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GAUSSIAN ESTIMATES FOR SPATIALLY INHOMOGENEOUS
RANDOM WALKS ON Zd

BY SAMI MUSTAPHA

Institut Mathématique de Jussieu

It is shown in this paper that the transition kernel corresponding to a spa-
tially inhomogeneous random walk on Zd admits upper and lower Gaussian
estimates.

1. Introduction. We shall consider in this paper spatially inhomogeneous
random walks (Sj )j∈N with bounded symmetric increments in Zd . More precisely
let � = −� ⊂ Zd be a symmetric finite subset of Zd and let π : Zd × � −→ [0,1]
such that ∑

e∈�

π(x, e) = 1, π(x, e) = π(x,−e), e ∈ �,x ∈ Zd .

Then we let (Sj )j∈N be the Markov chain defined by

P[Sj+1 = x + e//Sj = x] = π(x, e), e ∈ �,x ∈ Zd, j = 0,1, . . . .

To avoid unnecessary complications we shall assume that � contains 0 and all unit
vectors in Zd , that is, all e with |e| = 1 where | · | denotes the Euclidean norm.
Furthermore we shall impose the following ellipticity condition:

π(x, e) ≥ α, x ∈ Zd, e ∈ �,(1.1)

for some α > 0. It must be emphasized that the random walk (Sj )j∈N is not nec-
essarily reversible.

We shall denote by

pn(x, y) = Px[Sn = y], n = 1,2, . . . , x, y ∈ Zd,(1.2)

the transition kernel corresponding to the chain (Sj )j∈N and by L the correspond-
ing generator, that is, the difference operator defined by

Lf (x) = ∑
e∈�

π(x, e)
(
f (x + e) − f (x)

)
, f : Zd → R.(1.3)
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We shall prove that there exists a unique (up to a multiplicative constant) positive
solution M(·) of the adjoint equation

L∗M(x) = ∑
e∈�

π(x − e, e)M(x − e) − M(x) = 0, x ∈ Zd,(1.4)

globally defined on Zd (cf. Section 3.2). We shall denote

V (x, r) = ∑
z∈Br(x)

M(z), x ∈ Zd, r > 0,

where Br(x) = {y ∈ Zd, |y − x| < r}, x ∈ Zd , r > 0.

THEOREM 1. Let (Sj )j∈N be as above. Let pn(x, y), x, y ∈ Zd , n = 1,2, . . . ,

denote the corresponding transition kernel. Then there exists C > 0, depending
only on d , � and α, such that

pn(x, y) ≤ CM(y)

(V (x,
√

n )V (y,
√

n ))1/2 exp
(
−|x − y|2

Cn

)
,

(1.5)
n ≥ 1, x, y ∈ Zd,

pn(x, y) ≥ M(y)

C(V (x,
√

n )V (y,
√

n ))1/2 exp
(
−C|x − y|2

n

)
,

(1.6)
n ≥ 1, x, y ∈ Zd, |x − y| ≤ n/C.

The following comments may be helpful in placing the above theorem in its
proper perspective.

(i) It will be shown in Section 3 that the volume function V (x, r) satisfies the
doubling property

V (x, r) ≤ CV (x,2r), x ∈ Zd, r > 0.(1.7)

The volume factor (V (x,
√

n )V (y,
√

n ))1/2 in (1.5), (1.6) can therefore be re-
placed by V (x,

√
n ).

(ii) In the reversible case, Theorem 1 is an immediate consequence of
Delmotte’s work (cf. [5]). Delmotte proved the equivalence of the upper and lower
Gaussian estimates to the volume doubling property (1.7) plus the Poincaré in-
equality for reversible Markov chains with bounded increments on graphs. His ap-
proach relies on a clever adaptation of the Moser iteration process. The reversibility
property p(x, y)m(x) = p(y, x)m(y) verified by the kernel of the chain (Sj )j∈N
and its invariant measure m plays a crucial role in [5] (cf. also [2]).

(iii) Reversible Markov chains on Zd are the discrete analogues of diffusions
generated by second-order differential operators in divergence form and the inho-
mogeneous walks can be considered as the analogues of second-order operators



266 S. MUSTAPHA

in nondivergence form (cf. [12], Table 1, page 78). The first two-sided Gaussian
bound for fundamental solutions of parabolic equations in divergence form with
measurable coefficients is due to Aronson (cf. [1]). For operators in nondivergence
form such upper and lower Gaussian estimates were proved only recently by Es-
cauriaza in [6].

(iv) In Aronson’s work the parabolic Harnack inequality is used to obtain the
Gaussian lower bound (cf. [1]). In fact both upper and lower bound for the heat
kernel can easily be deduced from the parabolic Harnack principle (cf. [19]). Con-
versely it is shown in [10] that the two-sided Gaussian bound implies the Harnack
inequality. Saloff-Coste showed in [16] that the parabolic Harnack inequality (or
the two-sided Gaussian bound) for a divergence-form second-order operator (or
for the Laplace–Beltrami operator on a Riemannian manifold) is equivalent to a
family of Poincaré type inequalities for balls and the doubling property (cf. also
[11]). The results of [5] are the discrete counterpart of [16]. It will be interesting to
discuss this type of equivalence for both nondivergence differential operators and
nonreversible random walks.

A general outline of the paper is as follows. Section 2 collects the main poten-
tial theoretic properties of spatially inhomogeneous random walks on Zd . The two
new results of this section (Theorems 4 and 5) are of independent interest and are
proved in Section 5. In Section 3 we define the concept of normalized adjoint solu-
tion adapted to spatially inhomogeneous random walks and we prove that adjoint
solutions verify a parabolic Harnack principle. This Harnack principle is used in
Section 4 to deduce the Gaussian estimates of Theorem 1.

