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Let X;, i € N, be i.i.d. B-valued random variables, whei is a real
separable Banach space. ldebe a smooth enough mapping fragninto R.
An asymptotic evaluation af,, = E(expr®(>_"_, X;/n))), up to a factor
(1+ o(1)), has been gotten in BolthausePrdbab. Theory Related Fields
72 (1986) 305—-318] and Kusuoka and LiarRygbab. Theory Related Fields
116 (2000) 221-238]. In this paper, a detailed asymptotic expansidf), of
asn — oo is given, valid to all orders, and with control on remainders. The
results are new even in finite dimensions.

1. Introduction. Let (B, || - ||p) be a Banach space apdbe a probability
measure onB. We assume that the smallest closed affine space that contains
suppu is B. Moreover, we assume the following:

AsSSUMPTIONAL. There exists a constaff; > O such that

[ expKallxlFuucx) < oo.

(This is satisfied if, e.g.,. is a Gaussian measure afd > 0 is sufficiently
small, by Fernique’s estimate. See, e.g., [20].)

Let ®: B — R be a five times continuously Fréchet differentiable function
satisfying the following:

ASSUMPTIONAZ2. There exists a constafgb > 0 such that
®(x) < Ko(1+ ||x|IB) for all x € B.

We remark that this is a one-sided condition; it is satisfied, for example|sf
negative forj|x || g — oc.

Let X, and S,, n € N, be the random variables defined Ky, (x) = x,, and
Sp(x) =2} _qxkforanyx = (x1,x2,x3,...) € BN.
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We are interested in the behavior of

0 S,
7, = E*° [exp(n@(l»] asn — 0o,
n

whereE* stands for the expectation with respect to the measumadu®> is the
product of|N| copies ofu [corresponding to the distribution of tHé(,,),en].
By Donsker and Varadhan [13], we have that

lim EIog Zp =sup{®(x) — h(x)},
n—o0o pn

xeB

wherenh is the entropy function oft:

h(X)=¢Slj£{¢(X)—|09M(¢)}, x € B,

B* is the dual space a8 andM (¢) = [ e ™ u(dx) for any¢ € B*.

It has been shown by Bolthausen [8] that there is at leastxdne B with
®(x*) — h(x*) = sup,.g{®(x) — h(x)}, and the seK = {x € B; ®(x) — h(x) =
supg{® — h}} is compact. Also, we assume the following, as in [8] and [21].

ASSUMPTION A3. There is a uniquex* € B with ®(x*) — h(x*) =
SUBep{®(x) — h(x)}.

This is satisfied, for example, & is strictly concave, sinck is always convex
by the definition of it.

We will usex™ exclusively for this point.

Let v be the probability measure aghgiven by

exp(DP (x*)(x))u(dx)
v(dx) = ,
M(DD(x*))

where D means the Fréchet derivative. As has been shown by Bolthausen [8], the
following proposition holds.

PROPOSITION1.1. Under Assumptions A1-A3,

(1.2) x* = / xv(dx),
B
(1.2) h(x*) = D®(x™)(x™) —logM (DD (x™)).
Let vg be the 0-centered measure associated witthat is,vg = ve;}, where

0,:B — B is defined byg,(x) =x —a, x € B.
Let (¢, ¥) = [ ¢(x)¥ (x)vo(dx) be the covariance (undeg) of ¢ andy for

anyg, ¥ € B*. Thenl”" becomes an inner product &Y. Let H = (ﬁr)*, where



302 S. ALBEVERIO AND S. LIANG

B* means the completion @f* with respect td". (It has been shown in [21] that
H can be regarded as a dense subsé.pf
The following holds, as shown in [8]:

D?®(x*)(1($), L($)) <T'(¢, )  foranyg e B*,

where ((¢) = [z ¢(x)xvo(dx), ¢ € B*. From this, we see that all of the
eigenvalues of the symmetric operatbP® (x*)|nxx [given by the restriction

of D?®(x*) to H x H] are not greater than 1. We assume the following as in
[8] and [21].

AssumMPTION A4. All of the eigenvalues ofD2® (x*)| gy are strictly
smaller than 1.

This is a nondegeneracy condition (depending on Wathnd 1), which says
that® — i has a nonvanishing curvature at the paihi(see [8]), or, by the words
of [23], means that the Hessian &f is strictly positive definite. This condition
also implies that the determinant appearing in the following Proposition 1.2 is
different from 0. In the sense of the theory of singularities of maps (see, e.g., [5,
26]) this is a genericity condition (i.e., if it were not satisfied for a gidgra “small
perturbation” of® would make it satisfied; see, e.qg., [24]).

Bolthausen [8] and Kusuoka and Liang [21] studied the leading term of
exp(—n(®(x*) — h(x*)))Z, asn — oo. In particular, [21] gives us the following.

PROPOSITION1.2. Let Assumptions A1-A4 be satisfied, and assume some
technical condition for controlling the third remainder of & in the Taylor
expansion around x* (see [21], (A5) for the explicit expression of this condition,
which will be replaced by a stronger Assumption A5). Then we have

nli_)moo exp(—n (P (x*) — h(x*)))Z,
— exp(/B D2®(x*)(y, y)vo(dy)) deb(Iy — D?®(x*) 2 = Co(x™).

Note that both [21] and our present paper do not assume the so-called “Central
Limit Theorem Assumption” used in [8], which restricts the spaces.

Now it is a natural problem to investigate the more precise asymptotic behavior
of Z, asn — oo, beyond the leading term. This does not seem to have been
discussed before and is entirely in the spirit of corresponding investigations for
the case of real-valued random variables, where one wishes to go beyond the
functional and central limit theorem, that is, in the sense of Edgeworth expansions,
for a certain functional of the normalized sum variakdgg./n; see, for example,

[7, 18, 19] and references therein. Even in the case of real random variables,
our results, however, are not reduced to known results, because of the form of
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our function¢; see Remark 1.4 below. The aim of this paper is to answer this
guestion in our general setting of Assumptions A1-A4, adding Assumptions A5
and A6 (which just are a little stronger than what follows from Assumptions
Al-A4).

We state now the condition implying the one from [21] mentioned in
Proposition 1.2.

ASSUMPTIONAS. There exists a consta#g > 0 and a bilinear, symmetric,
bounded functiorKs: B x B — R such that

ID>®(x)(y, v, v, y, M| < IYI3Ks(y, y)
for anyx € B with ||x — x*|| 5 < 8o and anyy € B.

We remark that this implies the technical condition A5 in [21] about the
third remainder of the Taylor expansion &f, so that in particular, we can use
Proposition 1.2 under the sole Assumptions (A1)—(A5).

Assumption A5 is satisfied if, for exampl8, is a separable real Hilbert space.
Actually, if B is a real Hilbert space, writing the inner product®as(., -) g, then
we can just take&Ks(x, y) = C(x, y)p for x, y € B, with C the supremum of the
operator norm o°® (x) on {x € B; ||x — x*|| < 8o}.

For the sake of simplicity, we denot®®(x*) by ¥;, i = 2, 3,4. We have
by [21] that 5|y« g is a Hilbert—-Schmidt operator, hence the corresponding
resolvent set consists only of eigenvalues. We shall denote the eigenvalugs by
k € N, and the corresponding eigenfunctions &y k € N. Without loss of
generality, we may assume that k € N, consists of an orthonormal base (ONB)
of the dualH* of H. Let f;, k € N, be the corresponding ONB &f. Also, by [21]

(for thosek € N with a; # 0), we may assume that € B*.

