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OF EXTREMA FOR CERTAIN STABLE PROCESSES
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It is shown that when the index 0 < @ < 2, a # 1, and the symmetry
parameter —1 < 8 <1 of a stable process {X(¢); t> 0} are such that
P(X(1) > 0} = la~! — k, where [ and k are integers, Darling’s integral can
be evaluated. This leads to explicit formulas for a transform of the Laplace
transform of sup, ., ., X(¢) and the Wiener-Hopf factors of {X(?), ¢t > 0}.

1. Introduction and results. Wiener—Hopf factorisation is of great impor-
tance in the theory of stochastic processes because there are a number of
identities which express transforms of various functionals of the process, such as
the maximum, first passage time, etc., in terms of the Wiener—Hopf factors. It is
therefore unfortunate that explicit expressions for these factors can rarely be
found. In the case of stable processes, it follows from the results of Darling (1956)
and Heyde (1969) that explicit evaluation of these factors is essentially equiv-
alent to the calculation of a certain definite integral, usually called Darling’s
integral. This integral was evaluated by Darling (1956) in the case of a symmet-
ric Cauchy process and by Bingham (1973) in the case of a spectrally negative
stable process, although in this latter case the Wiener—Hopf factors can be easily
found by a probabilistic argument.

In this paper we employ a method similar to that used by Bingham (1973) to
evaluate Darling’s integral for a large class of stable processes, and hence find
explicit forms for the Wiener—Hopf factors.

To state our results, we need some notation. We will assume throughout that
X = {X(t), t =0} is a stable process whose characteristic exponent {(6) =
log{ E(e?*®)} satisfies, for real u,

(1.1) (iu) = —c|u|"‘(1 _ iBsign utan%'f),
wherel <a <2 —-1<B8<1l,or0<a<1, —1<pB < +1, and for convenience
we take ¢ = {1 + B?tan’(ma/2)} ~'/2 Notice that the cases 0 <a <1, B = +1,
correspond to the situation where X or —X is a subordinator, where the
factorisation is trivial, the case a = 1, 8 = 0 (when X is a symmetric Cauchy
process) has been treated by Darling (1956), and the case a = 1, 8 # 0 (when X
is a nonsymmetric Cauchy process) cannot be treated by our methods, because
the scaling property fails. This property, which is valid for any X satisfying (1.1),
states that for any ¢ > 0, X =, {¢"°X(ct), ¢ > 0}, where here, and throughout,
8 =1/a. It is a simple consequence of this property that the Wiener-Hopf
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WIENER-HOPF FACTORISATION OF STABLE PROCESSES 1353

factorisation for Lévy processes, due originally to Rogozin (1966) [see also
Pecherskii and Rogozin (1969) and Gusak and Korolyuk (1969)] reduces in the
case of a stable process satisfying (1.1), to

(12) {1-9(8)) ' =¢*(8)¥7(), Re(6)=0.

Here ¢ *(0) [y ~(0)] is analytic in the half-plane Re(6) < 0 [Re(6) > 0], continu-
ous and nonvanishing on Re(8) < 0 [Re(#) > 0], and is the Laplace transform of
an infinitely divisible distribution on the left (right) half-line. Furthermore, if the
supports of one of these infinitely divisible distributions is required to be
(— 00,0) or (0, o0), respectively, then the factorisation is unique. [Otherwise it is
unique modulo multiplication by exponential factors; see Rogozin (1966).]

A fundamental quantity in the study of stable processes is p = Pr{X(1) > 0};
this was first evaluated by Zolotarev (1957), the result being

1 1 T
(1.3) o=+ —tan—l(ﬁ tan—).
2  7a 2
To see the connection between the Wiener—Hopf factors and Darling’s integral,
observe that if we specialize the fundamental identity of Rogozin (1966) to the
case of a stable process with the scaling property, we get

(1.4) fowe‘xm‘L(Bxs) dc =y*(-6), Re(8) =0,

where m*(8) = E(e"®™") and M* = sup, _, ., X(t). On the other hand, Darling
(1956) for the special case of a symmetric stable process, and Heyde (1969) have
shown that for A real and > 0,

L (@5) [Temr(Ax?) dx = g*(A),
0
where
eiry ~ sinmp o log{l+ (Ax)*} dx
(1.6) g*(\) exp{ u L (x2+ 2xcosmp +1) |

