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ASYMPTOTIC EXPANSIONS FOR THE LAPLACE
APPROXIMATIONS OF SUMS OF BANACH

SPACE-VALUED RANDOM VARIABLES

BY SERGIO ALBEVERIO AND SONG LIANG1

University of Bonn and Tohoku University

Let Xi , i ∈ N, be i.i.d.B-valued random variables, whereB is a real
separable Banach space. Let� be a smooth enough mapping fromB into R.
An asymptotic evaluation ofZn = E(exp(n�(

∑n
i=1 Xi/n))), up to a factor

(1 + o(1)), has been gotten in Bolthausen [Probab. Theory Related Fields
72 (1986) 305–318] and Kusuoka and Liang [Probab. Theory Related Fields
116 (2000) 221–238]. In this paper, a detailed asymptotic expansion ofZn

asn → ∞ is given, valid to all orders, and with control on remainders. The
results are new even in finite dimensions.

1. Introduction. Let (B,‖ · ‖B) be a Banach space andµ be a probability
measure onB. We assume that the smallest closed affine space that contains
suppµ is B. Moreover, we assume the following:

ASSUMPTIONA1. There exists a constantK1 > 0 such that∫
B

exp(K1‖x‖2
B)µ(dx) < ∞.

(This is satisfied if, e.g.,µ is a Gaussian measure andK1 > 0 is sufficiently
small, by Fernique’s estimate. See, e.g., [20].)

Let � :B → R be a five times continuously Fréchet differentiable function
satisfying the following:

ASSUMPTIONA2. There exists a constantK2 > 0 such that

�(x) ≤ K2(1+ ‖x‖B) for all x ∈ B.

We remark that this is a one-sided condition; it is satisfied, for example, if� is
negative for‖x‖B → ∞.

Let Xn andSn, n ∈ N, be the random variables defined byXn(x ) = xn and
Sn( x ) = ∑n

k=1 xk for anyx = (x1, x2, x3, . . . ) ∈ BN.
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We are interested in the behavior of

Zn ≡ Eµ⊗∞
[
exp

(
n�

(
Sn

n

))]
asn → ∞,

whereEλ stands for the expectation with respect to the measureλ, andµ⊗∞ is the
product of|N| copies ofµ [corresponding to the distribution of the(Xn)n∈N].

By Donsker and Varadhan [13], we have that

lim
n→∞

1

n
logZn = sup

x∈B

{�(x) − h(x)},

whereh is the entropy function ofµ:

h(x) = sup
φ∈B∗

{φ(x) − logM(φ)}, x ∈ B,

B∗ is the dual space ofB andM(φ) = ∫
B eφ(x)µ(dx) for anyφ ∈ B∗.

It has been shown by Bolthausen [8] that there is at least onex∗ ∈ B with
�(x∗) − h(x∗) = supx∈B{�(x) − h(x)}, and the setK = {x ∈ B;�(x) − h(x) =
supB{� − h}} is compact. Also, we assume the following, as in [8] and [21].

ASSUMPTION A3. There is a uniquex∗ ∈ B with �(x∗) − h(x∗) =
supx∈B{�(x) − h(x)}.

This is satisfied, for example, if� is strictly concave, sinceh is always convex
by the definition of it.

We will usex∗ exclusively for this point.
Let ν be the probability measure onB given by

ν(dx) = exp(D�(x∗)(x))µ(dx)

M(D�(x∗))
,

whereD means the Fréchet derivative. As has been shown by Bolthausen [8], the
following proposition holds.

PROPOSITION1.1. Under Assumptions A1–A3,

x∗ =
∫
B

xν(dx),(1.1)

h(x∗) = D�(x∗)(x∗) − logM
(
D�(x∗)

)
.(1.2)

Let ν0 be the 0-centered measure associated withν, that is,ν0 = νθ−1
x∗ , where

θa :B → B is defined byθa(x) = x − a, x ∈ B.
Let �(ϕ,ψ) = ∫

B ϕ(x)ψ(x)ν0(dx) be the covariance (underν0) of ϕ andψ for

anyϕ,ψ ∈ B∗. Then� becomes an inner product onB∗. Let H ≡ (B∗�
)∗, where
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B∗�
means the completion ofB∗ with respect to�. (It has been shown in [21] that

H can be regarded as a dense subset ofB.)
The following holds, as shown in [8]:

D2�(x∗)
(
ι(φ), ι(φ)

) ≤ �(φ,φ) for anyφ ∈ B∗,

where ι(φ) ≡ ∫
B φ(x)xν0(dx), φ ∈ B∗. From this, we see that all of the

eigenvalues of the symmetric operatorD2�(x∗)|H×H [given by the restriction
of D2�(x∗) to H × H ] are not greater than 1. We assume the following as in
[8] and [21].

ASSUMPTION A4. All of the eigenvalues ofD2�(x∗)|H×H are strictly
smaller than 1.

This is a nondegeneracy condition (depending on both� andµ), which says
that� − h has a nonvanishing curvature at the pointx∗ (see [8]), or, by the words
of [23], means that the Hessian of� is strictly positive definite. This condition
also implies that the determinant appearing in the following Proposition 1.2 is
different from 0. In the sense of the theory of singularities of maps (see, e.g., [5,
26]) this is a genericity condition (i.e., if it were not satisfied for a given�, a “small
perturbation” of� would make it satisfied; see, e.g., [24]).

Bolthausen [8] and Kusuoka and Liang [21] studied the leading term of
exp(−n(�(x∗) − h(x∗)))Zn asn → ∞. In particular, [21] gives us the following.

PROPOSITION 1.2. Let Assumptions A1–A4 be satisfied, and assume some
technical condition for controlling the third remainder of � in the Taylor
expansion around x∗ (see [21], (A5) for the explicit expression of this condition,
which will be replaced by a stronger Assumption A5). Then we have

lim
n→∞ exp

(−n
(
�(x∗) − h(x∗)

))
Zn

= exp
(∫

B
D2�(x∗)(y, y)ν0(dy)

)
det2

(
IH − D2�(x∗)

)−1/2 ≡ C0(x
∗).