2. Potential theory. Let A ⊂ Zd denote a bounded domain (i.e., a finite con-
nected set of vertices in Zd ). We let

∂A = {x ∈ Ac, x = z + e, for some z ∈ A and e ∈ �},
� being as in the previous section, and

A = A ∪ ∂A.

Let B = A × {a ≤ k ≤ b} ⊂ Zd × Z where A ⊂ Zd and where a < b ∈ Z. We let

∂lB = ⋃
a<k<b

∂A × {k},

∂pB = ∂lB ∪ (A × {a}),
and B = B ∪∂pB . ∂pB is the parabolic boundary of B and ∂lB is its lateral bound-
ary. We say that u :A −→ R is harmonic in A ⊂ Zd if

Lu(x) = ∑
e∈�

π(x, e)
(
u(x + e) − u(x)

) = 0, x ∈ A.
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Let B = A × {a ≤ k ≤ b} ⊂ Zd × Z and u :B −→ R. We say that u is caloric in B

if

Lu(x, k) = ∑
e∈�

π(x, e)u(x + e, k) − u(x, k + 1) = 0,

(x, k) ∈ A × {a ≤ k < b}.
The following maximum principle is immediate.

THEOREM 2 (Maximum principle). Let B = A × {a ≤ k ≤ b} ⊂ Zd × Z,
where a < b ∈ Z and A is a bounded domain in Zd and let u :B −→ R such
that Lu = 0 in B and u ≥ 0 on ∂pB . Then u ≥ 0 in B .

The following theorem (cf. [13]) is a random walk version of a well-known and
fundamental result in the potential theory of second-order equations in nondiver-
gence form (for an elliptic version cf. [14]).

THEOREM 3 (Parabolic Harnack principle). Let u be a nonnegative caloric
function in B2r (y) × {s − 4r2 ≤ k ≤ s}, (y, s) ∈ Zd × Z, r ≥ 1. Then

sup{u(x, k);x ∈ Br(y), s − 3r2 < k < s − 2r2}
(2.1)

≤ C inf{u(x, k);x ∈ Br(y), s − r2 < k < s},
where C = C(d,α,�) > 0.

In the proof of Theorem 1, together with the previous results we need the follow-
ing estimates which describe the boundary behavior of nonnegative caloric func-
tions. Let y0 ∈ Zd , let R0 > 0 and let � = BR0(y0).

Let Q = � × Z, let Y = (y, s) ∈ ∂� × Z and let c ≤ r ≤ R0/2 where c > 0
denotes a constant times diam(�). We shall denote

Cr(Y ) = Br(y) × {s − r2 ≤ k ≤ s}, Qr(Y ) = Q ∩ Cr(Y ),


Yr = (yr , s + 2[r]2), Y r = (yr , s − 2[r]2),

where yr ∈ � satisfies |yr − (R − r/2)
y−y0|y−y0| | ≤ 1 and [r] denotes the greatest

integer ≤ r .

THEOREM 4 (Boundary Harnack principle). Let Y = (y, s) ∈ ∂�×Z. Let c ≤
r ≤ R0/K where K > 0 is large enough. Assume that u and v are two nonnegative
caloric functions in Q ∩ (B3Kr(y) × {s − 9K2r2 ≤ k ≤ s + 9K2r2}) and u = 0 on
(∂� × Z) ∩ (B2Kr(y) × {s − 4K2r2 ≤ k ≤ s + 4K2r2}). Then

sup
Qr(Y )

u

v
≤ C

u(YKr)

v(YKr)
,(2.2)

where C = C(d,α,�) > 0.
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THEOREM 5 (Backward Harnack principle). Let u be a nonnegative caloric
function in Br(y0) × N (y0 ∈ Zd , r > 0 large enough) vanishing on ∂Br(y0) × N.
Then

u(x, k + 2[r]2) ≤ Cu(x, k), (x, k) ∈ Br(y0) × {r2 ≤ k ≤ 3r2},(2.3)

where C = C(d,α,�) > 0.

The proofs of the estimates (2.2) and (2.3) which follow strongly the proofs of
the corresponding facts about the boundary behavior of nonnegative solutions of
second-order equations in nondivergence form (cf. [3, 4, 7–9, 15]) are given in
Section 5.

We shall use throughout the usual convention f ≈ g to indicate that
C−1 ≤ f/g ≤ C for an appropriate constant C > 0 and C, c are used to denote
different positive constants which depend only on d , α, diam(�).

3. The adjoint Harnack principle. Let D ⊂ Zd denote a bounded domain
and a < b ∈ Z. We say that v = v(x, t) :D × {a ≤ t ≤ b} → R is a parabolic ad-
joint solution of L in D × {a ≤ t ≤ b}, if v satisfies the equation

v(y, t + 1) − v(y, t) = L∗v(y, t), t = a, . . . , b − 1, y ∈ D,

where L∗ is defined as in (1.4). Let m(·) be a fixed positive adjoint solution for L

in D [i.e., m :D → R, m(x) > 0, ∀x ∈ D, L∗m = 0 in D]. For instance, if D ⊂
Br0(0) lies in the Euclidean ball centered at 0 and of radius r0 > 0 large enough,
we can set m(x) = G(x∗, x) where x∗ ∈ B4r0(0) \ B3r0(0), with G(·, ·) being the
Green function of (Sj )j∈N in the ball B5r0(0). Let v be a parabolic adjoint solution
in D × {a ≤ t ≤ b}; the function

ṽ(y, t) = v(y, t)

m(y)
, (y, t) ∈ D × {a ≤ t ≤ b},

is called a normalized parabolic adjoint solution of L in D × {a ≤ t ≤ b} (cf. [4]).