Then we have

o0
(1.3) Wax,y) =Y arer(x)ex(y)
k=1
for any x, y € H. We remark at this place that by Minlos’ theorem, the same
eqguation holds fonwg-a.s.x,y € B if Wo|g«y IS @ nuclear operator, that is, if
Now, we are able to formulate our last assumption.

B ASSUMPTION A6. There exists a bilinear, symmetric, bounded function
Vy: B x B — R, and a monotone nonincreasing sequence of positive numbers
8y, N € N, that converges to 0 & — oo such that for any € N,

Z ake,(?z < 5N‘AI}2-
k>N, a;>0
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REMARK 1.1. Assumption A6 implies that 7 |axlex ® ex is well defined
and gives a continuous operator Brx B. (Actually, in this case, we have that both
Y s aredP mxm andY, - oaked? | xm, and hence alsp e axled?| s, are
continuous with respect to th&-norm, so we can extend them in a continuous way
to the wholeB.) Therefore) 72 ; lax| < oo, thatis,¥,| 5« i is @ nuclear operator,
and hence as already remarked above, (1.3) holdsfars.x, y € B.

We emphasize here th§d;}ren and {exlren are eigenvalues and the corre-
sponding eigenfunctions df; acting inH, instead ofB. And B and H are differ-
ent even ifB is a Hilbert space.

We remark that Assumption A6 is satisfied, for example, if in the representation
(1.3) of W = D?®(x*), there is only a finite number af; which are strictly
positive, or more generally, if there existpa> 1 such thalzk:apoai/pe}?z is
a bounded function o® x B. In other words, for any bounded positive-definite
function A: B x B — R, write the eigenvalues and corresponding eigenfunctions
asb, andeg, k € N, thatis,A =72 bké,?z; then it is easy to see that — O as
k — oo, so for anyp > 1, we have tha} ;2 , b,fé,?z satisfies our Assumption A6.
See also the discussion following Theorem 1.3.

Also, see the end of this section for examples where all Assumptions A1-A6
are satisfied.

As in [21], let H; be a Hilbert space that includd$ as a subset with the
embedding being a Hilbert—Schmidt operator. (See Section 3 for the precise
definition and the construction dff; using Assumption A6.) Then there exists
an Hi-valued Gaussian random variakitesuch that the distribution af(Y) is
N(O, [[u||%+) (the normal distribution with mean 0 and varianipg|2,..) for any

u € H*. Since
2 o0
H = E”O[Z |ak|ek<xl)z}

EY[EW[
k=1

> Varer(X1er(Y)

k=1

o0
= lar] < oo
k=1

(with EY the expectation with respect to the distributi®® of Y), we have
that | Y72 1 Jarex(X1)ex(Y)| < oo for a.e.{X1,Y) with respect to the measure
1t ® Py. We shall write}"2%, \/arex (X1)ex(Y) as(W,'°X1, Y). We remark that
this may be a complex number since the coefficieptmay be negative. Also, it

is easy to see by the central limit theorem in Hilbert spaces (e.qg., [4])%[ha{> Y
in law underugz"” asn — oo, and sincels| g« g is nuclear under Assumption A6,

the constanCo(x*) in Proposition 1.2 is equal to dély — W») Y2 (where det is
the Fredholm determinant).
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Now, we are ready to give our main result, which provides a precise expression
for the coefficient of the term~1 in the expansion ot/, := exp(—n(® (x*) —
h(x*)))Zy.

THEOREM1.3. Under Assumptions A1-A6 above, we have that

lim_n(exp(—n(® () —h(x*)))Z, — detlly — W) ~Y2) = Cr(x),
where C2(x*) isthe constant given by

1 1
w _ Y| wy)y2f -+ 2 v 1/2 372
Cox")=FE |:e 2 ( 8‘112(Y, Y) +2(3!)2E O[(W5' " X1, Y)7]

n %E“O[(wzl/ ’X1, Y)“])]

1 1
Wy (Y,Y)/2 2
+ E[e 2 (—2( 3!)2\1:3(1/, YY)+ (V.Y Y, Y))}

1
+ 5EY[e‘I’Z(Y’Y)/Z]EVO[‘Ps(Xl, X1, X1)]

401
+Z(k—1)!

k=3
1\ 222G =D) 1\ iv/3
e Zald )
2 3!

i1+ Fig1+i /3=2(k—2)

< EY |:6\D2(Y,Y)/2Ev89k

k
1/2 ’
X [H(\DZ/ X, V) W3(X1, X2, Xk—l):|:|-
j=1

REMARK 1.2. Ellis and Rosen [17] considered the same problem of “large
expansion,” but only for the Gaussian case, that is, whé&ha Gaussian measure
on some functional space (e.§2-space), and their method used the fact of having
Gaussian measures in an essential way. (This work continues previous works on
Laplace method for infinite-dimensional Gaussian measures by Pincus, Schilder
and Donsker and Varadhan. See references in [17] and, e.g., [3, 2].)

In the special case described in [17], that is, the Gaussian case, our Assump-
tion A6 can be rewritten as follows: Let denote the covariance of the Gaussian
measureu on Banach spacé; then ourvg is nothing butN (0, A). Consider
D2®(x*)(AY2., AY2.): B x B — R. It is easy to see that this is a nuclear op-
erator. Let{ar}ren and{ug}ren C B* be the eigenvalues and the corresponding
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eigenfunctions of it. Then as before, without loss of generality, we may assume that
{ur}ren consists of an ONB oB*. Also, A~1/2y;, e H*, and by extension if nec-
essary, we may assume thet/2,; € B*. Now, since{dy}ren and{A~2u; }ren
are the eigenvalues and the corresponding eigenfunctioifazd)f(x*)mxH, we
have that our Assumption A6 can be implied by the following condition: there
exists ap > 1 such thatycy.z,-0d; " (A"Y2u;)®2 is a continuous function
onB x B.

We stress that our Theorem 1.3 holds without any assumption tmbe a
Gaussian measure.

The basic idea of our proof is to use the fact that the Laplace transform of
a Gaussian measure is €gpadratic form. With the help of this observation,
we then use the independenceXyf, k € N, to discuss the a.s.-convergence and
the dominations, which then implies thet-convergence, and hence the stated
asymptotic formula.

REMARK 1.3. Asremarked before the statement of Theorem 1.3, this theorem
gives the coefficient of the term! in the expansion ot/, = exp(—n(® (x*) —
h(x*)))Z, in powers of(%)l/z. The same kind of result is not known, to the best
of the authors’ knowledge, even for the finite-dimensional case. By using the same
method, we can also give the explicit expression of the coefficignitc*) of the
termn—N/2 for any N > 2 in the expansion df,,, under natural assumptions about
the smoothness @b and an assumption corresponding to Assumption A5. We do
not write this explicit expansion in this paper, because of its complicated form,
but have limited ourselves to explaining our method, taking the caée(af*) as
an example. We rather limit ourselves to give, in Section 3 (cf. Theorem 3.14),

the expansion, to all orders in~"/2, of the term E“E?oo[exp(%kpz(s—" Suyy,

n’n

||%||B < ¢], for ¢ > 0 small enough. See Remark 1.4 and Section 3.

