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General characterizations of geometric convergence for Markov chains
in discrete time on a general state space have been developed recently in
considerable detail. Here we develop a similar theory for ¢-irreducible
continuous time processes and consider the following types of criteria for
geometric convergence:

1. the existence of exponentially bounded hitting times on one and then
all suitably “small” sets;

2. the existence of “Foster—Lyapunov” or “drift” conditions for any one
and then all skeleton and resolvent chains;

3. the existence of drift conditions on the extended generator & of the
process.

We use the identity JJRB = B(Rg — I) connecting the extended generator
and the resolvent kernels R to show that, under a suitable aperiodicity
assumption, exponential convergence is completely equivalent to any of
criteria 1-3. These conditions yield criteria for exponential convergence of
unbounded as well as bounded functions of the chain. They enable us to
identify the dependence of the convergence on the initial state of the chain
and also to illustrate that in general some smoothing is required to ensure
convergence of unbounded functions.

1. Introduction. In this paper we consider a continuous time Markov
process ® = ®,, t € R, on a topological space X. Our goal is to characterize
exponential convergence for the process: if P/(x, A) = P(®, € A) and 7 is an
invariant measure for P’, then we will give several sets of equivalent
conditions, each of which imply ® is “exponentially ergodic” in the sense that
there exists an invariant measure 7 satisfying

(1 |Pi(x,) — =l < M(x)p", t=0,
for some finite M(x) and some p < 1, where |- || is the total variation norm.

These characterizations of exponential ergodicity, as given in Sections 5, 6
and 7, are in terms of the following criteria:

1. geometric ergodicity of the embedded skeletons and the resolvent chains;
that is, the discrete time chains with transition laws defined, respectively,

Received January 1994; revised December 1994.

'Work supported in part by NSF Grant DMS-92-05687, EPRI Contract RP 8030-15 and NSF
Grants ECS92-16487 and ECS 94-03742.

AMS 1991 subject classification. 60J10.

Key words and phrases. Convergence rates, irreducible Markov processes, geometric ergodic-
ity, Lyapunov functions, drift conditions, resolvents, generators.

1671

[ ,fl’g
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z

The Annals of Probability. STOR ®

WWww.jstor.org



1672 D. DOWN, S. P. MEYN AND R. L. TWEEDIE

as PT(x, A) for fixed T > 0 and
(2) Ry(x,A) = [ Be #'P(x,A)dt, x€X, AEBH(X);
0

2. drift conditions on the extended generator of the process, and on the
skeletons and the resolvent chains, all of which are shown to be equivalent
themselves;

3. behavior of hitting times for the process on suitable small sets and, in
particular, exponential bounds on those hitting times.

Some initial results related to statement 1 were developed in [25], where it
was shown that exponential ergodicity of the process @® follows from the
geometric ergodicity of the embedded skeletons or, under appropriate conti-
nuity conditions (in #) on the semigroup P’, of a form of simultaneous
geometric ergodicity of the resolvent chains. These simultaneity and continu-
ity conditions are shown to be redundant in Section 6.

In [17] it was shown that, as in statement 2, a drift condition on the
generator is sufficient to guarantee exponential ergodicity for the process.
This generalized results known for countable spaces [27] and for diffusion
processes [8] to quite general models, and as shown in (e.g.) [17, 24], the
conditions on the generator then provide practical criteria for evaluating the
exponential convergence of specific models. Here we show that such a drift for
the extended generator is also necessary for exponential ergodicity.

The conclusions in this paper thus strengthen the known results consider-
ably, since they show all of these approaches to be essentially equivalent.
Moreover, once the connections between the drift and regularity conditions
are established, we may then deduce continuous time ergodicity results
stronger than those in (1) from their discrete time counterparts; in particular,
we can show that for appropriate (unbounded) functions f, we have

(3) IP*(x,) = mll < M(x)p*, ¢=0,
where 7 is an invariant probability measure, and the fnorm |||/, is defined
for any signed measure u by || ull; = sup,, . ;| /u(dy)g(y)l.

2. Discrete time analogues. In order to place these results in context,
and because we will use the discrete time results directly, we first review
briefly the analogous equivalences known in discrete time. Let {®,, n € Z}
denote a Markov chain on a space (X, %(X)) with the o-field countably
generated: the theory of such chains is developed in [15].

Suppose the chain has the ¢-irreducibility property that ¢(A) > 0 implies
P(ry <) >0 for all x € X, where 7, := min{n > 1: &, € A} is the first
hitting time on A, and P, and E, denote probability and expectation for the
chain with initial state x. For such a chain there always exist “small sets”
[15, Chapter 5]: that is, sets C such that for some nontrivial probability
measure v and some n > 1, ¢ > 0, the n-step transition probability kernel
P"(x, A) = P (®, € A) satisfies, for all x € C,

(4) P'(x,A) > ev(A), AeB(X).
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We then have [15, Theorem 15.0.1] the following result linking drift toward
small sets, hitting times on small sets and rates of convergence of the overall
chain.

THEOREM 2.1. Suppose that the chain ® is ¢-irreducible and aperiodic.
Then the following three conditions are equivalent:

(a) There exist some small set C, some constant w, > 0, some p; < 1 and
M. < o such that, for all x € C,

(5) IP"(x,C)—'ITCISMCpg.