Thus, y*(—0) is the (unique) analytic extension of g* to Re(d) > 0, and in a
sense the problem of determining y* is equivalent to that of calculating the
integral which appears on the right-hand side of (1.6), i.e., Darling’s integral.
Furthermore, since the right and left Wiener—Hopf factors for —X are ¢~ (—8),
Y+ (—0), respectively, it follows that ¢ ~(6) is the (unique) analytic extension of
&~ to Re(8) = 0, where

—sin7(1 - p) foo log{1 + ()\x)“} dx }
0

(1.7) g (A)= exp{ x2+ 2xcosm(l —p) +1

T -

Spectrally negative stable processes arise when 1 < @ < 2 and 8 = —1; in this
case it follows from (1.3) that p = 8 (recall § = a~'), and this motivates the
following definition.
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DEFINITION 1.  For integers k and [ the class C;, ; denotes all stable processes
satisfying (1.1) such that

(1.8) p+ k=15

We also need

DEFINITION 2. For integers m > 0, real ¢ and complex 6,

(19) £.(e,8) = [1(8+ eion=20m),
r=0

and

(1.10) f(e,8) =1.

Note. With f(e, 0) = f,(¢e,8) =1 + 20cosem + 6> we have f,,(¢,0) =
@ + OIIr_,f@2re, 0), fon_i(& 0) =TIFf{(2r — 1)¢, 8} for n > 0.

We can now state our results. (We will see later that taking £ > 0, I > 1is no
real restriction.)

THEOREM 1. For any stable process in Cy ; with k > 0, | > 1, we have, for
A>0,

(1.11) gt (M) = fo(@, (=1)'N) /£, (8, (- 1)*A),
(1.12) g (A) = f1(8, (= 1)*"'A) /i @, (1) 'N).

In the next result we adopt the convention that 8¢ stands for o‘%‘* when
0=0e* 0>0,7>0¢> —m.

THEOREM 2. The Wiener—Hopf factors for any stable process in C, , with
k>0, 1> 1, are given by

(1.13) *(0) = fo_s(@, (=1)'(=8)%)/f1(8,(-1)**8),  arg(6) # 0,
(1.14) (8) = f,_,(8,(=1)*"8) /fu( o, (—1)'0°), arg() # —.

It is not difficult to see that the set of points (a, 8) such that Theorem 1
applies to the stable process with parameters (&, 8) is dense on the set {0 < a < 2,
—1 < B < +1). This suggests the possibility of proving results about the
Wiener-Hopf factors of arbitrary stable processes by first establishing them for
members of C, ; and then passing to the limit. This technique is illustrated by
the proof of the following curious result.

THEOREM 3. Let X be any stable process satisfying (1.1) with 1 < a <2.
Let X be a stable process satisfying (1.1) with parameters & and B, where
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d=1/a and

. Ec{opmd)- 2 )
T 9 o . 3

Then

(1.16) 2*(A) =g* (M), forAz0,

where 8*(\) denotes the right-hand of (1.5) for X.

The proof of these results is given in Section 2. In Section 3 we derive some
corollaries, discuss some special cases and make some final remarks.

2. Proofs. For our purposes it is convenient to replace the standard repre-
sentation (1.1) for ¢(#) by an alternative form, due originally to Zolotarev
(1957). [See also Feller (1971), page 581.] We set

2 7o
(2.1) y= —tan—l(—ﬁtan—),
T 2
so that (1.1) and (1.3) reduce to
(2.2) Y(+iu) = —uexp(+itny), u>0,
and
(2.3) p=13(1-1v95).
Then X € C, ,, i.e., (1.8) holds, iff
(2.4) y=(2k+1)a -2l
~ and when this happens, (2.2) reduces to
(2.5) Y(+iu) = (1) 'uexp(+i(k + L)ma), u>0.

We start by elucidating the extent of the class C, = U2 _,C; ;.

LEmMAa l. (i) X€C,,iff —XEC_4i1y, -1
() XeCyiff l<a<2and B= —1.
(iii) For k > 1, X € C,, iff for some l > 1 either

(2.6) 0<a<1 and ka<l<(k+1)a,
or
(2.7) l<a<?2 and (B+1a-1<l<ak+1.

PRrROOF. (i) This is immediate from (2.4) since the quantity corresponding to
y for —Xis —y.

(ii) For 0 <a <1, p=18 could only occur if /=0, i.e,, p = 0. But this
happens only when 8 = —1, a case we have excluded. For 1 < a < 2, p = 1§ can
only happen if / = 1, when y = a by (2.4) and 8 = —1 by (2.1).

