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ON THE EXISTENCE OF SELF-INTERSECTIONS FOR
QUASI-EVERY BROWNIAN PATH IN SPACE!

By M. D. PENROSE
University of Edinburgh

The set of self-intersections of a Brownian path b(t) taking values in R3
has Hausdorff dimension 1, for almost every such path, with respect to
Wiener measure, a result due to Fristedt. Here we prove that this result
(together with the corresponding result for paths in R?) in fact holds for
quasi-every path with respect to the infinite-dimensional Ornstein—
Uhlenbeck process, a diffusion process on Wiener space whose stationary
measure is Wiener measure. We do this using Rosen’s self-intersection local
time, first proving that this exists for quasi-every path.

0. Introduction. Recently, there has been much interést in proving that
certain properties of Brownian motion in d dimensions hold quasi-everywhere
(q.e.) with respect to the Ornstein—Uhlenbeck process on Wiener space, as
described in Fukushima (1984). What we show here is that if d =2 or d = 3,
much of the theory due to Rosen (1983), on the existence and properties of the
self-intersection local time of almost every Brownian path, carries over to results
for quasi-every Brownian path.

In particular, we generalise the classical result of Dvoretzky, Erdés and
Kakutani (1950), that almost every Brownian path in R? intersects itself, to a
quasi-everywhere result. This contrasts with the converse problem in R* or R,
where it is not true that quasi-every Brownian path is self-avoiding, even though
almost every such path is [Lyons (1986)]. A proof of this result using methods
related to those here appears in Mountford (1989).

Motivation for considering the material discussed here is provided by the
problem of finding a measure on the set of self-avoiding Brownian paths in R?
which might serve as a suitable model for the statistical properties of long
polymer chains [see, for example, Freed (1981)]. If the set of self-avoiding paths
has positive capacity with respect to some Dirichlet form on Wiener space [e.g.,
one of the (r, p)-capacities described by Takeda (1984)], then the equilibrium
measure of the set of self-avoiding paths with respect to that Dirichlet form
might be a suitable polymer measure.

Our results fall into four main parts. First, we prove (in Section 3) that
(relative to a suitable base set) the self-intersection local time exists quasi-every-
where and that it is continuous in the time-parameter of the Ornstein-
Uhlenbeck process on Wiener space. This is the analogue for self-intersection
local time to a result of Shigekawa (1984) on the quasi-everywhere existence of
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the ordinary local time for one-dimensional Brownian motion (the methods we
use here provide an alternative proof for this result). We prove our results by
applying Kolmogorov’s lemma to the expression of the local time, viewed as a
(random) function on R as an improper integral of its Fourier transform.

Second, we prove (in Section 4) by Borel-Cantelli arguments that the sel-
intersection local time has the same order of Holder continuity quasi-everywhere
as it does almost everywhere.

Third, we examine (in Section 5) the probability distribution of the intersec-
tion local time of two independent Brownian motions with the same starting
point, as studied by Geman, Horowitz and Rosen (1984), and Le Gall (1986). In
particular, we estimate the probability that this local time is very small. The
results in this section have some intrinsic interest and can be read independently
of the rest of this paper, as they are not concerned with quasi-everywhere results.

Fourth, we exhibit (in Section 6) a base set B, in the bounded upper triangle
{(s,t):1 > t > s > 0}, such that the self-intersection local time of quasi-every
Brownian motion relative to B, is strictly positive. The proof uses the results of
Section 5 (but if we allow B, to be unbounded, a simpler proof is available, as
was pointed out by a referee). Using our Hélder conditions on the local time, we
then deduce (Section 7) that the Hausdorff dimension of the set of self-intersec-
tions (up to time 1) of quasi-every path in R% (d =2 or d = 3)is4—d. In
particular, quasi-every Brownian path in R? intersects itself before time 1 (or in
any time-interval).

In the case d = 2, Komatsu and Takashima (1984) have proved the quasi-
everywhere existence of an “intersectional local time” defined in a somewhat
different way from ours.

1. Preliminaries.

The Ornstein—Uhlenbeck process. Let W be d-dimensional Wiener space,
the space of all continuous paths B:[0,00) > R? vanishing at 0, with the
topology of uniform convergence on compact intervals. Let (w(r, ))rs0,t20
be a two-parameter Wiener process (or “Brownian sheet”) in R? An
Ornstein—Uhlenbeck process (B,), ., in Wg, with initial distribution given by
Wiener measure, can be constructed [see Meyer (1982) or Fukushima (1984)] by
setting

B.(:)=e"%w(e’,:), 120.

Thus the path B, = B(-) is an element of W, and B, travels in W as r
varies. We say that Brownian motion in R¢ has some property quasi-everywhere
if

P[B.eA,7>0] =1,
where A is the set of paths in W with that property.

Here, instead of B, we shall often find it more convenient to consider the path
b, = b(), given by

b,(-) = w(r,-), T>1.



484 M. D. PENROSE

Local times. We recall some definitions [see Geman and Horowitz (1980)]. If
B is a Borel set in RY, we say that a Borel function X:RY — R¢ has a local
time relative to B (or more concisely, X has a local time in B) if the occupation
measure pg of X relative to B, given by

pp(A) =A¥(Bn X(4)), AcR¢

(where AV is Lebesgue measure), is absolutely continuous with respect to A%
Then the Radon-Nikodym derivative (a(x, B), x € R%) of up with respect to A
is called the local time of X relative to B. So a(x, B) is defined only a.e. (dx). A
version of the local time is a particular choice of a(-, B).

If b= b(-) is an element of W and B is a Borel set in R%, then if the
function X:R2 — R given by

(1.1) X(s,t) =b(t) —b(s), (s,t)€R2,

has a local time in B, we shall refer to the local time in B of . X as the
self-intersection local time in B of b. The self-intersection local time of a
Brownian motion was first studied by Rosen (1983).

