}$$

(6)
$$P\{t_n(y,\alpha) > \beta\} \leq P\{t_n(y+\varepsilon z,\alpha p) > \beta\} + P\{|z| > (\alpha q/\varepsilon)\}.$$

Using the inequality $\log(|x| + |y|) \le \log 2 + \max(\log|x|, \log|y|)$, it follows from (2), (5), and (6) that

(7)
$$\lim_{\alpha \to \infty} (1/\alpha^2) \log P\{t_n(y + \varepsilon z, \alpha) > \beta\}$$

$$\leq \max \left[p^2 \lim \inf_{\alpha \to \infty} (1/\alpha^2) \log P\{t_n(y, \alpha) > \beta\}, -q^2/(2\varepsilon^2) \right]$$

(8)
$$\limsup_{\alpha \to \infty} (1/\alpha^2) \log P\{t_n(y, \alpha) > \beta\}$$

$$\leq \max \left[p^2 \lim_{\alpha \to \infty} (1/\alpha^2) \log P\{t_n(y + \varepsilon z, \alpha) > \beta\}, -q^2/(2\varepsilon^2) \right].$$

The limits appearing in (7) and (8) exist by virtue of Lemma 2.1 and the fact that the covariance matrix of $y_0 + \varepsilon z_0, \dots, y_n + \varepsilon z_n$ is nonsingular. The proof is completed by letting $\varepsilon \downarrow 0$ and then $p \uparrow 1$ in (7) and (8).

LEMMA 2.3. Let H be an $(n + 1) \times (n + 1)$ covariance matrix, and let I denote the $(n + 1) \times (n + 1)$ identity matrix. Then

$$\lim_{\varepsilon \downarrow 0} \inf \left\{ x^T (H + \varepsilon I) x : t_n (H x + \varepsilon x, 1) > \beta \right\} = \inf \left\{ x^T H x : t_n (H x, 1) > \beta \right\}.$$

PROOF. Let

$$u(\varepsilon) = \inf \{ x^T (H + \varepsilon I) x : t_n(Hx + \varepsilon x, 1) > \beta \}, \qquad \varepsilon > 0.$$

If p > 0, q > 0, p + q = 1, then

$$t_n(Hx + \varepsilon x, 1) \leq t_n(Hx, p) + V(|x| - (q/\varepsilon)).$$

It follows that

$$\{x^{T}(H+\varepsilon I)x : t_{n}(Hx+\varepsilon x, 1) > \beta\}$$

$$\subset \{x^{T}(H+\varepsilon I)x : t_{n}(Hx, p) > \beta\} \cup \{x^{T}(H+\varepsilon I)x : |x| > (q/\varepsilon)\};$$

hence

(9)
$$u(\varepsilon) \geq \min \left[\inf \left\{ x^{T}(H + \varepsilon I)x : t_{n}(Hx, p) > \beta \right\}, \\ \inf \left\{ x^{T}(H + \varepsilon I)x : |x| > (q/\varepsilon) \right\} \right] \\ \geq \min \left[\inf \left\{ x^{T}Hx : t_{n}(Hx, p) > \beta \right\}, \inf \left\{ \varepsilon x^{T}x : |x| > (q/\varepsilon) \right\} \right].$$

Using $t_n(Hx, p) = t_n((1/p)Hx, 1)$ and $x^Tx \ge |x|^2$, it follows from (9) that

(10)
$$u(\varepsilon) \ge \min \left[p^2 \inf \left\{ x^T H x : t_n(H x, 1) > \beta \right\}, q^2/\varepsilon \right].$$

Letting $\varepsilon \downarrow 0$ and then $p \uparrow 1$ in (10) we obtain

(11)
$$\lim \inf_{\varepsilon \downarrow 0} u(\varepsilon) \ge \inf \{ x^T H x : t_n(H x, 1) > \beta \}.$$