(b) There exist some small set C € B#(X) and k > 1 such that the hitting
time 7, on C satisfies
(6) supE, [ k7] < oo,

xeC
(c) There exist some small set C, constants b < o, A <1 and a function
V > 1, with V(x,) < * for some one x, € X, satisfying the drift condition

(7) [P(x,dy)V(y) <AV(x) +ble(x), =xEX.

Any of these three conditions implies that the set S, = {x: V(x) < %} is
absorbing and full [i.e., satisfies P(x,S,) =1, x € Sy, and #(Sy) = 1],
where V is any solution to (7) satisfying the conditions of (c), and there then
exist a unique invariant probability m and constants r > 1, D < », such that
for any x € Sy,

(8) xrr

JP (x,7) — 77”V < DV(x).

Thus in the discrete case geometric ergodicity, as defined in (8), follows
from local geometric convergence as in (5) or geometrically bounded return
times as in (6), and, of even more practical importance, is actually equivalent
to the existence of a Foster-Lyapunov or drift function V satisfying (7), and
that function identifies (a) a set on which convergence takes place, namely,
Sy ; (b) the state-dependent bound M(x) as in (1) or (3) as a constant multiple
of V; (c) the convergence as holding for all “moments of order less than V” as
in (8).

In this paper we aim to bring this same level of coherence to the continu-
ous time case.

3. Continuous time Markov processes. We need to develop the appro-
priate analogues of the drift condition (7) and the hitting time criteria in (6),
and to do this we must first give a more formal description of the process
structure. We then consider drift conditions in Section 5 and the hitting time
conditions in Section 6.

Formally, we assume that ® = {®,: ¢ € R,} is a nonexplosive Borel right
process with transition semigroup (P?) on a locally compact, separable metric
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space (X, #(X)), and that %(X) is the Borel field on X. The reader is referred
to [1] and [23] for details of the existence and structure of such processes;
criteria for nonexplosivity are given in [17].

The operator P’ acts on bounded measurable functions f and o-finite
measures p on X via

Pif(x) = [P{(x,d)f(9),  wP'(A) = [ p(dx)P(x, A).

A o-finite measure 7 on % (X) with the property = = 7 P! for all ¢t > 0 will be
called invariant.

For any o-finite measure ¢ the process ® is called ¢-irreducible if ¢(B) >
0= E,[ng] >0, x € X, where 71z denotes the occupancy time, defined as
ng = [ 1{®, € B} dt. As in the discrete time setting, if ® is ¢-irreducible,
then there exists a maximal irreducibility measure i such that v is abso-
lutely continuous with respect to ¢ for any other irreducibility measure »
[15, 28]. We shall write .Z*(X) for the collection of all measurable subsets
A c X such that ¢(A) > 0. When there is an invariant probability measure
7, then 7 and ¢ are mutually absolutely continuous and we can thus
identify #7(X) = {A € Z#(X): w(A) > 0}. )

We now describe sampled chains and the associated class of subsets of X
called petite sets; these play the role of small sets, as in Theorem 2.1, in
describing the “center” of the space. To define these, as in [16], suppose that
a is a probability distribution on R, and define the Markov transition
function K, for the chain sampled by a as

(9) K,(x,A) = [P'(x,A)a(dt), x€X, AEB(X).

Two particular sampled chains with kernels K, which are fundamental in
the continuous time context are skeleton chains and resolvent chains, with
K,=P7, R, respectively. We will consider both of these in developing
stability properties of the process itself, although we note that in [26] it is
shown that other embedded chains may equally serve to characterize the
behavior of @. In the special case of the resolvent with transition law R,, we
denote the chain by @ = {d,}.

A nonempty set C € #(X) is called v,-petite if v, is a nontrivial measure on
#(X) and a is a sampling distribution on (0, ») satisfying

(10) K, (x,)=v(), =xe€C.

In the common situation where the specific measure v, is not relevant, we
simply call the set petite. When the sampling distribution a is degenerate, we
will adopt standard discrete time usage and call the set C small.

Petite sets are not rare: for a y-irreducible chain, every set in Z*(X)
contains a petite set [17]. We note explicitly that if a set is petite for the
process, then it is petite for any resolvent simultaneously, with only the
sampling measure changing.
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In many applications, all nonempty compact sets can be shown to be petite,
and this gives a sound intuition for these sets. Criteria to ensure this
identification of compacta as petite may be phrased in terms of a “stochastic
controllability” condition in models such as diffusion processes or analogous
discrete time nonlinear state space models (=f. [15], Chapter 7, or [9, 20, 19,
12]). More general continuity conditions which imply that compact sets are
petite are given in [16].

A y-irreducible Markov process ® will be called aperiodic if for some
small set C € % *(X) there exists a T such that P!(x,C) > Ofor all ¢t > T and
all x € C. Under aperiodicity, any petite set is small for the process and is
small for any T-skeleton (see the corollary to Theorem 8.1 of [16]). Character-
izations of aperiodicity which are (apparently) much weaker than this defini-
tion are given in [16], where the structure of periodic chains is also described
in detail. Below, it will be appropriate to assume aperiodicity whenever we
consider convergence of transition probabilities as in (1) or (3).