Fourier analysis of local time and the integral Jyx(k, v, B). Following Berman
(1969) and others, we here study occupation measure py via its Fourier trans-
form p%, given by

pi(u) = Ldei“"uB(dx) = ftEBexp(iu -X(t)dt), ue<R%

In this work [as in Geman, Horowitz and Rosen (1984) and Rosen (1983)] an
important role is played by the integral Jy(%,y, B) defined as follows: Given an
R%valued, N-parameter Gaussian stochastic process X:RY — R and given
ke Z,, y=>0and Borel BinRY, we define Jy(k, v, B) by

k
Jx(k,v, B) = fnd fWEj=1'Il{|u,.|m;'§(uj)}alu1 - du,

j2 2
= u,|" Jexp{ — Var u;- X(t;)|)dtdu,
Lek""‘{i)eB"(DJ d ) p{ 2 (,gl ’ ('1))}
where ¢ = (¢, t5,..., t;) and & = (u,,..., u,) (note that since X is Gaussian, the

integrand is real and positive). Formally, Jy(k,y, B) is the £th moment of an
improper integral of the Fourier transform of the occupation measure pp of X
relative to B against the weight |u|". Indeed, for every k € Z_, (Jx(2k, v, -))/2*
is a countably subadditive set function. For

2k
Jx(eh,r,B) = i B[ urisu) )

lu|<n
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the integral of |u|u}(u) over {|u| < n} is real for all n, so

[ urug(u) du

luj<n

(Jx(2k,v, B))* = lim
n—oo

L2k(dP)
Hence (Jx(2k,v, B))/?* is finitely subadditive in B and hence countably
subadditive in B.

We shall use the following estimate of Jy (%, vy, B).

LEMMA 1. Suppose that b(-) is a Brownian motion in R? (d = 2 or d = 3),
and the random function X € C(R%2 — R?) is given by

X(s,t) =0b(¢t) —b(s), (s,t) eRZ.
Let k€ Z, and y €[0,2 — d/2). Then there exists a constant c depending

only on y such that for every rectangle B, with sides parallel to the axes, in the
upper triangular set A = {(s,t):0 <s <t <1},

Jx(2k, v, B) < ck((2k)!)*(X(B))* 77",

where NB) is the area of B. In particular, the rectangle may touch the
diagonal.

Proor. For B as described, (X(s, t),(s, t) € B) can be thought of as the
difference of two independent Brownian motions. The d = 3 result follows from
the calculation in Section 4 of Geman, Horowitz and Rosen (1984). The d = 2
result follows from a similar computation. O

REMARK. Let R2(e) = {(s,t):0<s <t t—s>e). If Bis a bounded sub-
set of R%Z(e) then B is contained in a union of finitely many rectangles
in the upper triangle. So by Lemma 1, Jx(2%, v, B) is finite for all 2 € Z if
y € [0,2 — d/2). This is Lemma 2 of Rosen (1983).

2. Statement of results. Our first result concerns the quasi-everywhere
existence of a self-intersection local time for a Brownian motion in R? (d = 2 or
d = 3). This is equivalent to showing the almost sure existence, simultaneously
for all 7> 1, of a self-intersection local time for the function &7(:), where
(b7(t), 7 = 0, t > 0) is a two-parameter Wiener process in R?. In the statement of
this result we denote the family of Borel subsets of a set B, by #(B,), and for
(85, t,) and (s,, t,) in RZ, we denote by R(s,, ¢,, S, £;) the open rectangle which
has opposite corners at (s,, ¢;) and (s,, Z,) (in this paper the term “rectangle” is
always taken to mean “rectangle with sides parallel to the axes” and similarly
for “square” or “cube”).

HypoTHESIS FOR THEOREMS 1-3. Let d=2 or d =3. Let (b7(¢),7=>0,
¢t > 0) be a two-parameter Wiener process in R¢. For (s, t) € R2, set

. X'(s,t) =b"(¢t) — b(s)
X(s,t) = X'(s,t).
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Let B, be an open bounded subset of the triangular set A = {(s,¢):0 <s <?¢<
1} (the restriction ¢ < 1 is of no real significance), such that Jx(2k, v, B,;) < o
for any k € Z, and any y € [0,2 — d/2).

REMARK. By Lemma 1 we know that B, satisfies the above hypothesis if it
is a rectangle (possibly touching the diagonal) or if it is strictly separated from
the diagonal.

THEOREM 1. There exist random functions
o(7,%,B) =¢(w,7,x,B), 7>1,x€R? Be %(A),
and
¢(7,x) = pp(w,7,x), T=21,x€R
such that the following hold almost surely:

(i) For each B € #(A) and 7> 1, ¢(7, -, B) is a (not necessarily continu-
ous) version of the self-intersection local time in B of the path b'(‘) (i.e., the
local time in B of X7).

For each T > 1, ¢(7,-) is a continuous version of the self-intersection local
time in B, of the path b'(-).

(i) For each 7> 1 and x € R?, ¢(7, x, -) is a sigma-finite measure on the
Borel subsets of A.

(iii) The function h defined by

h(r,x,s;,t, s, ty,) = ‘P("" x, R(sy, t,, 835 t2))

on {(7, %, 81, b, S, £5): T = 1, x € RY, R(sy, Sy, &y, t,) C A} is jointly Holder con-
tinuous of any order less than 1 — d/4 (as we shall see below, the Hoélder
continuity of h in the x, s, and t; directions is stronger than this).

Also, the function (t,x) — ¢(, x), defined on {r >1,x € R?}, is Holder
continuous of any order less than 1 — d/4.

REMARK. Property (i) implies that for all 7, ¢(7, x, By) = ¢(, x) for almost
all x.