Next, let p > 0, q > 0, p + q = 1. Then

$$t_n(Hx, 1) \le t_n(Hx + \varepsilon x, p) + V(|x| - (q/\varepsilon)).$$

Hence

$$\inf \left\{ x^T (H + \varepsilon I) x \colon t_n(Hx, 1) > \beta \right\} \ge \min \left[p^2 u(\varepsilon), \inf \left\{ \varepsilon x^T x \colon |x| > (q/\varepsilon) \right\} \right].$$

Writing $m(\varepsilon) = \inf \{ x^T (H + \varepsilon I) x : t_n(Hx, 1) > \beta \}$, and using $x^T x \ge |x|^2$ we obtain

(12)
$$m(\varepsilon) \ge \min \left[p^2 u(\varepsilon), q^2/\varepsilon \right].$$

Letting $\varepsilon \downarrow 0$ and then $p \uparrow 1$ in (12), we have

(13)
$$\lim \sup_{\varepsilon \downarrow 0} m(\varepsilon) \ge \lim \sup_{\varepsilon \downarrow 0} u(\varepsilon) .$$

Next, if $t_n(Hx, 1) > \beta$ then $x^T Hx + \varepsilon x^T x \ge m(\varepsilon)$; hence $\limsup_{\varepsilon \downarrow 0} m(\varepsilon) \le x^T Hx$. It follows that

(14)
$$\lim \sup_{\varepsilon \downarrow 0} m(\varepsilon) \leq \inf \{ x^T H x : t_n(H x, 1) > \beta \},$$

and the proof is completed by combining (11), (13), and (14).

The finite-dimensional version of Theorem 1.1 in the zero-mean case now follows directly from Lemmas 2.1, 2.2, and 2.3:

THEOREM 2.1. Let y_0, \dots, y_n be zero-mean, jointly Gaussian random variables with covariance matrix H (possibly singular). Then, as $\alpha \to \infty$

$$P\{t_n(y, \alpha) > \beta\} = \exp\{-(\alpha^2/2)k_{\beta}^{n}(1 + o(1))\}$$

where $k_{\beta}^{n} = \inf \{x^{T}Hx : t_{n}(Hx, 1) > \beta\}.$

3. Lemmas. Several lemmas required in the proof of Theorem 1.1 are given in this section. The following notation will be used: for $0 < h \le 1$,

$$\psi^{2}(h) = \sup \{ E[y(s) - y(\tau)]^{2} : |s - \tau| \le h, \ 0 \le s \le 1, \ 0 \le \tau \le 1 \}.$$

If $x \in C[0, 1]$, then $\pi_n x$ denotes the polygonal function

$$(\pi_n x)(\tau) = (j - n\tau)x[(j - 1)/n] + (n\tau - j + 1)x[j/n]$$
$$j - 1 \le n\tau < j; j = 1, 2, \dots, n; 0 \le \tau \le 1.$$

The first lemma is due to Marcus and Shepp [5], and provides the link between the finite-dimensional and function space versions of the results of this paper.

LEMMA 3.1. (Marcus-Shepp) Let X_1, X_2, \cdots be a Gaussian sequence with arbitrary covariance and means. If $P\{\sup_{n\geq 1} |X_n| < \infty\} > 0$, then

$$\lim_{\alpha \to \infty} \left(1/\alpha^2 \right) \log P\{\sup_{n \geq 1} |X_n| > \alpha\} = -(2v^2)^{-1}$$

where $v^2 = \sup_{n \ge 1} \operatorname{Var} X_n$.

Note that since $\sup_{n\geq 1} P\{X_n > \alpha\} \leq P\{\sup_{n\geq 1} X_n > \alpha\}$, the above lemma holds for $\sup_{n\geq 1} X_n$ as well.

Applying the above to a sample continuous Gaussian process $\{\underline{y}(\tau), 0 \le \tau \le 1\}$, it follows from separability that

$$\lim_{\alpha \to \infty} (1/\alpha^2) \log P\{||y|| > \alpha\} = -(2v^2)^{-1}$$

where $v^2 = \sup_{0 \le \tau \le 1} \operatorname{Var} y(\tau)$.