Note that both [21] and our present paper do not assume the so-called “Central
Limit Theorem Assumption” used in [8], which restricts the spaces.

Now it is a natural problem to investigate the more precise asymptotic behavior
of Zn as n → ∞, beyond the leading term. This does not seem to have been
discussed before and is entirely in the spirit of corresponding investigations for
the case of real-valued random variables, where one wishes to go beyond the
functional and central limit theorem, that is, in the sense of Edgeworth expansions,
for a certain functional of the normalized sum variablesSn/

√
n; see, for example,

[7, 18, 19] and references therein. Even in the case of real random variables,
our results, however, are not reduced to known results, because of the form of
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our functionφ; see Remark 1.4 below. The aim of this paper is to answer this
question in our general setting of Assumptions A1–A4, adding Assumptions A5
and A6 (which just are a little stronger than what follows from Assumptions
A1–A4).

We state now the condition implying the one from [21] mentioned in
Proposition 1.2.

ASSUMPTIONA5. There exists a constantδ0 > 0 and a bilinear, symmetric,
bounded functionK5 :B × B → R such that

|D5�(x)(y, y, y, y, y)| ≤ ‖y‖3
BK5(y, y)

for anyx ∈ B with ‖x − x∗‖B < δ0 and anyy ∈ B.

We remark that this implies the technical condition A5 in [21] about the
third remainder of the Taylor expansion of�, so that in particular, we can use
Proposition 1.2 under the sole Assumptions (A1)–(A5).

Assumption A5 is satisfied if, for example,B is a separable real Hilbert space.
Actually, if B is a real Hilbert space, writing the inner product ofB as(·, ·)B , then
we can just takeK5(x, y) = C(x, y)B for x, y ∈ B, with C the supremum of the
operator norm ofD5�(x) on {x ∈ B; ‖x − x∗‖ ≤ δ0}.

For the sake of simplicity, we denoteDi�(x∗) by �i , i = 2,3,4. We have
by [21] that �2|H×H is a Hilbert–Schmidt operator, hence the corresponding
resolvent set consists only of eigenvalues. We shall denote the eigenvalues byak ,
k ∈ N, and the corresponding eigenfunctions byek, k ∈ N. Without loss of
generality, we may assume thatek, k ∈ N, consists of an orthonormal base (ONB)
of the dualH ∗ of H . Letfk, k ∈ N, be the corresponding ONB ofH . Also, by [21]
(for thosek ∈ N with ak 
= 0), we may assume thatek ∈ B∗.

Then we have

�2(x, y) =
∞∑

k=1

akek(x)ek(y)(1.3)

for any x, y ∈ H . We remark at this place that by Minlos’ theorem, the same
equation holds forν0-a.s.x, y ∈ B if �2|H×H is a nuclear operator, that is, if∑∞

k=1 |ak| < ∞.
Now, we are able to formulate our last assumption.

ASSUMPTION A6. There exists a bilinear, symmetric, bounded function
�̃2 :B × B → R, and a monotone nonincreasing sequence of positive numbers
δN,N ∈ N, that converges to 0 asN → ∞ such that for anyN ∈ N,∑

k>N,ak>0

ake
⊗2
k ≤ δN�̃2.
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REMARK 1.1. Assumption A6 implies that
∑∞

k=1 |ak|ek ⊗ ek is well defined
and gives a continuous operator onB ×B. (Actually, in this case, we have that both∑∞

k=1 ake
⊗2
k |H×H and

∑
ak>0 ake

⊗2
k |H×H , and hence also

∑∞
k=1 |ak|e⊗2

k |H×H , are
continuous with respect to theB-norm, so we can extend them in a continuous way
to the wholeB.) Therefore,

∑∞
k=1 |ak| < ∞, that is,�2|H×H is a nuclear operator,

and hence as already remarked above, (1.3) holds forν0-a.s.x, y ∈ B.

We emphasize here that{ak}k∈N and {ek}k∈N are eigenvalues and the corre-
sponding eigenfunctions of�2 acting inH , instead ofB. And B andH are differ-
ent even ifB is a Hilbert space.

We remark that Assumption A6 is satisfied, for example, if in the representation
(1.3) of �2 = D2�(x∗), there is only a finite number ofak which are strictly
positive, or more generally, if there exists ap > 1 such that

∑
k : ak>0 a

1/p
k e⊗2

k is
a bounded function onB × B. In other words, for any bounded positive-definite
functionA :B × B → R, write the eigenvalues and corresponding eigenfunctions
asbk andẽk , k ∈ N, that is,A = ∑∞

k=1 bkẽ
⊗2
k ; then it is easy to see thatbk → 0 as

k → ∞, so for anyp > 1, we have that
∑∞

k=1 b
p
k ẽ⊗2

k satisfies our Assumption A6.
See also the discussion following Theorem 1.3.

Also, see the end of this section for examples where all Assumptions A1–A6
are satisfied.

As in [21], let H1 be a Hilbert space that includesH as a subset with the
embedding being a Hilbert–Schmidt operator. (See Section 3 for the precise
definition and the construction ofH1 using Assumption A6.) Then there exists
an H1-valued Gaussian random variableY such that the distribution ofu(Y ) is
N(0,‖u‖2

H ∗) (the normal distribution with mean 0 and variance‖u‖2
H ∗) for any

u ∈ H ∗. Since

EY

[
Eν0

[∣∣∣∣∣
∞∑

k=1

√
akek(X1)ek(Y )

∣∣∣∣∣
2]]

= Eν0

[ ∞∑
k=1

|ak|ek(X1)
2

]

=
∞∑

k=1

|ak| < ∞

(with EY the expectation with respect to the distributionPY of Y ), we have
that |∑∞

k=1
√

akek(X1)ek(Y )| < ∞ for a.e.-(X1, Y ) with respect to the measure

µ ⊗ PY . We shall write
∑∞

k=1
√

akek(X1)ek(Y ) as(�
1/2
2 X1, Y ). We remark that

this may be a complex number since the coefficientsak may be negative. Also, it
is easy to see by the central limit theorem in Hilbert spaces (e.g., [4]) thatSn√

n
→ Y

in law underν⊗∞
0 asn → ∞, and since�2|H×H is nuclear under Assumption A6,

the constantC0(x
∗) in Proposition 1.2 is equal to det(IH − �2)

−1/2 (where det is
the Fredholm determinant).