THEOREM 6. Suppose that ṽ is a nonnegative normalized adjoint solution
for L in Br(y0) × N, where y0 ∈ Zd and r > 0 large enough. Then there exists a
constant C > 0 depending only on d , α, � such that

sup{ṽ(y, s);y ∈ Br/2(y0), r
2 < s < 2r2}

(3.1)
≤ C inf{ṽ(y, s);y ∈ Br/2(y0),3r2 < s < 4r2}.

PROOF. Let Br(y0) = Br and let qt (·, ·) denote the Green function of L in Br .
An easy induction on t gives the following representation formula for the parabolic
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normalized adjoint solutions:

ṽ(y, t) = ∑
x∈Br

m(x)ṽ(x,0)
qt (x, y)

m(y)

+
t−1∑
s=0

∑
x∈∂Br

m(x)ṽ(x, s)
∑
e∈�x

π(x, e)
qt−s−1(x + e, y)

m(y)
,(3.2)

y ∈ Br/2, t = 1,2, . . . ,

where �x = {e ∈ �/x +e ∈ Br}. On the other hand, let us observe that if we extend
qs(·, y) by qs(·, y) ≡ 0, s ≤ 0, in an appropriate neighborhood of ∂Br and use the
boundary Harnack principle (2.2) to compare u1(x, t) = qt (x, y) and u2(x, t) =
qt+10r2(x, y), combined with the backward Harnack principle (2.3), we deduce
then that

qs(x, y) ≤ Cqs+r2(x, y), dist(x, ∂Br) ≤ cr,
(3.3)

y ∈ Br/2,0 < s < 2r2.

Let now y1, y2 ∈ Br/2 and r2 < t1 < 2r2, 3r2 < t2 < 4r2. By (3.2), (3.3) and
Theorem 5 we have

ṽ(y1, t1) ≤ ∑
x∈Br

m(x)ṽ(x,0)
qt1(x, y1)

m(y1)

(3.4)

+ C

2r2∑
s=0

∑
x∈∂Br

m(x)ṽ(x, s)
∑
e∈�x

π(x, e)
qr2(x + e, y1)

m(y1)
,

ṽ(y2, t2) ≥ ∑
x∈Br

m(x)ṽ(x,0)
qt2(x, y2)

m(y2)

(3.5)

+ 1

C

2r2∑
s=0

∑
x∈∂Br

m(x)ṽ(x, s)
∑
e∈�x

π(x, e)
qr2(x + e, y2)

m(y2)
.

A simple use of the boundary Harnack principle [combined with (2.1) and (2.3)]
allows us to deduce then

ṽ(y1, t1) ≤ C
qr2(y0, y1)

m(y1)

m(y2)

qr2(y0, y2)
ṽ(y2, t2).

Thus, to prove (3.1) it suffices to show that

qr2(y0, y1)

m(y1)
≈ qr2(y0, y2)

m(y2)
, y1, y2 ∈ Br/2.(3.6)

The estimate (3.6) is a consequence of (3.4), (3.5) and the fact that 1 is a normal-
ized parabolic adjoint solution. Indeed, let ψ(x) = G(x,y0) be the Green function
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of L in Br with pole at y0. Let A ∈ Br fixed with |A − y0| ≈ r/4. By the boundary
Harnack principle and the backward Harnack principle we have

qr2(x, y) ≈ ψ(x)
qr2(y0, y)

ψ(A)
, x ∈ Br \ B3r/4, y ∈ Br/2.

If we apply now (3.4) and (3.5) to ṽ ≡ 1, we deduce then

m(y1) ≤ C
∑

x∈Br−B3r/4

m(x)
ψ(x)

ψ(A)
qr2(y0, y1) + C

∑
x∈B3r/4

m(x)qr2(y0, y1)

+ Cr2
∑

x∈∂Br

m(x)
∑
e∈�x

π(x, e)qr2(y0, y1)
ψ(x + e)

ψ(A)
,

m(y2) ≥ 1

C

∑
x∈Br−B3r/4

m(x)
ψ(x)

ψ(A)
qr2(y0, y2) + 1

C

∑
x∈B3r/4

m(x)qr2(y0, y2)

+ r2

C

∑
x∈∂Br

m(x)
∑
e∈�x

π(x, e)qr2(y0, y2)
ψ(x + e)

ψ(A)
,

and these two inequalities imply (3.6). �

3.1. The doubling property for the adjoint solutions. We start with a doubling
property for the Green functions.

PROPOSITION 1. Let R be large enough and let x0 ∈ Zd . Let GR(·, ·) denote
the Green function of (Sj )j∈N in the ball B4R(x0). There exists then a constant
C > 0 (independent of x0 and R) such that∑

y∈B2r (x0)

GR(x, y) ≤ C
∑

y∈Br(x0)

GR(x, y), x ∈ B4R(x0),1 ≤ r ≤ R/2.(3.7)

This proposition is a consequence of the parabolic Harnack principle and the
following lemma.

LEMMA 1. Let R be large enough and let x0 ∈ Zd . Let hR
t (x, y),

t = 0,1, . . . , x, y ∈ B4R(x0), denote the heat kernel of (Sj )j∈N in the ball B4R(x0).
Then there exists c > 0 (independent of x0 and R) such that

inf
z∈Br(x0)

∑
y∈B2r (x0)

hR
s (z, y) ≥ c, 1 ≤ s ≤ r2,1 ≤ r ≤ R/2.(3.8)

Indeed, by the parabolic Harnack principle we have

C inf
z∈B2r (x0)

∑
y∈Br(x0)

hR
2r2(z, y) ≥ sup

z∈B2r (x0)

∑
y∈Br(x0)

hR
r2(z, y)

≥ inf
z∈Br/2(x0)

∑
y∈Br(x0)

hR
r2(z, y) ≥ c.
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We have then∑
y∈Br(x0)

hR
t+2r2(x, y) ≥ ∑

y∈Br(x0)

∑
u∈B2r (x0)

hR
t (x, u)hR

2r2(u, y)

≥ ∑
u∈B2r (x0)

inf
u∈B2r (x0)

( ∑
y∈Br(x0)

hR
2r2(u, y)

)
hR

t (x, u)

≥ c
∑

u∈B2r (x0)

hR
t (x, u)

and this implies the doubling property for the heat kernel with the time shifted
t → t + 2r2. If we sum on t we deduce that

∑
y∈B2r (x0)

GR(x, y) ≤ C
∑

y∈Br(x0)

∞∑
t=2r2

hR
t (x, y)

≤ C
∑

y∈Br(x0)

GR(x, y).