(iii) Observe from (2.1) that as B increases from —1to +1, when0 <a <1,y
decreases from a to —a and p increases from O to 1, whereas for 1 <a <2, y
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increases from a — 2 to 2 — a, and p decreases from § to 1 — §. (2.6) and (2.7) are
then immediate from (2.4). O

For X € C, (i.e., the spectrally negative case), 2 = 0 and / = 1 so that, in view
of Definition 2, Theorem 1 reduces to the assertion that g*(A) = 1/(1 + A) and
g (M) =00 -)N)/1 —AY. Both these results are known. As previously re-
marked, Bingham (1973) contains a direct proof of the first one, and an indirect
proof of the second can be found in Bingham (1975), page 760. Thus, we need
only deal with the case X € C = U{C,,, when in view of Lemma 1 / > 1 when
O0<a<1land!>2whenl < a< 2. We write A =18 and for any nonnegative
integer n define n* = [3n], where [x] denotes the integer part of x, and put
n = 2n* + 9(n), so that n(n) =1 or 0 according as n 1s odd or even. Also, for
t>0let

A sinmp xA-1dx
2.8 I(t) = .
(28) (®) —/ (1 + tx*)(x2 + 2x%cos 7p + 1)

LEmMaA 2. If X € C, then for t > 0,
l*
I(t) = At - Re{z Y St~ G+Dg=d 4 ei"("‘@"‘l)s)}_1

n=1

(2.9) +n(1)ot=0+0{¢=3 4+ (—1)*)

k*

2 % (e en et ) (k) e+ (—1)‘}'1}.

m=1

PROOF. Consider [rh(z)dz, where h(z)=1'"*2"Y1 + t2!)"Y(2% + e'™)~!
and T consists of T, the semicircle of radius R in the upper half plane centered
at the origin, I'}, a similar semicircle of radius ¢, I',, a semicircle of radius e
centered at the point —1, and TI;, another semicircle of radius & centered at the
point — ¢~ 1/, all suitably orientated and connected by portions of the real axis.
It is easily seen that

(i) as R - oo, [rM(2)dz > int™};

(ii) as e = 0, frh(z)dz—>0 '
(iii) as e > 0, /F h(z)dz » —q(Din(lt) "7t % + (1)) 7%
(iv) as e — 0, jr h(z)dz » —q(k)irA~ Yt + (-1} L

Since Im(A(2)) = —sin mpx®+ 11 + &%) "Y(x?* + 2x%os mp + 1)~! when
Im(z) =0, Re(z) =x > 0, and Im(A(2)) = 0 when Im(2) =0, Re(2) <0, #
-1, # —t ! the result follows from the residue theorem and a careful
evaluation of the resndues of h(z) at the points ¢~ /%"@r~DI"" 1 < p < [* and
the points e’™(P+2m=DA™ 1 < < k* where h(z) has simple poles within I'. O

PrOOF OF (1.11). Referring to (1.6) and setting J(t) = —log g*(£%) we see,
after making the substitution x = y/, that J'(¢) = I(¢). Observing that for any
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real ¢, Re{log(l + t%"™)} = §[{[y~! — Re{(y~% + e'"*)"1y~®+D}] dy and writ-
ing At~ = (21* + 9(1))8¢t™! we may integrate (2.9) and use J(0) = 0 to get
I “
J(t) = Re{2 Y, log{1 + tleimp=@r=D1d)} 4 n(l)log(l + (-—l)kta)

n=1

(2.10)

k*
-2 ) log(t+ e im(pt2m=D) _ n(k)log(t + (—1)')}.
m=1
Since 2Re(log(l + Ae’™)) = 2 Re(log(A + e~i")) = log f(¢, \) when A >0, we
may rewrite (2.10), using the facts that p — 2n —1)6 =86(I+ 1 — 2n) — &,
—a(p+2m—-1)=a(k+1-2m)— [ to get
l*
J(t) = ¥ log f(8(1+1-2n),(-1)"#*)
n=1
k*
— Y log f(a(k + 1 -2m),(-1)'t)
m=1

+n(I)log|1 + (—1)**| — n(k)log|t + (—1)'¢.

It is easy to check, by considering separately the cases when none, one or
both of £ and [ are even, that the last two terms in (2.11) may be rewritten
as n(Dlog(1 + (—1)*¢%) — n(k)log(l + (—1)'t), and then (1.11) follows imme-
diately. O

(2.11)

It is possible to establish (1.12) by a similar calculation; however, the value of
g7 (A) follows immediately once we know {~(#), and we now show that Theorem
2 follows from (1.11). We break the proof into a sequence of lemmas. (Note that
again we need only treat the case & > 1.)