Theorem 1 shows that the statements of Theorems 1 and 3 of Rosen (1983)
hold quasi-everywhere. Since we are here concerned with quasi-everywhere
results, we now give results demonstrating that the statements of Theorems 2
and 4 of Rosen (1983), which are concerned with Holder continuity of the
self-intersection local time in x and B, respectively, hold quasi-everywhere. Our
results concern the Holder continuity of ¢(7, x, B) in x or B for all r and are
stronger than those which would be obtained by direct application of Theorem 1.
In the next two theorems B, is as in the hypothesis for Theorem 1, and ¢ and ¢
are as described in Theorem 1.

THEOREM 2. The function ¢(t,-) is Holder continuous of any order less
than 2 — d/2 for all v > 1, almost surely.
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THEOREM 3. Given 7, > 1, there are a finite constant C and a finite random
variable 8 such that with probability 1, for every square B C A of the form

B=(p2 " (p+1)27") X% (g27" (g +1)27"),
where p and q are integers and 27" < §, we have

Y Yog R(B)?, allx €RY, 1e[1,1].

o(7,x, B) < C(N*(B))
COROLLARY. Let B, be a compact setin A and let T, > 1. Then there exists a
finite constant C and a positive random variable 8 such that with probability 1,
for every square B of the form B = (a,a + h) X (b, b + h) C B, with h < § we
have

¢(7,x, B) < C(R(B)) “log (B)2, xe€R%re(l,n].

REMARK. This last result is a global Holder condition in the set variable B,
corresponding to Theorem 3 of Geman, Horowitz and Rosen (1984); our bound,
holding simultaneously for all 7, differs by only a constant from theirs. However,
our methods do not give us any local Holder conditions on B such as in Theorem
2 of Geman, Horowitz and Rosen (1984) or Theorem 5 of Rosen (1983).

Our next result states that we can find an open bounded set B, such that
self-intersection local time of a Brownian path in B, exists and is strictly
positive for quasi-every path.

THEOREM 4. There exists an open set B, in the bounded triangular set
A= {(s,¢t):0 <s<t<1}, such that B, satisfies the hypothesis of Theorems
1-3, and

o(7,x) = o(7,x,B,) allx € RY 7> 1, almost surely,

and
¢(7,0) >0 T > 1, almost surely.

From Theorem 4, we can deduce that quasi-every Brownian path in R¢
intersects itself before time 1 (or in any time-interval). In fact, the statements of
Theorems 6 and 7 of Rosen (1983) on the Hausdorff dimension of the set of
self-intersections, originally due to Taylor (1966) (d = 2) and Fristedt (1967)
(d = 3), hold quasi-everywhere: Again setting A = {(s,¢):0 <s <t <1}, we
have

THEOREM 5. The following holds for quasi-every path b(+) in W¢ (d = 2 or
d=3):
dim{(s,t) € A: b(s) = b(¢)} =2 - d/2,

dim{x: x = b(s) = b(¢), some (s,t) € A} =4 —d.
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3. Proof of Theorem 1. We write (s, #) for (s, t,,..., Sy, ty;,) and & for
(Uy,...,ugy). For Ke Z,, vy > 0and B C A, we have by definition

2k
T2k v, B) = [ [ M(gw)
(3.1) ok
Xexp{ - (%)Var( Z_:luj - X"(s, tj))} d(s, t) di.

X"(-) has the same law as 71/2X(-) = 71/2X(-) by a scaling property for the
Brownian sheet. Hence by the change of variable u} = '/%u,,

(32) JX’(k, 'Y’B) SJX(k’ YaB)a T>1.

Let 2(A) denote the set of rectangles in A. Given B in #(A)and 7> 1, X”
has a local time relative to B, since its occupation measure has square-integrable
Fourier transform almost surely [see the proof of Rosen (1983), Theorem 1].

By Lemma 1 Jy(2k,0, B) is finite (k € Z_), so by (3.2) Jx-(2k,0, B) < o for
all 7 > 1. Hence, by the definition (3.1) (with y = 0) and Theorem 4.1 of Berman
(1969) (generalised to two parameters, d > 1 and & > 1), we may for each
x € R? and 7 > 1 obtain a random variable ¢(7,x, B) defined by

33)  o(r,%,B)=[ [ exp(iu-(X(s,t) —x)}dsdtdu
ueR?(s,t)eB

in the sense that for 2 € Z,, ¢(7,x, B) is an L%*¥(dP) limit of real-valued

random variables given by restricting the integral in (3.3) to {|u| < m}. It follows

that in taking the 2kth moment of ¢ we may take the expectation inside the

multiple improper integral; we shall do this below without comment.

Define ¢(, x) in the same way [i.e., by (3.3), with B replaced by B,].

Define the distance between two rectangles to be the maximum distance
between corresponding corners. We shall use Kolmogorov’s lemma to show that
¢(7, x, B) can be modified to be jointly continuous in x, 7 and B. Fix k € Z,.
We make the following estimates of (2k)th moments.

First, as in Rosen [(1983), page 332], for x and y in R%, 7 > 1, B € #(A) and
0<y<l,

E|o(r, %, B) — (7, y, B)** < 2°*|y — x|**%Jx.(2k, v, B)
< 2%y — x|**'J,(2k, v, B).
Second, for y € R, 7> 0 > 1 and B € 2(A),
E|p(7, y, B) — ¢(o, 5, B)I*

(35 f.,zkdf;gzk( f[lexp(—iuz : y))

XEin [exp{iuj~ X"(sj, t)} - exp{iuj . X”(sj, tj)}] d(é'Tt) dii.

(3.4)
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The first term in the integrand in (3.5) has unit modulus, while the second term
is equal to the expectation of

2k 2k
(3.6) E,lexp{iuj- X"(sj, tj)} l]:II(exp{iu,~ (X(s;, t;)) — X°(s, t))} - 1).

The two factors in (3.6) are independent of one another and the expectation of
the first factor is exp{ — 3 Var(X%:,u; - X°(s;, t;))}.
By the estimate [e? — 1| < 2/6]", 0 < y < 1, the modulus of the second factor
in (3.6) is no greater than 22* times
2k
l_l_[1|ul|7|X’(sl, t) — X°(s;, ).