The Markov process ® is called f-exponentially ergodic, where f is a
measurable function from the state space X to [1, »), if the f-norm converges
as in (3). The Markov process is called simply exponentially ergodic if it is
f-exponentially ergodic for at least one f> 1, as in (1). Note that any
exponentially ergodic chain is automatically a w-irreducible positive Harris
recurrent chain [7, 16].

As strong as f-exponential ergodicity may appear, we will find it appropri-
ate to set our results within the seemingly stronger context of V-uniform
ergodicity, a recent generalization [6, 17, 15] of classical uniform ergodicity
(or quasicompactness, as it is often called [22]). When V > 1 is a measurable
function on X, we define V-uniform ergodicity by requiring that

(11) 1Pt(x,) = @lly < V(2)Dp*,  t=0,

for some D <, p < 1; that is, (8) holds with M(x) = DV(x) for some
constant D. This approach has the advantage that convergence takes place in
the operator norm defined for any “kernel” A by

ANy = sup [V(2)] "l ACx, ) v
xeX
For discrete time chains, as is shown in Theorem 2.1, V-uniform ergodicity is
in fact equivalent to seemingly weaker formulations of exponential ergodicity.
As in the discrete time framework, the exponential convergence (11) is
equivalent to an exponential rate of mixing for the process (see [15], Theorem
16.1.5).

4. Generators and resolvents. Frequently, the characteristics used in
practice to define the process are not couched in terms of the semigroup P‘ or
of the embedded resolvent or skeleton chains, but rather of some form of
generator for the process. There are several different versions of generators:
for our purpose it is convenient to adopt the following definition, which is a
slightly restricted form of that in Davis [2]. We denote by D(&) the set of all
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functions f: X X R, —» R for which there exists a measurable function g:
X X R, — R such that, for each x € X, ¢ > 0,

(12) E.[F(®,,t)] =F(x,0) + Ex[fotg(fbs,s) ds],

(13) [Edlg(@,, )]} ds <=

We write &/f = g and call & the extended generator of ®; D(&) is called the
domain of .

This defines an extension of the infinitesimal generator for Hunt processes.
When the process is explosive, then the expression (12) is difficult to interpret
and may be meaningless: this is one of our main reasons for restricting to
nonexplosive processes. Conditions for nonexplosivity based upon the ex-
tended generator are given in [17].

The generator and resolvent essentially characterize one another. This
observation will be useful when we develop converses to the drift criteria for
regularity.

For a fixed constant 8> 0 we also require the kernel U, defined by
Us = B 'R - These kernels have the interpretations

(14) Rﬁ(x’f) =Ex[f(q)§)]’
(19 (e, 1) = E] [ 700 ds),

where ¢ is an exponentially distributed random variable, independent of ®,
with mean 1/8. We now generalize the definition of Rg, U, so that B, the
rate of the “sampling time,” may depend upon the value of the state ®,. Let A
be a bounded measurable function on X and set

(16)  Ry(xf) - Ex[/:exp{—/o‘h@s) ds (@) (%) dt],

(17) Uy(x,f) = Ex[/:exp{-—/:h(d)s)ds}f(tbt)dt].

A function f: X — R is in the domain of R, if R,(x,|f]) is finite for all x € X.
These kernels were introduced by Neveu [21], where A is taken to be strictly
positive. Setting U,(x, E) = E,1;(x) defines a kernel on (X, %(X)), which
takes on finite values if & satisfies inf, .y A(x) > 0, although such a bound
on A is not necessary in general.

These kernels have an interpretation which is entirely analogous to (14)
and (15) which will lead to several new results below. Let ¢ denote an
exponential random variable with unit mean which is independent of the
process, and define for any A, r > 0,

(18) Fh, = inf{t > 0: fth(CDS) ds > r-lg}.
0
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When ~ = 1, for some set C, we use 7. ,. We then have, for any positive A
and any f in the domain of R,, U,

(19) Rh(x’ f) = Ex[f(q)i'h,l)]’
(20) U(x,f) = Ex[f;"’lf(q%) dS]-

These formulae follow directly from the identity P(7, , >t | ®F) =
exp(—r[¢ h(D,) ds).

LEMMA 4.1. Let h, g be bounded, measurable functions on X with h > g,
and let f: X > R be in the domain of U,. Then U, and U, satisfy the resolvent
equation

(21) Ugf_ Upf= UhIh—gUgf= Uglh~gUhf’

where the “multiplication kernel” I,_, is defined as I, _,(x, A) = (h(x) —
g(x) 1 ,(x). .

Proor. Note that the theorem statement differs from Lemma 1.3.1 of
Kunita [10] only in that the functions # and g may take on negative values.
However, a close examination shows that the proof there is still valid with
this modification. O

Lemma 4.1 immediately gives the usual resolvent identity, that U; = U, +
(a — B)U,U; for any @ > B > 0. From this it follows that

B i(a—ﬁ

(22) R, =

a

) Rn+ 1‘

a0

These relations will allow us to transfer properties from one resolvent to
another in several results below. Then to connect these results back to
geometric ergodicity for the process, we will use the kernel Uj, which is
defined for r > 1 by

U:=U, forh=1,—-[r—-1]1...

