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Let {y(z),0 = = = 1} be a sample continuous Gaussian process, and let
T[y, a] denote the time that y(s) spends above level a:

Ty, al = {3 VO¥(z) — a) dr,

where V(x) = 0 or 1 according as x < 0 or x > 0. In this paper it is proved
that, as a — oo,
P{T[y, a] > B} = exp {—(a?/2)ks(1 + o(1))}

where k; is a particular functional of the covariance function of the process.

1. Introduction. Previous studies of the distribution of the occupation time
T for high levels have been made by Volkonskii and Rozanov [8], and Berman
[1], [2], [3]. For a zero-mean stationary Gaussian process {y(r), ¢ = 0} which
satisfies a strong mixing condition, and whose covariance function satisfies a given
smoothness condition at the origin, it is shown in [8] that

a §s V(y(z) — a) de

has a limiting distribution as @ and ¢ = #(a) become infinite. A similar result
under more general conditions is given in [2]. In [1] and [2], conditions on the
covariance of a zero-mean stationary Gaussian process are given, under which
the distribution of aT[y, a], conditioned on the event 7 > 0, has a limiting dis-
tribution as @« — oo. This is then generalized in [3] to include a wider class of
covariances with the normalization a*T[y, «], and the conditioning events 7 > 0
and y(0) = a. The principal differences of the present paper are that the normali-
zation a°T[y, a] is not used, and that sample continuity is the only condition
imposed.

To formulate the result, let L,[0, 1] denote the Hilbert space of real-valued,
square-integrable functions on [0, 1] with inner product (x, u) = §! x(¢)u(z) dr.
Denote the covariance function of the process by p (necessarily continuous), and
let A denote the operator defined by 4x = {} o(+, 5)x(s) ds, x € L,[0, 1]. The space
of real-valued, continuous functions on [0, 1] is denoted by CJ[0, 1], and the
supremum norm on C[0, 1] by ||-||. We define inf B = -+ co whenever B is the
empty set.

THEOREM 1.1. As a > o
P{T[y, a] > B} = exp {—(®[2)k4(1 + o(1))}
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where
1) ky = inf {(Ax, x): xe C[0, 1], T[4x, 1] > B} .

Theorem 1.1 is first proved in the finite-dimensional case; the function space
version is obtained by passage to the limit using an estimate of the supremum
distribution due to Marcus and Shepp [5].
When 8 = 0, P{T[y, a] > 8} is equal to P{sup,.. ., y(r) > a}. Using results
of [5] (see Lemma 3.1), it follows that
P(T[y, @] > 0} = exp {—a*(20*)7X(1 + o(1))}
where v* = sup ..., Var y(r). At the other extreme,

P{T[y, a] = 1} = P{infy_ , y(zr) > a}.
In this case, it is known [6] that

P(T[y, a] = 1} = exp {—a’(40)~(1 + o(1))}
where

0 = SUP, gga, {iNfygecs (AX)(2) — (Ax, X)) .

The extremal problem (1) is solved for the following class of covariance func-
tions in Section 5: If, for each s, p(z, s) is non-decreasing (non-increasing) in t,
thenky = 1/p(1 — B, 1 — B) (respectively, 1/o(B, B)) for all0 < 8 < 1. Note that
neither condition is satisfied if p is the covariance function of a stationary process,
except in the trivial case when P{y(r) = y(0),0 <t < 1} =1. Also, if 1 £
7 < 2, the covariance function

o(s,7) = 357 + o7 — |s — 7]
satisfies the first condition, while for 0 < y < 1, it satisfies neither.

2. Finite-dimensional results. If x ¢ ©2"*! is a column vector with components
X, + - +5 X,, we denote the transpose of x by x” and define |x| = max,g,., |X,|.
For each x e &#*** with components x,, - - -, x, we define the polygonal function
x"*t e C[0, 1] where

XN r) = (J — mo)xo o+ (it —J o+ Dx,
j—1l1gnm<jj=1,2,...,i0<Z< 1.