Now (7 — o)/%(b7(¢) — b°(%)),s, is a Brownian motion, so

2k
sup{E T (X5 8) = X"(s, m)}
(3.7) -

- (= o)"sup{ E LTV ),

where the supremum on each side of (3.7) is over {(s, £):(s;, t;) € A, 1 < I < 2k}.
Hence the modulus of the expectation of the second factor in (3.7) is bounded by
a constant multiple of |7 — ¢|*. Putting together our estimates for the integrand
in (3.5) and applying (3.2), we have

Elg(7,y, B) — ¢(0, y, B)|** < cJx(2k, v, B)|r — o|*,

3.8
(88) yeERY r>02>1,

where ¢ depends only on % and 7.
Third, suppose ¥ € R% ¢ > 1 and B € %(B,). Then by definition

E|p(o, y, B)|** < Jx(2k,0, B).
By Lemma 1,
(3.9) E|¢(a, y, B)]** < cgk((2k)!)2(A2(B))(2—(d/2))k,

where ¢, depends only on d and 7.

By the above three estimates (3.4), (3.8) and (3.9), combined with Minkowski’s
inequality in L%*(prob.), we find that if 0 <y <2 — d/2, thenfor r >0 > 1, x
and y in R and rectangles P = R(s,, t,, 85, t,) and P’ = R(s{, t}, 84, t}) in
2(1),

El(P('T, Y, P,) - (p(o, X, P)|2k < const.(|y - xly + |T - 0|7/2
+(dist.( P, P))" 4™
< const.|(7, ¥, s{, t/, 85, t})
- (0', X, 31’ 32, tl’ t2)|7k'
Here the constant depends only on % and 7.
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Take a modification of ¢ (also denoted ¢) so that h given by
h(7, x, 8y, 89, £}, t3) = @(7, x, R(sy, Sy, L1, L)) is a separable process [see Doob
(1953), Theorem 2.4]. By Kolmogorov’s lemma [see Meyer (1981) and Garsia
(1971)], A is almost surely Holder continuous (on the domain of interest in
R5%9) of any order less than (ky — 5 — d)/2k, and hence (by allowing 2 — oo
and y — 2 — d/2), of any order less than 1 — d/4.

In a similar way we can take the random function ¢(r, x) to be (Holder)
continuous on {(7,x):7>1,x € IRd}, so property (iii) in the statement of the
theorem holds.

Let 2(A) denote those rectangles in A with rational corners. The following
argument holds for almost all w. For all B € 2(A) and rational 7 > 1, ¢(r, x, B)
is the local time of X" relative to B [Berman (1969), Theorem 4.3], so

(3.10) fo(X’(s,t))dsdt=jl;‘df(x)q>(1-,x,B)dx, f € C2(RY).

Following Shigekawa (1984), we deduce from continuity in 7 that (3.10) holds
for all 7 > 1 and B € 2(A). Hence ¢(r, -, B) is the local time of X" relative to B
for all 7 > 1 and B € 2(A). Similarly, ¢(r, -) is the local time of X relative to
B, for all 7 > 1.

By the continuity of ¢(7,x, B) in the corners of B and routine measure
theory, for each 7 and x (¢(7, x, B), B € 2(A)) extends to a sigma-finite mea-
sure on %(A) [also denoted ¢(r, x, B)]. By a monotone class argument on the
class of sets for which (3.10) holds, ¢(, -, B) is the desired local time for all
B e #(A) and 7> 1.

4. Proof of Theorems 2 and 3.

PROOF OF THEOREM 2. Let K be acubein RY, 7, > 1 and y < 2 — d/2. We
shall show that sup{|¢(7,x) — ¢(7, ¥)|/Ix —y"x€K,ye K,1 <7< 1)} is
finite.

Choose v/, y <y’ <2 —d/2. For n € Z_, define

D, = {x € K: x has coordinates of the form m2~", m € Z}
and
E,= {"’ e[1,n]:7=m27%, somem € Z},

By Chebyshev’s inequality, for all x and yin K and k€ Z_,

Plig(, x) — ¢(7, y)| = |x — yI"] < El¢(7,x) = ¢(r, y)|**|x — y| >
< const.|x — y|2*'~V

(4.1)

by the estimate (3.4) from the proof of Theorem 1.
Define A, to be the event that |¢p(7, x) — ¢(7, ¥)| > |x — y|", for some 7 € E,,
and some neighboring x and y on the lattice D,. The number of such triples
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(7, %, ) is O(2%" X 29") as n - o0, so0 by (4.1),
P(A,) < const.26+Dn x (27 n)2'=7),

Hence if % is chosen to be large enough, Y,P(A,) converges and so by
Borel-Cantelli, there exists almost surely n, such that for all n < n,, r€ E,
and neighboring x and y in the lattice D,

(4.2) j6(7, %) = ¢(7, )| < Jx =y = 27",

Fix an arbitrary 7 in [1, ,]. There exists a sequence 7(n) such that for all n,
7(n) € E, and |r(n) — 7| < 273" ¢ is jointly Hélder continuous of order y/2 in
x and 7 [Theorem 1, property (iii)], so for a suitable constant, for all x € K and
all n, we have

(4.3) (7, x) — ¢(7(n), x)| < const.(2~ 3")Y/2

By applying (4.2) and (4.3), we find that for all n > n, and 7 € [1, 'rl], and all
neighboring x and y in the lattice D,,
(4.4) l¢(7,x) — ¢(7, y)| < const.2™ "

= const.|x — y|".

We can now deduce that (4.4) still holds (with a new constant) for arbitrary x
and y in K such that |x — y| <27 ™ This is done by a standard “binary
expansion” argument [see, for example, the end of Section 1.6 of McKean (1969)].