The adjoint Harnack principle (3.1) and Proposition 1 give

THEOREM 7. Let L∗m = 0, m ≥ 0, in B4r (z), z ∈ Zd and r > 0 large enough.
Then ∑

y∈B2r (z)

m(y) ≤ C
∑

y∈Br(z)

m(y),(3.9)

where C = C(d,α,�).

Indeed let x∗ ∈ B6r (z)\B5r (z). Let G(·, ·) denote the Green function of (Sj )j∈N
in the ball B7r (z). We have∑

y∈B2r (z)

m(y) ≤ C sup
y∈B2r (z)

m(y)

G(x∗, y)

∑
y′∈B2r (z)

G(x∗, y′)

≤ C inf
y∈B2r (z)

m(y)

G(x∗, y)

∑
y′∈B2r (z)

G(x∗, y′)

≤ C
∑

y′∈Br(z)

m(y′)
G(x∗, y′)

G(x∗, y′).

The second inequality follows from the adjoint Harnack principle and the third one
from the doubling property (3.7).

PROOF OF LEMMA 1. Let

U(x, s) = ∑
y∈B2r (x0)

hR
s (x, y), x ∈ B4r (x0), s ≥ 0.
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Let V (x, s) be the caloric function defined by

V (x, s + 1) = ∑
e∈�

π(x, e)V (x + e, s) in B2r (x0) × {−4r2 ≤ k < 4r2},

V (x, s) = 1 on ∂p

(
B2r (x0) × {−4r2 ≤ k < 4r2}) ∩ {s ≤ 0},

V (x, s) = 0 on ∂p

(
B2r (x0) × {−4r2 ≤ k < 4r2}) ∩ {s ≥ 1}.

By the maximum principle we get

U(x, s) ≥ V (x, s), s ≥ 0, x ∈ B2r (x0).

Using the parabolic Harnack inequality applied to V (x, s) in B2r (x0) × {−4r2 ≤
k < 4r2} we deduce that

inf
z∈Br(x0)

U(z, s) ≥ cV (x0,−r2) = c, 0 < s < r2.

[Note that V ≡ 1 on B2r (x0) × {−4r2 ≤ k < 0}.] �

3.2. The global adjoint solution.

THEOREM 8. There exists a positive adjoint solution M defined globally
in Zd . This solution is unique up to a multiplicative constant and verifies∑

y∈B2r (x)

M(y) ≤ C
∑

y∈Br(x)

M(y), x ∈ Zd, r > 0,(3.10)

where C = C(d,α,�).

PROOF. Let

ml(y) = αl[Gl+1(0, y) − Gl(0, y)], y ∈ B2l (0), l = 1,2, . . . ,

where Gl(0, ·) is the Green function of (Sj )j∈N in the ball B2l (0), l = 1,2, . . . ,

with pole at the origin and where the αl are chosen so that

ml(0) = 1, l = 1,2, . . . .(3.11)

It is easy to see that the ellipticity condition (1.1) implies a local Harnack prin-
ciple for the nonnegative adjoint solutions. This local Harnack principle and the
normalization condition (3.11) imply that the ml verify

ml(y) ≤ C, y ∈ B2k (0), l ≥ k,

with a constant C = C(k) depending only on k. The diagonal process allows us
then to deduce the existence of a global positive adjoint solution M defined on Zd .
The fact that this global adjoint solution is unique (up to a multiplicative constant)
follows from the normalized adjoint Harnack principle (3.1) applied to M1/M2
where M1 and M2 denote two global positive adjoint solutions. Indeed it is always
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possible to suppose that infZd M1/M2 = 0 and associate to ε > 0, zε ∈ Zd , such
that M1(zε)/M2(zε) < ε. By (3.1) supBR(zε)

M1/M2 < Cε with a constant C > 0
independent of R and it suffices to let R → ∞ and ε → 0 to deduce that this
function is constant. Finally, the doubling property (3.10) follows from Theorem 7.
This completes the proof of Theorem 8. �

4. The Gaussian estimates. The first step in proving the upper Gaussian
estimate (1.5) is to prove the following mass escape estimate for (Sj )j∈N
(cf. [17, 18]).

LEMMA 2. Let (Sn)n∈N be as in Section 1. Let pn(x, y), x, y ∈ Zd , n = 1,

2, . . . , denote the corresponding transition kernel. Then there exist C, c > 0, such
that

∑
|x−y|>R

pn(x, y) ≤ C exp
(
−c

R2

n

)
, x ∈ Zd, n,R = 1,2, . . . .(4.1)

PROOF. To prove (4.1) it suffices to prove that

∑
l(x−y)>R

pn(x, y) ≤ e−cR2/n(4.2)

for every linear form l : Rd → R such that l(x −y) ≤ |x −y|, x, y ∈ Rd . Let s > 0;
we have

∑
l(x−y)>R

pn(x, y) ≤ ∑
l(x−y)>R

e−sR+sl(x−y)pn(x, y)

≤ e−sR
∑

y∈Zd

esl(x)pn(x, y)e−sl(y)

from which it follows that
∑

l(x−y)>R

pn(x, y)