If x e 2", we define t,(x, a) = T[x"*', a] and ¢,(|x|, @) = T[||x"*||, a].

LemMA 2.1. Let y,, - - -, y, be zero-mean, jointly Gaussian random variables with
nonsingular covariance matrix H. Write y = (yy, +++, y,). Then

lim, ., (1/a%) log P{t,(y, @) > B} = —}inf {(x"Hx: x ¢ 2"*, t,(Hx, 1) > B} .
Proor. Let P(a) = P{t,(y, «) > f}. Since H is nonsingular,
P(a) = C, ‘stn(u,a)>ﬂ exp {—u"H 'u} du

where C, = (det H)~#2x)~"+Y/2, Making the linear transformation u = ax, and



390 NORMAN A. MARLOW

using ¢, (ax, a) = t,(x, 1), « > 0, we obtain
P(a) = a™*'C, §, exp {— (a*/2)x"H 'x} dx ,
where A = {x: t,(x, 1) > B}. We shall assume that A is not empty since the

conclusion of the lemma is clearly true when A is empty. Since the L, norm
converges to the L, norm as p — oo, we have (with p = a?)

lim,_(1/a®) log P(a) = esssup,., {—Lx"H 'x} .

Because A is open, and x”H~'x is continuous on A, it follows that the essential
supremum equals the supremum. Nonsingularity of H then implies that

inf {(x"H'x: t,(x, 1) > B} = inf {x"Hx: t,(Hx, 1) > B},

and the proof is complete.

The next two lemmas will be used to remove the nonsingularity assumption
of Lemma 2.1.

LEmMA 2.2. Let y,, - - -, y, be zero-mean, jointly Gaussian random variables, and
let zy, - - -, z, be independent, standard normal random variables with Yos =+ *» V)
and (z,, - - -, z,) independent. Then

lim, ,lim, . (1/a log P{t,(y + ¢z, @) > B}
= lim, ... (1/a) log P{t,(y, @) > B} .
Proor. Note first that
@) lim, ., (1/a?) log P{jz| > a} = —}.
Letp>0,9>0,p4+g=1. Ife >0,
t(y + ez, @) = 1.y, ap) + t.(ez, ag)
A3) = 1.0 ap) + 1.(el2]s aq)

- = 1.(y, ap) + V(|z| — (ag/e)) .
Similarly,

(4) (s a) = t.(y + ez, ap) + V(2| — (ag/e)) -
If £ and 7 are real numbers, then & + 7 > B impliesthat § > Sory > 0. Thus,
from (3) and (4)
e P{t,(y 4 ez, ) > B} < P{t.(y, ap) > B} + Pflz| > (ag/e)}
(6) P{t,(y, @) > B} < P{t,(y + ez, ap) > B} + P{|z| > (ag/e)} .
Using the inequality log (|x| + |y|) < log2 + max (log|x|, log|y|), it follows from
(2), (5), and (6) that A
(7)  limg. (/) log Plt,(y + ez, @) > §} \
< max [p*liminf, ., (1/a’) log P{1,(y, @) > B}, —¢*/(2¢")]

(8)  limsup, .. (1/a’) log P{r,(y, a) > B}

< max [p*lim, . (1/a?) log P{t,(y + ez, @) > B}, —q*/(2)] .
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The limits appearing in (7) and (8) exist by virtue of Lemma 2.1 and the fact
that the covariance matrix of y, + ez, - -, y, + ¢z, is nonsingular. The proof
is completed by letting ¢ | 0 and then p 1 1 in (7) and (8).