This has the sample path interpretation, just as in (20),
(23) Us (. £) = E| [*7e 7(0,) at .
0

As an immediate consequence of the resolvent equation, we obtain an analo-
gous interpretation of UJ in terms of the resolvent chain. Define the hitting
time to a set C by the resolvent chain (with 8 = 1) by

(24) 7o = min{k > 1: &, € C}.
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LEMMA 4.2. Suppose C is any set in B(X) and r = 1. The kernel U§
satisfies the following identity for any positive function f on X:

(25) Ex[[*""f(q>t)e<r—1>t dt| = Ui(x,f) = Ex[ z rk-lf(cbk)].
0 k=1

Proor. The first identity is just (23).

We will prove the second equation for |r| < 1; the general case follows by
analytic continuation. Substituting 2 =1 and g = 1, — [r — 1]1;. in (21),
we have

(26) Uf=R,+Ui(1~- (1g—[r—1]1¢))R, =R, + rUg L¢<R,.
Iterating (26) gives us

n

Us = r"U(Ie:Ry)" + L r* [ RiIe]" 'Ry,
k=1

and letting n — « yields, for |r| < 1,

(27) Us= ¥ r* ' [RI]* 'Ry
k=1

Now using the interpretation that
[RlIcv]k—lRl(x, B) = Px(‘i)k (S B; i"c > k),
we see that (27) gives the form (25) as required. O

The following key lemma characterizes the extended differential generator
for the process ® in terms of the resolvent chains of the process and allows
us to compare continuous and discrete time drift operations, as will be seen in
Theorem 5.1 and other results below. This result may be applied to many
situations outside the scope of this paper.

LEMMA 4.3. (a) For any B and any measurable f in the domain of Uy, the
extended generator satisfies the identity

(28) SUpf = ~f + BULf.

(b) For any bounded measurable g and any measurable fin the domain of
U,, the extended generator satisfies

(29) AU, f= —f+ LU,f.

PrOOF. For the strong or weak generator, Lemma 4.3(a) is known [see
(2.4) in [5] or page 342 of [11]). We have not seen a proof for the extended
generator, although the proof of the result is similar to Lemma 3.2 of [5], page
174, and will not be included here.

Result (b) follows from (a) and the resolvent equation U, = U; + Uz I_, U,
where 8 is chosen so that 8 > g(x) for all x. O
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5. Stability in terms of drifts. In this section we consider forms of

stability, analogous to (7), which involve a mean drift for some function
V(®,) toward the “center” of the space, as defined by petite sets.

Letting {P*: t € R,}, {R;: B € R,} and & denote, respectively, the skele-
ton kernels, the resolvent kernels and the extended generator for the process,
three intuitively reasonable sets of drift conditions toward a petite set C may
be written as follows:

(27;) DRIFT FOR SKELETON CHAINS. For some 7' > 0 there exist constants
A(s), bounded for s € (0, T'] and with M(T") < 1, some b < », a petite set C in
#(X) and a function V; > 1, such that

PV, < Ms)Vp + b1, s<T.

(QZB) DRIFT FOR RESOLVENT CHAINS. For some A < 1, b < «, 8 > 0, a petite
set C in #(X) and a function V; > 1,

RV, <AV + bl

(2) DRIFT FOR THE EXTENDED GENERATOR. For constants b,c > 0, a petite
set C in #(X) and a function V > 1,

GV < —cV + b1,

We note that condition (&) is identical to the condition that &V < —c,V +
b, for finite positive constants c,, b,, when the function V is unbounded off
petite sets (i.e., when the sublevel set {x: V(x) < n} is either empty or petite
for each n). The other two conditions have similar counterparts.

In the next section we will identify a set of solutions to these three drift
conditions, which involves the hitting times on petite sets. Our goal here is to
show that the drift conditions are all essentially equivalent and then to show
that any one of them suffices for an appropriate form of geometric ergodicity
to hold.

THEOREM 5.1. The following relations hold for any Markov process ®:

(a) Suppose that (QB) holds for some one B and for some function Vg > 1.

Then () holds with V= R,V,.

(b) Suppose (9 ) holds for some one B and for some function V; > 1. Then
(27) holds for every T with Vi = RzV; and Xs) can be chosen continuous in
s with MT) < 1.

(¢) Suppose (9 ) holds. Then (9 ) holds for any B and with V,; = V

(d) Suppose (9) holds. Then (QT) holds for any T and with VT V.

(e) Suppose (D) holds for some one T > 0. Then (.,OZB) holds for some
Bo > 0, with Vg = Vp, and hence for all B with Vg = RBOV

() Suppose (QT) holds for some one T > 0. Then (D) holds withV = R 8,V
for some one B,.
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Consequently, the three drift criteria (QVB )-(D) are all equivalent, although
the function V and the petite set C may differ at each appearance.