ASYMPTOTIC EXPANSIONS FOR LAPLACE APPROXIMATIONS 305

Now, we are ready to give our main result, which provides a precise expression
for the coefficient of the termn−1 in the expansion ofUn := exp(−n(�(x∗) −
h(x∗)))Zn.

THEOREM 1.3. Under Assumptions A1–A6 above, we have that

lim
n→∞n

(
exp

(−n
(
�(x∗) − h(x∗)

))
Zn − det(IH − �2)

−1/2) = C2(x
∗),

where C2(x
∗) is the constant given by

C2(x
∗) = EY

[
e�2(Y,Y )/2

(
−1

8
�2(Y,Y )2 + 1

2(3!)2Eν0[(�1/2
2 X1, Y )3]2

+ 1

4!E
ν0[(�1/2

2 X1, Y )4]
)]

+ E

[
e�2(Y,Y )/2

(
1

2(3!)2�3(Y,Y,Y )2 + 1

4!�4(Y,Y,Y,Y )

)]

+ 1

3!E
Y [

e�2(Y,Y )/2]Eν0[�3(X1,X1,X1)]

+
4∑

k=3

1

(k − 1)!

× ∑
i1+···+ik−1+ik/3=2(k−2)

(
1

2

)∑k−1
j=1(ij−1)( 1

3!
)ik/3

× EY

[
e�2(Y,Y )/2Eν⊗k

0

×
[

k∏
j=1

(�
1/2
2 Xj,Y )ij �3(X1,X2,Xk−1)

]]
.

REMARK 1.2. Ellis and Rosen [17] considered the same problem of “largen

expansion,” but only for the Gaussian case, that is, whenµ is a Gaussian measure
on some functional space (e.g.,L2-space), and their method used the fact of having
Gaussian measures in an essential way. (This work continues previous works on
Laplace method for infinite-dimensional Gaussian measures by Pincus, Schilder
and Donsker and Varadhan. See references in [17] and, e.g., [3, 2].)

In the special case described in [17], that is, the Gaussian case, our Assump-
tion A6 can be rewritten as follows: LetA denote the covariance of the Gaussian
measureµ on Banach spaceB; then ourν0 is nothing butN(0,A). Consider
D2�(x∗)(A1/2·,A1/2·) :B × B → R. It is easy to see that this is a nuclear op-
erator. Let{ãk}k∈N and {uk}k∈N ⊂ B∗ be the eigenvalues and the corresponding
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eigenfunctions of it. Then as before, without loss of generality, we may assume that
{uk}k∈N consists of an ONB ofB∗. Also,A−1/2uk ∈ H ∗, and by extension if nec-
essary, we may assume thatA−1/2uk ∈ B∗. Now, since{ãk}k∈N and{A−1/2uk}k∈N
are the eigenvalues and the corresponding eigenfunctions ofD2�(x∗)|H×H , we
have that our Assumption A6 can be implied by the following condition: there
exists ap > 1 such that

∑
k∈N : ãk>0 ã

1/p
k (A−1/2uk)

⊗2 is a continuous function
onB × B.

We stress that our Theorem 1.3 holds without any assumption onµ to be a
Gaussian measure.

The basic idea of our proof is to use the fact that the Laplace transform of
a Gaussian measure is exp(quadratic form). With the help of this observation,
we then use the independence ofXk, k ∈ N, to discuss the a.s.-convergence and
the dominations, which then implies theL1-convergence, and hence the stated
asymptotic formula.

REMARK 1.3. As remarked before the statement of Theorem 1.3, this theorem
gives the coefficient of the termn−1 in the expansion ofUn = exp(−n(�(x∗) −
h(x∗)))Zn in powers of(1

n
)1/2. The same kind of result is not known, to the best

of the authors’ knowledge, even for the finite-dimensional case. By using the same
method, we can also give the explicit expression of the coefficientCN(x∗) of the
termn−N/2 for anyN ≥ 2 in the expansion ofUn, under natural assumptions about
the smoothness of� and an assumption corresponding to Assumption A5. We do
not write this explicit expansion in this paper, because of its complicated form,
but have limited ourselves to explaining our method, taking the case ofC2(x

∗) as
an example. We rather limit ourselves to give, in Section 3 (cf. Theorem 3.14),
the expansion, to all orders inn−N/2, of the term Eν⊗∞

0 [exp(n
2�2(

Sn

n
, Sn

n
)),

‖Sn

n
‖B < ε], for ε > 0 small enough. See Remark 1.4 and Section 3.

REMARK 1.4. In this paper we also give, in particular, the asymptotic
expansion ofEν⊗∞

0 [exp(n
2�2(

Sn

n
, Sn

n
)),‖Sn

n
‖B < ε], for ε > 0 small enough, to

any order, with controls on remainders (cf. Theorem 3.14 and Remark 3.1).
In the sense explained in Remark 1.3, we have got an analogue of the Edgeworth

expansion for the functional exp(1
2�2), with �2 a bilinear, symmetric and bounded

function on B × B that satisfies Assumptions A4 and A6, of the normalized
sum variablesSn/

√
n. The Edgeworth expansion with respect to the distribution

function in the finite-dimensional caseB = R has been obtained by many authors
(see, e.g., [7, 18, 19] and references therein), but all of these give only estimations
which are uniform with respect to the variable of the distribution function, and are
not usable in the case of our problem (because of the lack of integrability of the
function exp with respect to the Lebesgue measure). In fact, it is easy to see that,
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for example, in the expression

n

(
Eν⊗∞

0

[
exp

(
1

2
�2

(
Sn√
n
,

Sn√
n

))
,

∣∣∣∣�2

(
Sn√
n
,

Sn√
n

)∣∣∣∣ ≤ nε

]

− E

[
exp

(
1

2
�2(Y,Y )