REMARK 1.4. In this paper we also give, in particular, the asymptotic
expansion ofE"6 " [exp(4Wa (5, 51)), 32|15 < ¢], for & > O small enough, to

any order, with controls on remainders (cf. Theorem 3.14 and Remark 3.1).

In the sense explained in Remark 1.3, we have got an analogue of the Edgeworth
expansion for the functional e@\lfg), with W, a bilinear, symmetric and bounded
function on B x B that satisfies Assumptions A4 and A6, of the normalized
sum variabless, //n. The Edgeworth expansion with respect to the distribution
function in the finite-dimensional cage= R has been obtained by many authors
(see, e.g., [7, 18, 19] and references therein), but all of these give only estimations
which are uniform with respect to the variable of the distribution function, and are
not usable in the case of our problem (because of the lack of integrability of the

function exp with respect to the Lebesgue measure). In fact, it is easy to see that,
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for example, in the expression
o) =)
Vol =, —= )| <
2( ) e

(5 a5 7))
- efou{2u 1))

=}/ ey/zn(,ﬂ? (ywz(S S) )
2 Jyel—ne,nel f f

—P(y<Wa(Y,Y) < na)) dy

o~ S S
+ ne"e/2pvs (’1112<—n —n)’ ns) —ne 2P (|Wa(Y, Y)| < ne)

NN
—nE[exp<1\Ifz(Y Y)> |Wa(Y, V)| 2n8:|,

all the terms except the first one on the right-hand side decay exponentially as
n — o0o; hence a uniform estimation m’(P”(%Z)Oo (y < \112(%, %) <ne)—P(y <

Wy (Y,Y) < ne)) with respect toy € [—ne, ne] is not enough to obtain the
asymptotic expansion we give in Section 3.

REMARK 1.5. In this paper we concentrate on providing asymptotic ex-
pansions for the nondegenerate case (much in the spirit of corresponding
investigations using Laplace method for functionals of Brownian motion, see,

g., [6]; it should, however, be stressed that we concentrate on limits of sums
of random variables, not on the limit of their distributions). We plan to extend the
results to the degenerate case in subsequent publications (for first results on the
limit theorem in this case, see [9] and [24]). The investigation of this paper be-
longs to the general area of probability theory which investigates the asymptotics
of processes. See, for example, [11, 14, 22, 25] for the connection with questions of
asymptotics for continuous-time processes. The latter two papers deal in particular
with the leading term of a Laplace approximation of diffusions, and [25] includes
Brownian motion on tori. Expansions beyond the leading term in these “contin-
uum cases,” in the generality of our present paper, have not yet been obtained; our
paper can also be seen as a first step in this direction.

There are also relations in motivations and some of the methods with other
works on asymptotics; see, for example, [1, 2, 10, 27], and references therein.

Finally, let us illustrate the use of our main result in a model of classical
statistical mechanics. Consider a system gfrticles, with the distribution of the
state of each particle being given by a probability meaggren a compact se¥/.
Suppose that the interaction of the two particles with statesespectivelyy,
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is %V(x, y), x,y € M, for some “nice” real-valued functio on M x M, and

for givenn € N. Then the probability of the system to be in the state given by a
Borel subsett of M" is [, v, (dx ) = Z; 1 [ e MM Zij=Voiki) @1 gy . dx,),

Z, being the normalizing constant [stands for(xy, ..., x,) € M"]. Relevant
interesting physical quantities can be expressed as expectations of the form
EV (3 =1 Xy, ..., Xi,)], for some bounded continuous “observable”
function f:M™ — R. The problem of computation of such expectations as

n — oo can be generalized to the following one. LB2be equal to the topological

dual C(M)* of C(M), let X; =§,, and let be the image ofug underé,
(looked upon as an element B). Set®(R) = [ [ V(x, y)R(dx)R(dy), F(R) =

S [ f(x1,...,xm)R(dx1)--- R(dxp), R being a positive measure dd. Then

the above problem can be seen as a particular case of the study of expectations of
the form

EFTLF((1/n) Yi_g Xi)e ®@W/m i X0
S [enCD((l/n) Y Xi)]

asn — oo, wherepu is a probability measure on some Banach spatep are
“good” functions onB andX; are i.i.d. random variables with distributipnon B.
Since the method for the numerator is exactly the same as that for the denominator
(for F smooth), just with the expression more complicated, we limit ourselves to
the study of the denominator.

Let us give some more concrete example that satisfies all of our conditions. In
the example just given, leW = T(= R/2rZ), let ug be the uniform distribution
on T, po(dy) = 5dy, and letV(x,y) = CU(x — y), with U a continuous

function onT, and C a constant such tha?™ & V (x, y)2dxdy < 2. Then
it is trivial that D3® = 0, so our Assumption A5 is satisfied trivially. Also, the
corresponding entropy function is the relative entropy with respegbtgiven by

h(R) = /(Iog j—;fo) dR.

So by calculation, we have that the uniform distributionTomaximizes® — #,
so the eigenvalues db?® (x*) are nothing but some (global) constant times the
coefficients of the Fourier expansion Gf Therefore, Assumption A4 is satisfied
if C is small enough, and Assumption A6 is also satisfied whenever the Fourier
coefficients ofU are in¢” for somea € (0, 1). Hence in this case all Assumptions
A1-AG6 are satisfied, and so our theorem applies. Let us remark that this example
is related to the mean field model studied in, for example, [15], but for the
physically particularly interesting case of translation-invariant interactions. It can
also be considered as an generalization of the continuous spinning Ising model
with translation-invariant interactions.

Let us consider one more example. As before Met= T, and letug be any
probability onT. Let V:T x T — R be a continuous bounded function that can
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be written as

o0
Vx,y) =Y arer()er(y),  x,yeT,
k=1

with a; < 3, k € N and{ex}ren an ONB of L2 5(duo). [This implies in particular
thath(x y),uo(dy) =0 foranyx € T.] Let ®(R) = [/ V(x,y)R(dx)R(dy)
for positive measureR on T. (The corresponding entropy function is again
the relative entropy with respect jag.) It is easy to check thatg maximizes

® — h. Therefore, the spacH is given byH = L2 6(d o). So the eigenvalues and
the corresponding eigenfunctions Bf2¢(uo)|HxH are {2a;}ren and {ex}ien.
Therefore, our assumptions are satisfied if, in addition, there exists 4 such
that

Z a,}/pel?z :T x T — Ris bounded
keN:ay>0

The proof of Theorem 1.3 is given in Sections 2-5.
2. Preparation. Letus seth = & (x*) — h(x™) = sup,cz{P(x) — h(x)}, for

simplicity. Let Rs(x, ) denote the fifth remainder of the Taylor expansion of
®(x +-) atx, that is,

4
Rs(x,y) =®(x+y)—®x)— Y D'®)(y,...,y) foranyx,ye B.
i=1

Then we have by [8] or [21] that for ary> O,

n(e ™z, — detly — W)~ V/?)

Sy Sy S, S
o (5 (552
n 3! n
S, S
n
<e]
B

—detl/y — ‘112)_1/2)

+ ne MR [exp(ncb(&)), il S s],
n B

and the second term on the right-hand side converges to 0 exponentially as,
by using the large deviation principle (see, e.g., [21]). So we only need to deal with

Sn
— —x
n
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the first term on the right-hand side. We can rewrite it as

e oo oo (3. 3) [
e nd o a2, 51))

(o33 5) )3

o a5 ) 1 (5, 5, 51))

eo el 5)

on(e 3)) -2 13, <]

n
We will work with (2.1) in Section 3, (2.2) in Section 5 and (2.3) in Section 4,
respectively.