Proor. To prove (a), suppose that (9},) holds and define V = R, V. By
Lemma 4.3,

SV = U Vs = B(Ry — 1)V,
—B(A"t = 1)V + A7 1Bb1,,

which gives (2). Conversely, to prove (c) note that if (9) holds for some V in
the domain of the extended generator, then using Dynkin’s formula exactly as
in the proof of Theorem 6.1 of [17], we have for all ¢,

(30)

(31) PV < V+b [ P(x,C)e ds.
0
Integrating the bound (31) gives

RyV(x) < [ B/(B+0)|V(x) +bB[ e ['P*(x,C)ec 0 dsdt
(32) 0 0 .
= [B/(B+0)]V(x) + [b/(B+c)|Rs(x,C).
Now denote, for fixed &, the set C_={x: R (x C) > &(B + ¢)/b}. From
Proposition 5.5.4 of [15] we know that C, is petlte and with this choice of

petite set, with & sufficiently small, (9,,) holds as required.
Using (31) we obtain (d) in a similar manner: for all ¢ we can write (31) as

(33) P'V<e 'V + bf Ps(x,C)e D ds.
0

If for fixed ¢ > 0 we use the sampling kernel with density a(s) = e““~9/[1 —
et], then we have (2;) provided we use the petite set where K (x,C) >
ec/b[1 —e7'].
To prove (b), we have that if (93) holds, then from (a), (&) holds with
V= R,V,, and then from (d) we obtain the result. Note that we can in fact
take, for any & and appropriate choice of C,

A(s) =exp(—B(A7! = 1)s + ¢),
which gives the required structure on the function A(s).
To see (e), observe that if (2;) holds, then by iteration one can show that

PV, < MA"V, + +b,

1-A
where A = NT'), M = max,_,_r A(s) and ¢ is taken of the form ¢ = nT + s
for some 0 < s < T It then follows that, for B, sufficiently small,

Rp Ve <A Vp +

+b,
—A

for some A; < 1.
0
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Any function satisfying (9,) is unbounded off petite sets as in Lemma
15.2.2 of [15]. It then follows from the above bound on R, that (9/3 ) holds by
applying Lemma 15.2.8 of [15].

Finally, we have (f) by combining (e) with (a). O

Drift in any of these senses toward a petite set implies exponential
ergodicity for an aperiodic process; conversely, exponential ergodicity entails
that all of these drift conditions are satisfied, as we now show. Thus the

continuous time analogues of the discrete time criterion (c) in Theorem 2.1 all
hold.

THEOREM 5.2. For a y-irreducible, aperiodic Markov process:

(a) If (.9 ) holds, then ® is RV -uniformly ergodic.
) If (QT) holds, then ® is VT-unlformly ergodic.
(¢) If (D) holds, then ® is V-uniformly ergodic.

Proor. First suppose that (b) holds. Then by aperiodicity, the set C is
small for the skeleton chain {®,;: k € Z_} (see the corollary to Theorem 8.1
of [16]). Hence from (2;) and Theorem 2.1,

P - xlly,<Dp", nez,,
where D < « and p < 1. By (2;) we also have, for some constant M,

PV <MV, 0<s<T,

and it follows from the submultiplicative property of the operator norm that
for any ¢ € R, with ¢ taken of the form ¢ = nT for some 0 <s < T,

WPt = allv, < NP = «llv, I P°llv, < MBp", neZ,,

which implies that the process is Vy-uniformly ergodic.
If (a) or (c) holds, then (b) holds with V. = R;V, or Vr = V, respectively,
from Theorem 5.1, and hence V -uniform ergod1c1ty holds in these cases also.
O

Result (b) was used to establish geometric ergodicity for a class of general-
ized Jackson networks in [13]. Several queuing models and diffusion models
are analyzed in [16] using a formulation of (c).

As a consequence of Theorems 5.1 and 5.2, we have a number of further
criteria for exponential ergodicity extending in particular those in [26], where
it was required that all resolvents be “uniformly” exponentially ergodic to
deduce properties of the process.

THEOREM 5.3. For a y-irreducible, aperiodic Markouv process the following
are equivalent:

(a) The T-skeleton is geometrically ergodic for some one and then any
T>0.
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(b) The Rg-resolvent is geometrically ergodic for some one and then any
B> 0.
(¢) ® is exponentially ergodic.

Proor. To infer (¢) from (a) one may apply the contractivity of the total
variation norm, as in the proof of the previous theorem. That (c) implies (a) is
immediate.

Now from criterion (c) of Theorem 2.1, for any B we have (b) for the
resolvent R if and only if we have (Z;); this implies (c) from Theorem 5.2(a).
Finally, one can calculate directly that (c) gives (b), or instead use the fact
that (a) implies (2;), which implies (QZB) from Theorem 5.1. O

We note that if there exists some small set C, some constant 7, > 0, some
pc < 1l and M, < o such that, for all x € C,

(34) |P!(x,C) — mc| < Mc pt:,
then by applying criterion (a) of Theorem 2.1 to any T-skeleton we have that

(a) holds on some full absorbing set Sy,. It immediately follows that (b) and (c)
also hold with the process restricted to Sy,.

6. Drift conditions and exponential regularity. In this section we
consider relations between the drift conditions above and forms of stability in
terms of “exponential regularity” or boundedness of the mean return time to
the center of the state space, again defined in terms of petite sets. In the final
section we will then establish a surprisingly strong solidarity between regu-
larity for the resolvent chain and the process, and this then gives new criteria
for V-uniform ergodicity.

Our first result shows that the drift conditions in the previous section
provide explicit bounds on the exponential behavior of the hitting times on
the sets C involved. To do this we need appropriate definitions of hitting
times on petite sets in continuous time. The hitting times to a set A are
defined as

(35) 74, = inf{t > 0: ®, € A}, 74(8) = inf{¢ > 6: &, € A}.
We now have the following theorem:

THEOREM 6.1. Suppose that (D) is satisfied for some V > 1 and some set
C. Then for any n < c,

(36) V(x) = E [em] + (¢ - n)Ex[/:ce”tV(d)t) dt].