LEMMA 3. Fork=>1,
fala, (=1)'8%) = (1 + (-1)'0% 2 *) f,_\(a,(-1)'(-6)%)
according as arg(d) € (0, =] or arg(d) € (—=,0].

PROOF. This follows from the identities
fula,z) = (1 + zeF*em)f,  (a,2ze**") and (—0)° =eTi*"9,
each according as arg(f) € (0, #] or arg(d) € (—=,0]. O
COROLLARY. With y* and ¢~ given by (1.13) and (1.14), (1.2) holds.

"PROOF. Just put 6 = +iu in Lemma 3 and use (2.5). O

LEMMA 4. When either (2.6) or (2.7) holds the zeros of f,_(a,(—1)(—8)%)
coincide with the zeros of f,(a,(—1)'0%).
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PrOOF. By Lemma 3, it suffices to show that 1 + (—1)"9% *%**" does not
vanish. But if [ is even, for 0 < arg(8) < 7 we have

arg(0%**") € (kax,(k + 1)an]

and for —7 < arg(#) < 0 we have arg(f%~**") € (—(k + 1)a, —kaar] If (2.6)
holds we have

(kam,(k + 1)ar] = (k + 1)ar — am, kar + av] C (Ir — am,lr + an]
c((I-1)7,(+1)x],

and similarly (—(k + 1)aw, —kawr] € (=(l + D7, —(I — 1)7) so that
arg(f% %7y + —q(mod 27). If (2.7) holds it is immediate that (kaw,
(R + Dar]lc (I - V7, (I + 1)7) and (—(k + law, —kaw] € (—( + )=,
— (I — 1)), so again arg(f% ***7) + —q(mod 27 ). Finally, if [ is odd, a similar
calculation establishes the result. O

LEMMA 5. Fork>1land0<a <2 a#+1,letZ (a)={2,1-p<n<p},
Yi(a) = {¥, —q < n<q}, where z, = (—1)ke!@n=D7  y — (—1)kei2ndn p =
[1(ka + a + 1)], ¢ = [§a(k + 1)]. Then

(i) if 3(ka + a + 1) is not an integer, f,(a, 0*) has simple zeros at the points
of Z,(a) and has no other zeros;

(ii) if 3a(k + 1) is not an integer, f,(a, —0*) has simple zeros at the points of
Y,(a) and has no other zeros.

Proor. We prove (i) only, the proof of (ii) being similar. First observe that
2% = gld@n-D8+k=2mym — _ giak=2mu)7" where m, is the unique integer with
-1<@n-1)80+k—-2m,<1, or (n—3)0+3(k—1)<m,<(n-3)d+
3(k + 1). Clearly, 1 — p < n < p implies m,_, < m, < m,, and from the defini-
tion of p it follows easily that m,_, >0, m, < k [unless p=3(ka+a+1l)
when m,_, = —1]. Thus 0 € Zy(a) = fy(a, 0"‘) = 0. On the other hand, 6% =
—elam(k=2m) «, § = ¢ where —7 < ¢ <7 and ad = m(a(k — 2m) + 2n — 1)
for some integer n. Thus, ¢ = m(k —2m + 2n — 1)8), § =2, and —a <
a(k—2m)+2n—-1<a.For0 <m <k thisimpliesl —a(k+1)<2n <1+
a(k + 1) and hence fi(a,0%) =0=0 € Z,(a).O

LEMMA 6. When either (2.6) or (2.7) holds the zeros of fi(a,(—1)'0%)
coincide with the zeros of f,_(8,(—1)**19).