< s] — det(ly — \1/2)—1/2>
B

2.2)

<]

3. Second order. In this section, we are going to give the asymptotic
expansion of the term (2.1) fat — oco. The result is in fact stronger than
what is needed for the proof of our Theorem 1.3, and of interest in itself (cf.
Theorem 3.14). The basic idea is to first use the fact that the Laplace transform of
a Gaussian measure is égpadratic form, then to use the independenceXf,

k € N, to discuss the a.s.-convergence and the dominations, which then implies the
L'-convergence.

In general, let(B, | - || ) be a Banach space and Igf, n € N be a sequence
of i.i.d. B-valued random variables with mean 0. Let denote their common
distribution, and we suppose that the following assumption is satisfied.

(H1) There exists a constait > 0 such that

| expKallxl)vo(dx) < oo.

We remark that (H1) is equivalent to our Assumption Al.

Let ¥»2:B x B — R be a bilinear, symmetric, bounded map satisfying
Assumptions A4 and A6 in Section 1.

For somes > 0 small enough, we want to know the asymptotic expansion of

o o3 5

n
Let H be the Hilbert space with norm given By u(y)yvo(dy) 1%, = [ u?dvo.
The following two propositions follow easily from [21].

<8], n— oo.
B
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ProPOSITION3.1. For any ¥:B x B — R which is hilinear, symmetric,
continuous, and satisfies the condition that all of the eigenvalues of ¥ |y, g are
strictly smaller than 1, there exists an g > 0 such that for any ¢ € (0, &g,

supE"68700 [exp(zllf (ﬁ &>> Sn
neN 2 n n

n
PROPOSITION3.2. For any W:B x B — R which is symmetric, bilinear,
continuous, there exists a §1 > 0 such that

supr'd™ | exp{ssw (71 7)) <0

By our Assumption A4dq; < 1 for all k € N. Also, we havey, — 0 ask — oo,
since Vol g is a Hilbert—-Schmidt operator by [21] (and even nuclear under
our Assumption A6). Say, k£ € N, are uniformly separated from 1. Therefore,
there exists o > 1 such thatpg - ax < 1 for anyk € N. Let go > 1 be such
that st 5 = = 1. Let Ng € N be (large enough) so thab - §y, < 81, where
SN |s the sequence of positive numbers that converges to 0 which appeared in
Assumption A6, andi; > O is the constant which appeared in Proposition 3.2
applied tow = Uy.

For anyN € N, define| - Iy by xllzy = Yx: t<n.q>0€k(x)?, x € B. Then
we have the following.

<8:|<OO.
B

LEMMA 3.3. Forany N > Np, there exists a constant gg > 0 such that for any

& € (0, &ol,
L& Su Sn Sn
SUpE™0 [exp \Ilg — — ), |— <e|<oo.
neN n n Hy
Also, for any e1 > 0,
Sn Sy S S
e e )8 I R I AR
n n g n \lHy
converges to 0 exponentially asn — oo.
PROOF The first assertion is easily proven since
o o3 5)) |31, <
2 n o n n oy
1/po
0 S \2\ | S
§E”(Q)9 [exp(@ Z akek<—n> ) = <€:|
2 k:k<N,a;>0 \/ﬁ n Il Hy

< E6™ [exp(qoaNlllz([ \S;))T/qo,
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and the first term above is bounded fioe N by Proposition 3.1 wittB, H and¥
replaced byBy, By and pg - Zk:ks,\,,apoake,?z, respectively, and the second
term above is bounded fare N by Proposition 3.2 and the definition &.

For the second assertion, choase 1 so thatr - pg-a; < 1 forall k € N, and
lets > 1 be such tha} + 1 = 1. Then

L A )8 | Rl M)
EYo Yol —, — ) ).y —1Il =>€e1pNy|— <¢
2 n o n n g n |l my
@00 Sy Sy S Yr eoo (| Sy Ys
o oo S, < (3,
NN n g

The first term is bounded for € N by our first assertion applied to- ¥», and
the second term decays exponentiallyzas oo, by the large deviation principle,
the properties of the entropy functidgnand the fact thatg is 0-centered. This
completes the proof of our lemmald

We have by Lemma 3.3 that there existsMfne N such that for anyv > N,
there exists arzg > 0 such that for ang € (0, gg], the asymptotic expansion
of (3.1) is the same as the asymptotic expansion of

o o3, -

for n — oo.
From now on, we leM > Ny be chosen and fixed. Léf; be the Hilbert space
given by

Sn

n

Hy = {y =Y e fis V115, =D laklex(y)? < oo}.
k=1 k=1

Since Y321 lak| < oo by our Assumption A6, we have that there exists an
Hi-valued Gaussian random varialfesuch thatu(Y) ~ N (0O, ||u||§1*) for any

u € H* (“~" meaning equality in law). Ler M = Dk k<M.ap>0€k(Y) f.
It is easy to see, using the Fourier transform of the Gaussian measure, that for
anyx € B,

(3-3) exp(% > akex (x)2> =E' [exp( > Vaker (X)ek(Y)ﬂ-

k=1 k=1

We are going to use this fact to give the asymptotic expansion of (3.2) as
n — oQ.
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First, by Assumption A6, (3.3) and Fubini’s theorem, we have that

ol D)5,
-8 o 3 () ). 2] <]
— g%~ [EY[exp<Z\/_ek(\/_)ek(y)>} Sn

(3.4) =EY [EVE‘?“ [exp( > fek( I)ek(m>

k=1

=
el

PROPOSITION3.4. There exists an g > 0 such that for any ¢ € (0, gg] and

any s > 0,
<ée|,
Hy

E! ‘ E% |e p( E Jage e (Y))
”YA ” Hy > \/1’_188

Sn

Sn

converges to O exponentially asn — oo.

PROOF We have by Hdlder's inequality that for any,¢g > 1 such that

1 1_
p—i-q—l,
<e|,
Hy

EY[E 0 [exp<2fek<f>ek(Y))
1M g, > ﬁeé”

— % [exp(%k:bMXgr ak<0akek<%>2>
xEY[exp( > d_ek(f>ek(Y)>

k:k<M anda;>0

Sn

1Y Ml > ﬁsS},

Sn
<é&
n \lHq1y
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®o0 1 S 2
<EY |exp| = —")
Bl |: p(2k2k>MXc;rak<Oakek(‘/ﬁ )

1/p
x EY [exp(;a : Jakek ek(Y)>]
k:k<M§ldak>0 (\/_)

A S
P(IYM| g, > /nes)4, |22 <g}
n Hy
00 1 Sp \?
=EY exp(— akek<—n>
ol m (3
1 Sn \2\ | S
+s(p-1 ) ak€k<—) ) —| <e
2 k:k<M,az>0 Vv n llHy

P(IYM| g, > v/nes)"1.

The first factor in the latter expression is boundedierN if p > 1 ande > 0 are
small enough, by Assumption A6 and Lemma 3.3, and the second factor decays
exponentially as — oo for any$ > 0. This gives our assertion[]

PrOPOSITION3.5. Thereexistsa dg > 0 such that for any § € (0, §g] and any
>0,

EY[E%@ [exp(Z\/_ek(\/,>ek(Y)>

converges to 0 exponentially asn — oo.