PROOF. As in the proof of Theorem 6.1 of [17], the product rule applied to
the extended space-time generator for the function g(x,t) = e™V(x) gives

Jg(x,t) =e™IV(x) + ne™V(x)

(37)
< (n—c)e™V(x) +blge™
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from (2). Now use Dynkin’s formula (see [17], Section 1.3) with the stopping
time 7" = inf(7;, n, sup(¢: V(®,) < n)) for fixed n to get

E[em"V(@,)] = V(2) + [ g(x,t) dt
(38) ° .
<V(x) + (n— c)ExfOT e"V(®,) dt.

Since V > 1 we thus have

V(x) = E,[em™] + (c - n)Ex[O

The process ® is nonexplosive so that sup(¢: V(®,) < n) - « as n — », and
hence also 7" — 7. Hence our result follows by Fatou’s lemma as n — «. O

T

eV (®,) dt.

Our next result shows that the solutions to the drift inequalities not only
provide bounds to hitting times, but that functions of the hitting times
themselves provide solutions to the drift inequalities. This is identical to the
situation found in discrete time [15, Chapter 15].

THEOREM 6.2. Suppose there exists a function f>1 and a closed set
C € Z(X) for which

39 Vo(x) =1+E TC(S)e"‘f ®,)dt| < o, x € C¢,
0 x t
0
and
(40) Vo(x) <M < o, xeC,

for some constants 8,m > 0, M < . Then for the function Vy(x):

(a) if C is petite, then V, satisfies (2r) for any T > 0;
(b) if C is petite, then V, satisfies () for any B > 0;
(c) for some m,, the lower bound V(x) > ny,R, f(x) holds for all x.

Proor. By assumption we have that V, is bounded on C, and arguing as
in Lemma 4.1 of [14], we have, for some r; < «, d; < o,

(41) PTV,(x) <d,rT, =xe€C,T=0.
This bound may be refined substantially. First write

PTVy(x) = e"’TEx[fTC(T)f(CI)t)e”t dt] +1
T
(42) = e_"TEx[[TCf(CDt)e"t dt L(7¢ > T)]
T

+ e“"TEx[fTC(T)f(CDt)e"’ dt 1(rp < T)] +1.
T
The last term is bounded as follows. First note that on the event {r, < T},

[ Cr(@)en de < 67 [Tf(@,)em dt,
T 0
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where @ is the shift operator on the sample space [15]. From this and the
Markov property, we have

) Ex[fT’C”’f(cpt)ent dt L(rg < T)] < Ex[E(DTC[fOTC(T)f(th)eﬂt dt”

<d,rf,

where we are using (41) and the assumption that C is closed, so that ®, € C.
Combining (43) with (42) gives

(44) PTV, < e”'T(VO - /;)TPsfds) +dirTe ™ +1,

which proves (a).

Multiplying both sides of this bound by ae T and integrating over T > 0,
we have, for any a > 1 sufficiently large, constants A <1, b <, d < @, such
that

(45) RV, <AV, +b —dRgf,
where 8 = 1 + a > «. This shows that (Z,) holds.

To obtain (gﬂo) for a, < a, observe that by (22), with y(n) = (a,/a)l(a —
aO)/a]n7

Rao = Z ’y(n)RZ+1’
k=0
By replacing (45) with the cruder bound R,V, < AV, + b and, hence, also
b
RV, < A"Vy + —, n>1,
1-2
we have
(46) R,V, <MV, +b,
where A, = _, y(n)A" < 1, which establishes (b).

We now prove (c). From (45) we have that R,V, <V, + b — dR, f and,
hence, also

(47) 0<R'W,<V,+ (n+1)b—dR"R,f, n=0.

Multiplying both sides of this equation by a (1 — a~1)" summing over n
and applying (22) gives, for some d,, b,,

d
0<Vy+by—dyR Ryf=Vy+by— B—_z—l(Ble—RBf),

where the equality follows from the resolvent equation. By (47) with n = 0 we
have that R;f <c,V, for some constant c,, and this gives the desired
relationship between R, f and V:
(48) Rf<2 L, by L Vo < o,
< — + + —c,V, < ¢35V,
1 d,B 0 2 gz¥o = Csto
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where c; is a finite constant. This establishes the theorem. O
As a corollary to Theorem 6.2, we obtain solutions to (9):

THEOREM 6.3. Under the conditions of Theorem 6.2, either of the functions
Vi = [[P*V,ds or Vi =R,V,
0
satisfies (D).

Proor. From the definition of the generator and Lemma 4.3 we have the
pair of identities

[P =PT -1, &R,=pB(R,-I).
0
The result follows directly from these and Theorem 6.2(a) and (b). O

The following result gives a more exact solution to the drift inequality (D).

THEOREM 6.4. Suppose that, for some r > 1, a measurable function f > 1
and a set C € B(X), we have that the function

Vi(x) = UG, 1) = B [ (0,) de

is finite-valued and bounded on C. Then:

(a) if C is petite, then V, satisfies (D),
(b) for some m,, the lower bound V(x) > m;R, f(x) holds for all x.