LEMMA 2.3. Let H be an (n + 1) X (n + 1) covariance matrix, and let I denote
the (n 4+ 1) X (n + 1) identity matrix. Then

lim, o inf {x"(H + el)x: t,(Hx 4 ex, 1) > B} = inf {x"Hx: t,(Hx, 1) > 8} .
Proor. Let
u(e) = inf {x"(H + el)x: t,(Hx + ex, 1) > B}, e>0.
Ifp>0,9g>0,p+q=1, then
(Hx + ex, 1) < t,(Hx, p) + V(x| — (g/¢)) -
It follows that
{x"(H + el)x: t,(Hx + ex, 1) > B}
C (XT(H + el)x: t,(Hx, p) > B} U (x"(H + el)x: |x| > (g/e)};
hence
u(e) = min [inf {x"(H + el)x: t,(Hx, p) > B},
©) inf (x™(H + eI)x: [x| > (g/¢))]
= min [inf {x"Hx: t,(Hx, p) > B}, inf {ex"x: |x| > (g/e)}] -

Using ¢,(Hx, p) = t,((1/p)Hx, 1) and x"x = |x|*, it follows from (9) that
(10) u(e) = min [p*inf {x"Hx: t,(Hx, 1) > B}, ¢*/¢] .
Letting ¢ | 0 and then p 1 1 in (10) we obtain

(11) lim inf, , u(¢) = inf {x"Hx: ¢t (Hx, 1) > B} .

Next, let p > 0,4 >0, p+ ¢g=1. Then

t(Hx, 1) < t,(Hx + ex, p) + V(|x| — (q/)) -
Hence

inf {x"(H + el)x: t,(Hx, 1) > B} = min [p’u(e), inf {ex"x: |x| > (q/¢)}] -
Writing m(e) = inf {x"(H + el)x: t,(Hx, 1) > f}, and using x”x > |x|* we obtain
(12) m(e) = min [pu(e), ¢/e]
Letting ¢ | 0 and then p 1 1 in (12), we have
(13) lim sup, , m(¢) = lim sup, , u(c) .

Next, if ¢,(Hx, 1) > § then x"Hx 4 ex"x > m(e); hence lim sup, , m(c) < x"Hx.
It follows that

(14) lim sup, , m(¢) < inf {(x"Hx: t,(Hx, 1) > B},
and the proof is completed by combining (11), (13), and (14).
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The finite-dimensional version of Theorem 1.1 in the zero-mean case now
follows directly from Lemmas 2.1, 2.2, and 2.3:

THEOREM 2.1. Let y,, - - -, y, be zero-mean, jointly Gaussian random variables
with covariance matrix H (possibly singular). Then, as a — oo

P{t,(y, @) > B} = exp {—(a"/2)k,*(1 + o(1))}
where k,* = inf {x"Hx: t,(Hx, 1) > f}.

3. Lemmas. Several lemmas required in the proof of Theorem 1.1 are given
in this section. The following notation will be used: for 0 < # < 1,

P¥h) = sup {E[y(s) — y(@)P:|s — 7| =£h 051,05 Z 1}
If x e C[0, 1], then 7, x denotes the polygonal function
(T X)) = ( — m)x{(j — O/n] + (nz — j + Dx[jjn]
j—1gn<j;j=1,2,...,m;0<r< 1.

The first lemma is due to Marcus and Shepp [5], and provides the link between
the finite-dimensional and function space versions of the results of this paper.

LemMA 3.1. (Marcus-Shepp) Let X,, X,, - - - be a Gaussian sequence with arbi-
trary covariance and means. If P{sup,., |X,| < o} > 0, then

lim,_ (1/a® log P{sup,,, |X,| > a} = —(2v*)™!
where V* = sup,,., Var X,,.

Note that since sup,,, P{X, > a} < P{sup,., X, > a}, the above lemma holds
for sup,., X, as well.
Applying the above to a sample continuous Gaussian process {y(zr),0 < = < 1},
it follows from separability that
lim, .. (1/a®) log P{||y|| > a} = —(2¢*)~
where v* = sup,.., Var y(7).

LEMMA 3.2, Forall0 < v < 1, E[y(r) — (7, 0)(0)] < ¢*%(1/n).