Lemma 3.2. For all
$$0 \le \tau \le 1$$
, $E[y(\tau) - (\pi_n y)(\tau)]^2 \le \psi^2(1/n)$.

The proof of Lemma 3.2 is straightforward.

LEMMA 3.3. Let $x \in C[0, 1]$ and define

$$(B_n x)(\tau) = (1/n) \sum_{j=0}^n \rho(\tau, j/n) x(j/n), \qquad 0 \le \tau \le 1.$$

Then $||Ax - \pi_n B_n x|| \to 0$ as $n \to \infty$.

PROOF. If $x \in C[0, 1]$, then $||Ax - \pi_n Ax|| \to 0$ and $||Ax - B_n x|| \to 0$ as $n \to \infty$. The result now follows from the inequalities

$$||Ax - \pi_n B_n x|| \le ||Ax - \pi_n Ax|| + ||\pi_n Ax - \pi_n B_n x||$$

$$\le ||Ax - \pi_n Ax|| + ||Ax - B_n x||.$$

LEMMA 3.4. Let

$$k_{\beta} = \inf \{ (Ax, x) : T(Ax, 1) > \beta, x \in C[0, 1] \}$$
, $k_{\beta}^* = \inf \{ (Ax, x) : T(Ax, 1) > \beta, x \in L_2[0, 1] \}$.

Then $k_{\scriptscriptstyle\beta} = k_{\scriptscriptstyle\beta}^*$.

PROOF. Since $k_{\beta} \geq k_{\beta}^*$, it suffices to prove that $k_{\beta} \leq k_{\beta}^*$. Assume $k_{\beta}^* < \infty$. Let $u \in L_2[0, 1]$, and suppose that $T(Au, 1) > \beta$. By the projection theorem [7], page 71, u = v + w where $v \in \overline{AL_2}$, $w \perp AL_2$, and $\overline{AL_2}$ denotes the L_2 -closure of the range of A. Symmetry of A implies that Aw = 0, hence (Au, u) = (Av, v) and T(Au, 1) = T(Av, 1). Choose $v_n \in AL_2$ such that $(v_n - v, v_n - v) \to 0$. Then $||Av_n - Av|| \to 0$ [7], page 244. If p > 0, q > 0, p + q = 1, then

$$\beta < T(Av, 1) \leq T(Av_n, p) + V(||Av - Av_n|| - q).$$

Thus, for all $n \ge N(v,q)$ we have $T(Av_n,p) > \beta$ hence $k_\beta \le (1/p^2) (Av_n,v_n)$. Letting $n \to \infty$ and then $p \uparrow 1$ we obtain $k_\beta \le (Av,v) = (Au,u)$. Since the last holds for all $u \in L_2[0,1]$ for which $T(Au,1) > \beta$, it follows that $k_\beta \le k_\beta^*$.

LEMMA 3.5. Let $x = (x_0, \dots, x_n) \in \mathcal{R}^{n+1}$ and define

$$(U_n x)(\tau) = \sum_{j=0}^n \rho(\tau, j/n) x_j \qquad 0 \le \tau \le 1.$$

Then, there is a sequence $x_m \in L_2[0, 1]$ such that:

- (i) $\lim_{m\to\infty} ||U_n x Ax_m|| = 0;$
- (ii) $\lim_{m\to\infty} (Ax_m, x_m) = \sum_{i=0}^n \sum_{j=0}^n \rho(i/n, j/n) x_i x_j$.

Proof. The proof is based on choosing a sequence $x_m \in L_2[0, 1]$ which converges to

$$\sum_{j=0}^n x_j \, \delta(\tau - (j/n)) ,$$

where δ denotes the δ -function. Such a sequence is given by

$$x_{m}(\tau) = mx_{0} V((1/m) - \tau)$$

$$+ \sum_{j=1}^{n-1} (mx_{j}/2) [V((j/n) + (1/m) - \tau) - V((j/n) - (1/m) - \tau)]$$

$$+ (mx_{n}/(m-1)) V(\tau - 1 + (1/m))$$

where m > n and $0 \le \tau \le 1$.