O

ProoF oF THEOREM 3. Our proof is broadly similar to that of Theorem 3 of
Geman, Horowitz and Rosen (1984). In the proof of Theorem 1 we obtained a
uniform estimate (3.9) for the 2k th moment of ¢(7, x, B) for rectangular B. This
leads to a uniform estimate for E exp({¢(7, x, B)/(N*(B))! ~%/*) for rectangular
B and suitable choice of {; by Chebyshev’s inequality we may find positive
constants ¢ and ¢’ such that

(4.5) P[q;('r, x,B) > 22(}\2(3))1_‘1/4] < ce °?

for all rectangles B C A, all 7 € [1,7,], x € R? and z > 0. [See Lemma 3.14 of
Geman, Horowitz and Rosen (1984) for details.]
Let Z? be the integer lattice in R Let

={xe€27Z% x| <n},E,= {re2™¥™Z:1<r<n}.

Let &, be the collection of all squares B in A of the form B = (i277,
i+ 12- ") X (j27%(J + 1)27"). Then the cardinalities of &, satisfy #(.%,) =
O@2°*)asn > w.ForkeZ,,r€[1,7]and B €%, we have by (4.5)

P|o(r, x, B) = C*(X(B))"""log X"(B)|2]

< cexp{ —c'Cllog N*(B)|} < ¢272¢Cn,
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Hence

Plo(r, x, B) = C*(Ay(B))' " “log ¥(B)|?,some B€ &,, 7 € E,,x € D,

< const. nd2(5 +3d— 2c'C)n,

so provided C is chosen large enough, we may apply Borel-Cantelli. Then there
exists almost surely n, € Z, such that forn > ny, BE ¥,, 7€ E, and x € D,,

(7, x, B) < C(A(B))'~““|log(A2(B))?

= 272 9/27(2nlog2)’.

We can also take n, so that |X"(s, t)| < n, for all r€[1,7] and (s,t) €A
[using the joint continuity of X™(s, £) in 7, s and ¢]. For almost all w we may
argue as follows: For |x| > n, and 7 €[1,7], ¢(r, x, B) =0 for all squares
B c A. Now take arbitrary fixed r € [1,7;] and x in {|x| < n,}. For each n
greater than n, take elements 7(n) and x(n) of E, and D;,, respectively, such
that |r(n) — 7| < 27%" and |x(n) — x| < 273" By the joint Holder continuity
(of any order y less than 1 — d/4) of ¢(7, x, B) [property (iii) in the statement
of Theorem 1], we have

(4.7) |¢(7,x, B) — ¢(7(n), x(n), B)| <const273",  n>n, BEY,

(4.6)

where the constant in (4.7) depends only on y, , and w. By taking y so
3y > 2 — d/2, the right-hand side of (4.7) is dominated by that of (4.6) as
n — oo. Hence by combining the two we have, for some n, (independent of x and
7) and a new constant C,

¢(7,x, B) < C27¢~4/27(2n log2)*
= c(M(B))' “log (B)2, alln>n,Be, u)

PROOF OF THE COROLLARY TO THEOREM 3. If B, is compact and B, C A,
then some e-neighbourhood of B, is contained in A. For any square B in B, of
side h < /2, take » s0 277! < h < 27" Then B is contained in the union of at
most four rectangles in %, and the result then follows from Theorem 3. O

5. The probability distribution of the intersection local time of two
Brownian motions. In this section we prove some results on the probability
distribution of the intersection local time of two independent Brownian motions
starting at the origin, as introduced by Geman, Horowitz and Rosen (1984). In
particular we consider the probability that the local time (relative to the unit
square in the time domain) at 0 is very small. A scaling argument allows one to
relate these results to results on the local time relative to small (or large) squares
in the time domain.

We are here concerned with probability distributions; for two random vari-
ables X, and X,, we shall say that X, >, X, (or X, <; X)) if for all x € R,
P(X, > x) > P(X, > x). We shall say that X, =; X, if X, >; X, and X, >,

1e
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Let d be 2 or 3 and let b, and b, be independent Brownian motions in R<.
Define the random function Y:R2 — R¢ by
Y(s,t) = by(t) — by(s), s=0,t>0.

In the terminology of Geman, Horowitz and Rosen (1984), Y is a confluent
Brownian motion. Given a bounded Borel set B in R2, define the random
function

a(x, B), x € R¢,

to be the continuous version of the local time relative to B of the confluent
Brownian motion Y. Such a local time exists almost surely [see Geman, Horowitz
and Rosen (1984)]. This is a special case of our Theorem 1. In fact the local time
of the confluent Brownian motion Y, relative to the unit square (0,1) X (0, 1),
plainly has the same distribution as the self-intersection local time of a single
Brownian motion in R, relative to any unit square in R2 with sides parallel to
the axes and lower right-hand corner on the diagonal {s = ¢}.
For h > 0, define the set @, C R2 by

Q,=(0,h)x (0,k), h>o0.
We have the scaling property:
LEMMA 5.1. For all 1 > 1 and h > 0, the random function
r¥(th)~?a((vh) *x,Q,), x €R9,

has the same distribution in C(R®) as the continuous version of the local time,
relative to @, of the process

Y'(s,t) = by(7,¢t) — by(r,s), §>0,t>0,

where b, and b, are independent two-parameter Wiener processes in R®.
In particular, for all x € R¢ and h > 0,

(5.1) R*%( V2%, Q) =, a(x, Q).
PrOOF. By routine scaling of the Brownian sheet, the random functions
Y'(s,t) and (vh)Y*YY(h7's, b 't)

have the same distribution, considered as random elements of C(R2 ). The result
follows by a change of variables. O