Sn

> e}, 1Y M|y < ﬁea}

Hy

PrRoOOE First notice that

~ S
M §8H—

k: k<§a >O\/_ek (\/_)ek(Y)

H Hy Hy

o 2 ()
= el —
k:k<M,a;>0 \/ﬁ

on the se(|| | a2,y > €, ||YM||H1 < /ned}, and

Z akek < SM‘IJZ
k>M,a;>0
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by Assumption A6. So we have that

EY|:EVSD |:exp<2fek<f>ek(Y)) HM>8],
1Y M|y < ﬁeaﬂ
— E%” [exp(%k:b%r ak<oak6k<%>2>
Ey[exp(' ) J_ek(f)ek(Y)>

k:k<M anda;>0

Sn

1Y M|y < \/585},

- >¢
Hy
00 S, \? 1 S, S

<EY {em(é 3 am(—”) + 50m z(—" —’))

k:k<M,ar>0 \/ﬁ [ [
> &
Hy
1/2
900 Sy \ 2 ~ (S, S
< E" exp<26 akek(—"> +6M\IJ2(—",—")>]
|: k:ks;,ak>0 \/ﬁ ﬁ ﬁ
S, )1/2
> & .

xP(—

n

Sn

n

Hy

Now, our assertion follows easily by Proposition 3.2 and the facmmmti—” |y >
g) — 0 exponentially ag — co. [

In particular, we have the following.

PROPOSITION3.6. Thereexist constants M € N, g > 0 and 8¢ > 0 such that
for any ¢ € (0, eg] and any § € (0, o],

®0o0 N
EV | EY Y) ), IlyM 8
SupEs [ [exp(kzl¢_ek(f)ek( )) 1Y )1, < /e H<oo

In the same way, we get the following.
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PrROPOSITION3.7. There exist constants p > 1, M € N, o > 0and 5o > 0
such that for any ¢ € (0, 9] and any § € (0, o],

vg’oo Y e e
SUpE [E [exp<k21f k<f> k(Y))

Y™y, < \/ﬁesﬂ < o0

p

By (3.4) and Propositions 3.4, 3.5 and 3.7, we have that there exist constants
g0 > 0 andép > 0 such that for any € (0, eg] and anys € (0, §g], the asymptotic
expansion of (3.2) is the same as the asymptotic expansion of

EY[E”?W{ ( e e (Y))},HYAMH 1<\/Ess}
ol £ (2

(3.5) )
— EY[EVO [eXp< 2 3 «/—ek(Xl)ek(Y))} Y M| < ﬁea},

for n — oo.
Foranyn € N and any¢ > 0, let B, ¢ be the set given by

(3.6) Bpe:= {Y:

E”°[exp( IZ‘/_ ek<X1>ek<Y>>]—1

<¢).

Note that

E”{exp( Z k(xl)ekm)] ’

)
|

E"0 — ) Jarer(Xp)er(Y)
ol 5

x | Y Jarer(X1)ex(Y)

k=1

and for anyg > 1, there exists & (¢) € N such that

sup E{(E“O[exp(‘ [Zf ek<X1>ek<Y>>

n>N(q)

00 29\ ¢
x | Y Jarer(X1)ex(Y) D }<OO-

k=1
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2

-+
=< (Sn)_qEY[<E”° [GXP(|% g:l«/aek(Xl)ek(Y) )
]

PROPOSITION 3.8. P(B, ;) — 0 as n — oo faster than any polynomial
order. Therefore,

1 & ’
EY [E”O[exp(ﬁ Z\/a_kek(xl)ek(y)>:| {”YM”H]_ < \/_85} N Bn $:| —0
k=1

faster than any polynomial order.

Therefore,

P(Bf,,g)5PY(EVO[expOfoek(Xl)ek(Y)

So we have the following.

PrROOFE The first assertion is already proven. The second one follows then,
using Hdélder’s inequality and Proposition 3.7

By Proposition 3.8, we have that for agy> 0, the asymptotic expansion of
(3.5) forn — oo is the same as the corresponding asymptotic expansion of

1 X !
EY [E”O [exp(% > \/CTkek(Xl)ek(Y))] ;
k=1

(3.7)
(Y M|, < /nes) mBn,g}.

We can take, for examplé€,= % in the definition (3.6) ofB, ¢. Let
1 o.¢]
Z=EY — X Y —
[exp(ﬁ Z:l\/a_kek( Dex( ))}

Then we have the following.

PROPOSITION3.9. For any N > 2,

N 00 J
-3 %n_j/zE”°[<Za/_akek(Xl)ek(Y)> } —
: k=1

Jj=2

nN/ZZ asn — oo
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for a.e-Y, and for any ¢ > 1, there exists an ng € N such that for any n > no,
the left-hand side above is dominated by an L9 (with respect to the distribution
of the Y)-random variable.

R

PROOF.  We notice thate® — >/ );—H <M S " foranyx € C.
First, as we claimed before} "7 ; \/arex(X1)ex(Y)| < oo, so we have that

nN/2 (exp(% I;-\/a_kek(xl)ek(Y)>

N
—1— in—j/Z

00 J
, (Z Mek(xl)ek(Y>> ) —0
=17 k=1

asn — oo for a.e.{X1, Y). Also, for anyn > 0, there exists ang € N (actually,
we can take, e.gug = [%] + 1) such that for any > ng,
n

nN/? (exp(i > Jchek(Xl)ek(Y)>
n

Vo1
—1— —]/2<Z\/_ek(xl)ek(Y)>>

Jlj'

N+1

1
Z JVager(X1)e(Y)

1 o
5 ﬁ exp<‘ L VA e

)(N+1)'

)

2n

1
f T exp( Z\/_ ex(X1)er(Y)
k=1
Also, since
> Va ek(Xl)ek(Y)>
k=

( <2n > @ek(xl)ek(Y))

k:ar>0

exp(Zn

+exp(—2n > Ja—kEk(Xl)Ek(Y)))

k:ar>0

x(exp<2n > ¢|ak|ek<xl>ek<Y>>

k:ay<0

+exp(—2n > ¢|ak|ek(x1>ek(Y>>),

k:ap<0
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we have that
o0
> Varer(X1er(Y)

o ev]enfor )]

k:ar>0 k:ar<0

= 4E" [exp(Zgzn2 > lax |€k(Xl)2>:|

k=1
Vo 22 2
<4E [exp(Zq n (rp?\lxlaH)llellB)} <00
€

if n > 0 is small enough [so thayZn2(max.en |ax]) < K1].
Therefore, we get our assertion by the dominated convergence thedrém.

WhenN = 2, since

00 2 00
EUOKZ @ek(xl)ek(y)) } =" arer(¥)?,
k=1

k=1
Proposition 3.9 gives us the following.

COROLLARY 3.10.

o
nlog(l+2) — 3> arer(¥)?
k=1
is bounded in L7 (with respect to the distribution of Y) for any ¢ > 1 on the
set By, 1/2.

(3.8) nt/?

PROOF We notice that there exists a constént 0 such that
llog(1+2) — Z|<CIZI*>  onB,12={Z| <3}
So
(Ihs) of (3.8)

<n'?n log(l+ Z) —nZ| + n1/?

00 2
nz - %Evo[(z Ja—keuxl)ekm) ]
k=1

<Cn Y2nz|? + n1/?