)])
= 1

2

∫
y∈[−nε,nε]

ey/2n

(
P ν⊗∞

0

(
y ≤ �2

(
Sn√
n
,

Sn√
n

)
≤ nε

)

− P
(
y ≤ �2(Y,Y ) ≤ nε

))
dy

+ ne−nε/2P ν⊗∞
0

(∣∣∣∣�2

(
Sn√
n
,

Sn√
n

)∣∣∣∣ ≤ nε

)
− ne−nε/2P

(|�2(Y,Y )| ≤ nε
)

− nE

[
exp

(
1

2
�2(Y,Y )

)
, |�2(Y,Y )| ≥ nε

]
,

all the terms except the first one on the right-hand side decay exponentially as
n → ∞; hence a uniform estimation ofn(P ν⊗∞

0 (y ≤ �2(
Sn√
n
, Sn√

n
) ≤ nε) − P(y ≤

�2(Y,Y ) ≤ nε)) with respect toy ∈ [−nε,nε] is not enough to obtain the
asymptotic expansion we give in Section 3.

REMARK 1.5. In this paper we concentrate on providing asymptotic ex-
pansions for the nondegenerate case (much in the spirit of corresponding
investigations using Laplace method for functionals of Brownian motion, see,
e.g., [6]; it should, however, be stressed that we concentrate on limits of sums
of random variables, not on the limit of their distributions). We plan to extend the
results to the degenerate case in subsequent publications (for first results on the
limit theorem in this case, see [9] and [24]). The investigation of this paper be-
longs to the general area of probability theory which investigates the asymptotics
of processes. See, for example, [11, 14, 22, 25] for the connection with questions of
asymptotics for continuous-time processes. The latter two papers deal in particular
with the leading term of a Laplace approximation of diffusions, and [25] includes
Brownian motion on tori. Expansions beyond the leading term in these “contin-
uum cases,” in the generality of our present paper, have not yet been obtained; our
paper can also be seen as a first step in this direction.

There are also relations in motivations and some of the methods with other
works on asymptotics; see, for example, [1, 2, 10, 27], and references therein.

Finally, let us illustrate the use of our main result in a model of classical
statistical mechanics. Consider a system ofn particles, with the distribution of the
state of each particle being given by a probability measureµ0 on a compact setM .
Suppose that the interaction of the two particles with statesx, respectivelyy,
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is 1
n
V (x, y), x, y ∈ M , for some “nice” real-valued functionV on M × M , and

for given n ∈ N. Then the probability of the system to be in the state given by a
Borel subsetA of Mn is

∫
A νn(dx ) = Z−1

n

∫
A e

(1/n)
∑n

i,j=1 V (xi ,xj )
µ⊗n

0 (dx1 · · ·dxn),
Zn being the normalizing constant [x stands for(x1, . . . , xn) ∈ Mn]. Relevant
interesting physical quantities can be expressed as expectations of the form
Eνn[∑n

i1,...,im=1 f (Xi1, . . . ,Xim)], for some bounded continuous “observable”
function f :Mm → R. The problem of computation of such expectations as
n → ∞ can be generalized to the following one. LetB be equal to the topological
dual C(M)∗ of C(M), let Xi = δxi

and let µ be the image ofµ0 under δx

(looked upon as an element inB). Set�(R) ≡ ∫ ∫
V (x, y)R(dx)R(dy), F(R) ≡∫ · · · ∫ f (x1, . . . , xm)R(dx1) · · ·R(dxm), R being a positive measure onM . Then

the above problem can be seen as a particular case of the study of expectations of
the form

Eµ⊗∞[F((1/n)
∑n

i=1 Xi)e
n�((1/n)

∑n
i=1 Xi)]

Eµ⊗∞[en�((1/n)
∑n

i=1 Xi)]
asn → ∞, whereµ is a probability measure on some Banach space,F , � are
“good” functions onB andXi are i.i.d. random variables with distributionµ onB.
Since the method for the numerator is exactly the same as that for the denominator
(for F smooth), just with the expression more complicated, we limit ourselves to
the study of the denominator.

Let us give some more concrete example that satisfies all of our conditions. In
the example just given, letM = T(= R/2πZ), let µ0 be the uniform distribution
on T, µ0(dy) = 1

2π
dy, and let V (x, y) = CU(x − y), with U a continuous

function onT, andC a constant such that
∫ 2π
0

∫ 2π
0 V (x, y)2 dx dy ≤ π2. Then

it is trivial that D3� = 0, so our Assumption A5 is satisfied trivially. Also, the
corresponding entropy function is the relative entropy with respect toµ0 given by

h(R) =
∫ (

log
dR

dµ0

)
dR.

So by calculation, we have that the uniform distribution onT maximizes� − h,
so the eigenvalues ofD2�(x∗) are nothing but some (global) constant times the
coefficients of the Fourier expansion ofU . Therefore, Assumption A4 is satisfied
if C is small enough, and Assumption A6 is also satisfied whenever the Fourier
coefficients ofU are in�α for someα ∈ (0,1). Hence in this case all Assumptions
A1–A6 are satisfied, and so our theorem applies. Let us remark that this example
is related to the mean field model studied in, for example, [15], but for the
physically particularly interesting case of translation-invariant interactions. It can
also be considered as an generalization of the continuous spinning Ising model
with translation-invariant interactions.

Let us consider one more example. As before, letM = T, and letµ0 be any
probability onT. Let V : T × T → R be a continuous bounded function that can
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be written as

V (x, y) =
∞∑

k=1

akek(x)ek(y), x, y ∈ T,

with ak < 1
2, k ∈ N and{ek}k∈N an ONB ofL2

0(dµ0). [This implies in particular
that

∫
V (x, y)µ0(dy) = 0 for any x ∈ T.] Let �(R) = ∫∫

V (x, y)R(dx)R(dy)

for positive measuresR on T. (The corresponding entropy function is again
the relative entropy with respect toµ0.) It is easy to check thatµ0 maximizes
� − h. Therefore, the spaceH is given byH = L2

0(dµ0). So the eigenvalues and
the corresponding eigenfunctions ofD2�(µ0)|H×H are {2ak}k∈N and {ek}k∈N.
Therefore, our assumptions are satisfied if, in addition, there exists ap > 1 such
that ∑

k∈N : ak>0

a
1/p
k e⊗2

k : T × T → R is bounded.