The proof of Lemma 3.2 is straightforward.
LemMA 3.3. Let xe C[0, 1] and define
(Bax)(7) = (1/m) X0 0(z, jIm)x(j[n) , 0<c=1.
Then ||Ax — n,B,x|| > 0asn— oo.

Proor. If xe C[0, 1], then ||4x — 7, Ax|| —> 0 and |[|[4x — B,x||—>0asn— co.
The result now follows from the inequalities

[|Ax — 7, B, x|| £ ||4x — =, Ax|| + ||z, Ax — =, B, x||
..S_ “Ax - znAx” + HAX - anH .
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LEMMA 3.4. Let
k, = inf {(4x, x): T(Ax, 1) > B, x e C[0, 1]}
k,* = inf {(Ax, x): T(Ax, 1) > B, xe L0, 1]} .
Then kﬂ = kﬂ*.

Proor. Since k, > k,*, it suffices to prove that k, < k,*. Assume k,* < oo.
Let u € L,[0, 1], and suppose that T(A4u, 1) > 5. By the projection theorem [7],
page 71, u = v 4 w where ve AL,, w | AL,, and AL, denotes the L,-closure of
the range of 4. Symmetry of 4 implies that 4w = 0, hence (Au, u) = (Av, v)
and T(Au, 1) = T(Av, 1). Choose v, € AL, such that (v, — v, v, — v) — 0. Then
||4v, — Av|| — 0 [7], page 244. If p > 0,49 >0, p + g = 1, then

B < T(Av, 1) < T(Av,, p) + V(||Av — Av,|| — q) .

Thus, for all » = N(v, q) we have T(Av,, p) > B hence k, < (1/p?) (Av,, v,).
Letting n — oo and then p 7 1 we obtain k, < (A4v, v) = (Au, u). Since the last
holds for all u € L,[0, 1] for which T(Au, 1) > B, it follows that k, < k,*.

LEMMA 3.5. Let x = (x,, - - -, X,) € 2" and define
(Unx)(T) = Z?:O P(T,j/”)xj 0 é T é 1.

Then, there is a sequence x,, € L,[0, 1] such that:

(i) lim,_.||U,x — Ax,|| = 0;

(i) lim,, ., (Axp, Xu) = Xt DiF-0 P[0, jIM)X; X,

Proor. The proof is based on choosing a sequence x,, € L,[0, 1] which con-
verges to

Li=0X;0(z = (J/n)
where ¢ denotes the d-function. Such a sequence is given by
Xu(7t) = mx, V((1/m) — 1)
+ 2551 (mx,2)[V(([m) + (1[m) — ) — V((J[n) — (1/m) — =)]
+ (mx,/(m — 1)V — 1 + (1/m))
where m > nand0 <7 < 1.

LeEMMA 3.6. Define U, : 2"+ — C{0, 1] as in Lemma 3.5, and define k* as in
Lemma 3.4. Let A, denote the (n + 1) X (n + 1) matrix (p(i/n, j/n)). Then, if
0<p<l,

inf {x"4,x: T((1/p)U,x, 1) > B, x € &'} = p'k,* .

PRoOOF. Let x € &#"+'. By Lemma 3.5 there is a sequence x,, € L,[0, 1] such
that ||U,x — Ax,|| — 0 as m — co. Suppose that T((1/p)U,x, 1) > B. Then, if
g=1-p,

B <T((1/pU,x, 1) = T((/p)Axn, p) + V(A/PIUnx — AX,[[ — 9)
= T((1/p)Axn, 1) + V(||Upx — Ax,|| — pq) -
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Thus, if m = M(x, p), we have T((1/p*)Ax,,, 1) > B hence, by definition of k*,
(Ax,, x,) = p*k,*. Letting m — oo, and using part (ii) of Lemma 3.5, we obtain
xTA,x = p'ky*. Since the last holds for all x € .Z2"+!such that T((1/p)U, x, 1) > 8,
the assertion follows.