PrROOF. Note first that the zeros of f,_,(8,(—1)**10) are located at the
points x, = (—1)k®(¢-1-2N7 0 < r < I — 1. Suppose first that ! is even, equal
to 2\, so that {x,, 0<r<l-1}={z,, 1-A<n<A}. If (26) holds,
2A+1=l+1<(k+Da+1<l+a+1<2\+2 and if (2.7) holds,
a>1=1l>k+1=>U-Dk'2Uk+1)"! so that 2A +1=1+1<
(B+ 1a+1<1l+2=2\+ 2 Thus, in both cases, [3(ka + a + 1)] = A and
the result follows from (i) of Lemma 5. If [ is odd, equal to 2\ + 1, we have
{%,, 0<r<i!-1}={(y,, —A<n<A} and the result follows from (ii) of
Lemma 5, since it is easy to check that [a(k + 1)] = A. O
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PRrOOF OF THEOREM 2. It follows from (1.5) that for A > 0, g*(—A) is the
Laplace transform of an infinitely divisible distribution with support (— o0, 0),
and since Lemmas 4, 5 and 6 show that the right-hand side of (1.13) is the unique
analytic extension of the right-hand side of (1.11) to the region arg(6) # 0, (1.13)
is established. The Wiener—Hopf factorisation (1.2) then fixes the value of ¥~ (8)
for Re(f) = 0, using the corollary to Lemma 2, and since we have shown that the
right-hand side of (1.14) is analytic for arg(§) # — =, (1.14) in turn is established.

O

ProoF oF THEOREM 1. We have already established (1.11), and now (1.12)
follows from (1.14) by the statements analogous to (1.4) and (1.5) for g~ and ¢
a

PrOOF OF THEOREM 3. Notice first that when g = —1, (1.15) gives § = +1,
and since Theorem 1 applies with £ =0 and /=1 to give g+(>\) =1+MN7}
(1.16) states that 2*(A) = (1 + N%)~L, Since the process Xisa subordlnator
m*(A) = e ¥, and this follows from (1.5). Suppose now that X € C..1,» where in
view of Lemma 1 we take 2 > 1 and /> 2. Since (1.15) can be rewritten as
9= 8(y +1) -1, (24) then gives —9 = (2l — 1)& — 2k so that —X € Csi. 1
where 2=1-1>0, {= k> 1. Thus, Theorem 1 applies to both X and — —X and
since 8" coincides with g~ evaluated for —X we get

£ (\) = (8, (CDFA) /18, (= )W) = fy(@ (- 1)'N) /fii(8, (- 1)*R)
=g*(¥N).

But for arbitrary X satisfying (1.1) with 1 < @ < 2 there exists a sequence of
stable processes {X,, 2 >1} with X, having parameters a, and y, where
a, = (v + 21;)/(2k + 1) [so that (2.4) holds and X, € C,, ; ] and the integers [,
are chosen with 1 <a, <2 and a, - « as & > +o0. It is clear that if p, =
Pr{X,(1) > 0}, then p, = ;(1 — v8,) = 3(1 — v8) = p, and it follows easily from
(1.6) that gf(A) = g*(A), and hence g; (A%) — g*(X°) as k — 0. In the same
way we see that the sequence {ﬁk, k > 1} is such that &, - &, p, = p and
81 (N) = 8% (M), so that (1.16) is immediate. O

3. Remarks. (i) As previously mentioned, if X € C; ; with k& (and hence )
negative, then by Lemma 1, Theorems 1 and 2 apply to —X.

(i) The most interesting special cases of our results occur when 2 =0, [ =1
(when 1 <a<2, p=28 and X is spectrally negative)) when k=1, [=1
(when 0 <a<1land p=8—1) and when k=1, [=2 (when 1 <a <2 and
p = 28 — 1). Referring to these situations as case I, case II and case III,
respectively, we record the corresponding statements of Theorem 1 in

COROLLARY 1. In cases 1, I1 and III, respectively,
(1) g*(A)=1/(1+1), g (A)=(@1-A)/10-x»),
32) gt(A\)=(1-M)/(1-2), g (A) =@ +A)/(1 — 2\%cos ma + N2%),
(3.3) g*(A) =1 +X)/(1 — 2Xcos 78 + %),
g (M) =1+ 2Acos 78 + A?) /(1 — 2X°cos ma + A2*).
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(iii) In the cases where Theorem 1 applies we know explicitly the right-hand
side of the integral equation (1.5); this raises the possibility of finding m*())
explicitly, or even p*(x), the probability density function of M*, which is known
to exist. As has been pointed out by Darling (1956), a theoretical way to achieve
this is by the use of Mellin transforms, since it follows from (1.5) that ¢*(s) =

fx* g (x) dx and A*(s) = [Fx° wt(x)dx are connected by ¥+(1 — s) =
M*(s)T(1 — s)T(1 — § + 8s). However, only in cases I, IT and III can ¢* and
¢~ (the corresponding quantity for M~) be found explicitly. We recorded these
explicit results for #* and .#~ in