LEMMA 5.2. For h> 0 and x € R,
(62)  Ela(x, @] = @)™ [ cos(u-x)(2(1 - exp(~hlu/2)) /1ul?)’ du.
In particular Pla(x, @) > 0] > 0.
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PROOF. As in the proof of Theorem 1, a can be expressed by the formal
Fourier inversion formula,

a(x,Q,) = (27)-0’/ / exp{iu - (Y(s, t) — x)} dsdtdu
ueR¥(s, t)eQ,

in the sense of an L2* limit of integrals over|u| < m (m — oo0). Taking expecta-

tions, we have

Ela(x,Q,)] = / e'i“"‘(f()hf()hexp(— lu®(t + s)/2) dsdt | du

Rd
and (5.2) follows. The integrand in the right-hand side of (5.2) is the product of
cos(u - x) and a strictly decreasing function of |u|. It follows that E[a(x, Q)] >
0, so that Pla(x,@Q,) > 0] > 0. O

We now show that a(0, @,) is strictly positive, almost surely.
LEMMA 5.3. For all h > 0, Pla(0,Q,) = 0] = 0.

This is Theorem 5.3(a) of Geman, Horowitz and Rosen (1984). We outline a
simpler proof as follows: By the scaling property (5.1) the probability in question
is independent of /. But

P[a(0,Q,,) = 0] < P[a(0,Q,) =0, a(0,(h,2k) X (R,2h)) = 0].

Now condition on Z{b,(t), by(s):0 < s,t < h}. By the Markov property of
Brownian motion, a(0,(%,2k) X (h,2h)) depends on this sigma-field only via
(by(h) — by(h)) [see Lemma 55 of Geman, Horowitz and Rosen (1984)].
Applying Lemma 5.2 gives us P[a(0, @,;) = 0] < P[a(0, @,) = 0] unless
P[«(0,Q,) = 0] = 0.

Our next result, which we prove by a coupling argument, states that a(-, @;)
is stochastically monotone in A.

PROPOSITION 54. Let x € R% y€R% If |x| > |y, then a(y, @) =,
a(x, Q) for all h > 0.

PrOOF. By the rotational invariance of Brownian motion, if |x| = |y|, then
a(y, Q) =1 a(x, ;). Hence it suffices to consider the case |x| > 0, y = Ax for
0<A<l

Given two paths b and b":R,— R such that the function ((s, ) = b'(¢) —
b(s)) has a local time, relative to the set B, with a continuous version, denote
the value of this version of the local time at 0 by 8(bd, b, B).

We are required to prove that if b(-), b,(-) and b(-) are Brownian motions
starting at 0, x and y, respectively, where y = Ax and 0 < A < 1, and if the path
b is independent of the paths b, and b,, then

B(b’ bx’ Qh) <L B(b’ by’ Qh)

Let P={z€R%|z—x|=|z—y|}. Let p:R? > R? be reflection in P.
Without loss of generality, b, is coupled to b, by defining the stopping time
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T = inf{¢: b(t) € P} and setting
b(t) = o(b(2)), t<T,
b(t) = b(t), t>T.

Then b, and b, are identical after time T, so it suffices to prove that, setting

T, = min(T, A},
B(b’ bx’ [O: h] X [01 Th]) SL :B(b’ by? [01 h] X [O’ Th])~

Define the stopping times S = inf{s: b(s) € P}, S, = min{S, A}, and the path b
by

b(s) = b(s), s<8,
b(s) =p(b(s)), s=8.

Then the random path &(-) has the same law in C([0, 0) —» R?) as b(-). By
definition of S and T, the origin is almost surely not in the compact set
{b(s) — b(#):0 <5 <8,0 <t< T}, so that we have almost surely

B(b, b,,[0, 8,1 x [0,T,]) = 0.
Hence we have almost surely
B(b, b, [0, ] x [0, T,]) = B(b, b,,[ Sy, 2] X [0, T,.])
= (5, b,,[S,, 2] x [0,T;])

by the definitions of b and b, as reflections. Hence [since b and b have the same
law in C([0, c0) = RY)],

B(b,5,,[0, n] x [0, T,1) = B(b, b,,[Ss, ] x [0, T},])
< B(b’ by7 [0: h] X [O, Th])
as desired. O
We are now able to obtain an estimate (possibly not sharp) for the rate at

which the probability that «(0,®,) < ¢, — 0 for a particular sequence ¢, — 0.
This will be needed for the proof of Theorem 4.

LEMMA 5.5. There exist finite positive constants c,, ¢, and c; such that if we
set

e, = ci(n!) 22
then
(5.3) Pla(0,Q,) < &,] < cyexp(—czn).

REMARK. The right-hand side of (5.3) is majorized for all n by

04( 8n) c5/log|log ¢,| ,

for some positive finite constants ¢, and c;. It is an open question whether there
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are constants ¢, and c; such that
P[a(0,Q,) < ¢] = O cyecs/oeliogel) ¢ 0.

ProoF oF LEMMA 5.5. Let a, = A"n!, where A is a finite positive constant to
be chosen later. Let

P,=P[a(0,Q,) <1].
By the scaling property (5.1),
(54) P,=P[a(0,Q,) < a;2+%?].
Define the square subsets A4,, R, and D, of RZ by
A,=Q, =(0,a,) X (0,a,),
R,=(a,_1,a,) X (a,_,,a,),
D, = Qa,-a, - ‘
Let %, be the o-field generated by {(b,(s), by(2)):(s,t) € A, }. Let
U, = by(a,) — by(a,).

Then for all n > 1, the event {a(0, A, ,,) < 1} is contained in the union of the
events

(IU,] > a¥?} and {|U,] < a2} n {«(0,4,) <1} N {a(0,R,,,) <1}.

Taking probabilities and conditioning on %,, we have
(5.5) P < P[|Un| > a}z/+21] + / P[a(0, R,.,) < 1}%,] dP,
Q'l

where
Q,={IU)J < a2} n {«(0,4,) <1} € Z,
Since a(0, R, ,) depends on %, only via U,,
P[{a(0,R,.,) <1}|%] = Pla(x, D,,,) <1] as,

where x = —U,, so |x| < a/? for w € Q,. But for all x € R% the scaling
property (5.1) implies that .