’

00 2
nz - %E”O[(Z @euxl)ekm) ]
k=1

which is bounded in.¢ (with respect to the distribution df) for anyg > 1 by
Proposition 3.9. [
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PrROPOSITION3.11. There exist constants p; > 1, gg > 0 and §g > 0 such
that for any p < p1,any e € (0, eg] any é € (0, 3ol andany N € N,

N 1& 2
n exp(EkE:lakek(Y))

3.9 X (exp<n logl+ Z) — % Zakek(Y)2> -1

k=1

— > 2 (nlog1+2) — =Y aker(¥)?] )| -0
=t 2z
for a.e-Y, and the left-hand side above is L? (with respect to the distribution

of ¥)-bounded on the set {[| Y™ ||, < /ned} N By.1/2.

PROOE We notice that for anyv € N, there exists a constafty > 0 such
that

2N _¢

e —1-Y" 2| <cn(ef] v Izt foranyzeC.
=

)

Therefore,

(Ihs) of (3.9)< n <|e" log1+2)| 4

exp(% > akek(Y)z)

k=1
0o 2N+1
x |nlog(l+ Z) — % Zakek(Y)z
k=1
There exist constanis > 1 andr > 1 such that

(’en Iog(l-&-Z)‘ +

exp(% > akek(Y)2> )
k=1

is bounded inL?" (with respect to the distribution df) on the sef{||Y M| g, <
J/neé8}. (The assertion for the first term is by Proposition 3.7, and the assertion for
the second term is easy by Assumption A4.) ket 1 be such thaf + I = 1. By
Corollary 3.10,

2 1/2

nlog(1+2) — 3 Zakek(Y)2’
k=1

is bounded inL? (with respect to the distribution of) for any ¢ > 1 on the
setB,,1/2; in particular, it is bounded il.”* (with respect to the distribution df)
on the setB, 1/2.

These give us our assertion]
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PROPOSITION3.12. Forany N €N,

2N 1 ¢
(3.10) n™ Zz (n log(1+ Z) — —Zakek(Y) )
=1 k 1

2N 1( N+L (_qyi-1

J4
(3.11) — Z > z/ -z Zam(Y) )

J
j=1 k 1
for a.e-Y, and the left-hand side above is L9 (with respect to the distribution
of Y)-bounded on the set B, 1> for any g > 1.

PROOF  We notice thata® — b¢| < |a —b|-£(la|*~1+|b|*~1) foranya, b e C
and any € N. So our assertion is easy since by Proposition 3.9 and Corollary 3.10,
nlog(1+ 2) — 3 32 axer (Y)? andn Y =22 27 — 357 ager(Y)? areLd
(with respect to the distribution df)-bounded on the sé, 1/, for anyg > 1, and
for any N € N, there exists a constaaty > 0 such that

N+1 i—1

—1)J .

N(nlog(l—i—Z) -ny - zJ)

j=1

on the setB, 1,2, and|nZ| is L? (with respect to the distribution df)-bounded
by Proposition 3.9 forany > 1. O

1
<Cy=|nz|N*?
n

In the same way, by Proposition 3.9, we get the following.

PROPOSITION3.13. For any N € N,
2N 1( N+1(_1)j 1

l
>l ; ’——Zakek(Y))
=1 =) k=1

2N 1

2N+2 1 m
_ Z w( Z —(m/2)+1 ~ EV0|:<Z\/—€k(X1)€k(Y)) :|

nZ

nN

N+1 1 00 m\ ¢
X ( Z n_m/z—'Ev0|:<Z\/Cl—kek(Xl)ek(Y)> :|> )
k=1

2 m:

—0

as n — oo for a.e-Y, and the left-hand side above is L7 (with respect to the
distribution of Y)-bounded for any ¢ > 1.

In conclusion, we have proven the following.
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THEOREM 3.14. There exist constants ¢g > 0 and 8o > 0 such that for any
g€ (0,g0],any s € (0,80] andany N € N,

n l o0
N{ Eo [eXFJ( i & Z Va ek<xl)ek<Y>)} - eXp<5 Zakek<Y>2)
k=1
- exp( > ager(Y) )

k=1

2N 1 2N+2 1 00 m
X Z Z‘( Z (m/2)+1$Evo|:(Z\/aek(xl)ek(y)) :|

k=1

+Z

N+1 & "N\
(sz*"” (g meen) )]
m=2 k=1

—0 asn — 00

for a.e-Y. Moreover, there exists a p > 1 such that the left-hand sideis L? (with

respect to the distribution of Y)-bounded on the set {||YAM||Hl < /nes} N B, 172
with respect to n € N. Therefore, we get that for any ¢ € (0, eg] and any § < (0, 8o],

nN (E“gaoo [exp(%\b(%, %)) Sn . < s} —EY [exp(% iakek(Y)z)}
k=1
— E{exp( Zakek(Y) )

n
k=1
2N 1 2N+2 1 00 m
x sz( Z n(m/2)+1%Evo|:<Zmek(xl)ek(y)) :|

m=3 k=1

+Z

N+1
( Z n—m/2 Evo

00 m N ARA
x [(Z@mmmn) D ) },A]
k=1
-0 asn — oo,

where the set A on the left-hand side above is either the whole set H; or the set
(1Y M| gy < /ned} N By 1.
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PrROOF All has already been proven except for the final assertion with
A = H1, which is trivial since the expectation on the s$gtY ™|y, < /ned} N
B,.1/2)¢ converges to 0 faster than any polynomial orden as oo for any fixed
M € N, which comes from the fact that the integrand isLifA for somep > 1

for any fixedN € N, and P({||YM||H1 > /neé} U BS .1/2) — O faster than any
polynomial order ag — oo, for anys > 0 and anye > 0. [

REMARK 3.1. The assertion of Theorem 3. 14 with = H; gives us a

pure polynomial expansion oEvs [exp(zwz( e Suyy, [l 51| < €], but the
summation does not convergeMds— oo. On the other hand whetv= {[|Y ||z, <
V/ned} N By 1/2, the term of the expectation on the left-hand side (if one writes it
as a summation with respect k@ andky) converges a®v — oo, but instead of
giving us a pure polynomial expansion, it only gives us an approximation, for any
fixed N € N, which can be written as a polynomial plus a term which converges
to O faster than any polynomial order@as> oo, and a remainder term.

ExamMPLE 3.15. For example, wheN =1, since

[exp(z\llz(Y Y))E [(Z\/_ek(xl)ek(n)gﬂ

and

det(/y — W) Y2 =EY [exp(% 3 akek(Y)2>]

k=1

as we claimed before, Theorem 3.14 gives us that there exigts>af such that
foranye € (0, &g,

Sn

(5 ool ) |5

n
— EY [exp( Zakek(Y) )

k=1

1/ 2
X (_é ( Z akek(Y)2>
k=1

1

342
1 o0

+ EEV0|:§(Z:./akek(xl)ek(y)) :|
"Nz

< 8:| —det/y — lIJZ)_l/Z)

B

N 4
+ %E”{(Z \/CTkek(Xl)ek(Y)> D}

k=1
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asn — 00.