COROLLARY 2. In cases I, Il and 111, respectively,

M*(s) = w/sinas,

(34) M (s) =ndsina8/{T(1 — s)T(L — & + 8s)sinmdssin7ad(1 + s)},

M (s) =a/{T(1-s)T(1 —s+ ds)sinm(a+ 1 —s)},
sin{7(1 — a)(1 — 8s)} N sin{7(1 — a)(1 — 8(1 + s))} }

sin 78s sin78(1 + s)

(3.5) A (s) = frr{
X {asinmal'(1 — s)T(1 — 8 + 8s)} 7,
. sin{w(1 — 8)(1 —s)} sin{qr(l -8)(1-a-s)}
M (s) = { sin wrs sin7(s + a) }
X {sin78T(1 — s)T(1 — 6 + &s)} 7,

(3.6)

2cos md sin{m(a — 1)(1 — 8(1 + s))}
+ sin78(1 + s)

| sin{m(a = (1 - §(s + 2))} }

sin78(2 + s)

X {sin7.ral’(1 -s)r1-6+ 83)}—1

Proor. Just apply (3), (12) and (16) of Erdelyl (1954), pages 308-309, to
(3.1), (3.2) and (3.3). O

. As has been pointed out by Bingham (1973), in case I (3.4) implies that M*
has a Mittag—Leffler distribution, a result also obtained by Heyde (1969), but in
the other cases inversion to obtain p* and p~ seems impossible. Also in case I,
Doney (1987) contains a probabilistic derivation of an integral formula for
m~(\) which is equivalent to the statement that if T' is nonnegative, indepen-
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dent of M~ and has a stable distribution of order § then 7(M~)* has a Pareto
distribution. It is easily seen that this statement is equivalent to (3.1).

(iv) Another interesting special case arises when X is symmetric, i.e., 8 =0,
p=73 and y=0. It follows from (24) that in this situation, X € C, , iff
a = 21/(2k + 1). Of course, —X has the same distribution as X, so in this case
the apparently different forms for g*(A) and g~ (A) given by Theorem 1 must
coincide. A simple example of this is when a = 2 (and B = 0): Then we have case
IT and Corollary 1 gives g*(A\) =1 —-A3)1 -N", g(M) =1 +M1 -
B LAV T=1+N)A -AHA - A)" =1 -1 -N)"L

(v) If a and B are fixed, then for irrational values of « it is clear that there is
at most one pair (&, /) such that (1.8) holds. However, if « is rational, equal to
m/n and (1.3) holds, then it will also hold with k and [ replaced by &’ and /',
where 2 =k +rn, I'’=1+rm and r is any integer > 1. In this situation
Theorem 1 gives many apparently different forms for g™ and g, but, of course,
the difference is only apparent, and cancellation of appropriate terms reduces all
the forms to the one corresponding to the smallest values of £ and I. For
example, when a = % and 8 =0 we have X € C, ; as well as X € C, ,, and
Theorem 1 gives the alternative expression g*(\) = f o2, —N3) /1,2, \). How-
ever, it is easy to check that fy(%, —-A/?)=(1 - >\2)(1 — A%/%) and fz(g, A) =
(1 — A%)(1 — A), so that g*(A) = (1 — A*3)/(1 — M), in accordance with (3.2).

(vi) Since it is a simple consequence of (1.5) that g*(A) [and similarly g~ ()]
is the Laplace transform of an infinitely divisible distribution concentrated on
(0, o), Theorem 1 exhibits a large class of such Laplace transforms. Even in the
cases I, IT and III it does not seem to be easy to check this fact directly.

(vii) An alternative approach to calculating g* is to use the fact, established
by Bingham (1973), that —logg*(A) has a known Mellin transform. This
. approach works in cases I, II and III, but apparently not for general k& and I.

(viii) Theorem 3 is an interestin complement to the well-known result [see
Feller (1971), page 583] which links the density p of X(1) with the density p of
X(1), viz.

3.7 p(x) =x74*9p(x7%), x>0,

Notice, of course, that, by applying Theorem 3 to —X we get a relationship of
the form g~(A°) = @~ (A), where X is a process with parameters &@ = 6, § = 2 —
8(2 — v), but, of course, ¥ # ¥, unless.a = 1, y = 0, when (1.16) does actually
hold, but it tautologous.

Although we have not considered the case of Brownian motion explicitly, since
the results corresponding to Theorems 1 and 2 are then well known, it is worth
remarking that for Brownian motion the result corresponding to Theorem 3 is
just a disguised version of the relationship between the one-sided stable density
of order ; and the normal dens1ty function, which of course is the special case
a = 2 of (3.7).
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