≤ e−sR
∑

y1,...,yn−1∈Zd

(
esl(x)p1(x, y1)e

−sl(y1)
)

(4.3)
× (

esl(y1)p1(y1, y2)e
−sl(y2)

) × · · ·
× (

esl(yn−1)p1(yn−1, y)e−sl(y)).
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On the other hand, we have∑
y′∈Zd

esl(y)p1(y, y′)e−sl(y′) = ∑
e∈�

π(y, e)e−sl(e)

= 1 − s
∑
e∈�

π(y, e)l(e) + O(s2eCs)

= 1 + O(s2eCs),

where the last equality follows from the fact that (Sn)n∈N has symmetric incre-
ments. We deduce then that

sup
y∈Zd

∣∣∣∣∣
∑

y′∈Zd

esl(y)p1(y, y′)e−sl(y′)
∣∣∣∣∣ ≤ 1 + Cs2 ≤ eCs2

, |s| ≤ 1.(4.4)

If |s| ≥ 1, it suffices to observe that∣∣∣∣∣
∑

y′∈Zd

esl(y)p1(y, y′)e−sl(y′)
∣∣∣∣∣ ≤ ∑

e∈�

π(y, e)es|e|

(4.5)
≤ eCs ≤ eCs2

, y ∈ Zd .

Putting together (4.3), (4.4) and (4.5) we deduce that∑
l(x−y)>R

pn(x, y) ≤ e−sR+Cns2
,

and optimizing over s, we deduce (4.2). �

The second step is to apply the parabolic adjoint Harnack principle to

ṽ(y, t) = pt(x, y)

M(y)
, y ∈ Zd, t = 1,2, . . . .

This gives

ṽ(y, n) ≤ C inf
z∈B√

n(y)
ṽ(z,2n), n ≥ C.

Hence (with the notation of Section 1)

ṽ(y, n)V
(
y,

√
n

) ≤ C
∑

z∈B√
n(y)

ṽ(z,2n)M(z) ≤ ∑
z/∈Bc|x−y|(x)

p2n(x, z), n ≥ C,

in the case
√

n < c|x − y|, with c > 0 small enough. This implies, in this case, by
Lemma 2

ṽ(y, n)V
(
y,

√
n

) ≤ C exp
(
−c

|x − y|2
n

)
, n ≥ C.
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In the case
√

n > c|x − y| it suffices to observe that the Gaussian factor in (1.5)
is ≈ 1. Hence

pn(x, y) ≤ CM(y)

V (y,
√

n )
exp

(
−c

|x − y|2
n

)
, n ≥ C.

The doubling property (3.10) allows us to symmetrize the volume factor in this
estimate and obtain

pn(x, y) ≤ CM(y)

(V (x,
√

n )V (y,
√

n ))1/2 exp
(
−c

|x − y|2
n

)
, n ≥ C.

Let us observe that for 1 ≤ n ≤ C (1.5) and (1.6) are immediate consequences
of the local Harnack estimate. This completes the proof of the upper estimate in
Theorem 1. Finally the lower Gaussian estimate (1.6) can be deduced from the
upper Gaussian estimate (1.5) and the parabolic adjoint Harnack by a standard
procedure. We first use (1.5) to deduce that for A > 0 large enough∑

|x−y|≤A
√

n

pn(x, y) ≥ 1
2 .(4.6)

Parabolic adjoint Harnack applied to

ũ(y, t) = pt(x, y)

M(y)
, y ∈ Zd, t = 1,2, . . . ,

estimate (4.6) and the doubling property (3.10) imply therefore that

pn(x, x) ≥ M(x)

CV (x,
√

n )
, x ∈ Zd, n ≥ C.(4.7)

The lower off-diagonal estimate (1.6) is easily deduced from (4.7) by applying
successively the parabolic adjoint Harnack inequality. More precisely, let us fix x

and n as in (4.7) and let y ∈ Zd such that |y − x| ≤ n/C with C > 0 large enough.
Let k be the smallest integer ≥ |x − y|2/n. Put

(aj , tj ) =
(
aj ,

(
1 + j

k

)
n

)
, j = 0, . . . , k,

with

a0 = x, ak = y, |aj+1 − aj | ≈ |x − y|
k

, 0 ≤ j ≤ k − 1.

Then (x, n) = (a0, n) and (y,2n) = (ak,2n). Moreover

|aj+1 − aj |2 ≈ n

k
, 0 ≤ j ≤ k − 1.

Hence the parabolic adjoint Harnack inequality yields

p2n(x, y)

M(y)
≥ Ck pn(x, x)

M(x)
≥ 1

CV (x,
√

n )
exp

(
−c

|x − y|2
n

)
, n ≥ C.

This completes the proof of Theorem 1.
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5. Proofs of results. To the process (Sj )j∈N we shall associate the corre-
sponding space–time process

Ṡj = (Sj , t0 − j) ∈ Zd × Z, t0 ∈ Z, . . . , j = 0,1, . . . .

For any cylinder Q = �×{a ≤ k ≤ b}, � being a bounded domain in Zd , we shall
denote τ̇Q the first exit time of Ṡj from Q. The caloric measure in Q at (x0, t0) is
defined by

ω
(x0,t0)
Q (E) = P(x0,t0)

[
Ṡτ̇Q

∈ E
]
, E ⊂ ∂pQ.

Observe that for each ϕ : ∂p(�×{a ≤ k ≤ b}) −→ R, the solution of the boundary
value problem

u(x, t + 1) = ∑
e∈�

π(x, e)u(x + e, t) in � × {a ≤ k < b},

u(x, t) = ϕ(x, t) on ∂p(� × {a ≤ k ≤ b}),
can be represented by means of ωx0,t0 = ω

(x0,t0)
Q , (x0, t0) ∈ � × {a < k ≤ b} as

follows:

u(x0, t0) = E(x0,t0)

[
ϕ

(
Ṡτ̇Q

)] = ∑
(y,s)∈∂pQ

ϕ(y, s)ωx0,t0(y, s).