LEMMA 3.7. Define U,: 2" — C[0, 1] as in Lemma 3.5, and let A, denote
the (n+ 1) X (n+ 1) matrix (p(i/n, j/n)). Then, if Ey(r)=0, 0<7<1,
|7, Uy x — U, x||* < @*(1/n)(x" A, x) for all x e G2+,

PrROOF. Let x = (xp, « -+, x,) € 22" and r€[0,1]. For some j we have
j—1<Znr <jand
(@ U x)(7) — (Uux)(2) = [(Unx)((j/1) — (1/m)) — (U, )(0)](J — n7)

+ [(U.x)(j[n) — (U, x)(0))(nt — j + 1),
hence

|70 U — UpX|[* = SUPu_cizym [(UnX)(s) — (Unx)(0)]" -
If |s — 7| < (1/n), it follows from the Cauchy-Schwarz inequality that
[(Uax)(s) — (Uux)(O)F = [E{[y(s) — »(7)] iy (j/mx;}]’
< @1 m)(x" A, %)

4. Proof of Theorem 1.1. Let m(z) = Ey(r), 0 < v < 1. We show first that,
without loss of generality, we may assume that m(z) = 0,0 <7 < 1. Letp > 0,
g>0,p+qg=1. Then

T(y, @) = T(y — m, ap) + V(||m|| — ag)
I(y —m,a) = T(y, ap) + V(||m|| — aq) .

Thus, if the theorem is true for zero-mean processes,

lim sup, .. (1/a®) log P{T(y, a) > B}
< p*lim, ., (1/a?) 1og [P(T(y — m, @) > §}]
p*liminf, . (1/a®) log P{T(y, a) > B}
2 lim, .., (1/a?) log [P{T(y — m, a) > B}] .
Letting p 1 1, it follows that we may assume m(r) = 0, 0 < = < 1. Next, note
that, by Lemmas 3.1 and 3.2,

(15) lim,_ (1/a*) log P||ly — m,y|| = a} = —(2¢*(1/n))~*.
Also, by Theorem 2.1,
(16) lim, ., (1/a*) log P(T(x,y, @) > B} = —(k,"[2),

where k,” = inf {x"4,x: t,(4,x,1) > B, x € Z"*'}, and 4, denotes the (n 4 1) X
(n + 1) matrix (o(i/n, j/n)). If p > 0,49 >0, p 4+ g =1 then

I(y, a) < T(m,y, ap) + V(|ly — 7. )l — aq)
hence

(17) P{T(y, a) > B} = P{T(m,y, ap) > B} + P{lly — 7. yl| > aq}.
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Similarly,

(18) P(T(z,y, @) > B} = P(T(y, ap) > B} + P|ly — )|l > aq}.

Taking logarithms of both sides of (17) and (18), using the inequality log (|x| +
|y < log2 + max (log|x|, log|y|), dividing by a* and letting a« — co we obtain

(19)  limsup,.., (1/a®) log P{T(y, @) > B} < max [—(p[2)k;", —q*(2¢*(1/n))™"]
(20)  —(k2) = max[p*liminf,_., (1/a®) log P{T(y, @) > B}, —¢*(2¢*(1/m))"]

where (15) and (16) have been used. Letting n — oo and then p 1 1 in (19) and
(20) we obtain

lim,_., (1/a*) log P{T(y, @) > B} = —41lim, . k.
We complete the proof by showing that
lim, ., k" = inf {(4x, x): T(4x, 1) > 8, xe C[0, 1]} .
Let x € C[0, 1] and define
(B, x)(7) = (1/n) 230 o(7, jIm)x(j[n) » UESL-

By Lemma 3.3, || 4x—r, B, x|| —0. Suppose now that x € C[0, 1]and T(4x, 1)> 8.
Ifp>0,g>0,p+ g=1, then
B < T(4x, 1) < T(=,B,x, p) + V(||4Ax — 7, B,x|| — q) -
Thus, for all n > N(x, q), T(=,B,x, p) > B or, equivalently,
L((/p)Ax*, 1) > B
where x* = (1/n)(x(0), x(1/n), - - -, x(1)). Thus,
ket < () (A, x*, x¥) = (np") ™" Xig Zj-o p(ifn, j[m)x(i[m)x(j[n) .
Letting n — oo and then p 1 1, we obtain
lim, ., k" < (Ax, x) .