LEMMA 3.6. Define $U_n: \mathscr{R}^{n+1} \to C[0, 1]$ as in Lemma 3.5, and define k_{β}^* as in Lemma 3.4. Let A_n denote the $(n+1) \times (n+1)$ matrix $(\rho(i/n, j/n))$. Then, if 0 ,

$$\inf \{x^T A_n x : T((1/p)U_n x, 1) > \beta, x \in \mathcal{R}^{n+1}\} \ge p^4 k_{\beta}^*.$$

PROOF. Let $x \in \mathcal{R}^{n+1}$. By Lemma 3.5 there is a sequence $x_m \in L_2[0, 1]$ such that $||U_n x - Ax_m|| \to 0$ as $m \to \infty$. Suppose that $T((1/p)U_n x, 1) > \beta$. Then, if q = 1 - p,

$$\beta < T((1/p)U_n x, 1) \le T((1/p)Ax_m, p) + V((1/p)||U_n x - Ax_m|| - q)$$

$$= T((1/p^2)Ax_m, 1) + V(||U_n x - Ax_m|| - pq).$$

Thus, if $m \ge M(x, p)$, we have $T((1/p^2)Ax_m, 1) > \beta$ hence, by definition of k_{β}^* , $(Ax_m, x_m) \ge p^4k_{\beta}^*$. Letting $m \to \infty$, and using part (ii) of Lemma 3.5, we obtain $x^T A_n x \ge p^4k_{\beta}^*$. Since the last holds for all $x \in \mathcal{R}^{n+1}$ such that $T((1/p)U_n x, 1) > \beta$, the assertion follows.

LEMMA 3.7. Define $U_n: \mathscr{D}^{n+1} \to C[0,1]$ as in Lemma 3.5, and let A_n denote the $(n+1)\times (n+1)$ matrix $(\rho(i/n,j/n))$. Then, if $Ey(\tau)=0$, $0\leq \tau \leq 1$, $||\pi_n U_n x - U_n x||^2 \leq \psi^2(1/n)(x^T A_n x)$ for all $x\in \mathscr{R}^{n+1}$.

PROOF. Let $x = (x_0, \dots, x_n) \in \mathcal{R}^{n+1}$ and $\tau \in [0, 1]$. For some j we have $j - 1 \le n\tau \le j$ and

$$(\pi_n U_n x)(\tau) - (U_n x)(\tau) = [(U_n x)((j/n) - (1/n)) - (U_n x)(\tau)](j - n\tau) + [(U_n x)(j/n) - (U_n x)(\tau)](n\tau - j + 1),$$

hence

$$||\pi_n U_n x - U_n x||^2 \le \sup_{|s-\tau| \le (1/n)} [(U_n x)(s) - (U_n x)(\tau)]^2.$$

If $|s-\tau| \leq (1/n)$, it follows from the Cauchy-Schwarz inequality that

$$[(U_n x)(s) - (U_n x)(\tau)]^2 = [E\{[y(s) - y(\tau)] \sum_{j=0}^n y(j/n)x_j\}]^2$$

$$\leq \psi^2(1/n)(x^T A_n x).$$

4. Proof of Theorem 1.1. Let $m(\tau) = Ey(\tau)$, $0 \le \tau \le 1$. We show first that, without loss of generality, we may assume that $m(\tau) = 0$, $0 \le \tau \le 1$. Let p > 0, q > 0, p + q = 1. Then