4, Higher orders. The study of (2.3) is easy. First, as we observed in
Section 1,5 i Y in law, whereY is the random variable defined there (or in
Section 3). Next, sinceb is four times continuously Fréchet differentiable by
our assumption, we get thats and W4 are bounded, so there exist functions
K3, K4:B x B — R which are bilinear, symmetric and bounded such that
(W3(y, y. )| < llylsKa(y. y) and|Wa(y. y. y. )| < llyl5Ka(y. y) foranyy € B.
Also, by our Assumption A5, there exist constasgs> 0 andCs > O such that
|Rs(x*, y)| < IlylI3Ks(y, y) for any y € B with ||yllz < So. Now, by using the
fact that|e* — 1| < |x|e!*l and|e* — 1 — x| < |x|2¢M! for anyx € R, we get that on
the set{|| 35 < e},

(ool () nne(er. 2))) 1) - 2 (32))
(o grw((G)) 1) - ae((5))

el (G ) o(ons(v+2)) 1)
et S ) el (2 3)

+exp<—szf<< Seston( 33

L2 2

Sn

(5 )
NNV
which converges to 0 as— oo, vgg’oo-a.s. Moreover, by Proposition 3.2, for any
p > 1, there exists ar > 0 such that for any < (0, go], the right-hand side above

is L? (v§>)-bounded fon € N.
Also,

Sy Su S
exp(s' \113<— -l —”)) -1 asn — oo, 1™ -a.s,

and for anyp > 1, there exists amg > 0 such that for any € (0, go], it is
L?-bounded on the SQH%IIB <eg}forneN.

Therefore, we have the following fact concerning (2.3): there exists a constant
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g0 > 0 such that for any € (0, &o],

Su Sp S
B w,( 2" ") LI (_",_", _")>
[eXp(Z 2( 3! n n

Sy S, Sy Sy . S Sn
xn| ex \Il4——,—,— +nRs(x*,— ) ) =1),||—| <e¢
4! n n n n nlp
1
N EE[el/ZWY’Y)\m(Y, Y,Y,Y)] asn— oo.

5. Third order. We deal with the term (2.2) in this section.

First, as claimed in Section 4, sincks is a bounded operator, there exists
a function K3: B x B — R which is bilinear, symmetric and bounded such
that |W3(y, y, y)| < llyllsK3(y,y) for any y € B. So by using the fact that

3
le¥ —1—x — |<e|xH A, itis easy to see that

e ol el 1 1))
(onlz () -2
L) AR
<2 o e 7 f>)3' (5 7))

<alal () 2, <o)

and the expectation on the right-hand side above is bounded 4ax if ¢ > 0

is small enough, by Proposition 3.2. Therefore, we get that there exists-a0

such that for any € (0, g], the left-hand side above converges to G as oo.
Also, as observed in Section % — Y in law asn — oo, whereY is the

random variable defined there (or in Section 3). Therefore, there exists-=a®
such that for any € (0, g], asn — oo,
< ]
n g
Sn

ol S5 )
= <8}

e oo G )l () )

1
_ —
2(3N2

Sn

n

<]
B

Sn

E[e"2" 1/ 205(1, ¥, V)?],
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where in the last line, we used Proposition 3.1 and the general fact that a.s.-
convergence anfi”-boundedness for some> 1 imply L1-convergence.
Therefore, we only need to study the term
< ]
B

Lol (5
= G VAEE” [EY[exp<Z~/_ek(f>ek(Y)>} ((%)S)

n
<é&|,
B }

n

Sn

n

for ¢ > 0 small enough, wherg,, ¢;, k € N, andY are as defined in Section 1.
First, and similarly as in Section 3, we have the following three propositions
(with the same notation as there).

ProOPOSITIONS.1. Thereexistsaeg > 0 such that for any ¢ € (0, gg] and any

g1 >0,
Sn S Sn Su S
e el vl e o)) (G e )
2 2\ u)) P\ e

S S
=], ==t <-l]

n lip n l Hy
converges to 0 exponentially asn — oc.

PrROOFE The proof goes in the same way as the one of Proposition 3.3. (We
remark again tha¥z is bounded by our assumption.)

PROPOSITIONS.2. There exists an gg > 0 such that for any ¢ € (0, gg] and

any§ > 0,
<eé|,
Hy

ﬁEY[EvE‘? [exp(Zfek(f)ek(Y>)w3((j’%)3),
1Y Mgy > ﬁea}

Sn

n

converges to 0 exponentially asn — oc.

PrRoOOF It suffices to remark that < 17’ ”Hl on the sei{IIYMIIHl > /ned).
The proof goes then in the same way as the one of Proposition3.3.
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PrROPOSITIONS.3. Thereexistsa §g > 0 such that for any § € (0, §p] and any

>0,
=&,
Hy

\/EEY|:E”5® |:eXp<Z\/_ek(\/»)ek(Y)>‘1/3((f/ﬁ)3>,
Y™ |, < ﬁsa}

Sn

n

converges to 0 exponentially asn — oo.

PROOF The idea is the same as before, except that this time, we have
215113, onthe set|| S ls,, > ). O

By the above results, we only need to discuss the asymptotic expansion in
powers of-» asn — oo of

%ﬁEY[E%@ [em(Z\/_€k<\/—)ek(Y)>‘I’3<<jﬁ)3)}
Y™ |, < ﬁes}

for e > 0 and§ > 0 small enough.
In the same way as for Proposition 3.8, we have the following.

PROPOSITIONS.4. For any &£ > 0,
Vo
E {E {exp<ﬁk§ l«/akek(Xl)ek(Y))} ,

{||YM||H1 </nes} N B f] —0
asn — oo, faster than any polynomial order. [

Therefore, we only need to discuss the asymptotic expansion of

s o - S o 3]

IYM|| gy < /nes}n Bn,l/2:|
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for ¢ > 0 and§ > 0 small enough. We notice that this expectation can be

decomposed as follows:

EEEY |:E 0 [exp(Z fek<f)ek(Y)>W3(Sn, Sn,s Sn):|

3tn =1
IYM ||y < /nes}n Bn,l/Z]

{IYM|| gy < /nes}n Bn,1/2:|

1 s s Sy
+ E(n — 1)EY|:E"39 [exp(Z \/a_kek( ﬁz)ek(y)>]

x Evé?z[exp(ii a ek< f>ek(Y)>

(5.1)
x W3(X1, X2, Xz)],

(1Y M g, < /nes) N Bn,1/2:|
1
+ 5(7’! —D(n—-2
00 ad Sy—
x EY[E%@ [exp<2@ek( ﬁs)ek(mﬂ

3 o Xi
X Evg)s |:exp(z Z \/Cl_kEk(ﬁ>ek(Y)>\p3(Xl, X2s X3):|v

{IYM] g, < V/nes} N Bn,l/Z]-

From now on, we study each of the three terms above. As before, we show the
convergence for a.&/; then with the fact that there existspa> 1 such that the
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three integrands in (5.1) ae” (with respect to the distribution df)-bounded

on the sef||[YM | g, < /nes} N B, 1/2 with respect to: € N, and the dominated
convergence theorem, we get our assertion. The proof difheoundedness (for
somep > 1) is similar to the one given before, and therefore we will omit it.

It is easy to see by Theorem 3.14 that for Ze.-

I(EVO[exp<Zfek(f)ek(Y)>} —exp(%gakEk(Y)z»
~ 3
—>exp< Zakek(Y)> E”O[(Zﬁek(Xl)ek(Y))}
k=1

k=1
asn — oo. Hence, fori =1, 2, 3,

(5.2) EY |:exp( Z J—ek<\/_>ek(Y)>:| — exp(% Z akek(Y)2>
k=1

and

ﬁ(l— EYO [exp(lgzl\/_ek<[)ek(Y))]i) — 0.