Since the last holds for all x e C[0, 1] such that T(A4x, 1) > g it follows that

(1) lim, . k," < k.
Next, define for x € &’*+! with components x,, - - -, x,,
(U, x)(r) = X1 0(z, jn)x; , 0srz<1.

Then t,(A4,x, 1) = T(z,U,x, 1) hence, if p > 0,9 >0,p + ¢ =1,
t(4,x,1) < TWU,x, p) + V(= U,x — U,x|| — q).
It follows that
[t 0,(A,x, 1) > ) C {x: T(U,x, p) > B} U [x: |7, Vox — Upx|] > g)
hence, by Lemma 3.6,
(22) k,» = min [pk,*, inf {x" 4, x ||z, U, x — U, x|| > g}],
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where k,* = inf {(Ax, x): T(Ax, 1) > B, x e L,[0, 1]}. Applying Lemmas 3.4 and
3.7 it follows from (22) that
k,» = min [ p'k,, ¢*/*(1/n)] .
Letting n — oo and then p 1 1 we obtain
lim, . k" = k,

n—»oo

and this together with (21) completes the proof .

5. Solution of the extremal problem for a class of covariances. Suppose that
o(z, s) is nondecreasing in ¢ for each s. We shall prove that for all 0 < 8 < 1,

(23) ky=1/p(1 = p,1—§),
where, formally, the infimum k, is attained by the d-function [p(1 — 8,1 —
£)17%9,_4(+). To prove (23), note first that if sup,;. 5, _, () < a then T[y, a] < 6.
Thus,
P{T[y,a] > B} = P{Suposr<1—,9 ) > a}.
Applying Theorem 1.1 and Lemma 3.1 we obtain k; = 1/o(1 — 8,1 — §). If
o(1 — 8,1 — p) = 0, the proof is complete. Assume now that po(1 — 5, 1 — ) > 0.
By Lemma 3.4,
(24) k, = inf {(Ax, x): T(A4x, 1) > B, x e L,[0, 1]} .
Let 0 < ¢ < 1, (1/m) < min (8, 1 — B), and define
x,(t) = 1/C, l—B—(/mcrs1 =8+ (1/m)
=0 otherwise,

where

Co = (1 — &) S o(1 — B, 5) ds .
For m sufficiently large, C,, > 0. Next,

(Axu)(2) = (1/Cp) Sif2i/m) o(7, 5) ds .
If - > 1 — B, then p(r, 5) = p(1 — B, 5), hence (Ax, )(z) = (1 —¢)* > 1. It
follows that T[Axm, 1] > B, and from (24),

< (Ax,, x,,)

= [1/C,7] Sizftimy $izfim) o(z, s) dr ds .
Letting m — co we obtain (1 — ¢)%, < 1/[p(1 — B, 1 — f)]. Since 0 < e < 1
was arbitrary, the proof is complete. Note that if p(z, s) is non-increasing in ¢

for each s, application of the above to the process y(1 — 7) gives k; = 1/0(8, B)-
A similar argument shows that (23) holds when 8 = 0.

ExaMpLE. If {y(7),0 < r < 1} is the Wiener process, then o(s, r) = min (s, 7),
and application of the above gives

P{T[y, a] > B} = exp {—(a’/2)(1 — p)7}(1 + o(1))}
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as @ — oco. This can be verified directly using results of Kac [4] to obtain the
distribution of T

P(T[y, a] > B} = a(2/m)* {5_p-1 K(B, x) exp{—(a’x*[2)} dx

where
K(B, x) = 1 — (2/m) sin™ {[(Bx*)/(x* — D1)]*} .
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