$$T(y, \alpha) \leq T(y - m, \alpha p) + V(||m|| - \alpha q)$$

$$T(y - m, \alpha) \leq T(y, \alpha p) + V(||m|| - \alpha q).$$

Thus, if the theorem is true for zero-mean processes,

$$\limsup_{\alpha \to \infty} (1/\alpha^2) \log P\{T(y, \alpha) > \beta\}$$

$$\leq p^2 \lim_{\alpha \to \infty} (1/\alpha^2) \log \left[P\{T(y - m, \alpha) > \beta\}\right]$$

$$p^2 \lim \inf_{\alpha \to \infty} (1/\alpha^2) \log P\{T(y, \alpha) > \beta\}$$

$$\geq \lim_{\alpha \to \infty} (1/\alpha^2) \log \left[P\{T(y - m, \alpha) > \beta\}\right].$$

Letting $p \uparrow 1$, it follows that we may assume $m(\tau) = 0$, $0 \le \tau \le 1$. Next, note that, by Lemmas 3.1 and 3.2,

(15)
$$\lim_{\alpha \to \infty} (1/\alpha^2) \log P\{||y - \pi_n y|| \ge \alpha\} \le -(2\psi^2(1/n))^{-1}.$$

Also, by Theorem 2.1,

(16)
$$\lim_{\alpha\to\infty} (1/\alpha^2) \log P\{T(\pi_n y, \alpha) > \beta\} = -(k_{\beta}^{n}/2),$$

where $k_{\beta}^{n} = \inf\{x^{T}A_{n}x : t_{n}(A_{n}x, 1) > \beta, x \in \mathcal{R}^{n+1}\}$, and A_{n} denotes the $(n+1) \times (n+1)$ matrix $(\rho(i/n, j/n))$. If p > 0, q > 0, p + q = 1 then

$$T(y, \alpha) \leq T(\pi_n y, \alpha p) + V(||y - \pi_n y|| - \alpha q)$$

hence

(17)
$$P\{T(y, \alpha) > \beta\} \leq P\{T(\pi_n y, \alpha p) > \beta\} + P\{||y - \pi_n y|| > \alpha q\}.$$

Similarly,

(18)
$$P\{T(\pi_n y, \alpha) > \beta\} \leq P\{T(y, \alpha p) > \beta\} + P\{||y - \pi_n y|| > \alpha q\}.$$

Taking logarithms of both sides of (17) and (18), using the inequality $\log (|x| + |y|) \le \log 2 + \max (\log |x|, \log |y|)$, dividing by α^2 and letting $\alpha \to \infty$ we obtain

(19)
$$\limsup_{\alpha \to \infty} (1/\alpha^2) \log P\{T(y, \alpha) > \beta\} \le \max \left[-(p^2/2)k_{\beta}^n, -q^2(2\psi^2(1/n))^{-1} \right]$$

(20)
$$-(k_{\beta}^{n}/2) \leq \max \left[p^{2} \lim \inf_{\alpha \to \infty} (1/\alpha^{2}) \log P\{T(y,\alpha) > \beta\}, -q^{2}(2\psi^{2}(1/n))^{-1} \right]$$

where (15) and (16) have been used. Letting $n \to \infty$ and then $p \uparrow 1$ in (19) and (20) we obtain

$$\lim_{\alpha\to\infty} (1/\alpha^2) \log P\{T(y,\alpha) > \beta\} = -\tfrac{1}{2} \lim_{n\to\infty} k_{\beta}^{n}.$$

We complete the proof by showing that

$$\lim_{n\to\infty} k_{\beta}^{n} = \inf\{(Ax, x) : T(Ax, 1) > \beta, x \in C[0, 1]\}.$$

Let $x \in C[0, 1]$ and define

$$(B_n x)(\tau) = (1/n) \sum_{j=0}^n \rho(\tau, j/n) x(j/n), \qquad 0 \le \tau \le 1.$$