5.1. A lower estimate for the caloric measure. Let the notation be as in Sec-
tion 2 and let Q = � × Z. For Y = (y, s) ∈ ∂lQ, r > 0 we shall denote

�r(Y ) = ∂lQ ∩ Cr(Y ),

where ∂lQ = ∂� × Z.

LEMMA 3. Let ωX = ω
(x,t)
Q2r (Y ). Then

inf
X∈Qr(Y )

ωX(�2r (Y )) ≥ θ, Y ∈ ∂lQ, c ≤ r ≤ R0/2,(5.1)

where θ = θ(d,α,�) > 0.

PROOF. Let Y = (y, s) ∈ ∂lQ. It is clear that there exists a cylinder
C′ = Bµr(z) × {s − 4r2 ≤ k ≤ s} ⊂ C2r (Y ) \ (� × Z) (provided that µ is small
enough). Let �′ = Bµr(z) × {s − 4r2} denote the bottom of this cylinder. Using
the maximum principle we deduce

ωX(�2r (Y )) ≥ v(X) = ωX
C2r (Y )(�

′)(5.2)

in Q2r (Y ), and

v(X) ≥ v′(X) = ωX
C′(�′)
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in C′. On the other hand, the parabolic Harnack principle applied to v gives

inf
X∈Qr(Y )

ωX(�2r (Y )) ≥ inf
X∈Qr(Y )

v(X)

≥ cv(z, s − 2r2)(5.3)

≥ c′v′(z, s − 2r2).

But v′ can be extended from C′ to a large cylinder C′′ = Bµr(z) × [s − 6r2, s] by

v′(X) = ωX
C′′(∂pC′′ ∩ {t ≤ s − 4r2})(5.4)

so that v′ ≡ 1 on C′′ ∩ {t ≤ s − 4r2} and the lower estimate (5.1) follows then from
the Harnack principle. �

COROLLARY 1. Under the assumptions of Lemma 3, let u be a nonnegative
solution of Lu = 0 in Q3r (Y ), which vanishes on �2r (Y ). Then Mr = supQr(Y ) u

satisfies

Mr ≤ ρM2r , c ≤ r ≤ R0/4,(5.5)

with a constant 0 < ρ = ρ(d,α,�) < 1.

PROOF. Let X ∈ Qr(Y ); we have

u(X) = ∑
Z∈∂pQ2r (Y )

u(Z)ωX(Z) = ∑
Z∈∂pQ2r (Y )−�2r (Y )

u(Z)ωX(Z).

Hence

u(X) ≤ ωX[∂pQ2r (Y ) − �2r (Y )]M2r

= (
1 − ωX[�2r (Y )])M2r

≤ (1 − θ)M2r = ρM2r . �

5.2. The Carleson principle for caloric functions vanishing on the boundary.
Let the notation be as above. Let Y = (y, s) ∈ ∂lQ and c ≤ r ≤ R0/2. Assume that
u is a nonnegative caloric function in Q ∩ (B3r (y) × {s − 9r2 ≤ k ≤ s + 9r2}) and
u = 0 on ∂lQ ∩ (B2r (y) × {s − 4r2 ≤ k ≤ s + 4r2}). Then

u(X) ≤ Cu(Y r), X ∈ Qr(Y ),(5.6)

where C = C(d,α,�) > 0. To prove (5.6) we first observe that the local Harnack
principle allows us to assume that the parabolic distance of X from ∂pQ2r (Y ) is
sufficiently large. We shall denote by δ(X) [X ∈ C2r (Y )] this distance and sup-
pose that δ(X) = Dist(X, ∂pQ2r (Y )) ≥ C. Geometric considerations in combina-
tion with the parabolic Harnack principle imply that

δγ (X)u(X) ≤ Crγ u(Y r), X ∈ Q2r (Y ),(5.7)
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where γ and C > 0 are positive constants depending on d , α, �. Let
δ̃(X) = Dist(X, ∂pC2r (Y )). Let 0 < ε0 < 10−2 small enough so that

θ0 = ρ

(1 − 4ε0)γ
< 1,(5.8)

where ρ is the constant given by Corollary 1. We shall distinguish two cases. First
assume that δ = δ(X) ≤ ε0δ̃(X). In this case we have
δ = δ(X) = δ(x, t) = dist(x, ∂�) = |x − x0| for some x0 ∈ ∂�. By Corollary 1
applied to u in Q2δ(X0) = C2δ(x0, t) ∩ Q, we have

u(X) ≤ sup
Q(3/2)δ(X0)

u ≤ ρ sup
Q3δ(X0)

u.

But

δ̃(X) ≤ δ̃(Z) + 4δ ≤ δ̃(Z) + 4ε0δ̃(X)

where Z = (z, τ ) ∈ Q3δ(X0) is such that u(Z) = supQ3δ(X0)
u. Therefore

δ̃(X) ≤ (1 − 4ε0)
−1δ̃(Z)

and this gives

δ̃(X)γ u(X) ≤ (1 − 4ε0)
−γ ρδ̃(Z)γ u(Z)

(5.9)
≤ θ0 sup

X∈Q2r (Y )

δ̃(X)γ u(X).

It remains to examine the case where δ = δ(X) > ε0δ̃(X). In this case we have

δ̃(X)γ u(X) ≤ ε
−γ
0 δ(X)γ u(X) ≤ ε

−γ
0 sup

Q2r (Y )

δ(X)γ u(X).(5.10)

Putting together (5.9) and (5.10) we deduce that

sup
Q2r (Y )

δ̃(X)γ u(X) ≤ max
(
θ0 sup

Q2r (Y )

δ̃γ u, ε
−γ
0 sup

Q2r (Y )

δγ u

)
.