The proof of Theorem 1.3 is given in Sections 2–5.

2. Preparation. Let us setλ ≡ �(x∗) − h(x∗) = supx∈B{�(x) − h(x)}, for
simplicity. Let R5(x, ·) denote the fifth remainder of the Taylor expansion of
�(x + ·) atx, that is,

R5(x, y) = �(x + y) − �(x) −
4∑

i=1

Di�(x)(y, . . . , y) for anyx, y ∈ B.

Then we have by [8] or [21] that for anyε > 0,

n
(
e−λnZn − det(IH − �2)

−1/2)
= n

(
Eν⊗∞

0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

)
+ n

3!�3

(
Sn

n
,
Sn

n
,
Sn

n

)
+ n

4!�4

(
Sn

n
,
Sn

n
,
Sn

n
,
Sn

n

)
+ nR5

(
x∗, Sn

n

))
,∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]

− det(IH − �2)
−1/2

)
+ ne−λnEµ⊗∞

[
exp

(
n�

(
Sn

n

))
,

∥∥∥∥Sn

n
− x∗

∥∥∥∥
B

> ε

]
,

and the second term on the right-hand side converges to 0 exponentially asn → ∞,
by using the large deviation principle (see, e.g., [21]). So we only need to deal with
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the first term on the right-hand side. We can rewrite it as

n

(
Eν⊗∞

0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

))
,

∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]
− det(IH − �2)

−1/2
)

(2.1)

+ nEν⊗∞
0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

))
(2.2)

×
(

exp
(

n

3!�3

(
Sn

n
,
Sn

n
,
Sn

n

))
− 1

)
,

∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]

+ Eν⊗∞
0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

)
+ n

3!�3

(
Sn

n
,
Sn

n
,
Sn

n

))
× n

(
exp

(
n

4!�4

(
Sn

n
,
Sn

n
,
Sn

n
,
Sn

n

)
(2.3)

+ nR5

(
x∗, Sn

n

))
− 1

)
,

∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]
.

We will work with (2.1) in Section 3, (2.2) in Section 5 and (2.3) in Section 4,
respectively.

3. Second order. In this section, we are going to give the asymptotic
expansion of the term (2.1) forn → ∞. The result is in fact stronger than
what is needed for the proof of our Theorem 1.3, and of interest in itself (cf.
Theorem 3.14). The basic idea is to first use the fact that the Laplace transform of
a Gaussian measure is exp(quadratic form), then to use the independence ofXk ,
k ∈ N, to discuss the a.s.-convergence and the dominations, which then implies the
L1-convergence.

In general, let(B,‖ · ‖B) be a Banach space and letXn, n ∈ N be a sequence
of i.i.d. B-valued random variables with mean 0. Letν0 denote their common
distribution, and we suppose that the following assumption is satisfied.

(H1) There exists a constantK1 > 0 such that∫
B

exp(K1‖x‖2
B)ν0(dx) < ∞.

We remark that (H1) is equivalent to our Assumption A1.
Let �2 :B × B → R be a bilinear, symmetric, bounded map satisfying

Assumptions A4 and A6 in Section 1.
For someε > 0 small enough, we want to know the asymptotic expansion of

Eν⊗∞
0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

))
,

∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]
, n → ∞.(3.1)

Let H be the Hilbert space with norm given by‖ ∫
B u(y)yν0(dy)‖2

H = ∫
u2 dν0.

The following two propositions follow easily from [21].



ASYMPTOTIC EXPANSIONS FOR LAPLACE APPROXIMATIONS 311

PROPOSITION 3.1. For any � :B × B → R which is bilinear, symmetric,
continuous, and satisfies the condition that all of the eigenvalues of �|H×H are
strictly smaller than 1, there exists an ε0 > 0 such that for any ε ∈ (0, ε0],

sup
n∈N

Eν⊗∞
0

[
exp

(
n

2
�

(
Sn

n
,
Sn

n

))
,

∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]
< ∞.

PROPOSITION 3.2. For any � :B × B → R which is symmetric, bilinear,
continuous, there exists a δ1 > 0 such that

sup
n∈N

Eν⊗∞
0

[
exp

(
δ1�

(
Sn√
n
,

Sn√
n

))]
< ∞.

By our Assumption A4,ak < 1 for all k ∈ N. Also, we haveak → 0 ask → ∞,
since�2|H×H is a Hilbert–Schmidt operator by [21] (and even nuclear under
our Assumption A6). Soak, k ∈ N, are uniformly separated from 1. Therefore,
there exists ap0 > 1 such thatp0 · ak < 1 for any k ∈ N. Let q0 > 1 be such
that 1

p0
+ 1

q0
= 1. Let N0 ∈ N be (large enough) so thatq0 · δN0 < δ1, where

δN is the sequence of positive numbers that converges to 0 which appeared in
Assumption A6, andδ1 > 0 is the constant which appeared in Proposition 3.2
applied to� = �̃2.

For anyN ∈ N, define‖ · ‖HN
by ‖x‖HN

≡ ∑
k : k≤N,ak>0 ek(x)2, x ∈ B. Then

we have the following.

LEMMA 3.3. For any N ≥ N0, there exists a constant ε0 > 0 such that for any
ε ∈ (0, ε0],

sup
n∈N

Eν⊗∞
0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

))
,

∥∥∥∥Sn

n
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HN

< ε

]
< ∞.

Also, for any ε1 > 0,

Eν⊗∞
0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

))
,

{∥∥∥∥Sn

n

∥∥∥∥
B

> ε1

}
∩

{∥∥∥∥Sn

n

∥∥∥∥
HN

< ε

}]
converges to 0 exponentially as n → ∞.