P[a(x, D,.,) < 1]

= P[a((an+1 - an)_l/2x, Ql) < (an+1 _ an)—2+d/2].

Since a(x, @) is stochastically decreasing in |x| (Proposition 5.4), for large n and
all x such that |x| < al/? the right-hand side of (5.6) is majorized by

P[“(xm Q) < (apy — an)_2+d/2],

where x, is an arbitrary fixed vector in R? of length greater than 1, so that for
large n, |x0| > [an+1/(an+1 - an)]1/2'

(5.6)
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Now (a,,, — a,) 2*%? > 0 as n - oo, s0 since a(x,, @,) > 0 with positive
probability (Lemma 5.2), there exists ¢ > 0 such that

lim P[a(xO,Ql) <(aps; — an)_2+d/2] = Pla(x,,Q,) = 0]

<e ‘.
Hence for all large enough n and almost all w € @, the integrand in the second
term of the right-hand side of (5.5) is less than e, and so for large enough n,

(5.7) fQP[“(O, R,.)) <11%] < e P(L,)

<e ‘P

.
As for the first term in the right-hand side of (5.5),
Plby(a,) - b(a,) > a¥/?] < const.fwx2exp(—x2/2) dx,
u’l

where u, = (a,,,/2a,)"”? = (A/2)"%(n + 1)!/2 So integrating by parts,

172 exp{ —A(n + 1)/4},
n - oo.

(5,8) P[|b2(an) - bl(an)l > aiz/fl] = COIlSt.(n + 1)

Applying the estimates (5.7) and (5.8) to (5.5), we obtain

(5.9) P, <c(n+1)exp{—A(n +1)/4} + e °P,, nlarge.

Let @, = e™P,. Applying (5.9), we find that (Q,., — @,). < oo, provided
that A > 4ec.

Hence {@,: n > 1} is bounded and there exists ¢’ > 0 such that P, < c’e™ "
By (5.4), the result (5.3) is proved with ¢, = (A~ 274/2)y(p!)~2+4/2

6. Proof that the intersection local time is strictly positive.

REMARK. As was pointed out by a referee, it is easy to deduce from Theorem
1 that for quasi-every path in R? (d = 2 or d = 3), the self-intersection local
time relative to the unbounded upper triangle is strictly positive. Set

An=[n,n+%]><[n+§,n+1], n=12.3,....

Let (B,(*)), 5 o denote an Ornstein-Uhlenbeck process in W¢, with initial distri-
bution given by Wiener measure. Denote by ¥(7, -, A,) the (jointly continuous)
self-intersection local time of B,(-) relative to A,, as obtained in Theorem 1.
Then ¥(7,0, A,) is continuous in 7 and ¥(0,0, A,) > 0 with positive probability
(see Lemma 5.2). So for some & > 0,

P{¥(7,0,A,) >0,7€[0,h]} > 0.

For n = 2,3,4,..., the processes (¥(7,0, A,), 7 > 0) are independent copies of
(¥(1,0, A,), 7 > 0). Hence

P G {¥(r,0,4,)>0,7< [0, R1}| =1,

n=1
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and similarly for the intervals [ 2,24], [2A, 3R], and so on. Hence for quasi-every
Brownian path there exists n such that the self-intersection local time ¥(x, A,)
satisfies

¥(0,A4,) > 0.

However, to show that the self-intersection local time relative to a bounded
time-set is strictly positive, we need a different argument (the familiar scaling
arguments of the “almost everywhere” theory do not carry over to the “quasi-
everywhere” theory).

PrOOF OF THEOREM 4. B, is defined as follows. Let
B,=(2x2™™3Xx2")X(3x2"4x27"), n=234,...,

and
0
B,= U B,.
n=2

Suppose (b7(t),t> 0,7 > 0) is a Brownian sheet in R? and (as in earlier
sections) set

X'(s,t) =b7(t) - b"(s), X(s,t)=X's,t).

By Lemma 1, for k€ Z, and 0<y<2-—d/2, the estimating integral
Jx(k, v, By) satisfies

)
(Jx(2k,7, B,))"* < L (Jx(2k, v, B,)"**
n=2
[=¢]
<ec Z ()\2(Bn))(2_(d/2)_7)/2

n=2

< w0,
so B, satisfies the hypothesis of Theorem 1. Let
o(r,-,B), (7>1,BBorelinA) and ¢(7,:),7>1,

be the self-intersection local times of X" obtained by applying Theorem 1 (using
this particular B).

We now prove that given 7, > 1, ¢(7, x, B)) is continuous in x for all
T € [1, 7,], almost surely; for almost all fixed w the following holds for all
T €[1, 7]

Sim;e (7, x, -) is a measure [property (i) in Theorem 1], we have for all
x € R¢,

<]
(P('T, X, BO) = Z‘P('T, X, Bn)‘
2

By our uniform Hélder estimate of ¢(7, x, B) for dyadic rectangles B (Theorem
3) and the definition of B,,

[=¢]
Esup{tp('r,x, Bn): x € Rd} < o0.
2
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Moreover, for all n (7, -, B,) is continuous by Theorem 1, property (iii),
because B, is a rectangle. Hence, @(7, -, B,) is continuous since it is a uniform
limit of continuous functions.

Thus ¢(, ) and (7, -, B,) are both continuous versions of the local time
relative to B, of X"; hence they are identical, i.e., (7, x, B,) = ¢(7, x) for all x
in R9, 7 € [1, 7,]. In particular, ¢(-,0, B,) is Holder continuous of any order less
than 1 — d/4.

We now prove that ¢(7,0, By) > 0 for all 7 > 1, almost surely. We do this by
a Borel-Cantelli argument, using the Hélder continuity of (7,0, B,) in .