Using (5.8), the fact that δ̃(X) ≈ r , X ∈ Qr(Y ) and (5.7), we deduce the esti-
mate (5.6).

5.3. The boundary Harnack principle and proof of Theorem 4. For
Y = (y, s) ∈ ∂� × Z; c ≤ r ≤ R ≤ R0/2, we denote

�R,r(y) = BR(y) ∩ {x ∈ �,dist(x, ∂�) < r},
DR,r(Y ) = DR,r = �R,r(y) × {s − R2 ≤ k ≤ s},
�R,r(Y ) = �R,r = ∂pDR,r ∩ {x ∈ �,0 < dist(x, ∂�) < r},
SR,r (Y ) = SR,r = ∂pDR,r ∩ {x ∈ �,dist(x, ∂�) ≥ r}.
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LEMMA 4. Let Y = (y, s) ∈ ∂� × Z. Then we have

PX

[
Ṡτ̇DKr,r

∈ SKr,r

] ≥ PX

[
Ṡτ̇DKr,r

∈ �Kr,r

]
, X ∈ Qr(Y ),(5.11)

provided that K ≥ K0 is large enough.

PROOF OF THEOREM 4. Theorem 4 is an immediate consequence of the Car-
leson principle and Lemma 4. Indeed, we may always assume that
v(YKr) = u(YKr) = 1. By Carleson, v ≤ c0 = c0(d,α,�) in QKr(Y ) (which
contains DKr,r ). The constant c0 can be chosen so that, by Harnack, u ≥ 1/c0 on
SKr,r . Let u0 = c0u and v0 = v

c0
− u0. Let X ∈ Qr(Y ). By Lemma 4 we have

v0(X) ≤ ωX(�Kr,r (Y )) ≤ ωX(SKr,r (Y )) ≤ u0(X)

and then

sup
Qr(Y )

v

u
= c2

0 sup
Qr(Y )

(
v0

u0
+ 1

)
≤ 2c2

0. �

PROOF OF LEMMA 4. To prove the estimate (5.11), it suffices to show that
if u, v :DKr,r → R satisfy

Lu = 0, u ≥ 0 in DKr,r ; u ≥ 1 on SKr,r ,
(5.12)

Lv = 0, v ≤ 1 in DKr,r; v ≤ 0 on ∂pDKr,r \ �Kr,r ,

then we have

v ≤ u in Qr = Qr(Y )(5.13)

provided that K ≥ K0 is large enough.
The first step is to prove that under (5.12), u verifies the lower estimate

u(X) ≥ 2δ

(
dist(x, ∂�)

r

)γ

, X = (x, t) ∈ Qr(Y ),(5.14)

for appropriate constants δ, γ > 0. Let ỹ = (R0 − 5r)
y−y0|y−y0| . We assume that

K ≥ 10. We define ũ :Q6r → R by

Lũ = 0 in Q6r ,

ũ = min(u,1) on ∂pQ6r ∩ DKr,r ,

ũ = 1 on ∂pQ6r \ DKr,r .

Since u ≥ 0, we have, by the maximum principle, 0 ≤ ũ ≤ 1 in Q6r , and since
u ≥ 1 on SKr,r we have u ≥ ũ on Qr . Let z̃ ∈ B2r (ỹ) satisfying
|z̃ − (R0 − 4r)

y−y0|y−y0| | ≤ 1. Let Z̃ = (z̃, s − 4[r]2). Let w be defined

by w(X) = 1− ũ(X), X ∈ U , U = Q6r ∩ (B2r (ỹ)×{s −4r2 ≤ k ≤ s}). w vanishes
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on ∂lU \ ∂l(B2r (ỹ)×{s − 4r2 ≤ k ≤ s}). On the other hand, by the same argument
as in Lemma 3 we see that ωZ̃

U(∂lU \ ∂l(B2r (ỹ) × {s − 4r2 ≤ k ≤ s})) ≥ c > 0.
It follows then that w(Z̃) ≤ θ supU w, where 0 < θ < 1. This means that
1 − ũ(Z̃) ≤ θ < 1 and therefore ũ(Z̃) ≥ 1 − θ > 0. Using Harnack and the fact
that u ≥ ũ on Qr we then deduce (5.14). It follows from (5.14) that

u(X) ≥ 2δK−γ , X ∈ Qr \ Dr,r/K,

where we assume r ≥ Kc and K sufficiently large. Observe that we have in par-
ticular u(X) ≥ 2δK−γ , X ∈ Sr,r/K .

The second step is to prove that there exists N > 0 such that

v(X) ≤ exp(−NK), X ∈ Dr,r .(5.15)

Let j = 1,2, . . . such that 2j + 1 ≤ K and Xj such that

Xj ∈ ∂pD(2j−1)r,r , sup
D(2j−1)r,r

v = v(Xj ) = v(xj , sj ).

Let Ũ = (B2r (xj ) × {sj − 8r2 ≤ k ≤ sj }) ∩ DKr,r . We have v ≤ 0
on ∂pU \ ∂p(B2r (xj ) × {sj − 8r2 ≤ k ≤ sj }) and using the fact that

ω
Xj

Ũ

(
∂pŨ − ∂p

(
B2r (xj ) × {sj − 8r2 ≤ k ≤ sj })) ≥ c > 0

we deduce that

v(Xj ) ≤ sup
Ũ∩(Br (xj )×{sj−4r2≤k≤sj })

v ≤ θ sup
Ũ

v,

where 0 < θ < 1. Hence

sup
D(2j−1)r,r

v ≤ θ sup
Ũ

v ≤ ρ sup
D(2j+1)r,r

v,

where 0 < ρ < 1. Iterating this estimate we obtain

sup
Dr,r

v ≤ ρk sup
D(2k+1)r,r

v ≤ e−NK,

where 2k + 1 ≤ K ≤ 2k + 3. Thus (5.15) is proved. It follows in particular that
v ≤ δK−γ in Dr,r provided that K is large enough.