PROOF. The first assertion is easily proven since

Eν⊗∞
0

[
exp

(
n

2
�2

(
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n
,
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n

))
,

∥∥∥∥Sn

n
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HN

< ε

]

≤ Eν⊗∞
0

[
exp

(
p0

2

∑
k : k≤N,ak>0

akek

(
Sn√
n

)2
)
,

∥∥∥∥Sn

n

∥∥∥∥
HN

< ε

]1/p0

× Eν⊗∞
0

[
exp

(
q0δN�̃2

(
Sn√
n
,

Sn√
n

))]1/q0

,
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and the first term above is bounded forn ∈ N by Proposition 3.1 withB, H and�

replaced byBN , BN andp0 · ∑
k : k≤N,ak>0 ake

⊗2
k , respectively, and the second

term above is bounded forn ∈ N by Proposition 3.2 and the definition ofN0.
For the second assertion, chooser > 1 so thatr · p0 · ak < 1 for all k ∈ N, and

let s > 1 be such that1
r

+ 1
s

= 1. Then

Eν⊗∞
0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

))
,

{∥∥∥∥Sn

n

∥∥∥∥
B

> ε1

}
∩

{∥∥∥∥Sn

n

∥∥∥∥
HN

< ε

}]

≤ Eν⊗∞
0

[
exp

(
r

2
�2

(
Sn√
n
,

Sn√
n

))
,

∥∥∥∥Sn

n

∥∥∥∥
HN

< ε

]1/r

P ν⊗∞
0

(∥∥∥∥Sn

n

∥∥∥∥
B

> ε1

)1/s

.

The first term is bounded forn ∈ N by our first assertion applied tor · �2, and
the second term decays exponentially asn → ∞, by the large deviation principle,
the properties of the entropy functionh and the fact thatν0 is 0-centered. This
completes the proof of our lemma.�

We have by Lemma 3.3 that there exists anN0 ∈ N such that for anyN ≥ N0,
there exists anε0 > 0 such that for anyε ∈ (0, ε0], the asymptotic expansion
of (3.1) is the same as the asymptotic expansion of

Eν⊗∞
0

[
exp

(
n

2
�2

(
Sn

n
,
Sn

n

))
,

∥∥∥∥Sn

n

∥∥∥∥
HN

< ε

]
,(3.2)

for n → ∞.
From now on, we letM ≥ N0 be chosen and fixed. LetH1 be the Hilbert space

given by

H1 =
{
y =

∞∑
k=1

ek(y)fk; ‖y‖2
H1

=
∞∑

k=1

|ak|ek(y)2 < ∞
}
.

Since
∑∞

k=1 |ak| < ∞ by our Assumption A6, we have that there exists an
H1-valued Gaussian random variableY such thatu(Y ) ∼ N(0,‖u‖2

H ∗) for any

u ∈ H ∗ (“∼” meaning equality in law). Let ˆYM ≡ ∑
k : k≤M,ak>0 ek(Y )fk .

It is easy to see, using the Fourier transform of the Gaussian measure, that for
anyx ∈ B,

exp

(
1
2

∞∑
k=1

akek(x)2

)
= EY

[
exp

( ∞∑
k=1

√
akek(x)ek(Y )

)]
.(3.3)

We are going to use this fact to give the asymptotic expansion of (3.2) as
n → ∞.
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First, by Assumption A6, (3.3) and Fubini’s theorem, we have that

Eν⊗∞
0

[
exp
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( ∞∑
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HM
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.(3.4)

PROPOSITION3.4. There exists an ε0 > 0 such that for any ε ∈ (0, ε0] and
any δ > 0,

EY

[
Eν⊗∞

0
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exp
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]
,

‖ ˆYM‖H1 >
√

nεδ

]

converges to 0 exponentially as n → ∞.

PROOF. We have by Hölder’s inequality that for anyp,q > 1 such that
1
p

+ 1
q

= 1,∣∣∣∣∣EY
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)
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]
,
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≤ Eν⊗∞
0

[
exp

(
1

2

∑
k : k>M or ak<0

akek

(
Sn√
n

)2
)

× EY

[
exp

(
p · ∑

k : k≤M andak>0

√
akek

(
Sn√
n

)
ek(Y )

)]1/p

× P
(‖ ˆYM‖H1 >

√
nεδ

)1/q
,

∥∥∥∥Sn

n

∥∥∥∥
HM

< ε

]

= Eν⊗∞
0

[
exp

(
1

2

∞∑
k=1

akek

(
Sn√
n

)2

+ 1

2
(p − 1)

∑
k : k≤M,ak>0

akek

(
Sn√
n

)2
)
,

∥∥∥∥Sn

n

∥∥∥∥
HM

< ε

]

× P
(‖ ˆYM‖H1 >

√
nεδ

)1/q
.

The first factor in the latter expression is bounded forn ∈ N if p > 1 andε > 0 are
small enough, by Assumption A6 and Lemma 3.3, and the second factor decays
exponentially asn → ∞ for anyδ > 0. This gives our assertion.�

PROPOSITION3.5. There exists a δ0 > 0 such that for any δ ∈ (0, δ0] and any
ε > 0,

EY

[
Eν⊗∞
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converges to 0 exponentially as n → ∞.

PROOF. First notice that∣∣∣∣∣ ∑
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√
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k>M,ak>0

ake
⊗2
k ≤ δM�̃2
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by Assumption A6. So we have that∣∣∣∣∣EY

[
Eν⊗∞

0

[
exp

( ∞∑
k=1

√
akek

(
Sn√
n

)
ek(Y )

)
,

∥∥∥∥Sn

n

∥∥∥∥
HM

> ε

]
,

‖ ˆYM‖H1 <
√

nεδ

]∣∣∣∣∣
= Eν⊗∞

0

[
exp

(
1

2

∑
k : k>M or ak<0

akek

(
Sn√
n

)2
)

× EY

[
exp

( ∑
k : k≤M andak>0

√
akek

(
Sn√
n

)
ek(Y )

)
,

‖ ˆYM‖H1 <
√

nεδ

]
,

∥∥∥∥Sn

n

∥∥∥∥
HM

> ε

]

≤ Eν⊗∞
0

[
exp

(
δ

∑
k : k≤M,ak>0

akek

(
Sn√
n

)2

+ 1

2
δM�̃2

(
Sn√
n
,

Sn√
n

))
,

∥∥∥∥Sn

n

∥∥∥∥
HM

> ε

]

≤ Eν⊗∞
0

[
exp

(
2δ

∑
k : k≤M,ak>0

akek

(
Sn√
n

)2

+ δM�̃2

(
Sn√
n
,

Sn√
n

))]1/2

× P

(∥∥∥∥Sn

n

∥∥∥∥
HM

> ε

)1/2

.