By Lemma 3.3, $||Ax - \pi_n B_n x|| \to 0$. Suppose now that $x \in C[0, 1]$ and $T(Ax, 1) > \beta$. If p > 0, q > 0, p + q = 1, then

$$\beta < T(Ax, 1) \le T(\pi_n B_n x, p) + V(||Ax - \pi_n B_n x|| - q).$$

Thus, for all $n \ge N(x, q)$, $T(\pi_n B_n x, p) > \beta$ or, equivalently,

$$t_{m}((1/p)A_{m}x^{*}, 1) > \beta$$

where $x^* = (1/n)(x(0), x(1/n), \dots, x(1))$. Thus,

$$k_{\beta}^{n} \leq (1/p^{2})(A_{n}x^{*}, x^{*}) = (n^{2}p^{2})^{-1} \sum_{i=0}^{n} \sum_{j=0}^{n} \rho(i/n, j/n)x(i/n)x(j/n)$$
.

Letting $n \to \infty$ and then $p \uparrow 1$, we obtain

$$\lim_{n\to\infty} k_n^n \leq (Ax, x)$$
.

Since the last holds for all $x \in C[0, 1]$ such that $T(Ax, 1) > \beta$ it follows that

$$\lim_{n\to\infty}k_{\beta}^{n}\leq k_{\beta}.$$

Next, define for $x \in \mathbb{R}^{n+1}$ with components x_0, \dots, x_n

$$(U_n x)(\tau) = \sum_{j=0}^{n} \rho(\tau, j/n) x_j, \qquad 0 \le \tau \le 1.$$

Then $t_n(A_n x, 1) = T(\pi_n U_n x, 1)$ hence, if p > 0, q > 0, p + q = 1,

$$t_n(A_n x, 1) \le T(U_n x, p) + V(||\pi_n U_n x - U_n x|| - q).$$

It follows that

$$\{x: t_n(A_n x, 1) > \beta\} \subset \{x: T(U_n x, p) > \beta\} \cup \{x: ||\pi_n V_n x - U_n x|| > q\}$$

hence, by Lemma 3.6,

(22)
$$k_{\beta}^{n} \ge \min \left[p^{4} k_{\beta}^{*}, \inf \left\{ x^{T} A_{n} x : || \pi_{n} U_{n} x - U_{n} x || > q \right\} \right],$$

where $k_{\beta}^* = \inf\{(Ax, x): T(Ax, 1) > \beta, x \in L_2[0, 1]\}$. Applying Lemmas 3.4 and 3.7 it follows from (22) that

$$k_{\beta}^{n} \geq \min [p^{4}k_{\beta}, q^{2}/\psi^{2}(1/n)].$$

Letting $n \to \infty$ and then $p \uparrow 1$ we obtain

$$\lim_{n\to\infty}k_{\beta}^{n}\geq k_{\beta},$$

and this together with (21) completes the proof.

5. Solution of the extremal problem for a class of covariances. Suppose that $\rho(\tau, s)$ is nondecreasing in τ for each s. We shall prove that for all $0 < \beta < 1$,

(23)
$$k_{\beta} = 1/\rho(1-\beta, 1-\beta),$$

where, formally, the infimum k_{β} is attained by the δ -function $[\rho(1-\beta, 1-\beta)]^{-1}\delta_{1-\beta}(\cdot)$. To prove (23), note first that if $\sup_{0 \le \tau \le 1-\beta} y(\tau) \le \alpha$ then $T[y, \alpha] \le \beta$. Thus,

$$P\{T[y, \alpha] > \beta\} \leq P\{\sup_{0 \leq \tau < 1-\beta} y(\tau) > \alpha\}.$$

Applying Theorem 1.1 and Lemma 3.1 we obtain $k_{\beta} \ge 1/\rho(1-\beta, 1-\beta)$. If $\rho(1-\beta, 1-\beta) = 0$, the proof is complete. Assume now that $\rho(1-\beta, 1-\beta) > 0$. By Lemma 3.4,

(24)
$$k_{\beta} = \inf \{ (Ax, x) : T(Ax, 1) > \beta, x \in L_{2}[0, 1] \}.$$

Let $0 < \varepsilon < 1$, $(1/m) < \min(\beta, 1 - \beta)$, and define

$$x_m(\tau) = 1/C_m$$
 $1 - \beta - (1/m) \le \tau \le 1 - \beta + (1/m)$
= 0 otherwise,

where

$$C_m = (1 - \varepsilon) \int_{1-\beta-(1/m)}^{1-\beta+(1/m)} \rho(1 - \beta, s) ds$$
.