It suffices to prove that for 7, > 1,

(p(T’O, Bo) > 0, 1<7< Ty, 8.

@(7,0, B,) can be viewed as the intersection local time at the origin of two
independent Brownian motions scaled by 7'/2, relative to the square (0,2~") x
(0,27™). Using the notation of Section 5 and the scaling property (Lemma 5.1),

¢(7,0, B,) =, 7~ %/227"¢~4/2(0, Q)
2L ,Tl—d/22—n(2—d/2)a(0’ Ql),

where (0, @,) is the intersection local time of two Brownian motions relative to
the unit square (0,1) X (0, 1).

Let e, be as defined in Lemma 5.5, i.e., ¢, = c(n!)"2*%/2, some suitable
¢, > 0. Let 8, = 27"@~4/97d/2¢ Hence
P[(p('r,O, B,) < 8n] = P[a(O’ Q) < en]

<cyexp(—cgn), alln>2,1<7<m,

(6.1)

(6.2)

where ¢, and ¢, are positive constants, by Lemma 5.5.
The random variables ¢(r,0, B,), n > 2, are mutually independent and for
J = n,9(1,0,B;) >, ¢(1,0, B,). So for all 7 € [1, ;] and n > 2,

Plg(r,0,B) <8,] < P[gp(7,0,B,) <8,,2 < <n]

(6.3) - jl:Izp[‘p(”’O’ B;) <8,

< (P[e(r,0,B,) <8,])""
< cé“lexp(—c3(n2 - n)),

by (6.2). Let F, be the set of all 7 in [1, 7,] of the form 7 = md8;, where m € Z.
Then by (6.3)

rPl U {9(7,0, B,) < 8.}

T€Fy
(6.4) <(n —1)8;5 sup P[op(7,0,B,) <§,]
1<r<m

52—d/2)

< const.(const.)"(n!) exp(—cy(n? — n)).



500 M. D. PENROSE

The right-hand side of (6.4) is summable in n. By the Borel-Cantelli lemma,
there exists a.s. some n such that

(6.5) ¢(7,0,B,) >6,, alln>n, r€F,.

But ¢(-,0, By) is almost surely Holder continuous of any order less than
1 — d/4. Hence we have almost surely,

Zi_l}'(l)sup{lq)(""o’ BO) - (P(0,0, BO)I/IT - 6|5:

6.6
(66) 157S0371,|'r—o|<e}=0.

Together, (6.5) and (6.6) imply that for all 7 € [1, 1], @(7,0, By) > 0, so Theo-
rem 4 is proved. O

7. Proof of Theorem 5. It suffices to prove that for any =, > 1, we have for

almost every Brownian sheet (b7(¢), £ > 0, 7 > 0) in RY,

(7.1) dim((X7)"'(0) nA)=2-d/2, 1<7<m,

and

(7.2) dim{x:x = b"(s) = b"(¢),some(s,t) €A} =4—-d, 1<7<m,
where X7(s, t) = b"(t) — b"(s) and A = {(s,%):0 <s <t <1}. As for (7.1) we
shall start by showing dim((X")~%0) N A) > 2 — d/2.

Let B, be the set described in Theorem 4. We can argue as follows for almost
all fixed w and all fixed 7 € [1, 7,], using the fact that ¢(r,0,-) is a finite
measure on the Borel sets in B,. Firstly, the measure ¢(r,0, -) is supported by
(X7)~Y0). For given any compact rectangle R in B,\ (X")~%0), ¢(, -, R) is
the continuous version of the local time in R of X" (Theorem 1); hence, since
X"(R) is disjoint from some neighbourhood of the origin, ¢(7,0, R) = 0.

By Theorem 4, ¢(r,0, B,) > 0, so there exists compact K C B, such that
¢(7,0, K) > 0. Let {S;, j > 1} be any countable cover for K N (X™)"Y0) by
open squares contained in B,,. Since (X™)~'(0) supports ¢(,0, -), we have

o(7,0,K) < th(Sj).

Thus by the corollary to Theorem 3,
h-meas(K N (X7)"Y(0)) = (7,0, K) > 0,
where
h(t) = Ct>~%%|log¢t|?>, t>0.
Hence
dim(A N (X7)7Y(0)) = 2 — d/2.

On the other hand, suppose B is a rectangle in the upper triangle A (so that
Theorem 1 on the existence for all 7 of a continuous self-intersection local time
for X" relative to B applies). For all 7, X" is H6lder continuous of any order less
than i, by the Hélder continuity of the Brownian sheet [see Orey and Pruitt
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(1973)]. Hence by Lemma 7 of Adler (1978), modified to d # 1, and the continu-
ity of the self-intersection local time of X", we have

dim[B n (X7)7(0)] <2 - d/2.

A is a countable union of such B, so (7.1) follows.

It remains to deduce the formula (7.2) for the Hausdorff dimension of the set
of self-intersections of b”. To do this we need the following quasi-everywhere
version of a lemma of Kaufman (1969).

LEMMA. Let 7, > 1. With probability 1, there exists n, such that for all
n > n,, we have the following: If 1 = m2~2" € [1, ], where m € Z, and D* is
a ball in R® of radius n'/?27", then b(k4~") € D* for at most n®*¢ values of k
in {1,...,47).

Proor. This is immediate from thé estimate in Kaufman (1969) of the
probability of the complement of the above event for fixed 7, using
Borel-Cantelli. )

From the above lemma and the Hélder continuity of the Brownian sheet, we
deduce that for large enough n, for all 7 € [1, ;] and all balls D in R¢ of radius
27" (b")"YD) is contained in at most n®'® intervals of the form [k4™",
(k + 1)47"], for all discs D of radius 27" This enables us to deduce (7.2) from
(7.1) as explained by Geman, Horowitz and Rosen (1984). O
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thesis supervisor, Professor T. J. Lyons, whose encouragement is greatly appreci-
ated.
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