Now, our assertion follows easily by Proposition 3.2 and the fact thatP(‖Sn

n
‖HM

>

ε) → 0 exponentially asn → ∞. �

In particular, we have the following.

PROPOSITION3.6. There exist constants M ∈ N, ε0 > 0 and δ0 > 0 such that
for any ε ∈ (0, ε0] and any δ ∈ (0, δ0],

sup
n∈N

Eν⊗∞
0

[
EY
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exp
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√
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In the same way, we get the following.
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PROPOSITION3.7. There exist constants p > 1, M ∈ N, ε0 > 0 and δ0 > 0
such that for any ε ∈ (0, ε0] and any δ ∈ (0, δ0],

sup
n∈N

Eν⊗∞
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[∣∣∣∣∣exp
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By (3.4) and Propositions 3.4, 3.5 and 3.7, we have that there exist constants
ε0 > 0 andδ0 > 0 such that for anyε ∈ (0, ε0] and anyδ ∈ (0, δ0], the asymptotic
expansion of (3.2) is the same as the asymptotic expansion of

EY
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for n → ∞.
For anyn ∈ N and anyξ > 0, letBn,ξ be the set given by

Bn,ξ :=
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Therefore,
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n,ξ ) ≤ P Y
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So we have the following.

PROPOSITION 3.8. P(Bc
n,ξ ) → 0 as n → ∞ faster than any polynomial

order. Therefore,
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]
→ 0

faster than any polynomial order.

PROOF. The first assertion is already proven. The second one follows then,
using Hölder’s inequality and Proposition 3.7.�

By Proposition 3.8, we have that for anyξ > 0, the asymptotic expansion of
(3.5) forn → ∞ is the same as the corresponding asymptotic expansion of

EY
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We can take, for example,ξ = 1
2 in the definition (3.6) ofBn,ξ . Let
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Then we have the following.

PROPOSITION3.9. For any N ≥ 2,
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for a.e.-Y , and for any q > 1, there exists an n0 ∈ N such that for any n ≥ n0,
the left-hand side above is dominated by an Lq (with respect to the distribution
of the Y )-random variable.

PROOF. We notice that|ex − ∑N
j=0

xj

j ! | ≤ e|x| |x|N+1

(N+1)! for anyx ∈ C.
First, as we claimed before,|∑∞

k=1
√

akek(X1)ek(Y )| < ∞, so we have that
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( ∞∑
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√
akek(X1)ek(Y )

)j)
→ 0

asn → ∞ for a.e.-(X1, Y ). Also, for anyη > 0, there exists ann0 ∈ N (actually,
we can take, e.g.,n0 = [ 1

η2 ] + 1) such that for anyn ≥ n0,∣∣∣∣∣nN/2
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1√
n
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)

1
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√
akek(X1)ek(Y )
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≤ 1√
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1
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(
2η
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k=1

√
akek(X1)ek(Y )

∣∣∣∣∣
)
.

Also, since

exp

(
2η

∣∣∣∣∣
∞∑

k=1

√
akek(X1)ek(Y )

∣∣∣∣∣
)

≤
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exp
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k : ak>0

√
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)

+ exp

(
−2η

∑
k : ak>0

√
akek(X1)ek(Y )
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×
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exp

(
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+ exp
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−2η

∑
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))
,
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we have that

EY

[
Eν0

[
exp

(
2η

∣∣∣∣∣
∞∑

k=1

√
akek(X1)ek(Y )

∣∣∣∣∣
)]q]

≤ Eν0

[
2exp

(
2q2η2

∑
k : ak>0

akek(X1)
2

)
2exp

(
2q2η2

∑
k : ak<0

akek(X1)
2

)]

= 4Eν0

[
exp

(
2q2η2

∞∑
k=1

|ak|ek(X1)
2

)]

≤ 4Eν0

[
exp

(
2q2η2

(
max
k∈N

|ak|
)
‖X1‖2

B

)]
< ∞

if η > 0 is small enough [so that 2q2η2(maxk∈N |ak|) ≤ K1].
Therefore, we get our assertion by the dominated convergence theorem.�

WhenN = 2, since

Eν0

[( ∞∑
k=1

√
akek(X1)ek(Y )

)2]
=

∞∑
k=1

akek(Y )2,

Proposition 3.9 gives us the following.

COROLLARY 3.10.

n1/2

∣∣∣∣∣n log(1+ Z) − 1
2

∞∑
k=1

akek(Y )2

∣∣∣∣∣(3.8)

is bounded in Lq (with respect to the distribution of Y ) for any q > 1 on the
set Bn,1/2.

PROOF. We notice that there exists a constantC > 0 such that

| log(1+ Z) − Z| ≤ C|Z|2 onBn,1/2 = {|Z| < 1
2

}
.

So

(lhs) of (3.8)

≤ n1/2|n log(1+ Z) − nZ| + n1/2

∣∣∣∣∣nZ − 1
2Eν0

[( ∞∑
k=1

√
akek(X1)ek(Y )

)2]∣∣∣∣∣
≤ Cn−1/2|nZ|2 + n1/2

∣∣∣∣∣nZ − 1
2Eν0

[( ∞∑
k=1

√
akek(X1)ek(Y )

)2]∣∣∣∣∣,
which is bounded inLq (with respect to the distribution ofY ) for any q > 1 by
Proposition 3.9. �
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PROPOSITION 3.11. There exist constants p1 > 1, ε0 > 0 and δ0 > 0 such
that for any p < p1, any ε ∈ (0, ε0] any δ ∈ (0, δ0] and any N ∈ N,∣∣∣∣∣nN exp

(
1

2

∞∑
k=1

akek(Y )2

)

×
(

exp

(
n log(1+ Z) − 1

2

∞∑
k=1

akek(Y )2

)
− 1(3.9)

−
2N∑
�=1

1

�!
(
n log(1+ Z) − 1

2

∞∑
k=1

akek(Y )2

)�)∣∣∣∣∣ → 0

for a.e.-Y , and the left-hand side above is Lp (with respect to the distribution

of Y )-bounded on the set {‖ ˆYM‖H1 <
√

nεδ} ∩ Bn,1/2.