PrOOF. From (26) we have that U/f > R, f, which proves (b).
To prove (a) we apply Lemma 4.3 with g = 1, — [r — 1]1.:

SUEf = —f+8UE = ~f = (r = DIcUEf + LU
If U;f(x) is bounded on C, then this gives (&). O
We now connect the mean hitting times of ® with mean hitting times for
the resolvent chain. This result shows that the conditions of Theorems 6.2
and 6.4 are essentially equivalent.
THEOREM 6.5. (a) Foranyr =1, § > 0 and any set C,

(49) Ex[frc(ﬁ)f(q)t)e[r~1]t dt] < eérEx[ i rk—lf(d')k)]’ x e X.
0

k=1
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(b) Suppose that ® is -irreducible, C € #*(X) is closed and petite and
that, for some 6, > 0, ry > 1,

(50) supE,| [ “exp((ry ~ D1)A(®,) dt| <=

Ifry > 1 in (50), then for all sufficiently small r > 1 and all & > 0, there exists
b(8) < » such that, for all x,

(51) Ex[kglrk-lf(ék)] < b(O)E| [“F(@ e at].

Ifro = 1 in (50), then (51) holds with r = 1.

PROOF. To see (a), note that with 1 = r — 1,
Ug(x, f) = Ex[[;exp{[;(— Lo(®,) + nle(®,)) ds}f(@t) dt]
> B [ enp [[(~ 1o(®) + nle®)) ds) () at
> €| [Pexo(-0)f(0) dt| + B [ Vexpine () ]

> exp(—5(1 + n))Ex[j;C(a)exp(nt)f(‘bt) dt],

which proves (49) from (25).
Result (b) is given as Theorem A.3.3 of [3] and we omit the rather lengthy
proof. O

If one is willing to accept a slightly weaker conclusion, it is possible to
remove the assumption in Theorem 6.5(b) that (C) > 0. This may seem a
somewhat technical improvement, but in practice it is of some considerable
value [4].

THEOREM 6.6. Suppose ® is y-irreducible and let C € B(X) be a closed
petite set, not necessarily in B(X). Let f > 1 be a function bounded on C,
such that, for somer > 1, 6 > 0,

(52) sup Ex[ I C AT dt] < oo,
0

xeC

Then for some r, > 1, b < © and a petite set C, € B *(X),

(53) Ex[g r§ ()

< b(l + Ex[fofcf(dJ,)e["”‘ dt]).
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PrOOF. Let Vi(x) = 1 + E,[ [5c el”"f(®,) dt]. By Theorem 6.2 we have
that R, f < ¢,V, for some constant c,, and we have that (9,3) holds with this
V, for ,B = 1. By Theorem 15.2.5 of [15] we then have a petite set C, € #*(X),
for which V; is bounded on C,, and for some r, > 1,

i1

L Vo(®i)rd

k=0

<dVy(x), x € X.

Since R, f < ¢,V,, we also have
Foo—1

Yy le(é)k)r(’{' < ¢y dVy(x), xeX.
k=0

By the Markov property, the LHS is exactly E [¥Y}, f(d’k)ro 11, which gives
the desired bound. O

7. Exponential regularity and exponential ergodicity. The results
of the previous section lead us to consider the following conditions, which
describe the existence of “strongly” regular sets for the resolvent and for the
process. The final goal of this paper is to show in rather more detail that, as
suggested by the results above, these are essentially equivalent to each other
and to the drift conditions of the previous section. This gives a full description
of exponential ergodicity in terms of return times.

(#,) GEOMETRIC REGULARITY OF THE RESOLVENT CHAIN. For some r
and some petite set C € Z(X), there exist b > 0 and a function V
bounded on C such that

¥

(¢}

Y rt ()

>1
>1

<bV(x), =zx€X

(#,) EXPONENTIAL REGULARITY OF THE PROCESS. For some 7 > 0 and some
closed petite set C € #*(X), there exist constants 8,5 > 0 and a function
V, = 1 with V, bounded on C, such that

Ex[j;TC(S)Vn(QJS)e”S ds] < bV, (x).

We will again show that these regularity conditions are equlvalent Recall
that from Lemma 4.2 we have the identity UC(x V=E JAXie V(dJk ),
so that when (%’ ) holds we have a solution to (2), by Theorem 6 4. We will
show that in fact the regularity conditions are equivalent to the drift proper-
ties (2,)-(2) for petite sets. Perhaps the least intuitive part of this result is
that (#,) or (#,) actually suffices for the conditions with exponential or
geometric weighting to hold.
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THEOREM 7.1. Suppose that ® is y-irreducible and let C be a closed petite
set in B*(X). The following are equivalent, for any function V > 1.

(a) The regularity condition (91’1) holds for V V.

(b) The regularity condition (%’ ) holds for V. =V and some r > 1.

(c) The regularity condition (%,) holds for V, = V.

(d) The regularity condition (#,) holds for V, = V and some 1 > 0.

(e) The drift condition (91) holds for a functzon V. equivalent to V in the
sense that, for constants 0 < ¢y, ¢, < ®,

(54) c,V<V, <¢,V.

ProoOF. It is obvious that (b) = (a). In discrete time the fact that the
“nongeometric” form (a) implies the geometric form (b) is shown in [18], using
the contraction properties of the V-norm as first observed on countable spaces
in [6].