For m sufficiently large, $C_m > 0$. Next,

$$(Ax_m)(\tau) = (1/C_m) \int_{1-\beta-(1/m)}^{1-\beta+(1/m)} \rho(\tau, s) ds$$
.

If $\tau \ge 1 - \beta$, then $\rho(\tau, s) \ge \rho(1 - \beta, s)$, hence $(Ax_m)(\tau) \ge (1 - \varepsilon)^{-1} > 1$. It follows that $T[Ax_m, 1] > \beta$, and from (24),

$$k_{\beta} \leq (Ax_{m}, x_{m})$$

$$= [1/C_{m}^{2}] \int_{1-\beta-(1/m)}^{1-\beta+(1/m)} \int_{1-\beta-(1/m)}^{1-\beta+(1/m)} \rho(\tau, s) d\tau ds.$$

Letting $m \to \infty$ we obtain $(1 - \varepsilon)^2 k_\beta \le 1/[\rho(1 - \beta, 1 - \beta)]$. Since $0 < \varepsilon < 1$ was arbitrary, the proof is complete. Note that if $\rho(\tau, s)$ is non-increasing in τ for each s, application of the above to the process $y(1 - \tau)$ gives $k_\beta = 1/\rho(\beta, \beta)$. A similar argument shows that (23) holds when $\beta = 0$.

EXAMPLE. If $\{y(\tau), 0 \le \tau \le 1\}$ is the Wiener process, then $\rho(s, \tau) = \min(s, \tau)$, and application of the above gives

$$P\{T[y, \alpha] > \beta\} = \exp\{-(\alpha^2/2)(1-\beta)^{-1}(1+o(1))\}$$

as $\alpha \to \infty$. This can be verified directly using results of Kac [4] to obtain the distribution of T:

$$P\{T[y, \alpha] > \beta\} = \alpha(2/\pi)^{\frac{1}{2}} \int_{(1-\beta)^{-\frac{1}{2}}}^{\infty} K(\beta, x) \exp\{-(\alpha^2 x^2/2)\} dx$$

where

$$K(\beta, x) = 1 - (2/\pi) \sin^{-1} \{ [(\beta x^2)/(x^2 - 1)]^{\frac{1}{2}} \}.$$

REFERENCES

- [1] Berman, S. M. (1971). Excursions above high levels for stationary Gaussian processes. *Pacific J. Math.* 36 63-79.
- [2] Berman, S. M. (1971). Maxima and high level excursions of stationary Gaussian processes. Trans. Amer. Math. Soc. 160 65-85.
- [3] Berman, S. M. (1972). A class of limiting distributions of high level excursions of Gaussian processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 21 121-134.
- [4] KAC, M. (1949). On distributions of certain Wiener functionals. *Trans. Amer. Math. Soc.* 65 1-13.
- [5] MARCUS, M. B. and SHEPP, L. A. (1972). Sample behavior of Gaussian processes. Proc. Sixth Berkeley Symp. Math. Statist. Prob. Univ. of California Press.
- [6] Marlow, N. A. (1971). Asymptotic tail probabilities for a class of functionals of a continuous Gaussian process. To appear.
- [7] RIESZ, F. and Sz-NAGY, B. (1955). Functional Analysis. Unger, New York.
- [8] Volkonskii, V. A. and Rozanov, Ju. A. (1961). Some limit theorems for random functions II. *Theor. Probability Appl.* 6 186-198.

Bell Telephone Laboratories
Holmdel, New Jersey 07733