From the previous considerations it follows that u1 = Kγ

2δ
u ≥ 0 in Dr,r/K and

u1 ≥ 1 on Dr,r \ Dr,r/K (that contains Sr,r/K ) and v1 = Kγ

2δ
(2v − u) ≤ Kγ

δ
v ≤ 1

in Dr,r (that contains Dr,r/K ) with v1 ≤ 0 on Sr,r/K . In particular, we have

u1 − v1 = Kγ

δ
(u − v) ≥ 0, on Dr,r \ Dr,r/K.

On the other hand, u1, v1 satisfy the same assumptions as u, v with r replaced
by r/K . We can iterate and define uj , vj such that

uj − vj =
(

Kγ

δ

)j

(u − v) ≥ 0 on Dr/Kj ,r/Kj \ Dr/Kj ,r/Kj+1,
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j = 1,2, . . . , and consequently

u − v ≥ 0 on S(Y ) = ⋃
j≥0

Dr/Kj ,r/Kj \ Dr/Kj ,r/Kj+1 .

Let now X0 = (x0, t0) ∈ Qr ⊂ Dr,r(Y ) and let X̃0 = (x̃0, t0) where
x̃0 ∈ ∂� satisfies dist(x, ∂�) = |x0 − x̃0|. Then DKr,r (X̃0) ⊂ D(K+2)r,r (Y ) and
SKr,r (X̃0) ⊂ S(K+2)r,r (Y ). Replacing K with K + 2 in the previous considera-
tions, we deduce that u ≥ v on S(X̃0) that contains X0. This completes the proof
of Lemma 4. �

5.4. The boundary backward Harnack principle. Let the notation be the same
as in Theorem 5. Let Br(y0) = Br . First we observe that the Carleson principle in
combination with the parabolic Harnack principle give

u

(
x,

[
r2

8

])
≤ C min

Br/2×{r2/4≤t≤8r2}
u, x ∈ Br − Br/2.(5.16)

On the other hand, by Harnack

max
Br/2×{t=[r2/8]}

u ≤ C min
Br/2×{r2/4≤t≤8r2}

u.(5.17)

Since u ≡ 0 on ∂Br × N, by (5.16), (5.17) and the maximum principle we get

max
Br×{[r2/8]≤t≤8r2}

u ≤ C min
Br/2×{r2/4≤t≤8r2}

u.

In particular, we have

max
Br/2×{[r2/8]≤t≤8r2}

u ≤ C min
Br/2×{r2/4≤t≤8r2}

u.(5.18)

Let now v be another nonnegative caloric function in Br × N such that v vanishes
on the lateral boundary ∂Br × N. Then, there exists C > 0 such that

u(x0, [r]2)v(x, t) ≤ Cv(x0,4[r]2)u(x, t),
(5.19)

x0 ∈ Br/2, (x, t) ∈ Br × {r2 ≤ t ≤ 3r2}.
To prove (5.19) we first use a covering argument to cover ∂l(Br × {r2 ≤ t ≤ 3r2})
with cylinders Cj = Bεr(yj ) × {sj − ε2r2 ≤ t ≤ sj }, j = 1, . . . ,N , where ε > 0 is
chosen sufficiently small and where Y (j) = (yj , sj ) ∈ ∂l(Br ×{r2 ≤ t ≤ 3r2}), and
apply in each of these Cj the boundary Harnack principle to get

u
(
Y

(j)
r/8

)
v(x, t) ≤ Cv

(
Y

(j)

r/8
)
u(x, t), (x, t) ∈ Cj ,(5.20)

where Y
(j)
r , Y

(j)

r , r > 0, are defined as in Section 2. By Harnack, we have

v
(
Y

(j)

r/8
) ≤ Cv(x0,4[r]2),(5.21)

u
(
Y

(j)
r/8

) ≥ cu(x0, [r2/4]).(5.22)
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Using (5.18) we deduce from (5.22) that

u
(
Y

(j)
r/8

) ≥ cu(x0, [r]2).(5.23)

Putting together (5.20), (5.21) and (5.23) we deduce that

u(x0, [r]2)v(x, t) ≤ Cv(x0,4[r]2)u(x, t),
(5.24)

x0 ∈ Br/2, (x, t) ∈ Cj , j = 1, . . . ,N.

On the other hand, we have, by Harnack,

v(x, t) ≤ Cv(x0,4[r]2), r2 ≤ t ≤ 3r2, dist(x, ∂Br) ≥ δr,(5.25)

where 0 < δ < 1/2. Again, by Harnack combined with (5.18)

u(x, t) ≥ cu(x0, [r]2), r2 ≤ t ≤ 3r2, dist(x, ∂Br) ≥ δr(5.26)

and (5.19) follows from (5.24)–(5.26) with an appropriate choice of δ > 0. We are
now able to get the estimate (2.3). We shall use (5.18), (5.19) and a time-shifting
argument. Let u be as in (2.3) and let v(x, t) = u(x, t + 2[r]2). By (5.19) we have

u(x0, [r]2)u(x, t + 2[r]2) ≤ Cu(x0,6[r]2)u(x, t),
(5.27)

(x, t) ∈ Br × {r2 ≤ t ≤ 3r2},
with x0 ∈ Br/2 fixed. Equation (2.3) follows from (5.27) and the estimate

u(x0,6[r]2) ≤ Cu(x0, [r]2),

which is an immediate consequence of (5.18). This completes the proof of Theo-
rem 5.
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