For the discrete time resolvent we also have the equivalence (b) < (e) from
Theorems 15.2.4 and 15.2.6 of [15].

The equivalence of (a) and (c) follows from the bounds obtained in Proposi-
tion 4.3 of [14], provided C is closed and petite.

Trivially (d) = (c), and if we can show (b) = (d), then we are done. Suppose
then that (b) holds for some r > 1. By Theorem 6.5(a), for any 9,

bV(x) = Ex[ Y rk 1V(<I>k
k=1

e SE [[Tc(ﬁ)v(q) ) [r—1]s dS x € X,

and so (d) holds as required. O

We can now show that the existence of a single petite set satisfying the
regularity or drift criteria leads to regularity of the hitting times on all sets
B e #*(X).

THEOREM 7.2. Suppose that any of the drift criteria (9,3) ~(D) or the
regularity criteria (%,)- (£,) hold, and let V denote the function used in the
assumed drift or regularzty criterion. Then ® is V-exponentially regular in
the sense that, for any B € #*(X) and any 8 > 0, there exist ¢ = ¢(B, §) < ®
and n = n(B, §) > 0 such that

Ex[f’B(”V(cbs)evs ds| < cV(x).
0

Proor. If any of (Qﬁ)—(QZ ) or (@,)—(%n) hold, then (&,) holds with the
function R,V,, where V|, is equivalent to the function used in the drift or
regularity criterion. That is, for constants 0 < ¢;, ¢, < %,

c,Vy <V <e,V,.
This is immediate from Theorems 5.1 and 7.1. Hence with V, = yV, + RV,
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v > 0, we have for some A < 1 and a petite set C,
RV, = yR,V, + R RV,

YRV, + ARV, + b1,

<[y+A]V, +b1,.

We thus have that (9,) holds with the function V. whenever 0 < y <1 — A,
Under (91) with this function V, it follows from Theorem 15.3.3 of [15]
that, for any B € #*(X), there exists ¢, = ¢c,(B) and r = r(B) such that

Ug(x,Vy) <cgVi(x).
By Theorem 6.5(a) it then follows that

IA

Ex[foTB(&)VO(q)t)e[r_lltdt < ¥ e, Vi (x).

Since by Theorem 6.2(c) we have that V,(x) < ¢,V (x), this implies the
result. O

The equivalences given in Theorem 7.1 now yield new criteria for V-uni-
form ergodicity and V-exponential regularity:

THEOREM 7.3. Fora x//-zrreduczble, aperiodic Markov process, if any of the
equivalent conditions (91’) (£,) hold for some V, then the process ® is
R V-uniformly ergodic.

Proor. This follows immediately on applying Theorem 7.1 to obtain (Ql),
and combining this with Theorem 5.2(a). O

Theorem 7.3 has recently been applied in [4] to obtain exponential ergodic-
ity for a class of feedforward queueing networks.

Finally we show that any function f which is sufficiently regular can be
smoothed to give a function f* for which the process is f*-uniformly ergodic.

THEOREM 7.4. Suppose that ® is a y-irreducible, aperiodic Markov pro-
cess and that f > 1 satisfies (39) and (40) for a closed petite set C € B (X) and
constants 6,m > 0, M < ». Then the process ® is f*-uniformly ergodic for
some function f* equivalent to R, f.

ProorF. We will take f* to be the function V|, defined in (39), for some
suitable 7 < 1. From Theorem 6.2(c) we have that V, is bounded below by a
multiple of R, f, and by definition V|, is less than 1 + E_ /7 e"'f(®,)dt < 1 +
R, f. Hence f* is equivalent to R, f, as required.

By Theorem 6.2(a) we see that V|, satisfies (2;) for any T > 0 and so from
Theorem 5.2(b) we have the required ergodicity. O

To conclude, we note that when considering f-exponentially regular pro-
cesses, we have not been able to establish f-geometric ergodicity without



1690 D. DOWN, S. P. MEYN AND R. L.. TWEEDIE

imposing additional assumptions on f. The following counterexample shows
that one must indeed “smooth” the function f in some way, for example, by
considering fz = Rgf or fr = /& P*f ds as in Theorem 6.3, if one wants to
infer f-exponential ergodicity from f-exponential regularity.

Consider the Markov process ® on the unit circle X = S* in the complex
plane, with deterministic counterclockwise motion @, , = e¢2"'®_ up until
the first time that ® = 1, at which time a jump occurs with probability 1,/2
so that

P(®,, €A |®, =1) = 1/2[5,(A) + n(A)]

(where u denotes Lebesgue measure on X and §; is the Dirac measure
concentrated on 1).

This process is w-irreducible and aperiodic, and the measure u is an
invariant probability. In fact, the state space S' is petite for this process, so
that ® is uniformly ergodic. Let {r,, n > 1} denote an ordering of the rational
points on S!, and define V: St — [0, ) as

1, if x isirrational,
O P

We have that (V) = 1 and, moreover, using the petite set C = S,
Ex[fTC(S)rtV((bt) dt] = fsr‘dt < o,
0 0

This shows that the process satisfies (#,) with this V for any r > 1. How-
ever, ® is clearly not V-geometrically ergodic, since for any x, n,

sup E_[V(®,)] 227" sup V(e®™¥) = oo,

n<t<n+1 0<¢<1
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