Therefore,

ﬁ(Evf‘? [exp<2¢_ek( 7 )ek(Y))} —exp(%gakek(nZ))
_f(Evo[exp(Zfek(f)ek(Y)>]n—exp(%kéakek(mz))
ol £ (22|

xf(l E”O[exp<2fek(f>ek(Y)>]>
[ele) &) 3
%exp( Zakek(Y)2>E”°[(ZM@k(Xl)Ek(Y)) ]
k=1

k=1
asn — oo.
The first term in the decomposition (5.1) converges to

1
—EY [exp( > ager(Y) )} E™[W3(X1, X1, X1)],

|
3! k=1
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by (5.2) and the easy fact that

E"{exp(Zfek<f>ek(Y))W3(X1 X1, Xl):|

— EY[W3(X1, X1, X1)] asn — o0.

For the second term in the decomposition (5.1), we notice that sinces
trilinear andvg has mean 0, we have thAt°[W3(X1, -, -)] =0, so

ﬁEvt?z[exp<[ZZJ_ek(X )ek(Y)>\Ij3(Xl,X27X2):|
i=1k=1

N Evgbz |:< Z \/a_kek(Xl)ek(Y)) W3(X1, Xo, Xz):| asn — oo.

Moreover, since

[ (% Zakek(Y)z)ej(Y):| =0 forjeN,

we have also that

nEY exp }Zakek(Y)z
2k:1

1
x E'6° [exp< [ZZ\/a_ rer(X; )ek(Y))lng,(Xl, Xa, Xz)}

i=1k=1

(Y™ gy, < V/nes) 0 Bn,1/2:|
— EY {exp(% > akek(Y)Z)
k=1
x E'S [( 3 @ekm)ekm)

k=1

X (Z Ja_kek(x2>ek(Y>) W3(X1, Xo, xg)ﬂ

k=1

o 2
+lpr [exp(EE"0 [(Z «/Clkek(Xl)ek(Y)> D
2 2 k=1

00 2
X EV?2[<Z@ek(X1)ek(Y)> W3(X1, Xo, XZ):|:|-

k=1
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Therefore, we have that the second term of (5.1) is equal
-2
1n—1 o 1 "
Y| | B exp| <= 3 Varer (Xex(Y)
2 n VD

—exp( > ager(Y) ))

k=1

e

2 oo
x JHE"" [eXp( > «/@ek(Xi)ek(Y)> V3(X1, X2, Xz)},

miz1k=1

IYM g, < V/nes}n Bn,1/2:|

1n-1
+§nn nEY[eXp< Zakek(Y))

k=1

% V6" |:exp( T Z Z Varer(X; )ek(Y)) W3(X1, X2, X2):|

i=1k=1

IYM |l g, < V/nes}n Bn,1/2:|

3
1 00
- —2,3,EY[6XD< > arer(Y) )E”°|:<ZA/_akek(X1)ek(Y)> }
' k=1

k=1

X EV?Z[( Z \/a_kek(Xl)ek(Y)) W3(X1, Xo, X2)j|]

k=1
1 1
x B [( > @ek(Xﬂek(Y))
k=1

x ( > \/CTkek(XZ)ek(Y)> W3(X1, X2, Xz)ﬂ

k=1

1
+3 [exp( Zakekm)

00 2
X Evg@2 |:( Z \/chek(Xl)ek(Y)) W3(X1, Xo, X2):|:|-

k=1
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The third term of (5.1) can be dealt with in the same way. We have that

3 ™
nI2EYS [exp(i Y3 Vake (Xi>ek(Y)> W3(X1, Xo, X3>}

nil1k=1

— E”?3|:

3 %)
( Z \/a_kek(X,')ek(Y)> W3(X1, X2, Xs)]
=1

k=1

1

and

2.7 18 2
n“E [exp(i kg:lakek(Y) )

1 3 o
x EY6° [exp(— > Ja_kek(Xi)ek(Y)> W3(X1, X2, Xs)}
ﬁi:lk:l

{IYM g, < V/nes}tn Bn,1/2:|

— 3EY [exp(% Z akek(Y)2>

k=1

X Evg%[( Z \/chek(Xl)ek(Y)> ( Z Mek(Xz)ek(Y))
k=1 k=1

00 2
x (Z Ja_kek(X3)ek(Y>> W3(X1, X2, Xs)ﬂ-

k=1
Therefore, the third term of (5.1) is equal
1n—-—1D(n—-2
3l n?

00 n—3
xE [ﬁ (E“(5® ; [exp(i > Ja_kequ)ek(Y)ﬂ
‘/ﬁ k=1
1 2
— exp > Zakek(Y)
k=1
x n32ES’ [exp(i Yy Meux,-)ekm) W3(X1, Xa, Xs)},

ﬁ i=1lk=1

IYM|| gy < /nes}n Bn,l/2j|
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1n—-—1D(n—-2
3 n?

1 o0
2EY == Y)?
XN exp| 2k:1akek( )

1
< Ev6° [eXp(f Z Z Jager(X; )ek(Y)> W3(X1, X2, X3)}

i=1k=1

{llYAMIIHl < /nes}n Bn,l/z]
l 1 o0 o0 3
WEY[ (E Zakek(Y)z)E‘)OKZ\/a_kek(x,-)ek(Y)> :|
k=1 k=1
3 )
x E% 3[1‘[(2 Ja_keux,-)ek(Y)) W3(X1, X, X3>H

i=1\k=1

1
+§Ey[exp< Zakek(Y) )

k=1

X Evg33 |:< Z \/a_kek(xl)ek(y)> ( Z «/Cl_kek(XZ)ek(Y))
k=1 k=1

00 2
x (Z Mek(xs)ek(Y)) W3(X1, X2, XS)H’

k=1

asn — oo.
In conclusion, we have proven the following.

LEMMA 5.5. Thereexistsan gg > 0 such that for any ¢ € (0, &g),

e o (33 o35 )) )

Sn i|
<e€
B

n

= 5@y E[e"2 /2y, v, ¥)?]

1
+ 3'EY [exp( > ager(Y) )}E”O[%(Xl, X1, X1)]

k=1
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o0 R °
+ %E{exp(% Zakek(Y)Z)E”o[(Z «/@ek(xl)ek(y)) }
.3 pae k=1

X Eu?Z[(Z Mek(Xl)ek(Y)> W3(X1, X2, XZ)H

k=1

1 1
+ EEY [exp(E Zakek(Y)Z)

k=1

x B [( > Ja_kek<xl)ek(Y>)
k=1

x (Z mek(Xz)ekm) W3(X1, Xo, Xz)ﬂ

k=1

1 1
+ ZEY [exp(i Zakek(Y)z)

k=1

00 2
X Evt?z[(Z@ek(Xl)ek(Y)) W3(X1, Xo, X2)]:|

k=1

o0 o0 3
b B | exp( £ S a2 ) | (3 Ve (Xpex ()
3 23 k=1

3 )
x EV?S[H ( Z \/a_kek(X,')ek(Y)> W3(X1, X2, X3)H

i=1\k=1
1, 1 2
+5E [exp<§ ];akek(y) )
X EV?3[<Z \/a_kek(Xl)ek(Y)) (Z \/a_kek(XZ)ek(Y))
k=1 k=1

00 2
x ( > Jaiex (Xs)ek(Y)> W3(X1, X2, X3)H-

k=1
This concludes the proof of Theorem 1.3.
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