PROOF. We notice that for anyN ∈ N, there exists a constantCN > 0 such
that ∣∣∣∣∣ez − 1−

2N∑
�=1

z�

�!
∣∣∣∣∣ ≤ CN(|ez| ∨ 1)|z|2N+1 for anyz ∈ C.

Therefore,

(lhs) of (3.9)≤ nN

(∣∣en log(1+Z)
∣∣ + ∣∣∣∣∣exp

(
1
2

∞∑
k=1

akek(Y )2

)∣∣∣∣∣
)

×
∣∣∣∣∣n log(1+ Z) − 1

2

∞∑
k=1

akek(Y )2

∣∣∣∣∣
2N+1

.

There exist constantsp > 1 andr > 1 such that(∣∣en log(1+Z)
∣∣ + ∣∣∣∣∣exp

(
1
2

∞∑
k=1

akek(Y )2

)∣∣∣∣∣
)

is bounded inLp·r (with respect to the distribution ofY ) on the set{‖ ˆYM‖H1 <√
nεδ}. (The assertion for the first term is by Proposition 3.7, and the assertion for

the second term is easy by Assumption A4.) Lets > 1 be such that1
r

+ 1
s

= 1. By
Corollary 3.10,

n1/2

∣∣∣∣∣n log(1+ Z) − 1
2

∞∑
k=1

akek(Y )2

∣∣∣∣∣
is bounded inLq (with respect to the distribution ofY ) for any q > 1 on the
setBn,1/2; in particular, it is bounded inLp·s (with respect to the distribution ofY )
on the setBn,1/2.

These give us our assertion.�
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PROPOSITION3.12. For any N ∈ N,

nN

∣∣∣∣∣
2N∑
�=1

1

�!
(
n log(1+ Z) − 1

2

∞∑
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akek(Y )2

)�

(3.10)

−
2N∑
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(−1)j−1

j
Zj − 1

2
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k=1

akek(Y )2

)�∣∣∣∣∣ → 0(3.11)

for a.e.-Y , and the left-hand side above is Lq (with respect to the distribution
of Y )-bounded on the set Bn,1/2 for any q > 1.

PROOF. We notice that|a� −b�| ≤ |a −b| ·�(|a|�−1+|b|�−1) for anya, b ∈ C
and any� ∈ N. So our assertion is easy since by Proposition 3.9 and Corollary 3.10,

n log(1+ Z) − 1
2

∑∞
k=1 akek(Y )2 andn

∑N+1
j=1

(−1)j

j
Zj − 1

2
∑∞

k=1 akek(Y )2 areLq

(with respect to the distribution ofY )-bounded on the setBn,1/2 for anyq > 1, and
for anyN ∈ N, there exists a constantCN > 0 such that∣∣∣∣∣nN

(
n log(1+ Z) − n

N+1∑
j=1

(−1)j−1

j
Zj

)∣∣∣∣∣ ≤ CN

1

n
|nZ|N+2

on the setBn,1/2, and|nZ| is Lq (with respect to the distribution ofY )-bounded
by Proposition 3.9 for anyq > 1. �

In the same way, by Proposition 3.9, we get the following.

PROPOSITION3.13. For any N ∈ N,

nN

∣∣∣∣∣
2N∑
�=1

1

�!
(
n
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j
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akek(Y )2
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1

�!
( 2N+2∑

m=3

n−(m/2)+1 1

m!E
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k=1

√
akek(X1)ek(Y )

)m]

+ n
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j=2

(−1)j−1

j

×
(

N+1∑
m=2

n−m/2 1

m!E
ν0

[( ∞∑
k=1

√
akek(X1)ek(Y )

)m])j)�∣∣∣∣∣
→ 0

as n → ∞ for a.e.-Y , and the left-hand side above is Lq (with respect to the
distribution of Y )-bounded for any q > 1.

In conclusion, we have proven the following.
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THEOREM 3.14. There exist constants ε0 > 0 and δ0 > 0 such that for any
ε ∈ (0, ε0], any δ ∈ (0, δ0] and any N ∈ N,
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→ 0 as n → ∞

for a.e.-Y . Moreover, there exists a p > 1 such that the left-hand side is Lp (with

respect to the distribution of Y )-bounded on the set {‖ ˆYM‖H1 ≤ √
nεδ} ∩ Bn,1/2

with respect to n ∈ N. Therefore, we get that for any ε ∈ (0, ε0] and any δ ∈ (0, δ0],
nN
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,A

]
→ 0 as n → ∞,

where the set A on the left-hand side above is either the whole set H1 or the set

{‖ ˆYM‖H1 ≤ √
nεδ} ∩ Bn,1/2.



ASYMPTOTIC EXPANSIONS FOR LAPLACE APPROXIMATIONS 323

PROOF. All has already been proven except for the final assertion with
A = H1, which is trivial since the expectation on the set({‖ ˆYM‖H1 ≤ √

nεδ} ∩
Bn,1/2)

c converges to 0 faster than any polynomial order asn → ∞ for any fixed
M ∈ N, which comes from the fact that the integrand is inLp for somep > 1
for any fixedN ∈ N, andP({‖ ˆYM‖H1 ≥ √

nεδ} ∪ Bc
n,1/2) → 0 faster than any

polynomial order asn → ∞, for anyδ > 0 and anyε > 0. �

REMARK 3.1. The assertion of Theorem 3.14 withA = H1 gives us a
pure polynomial expansion ofEν⊗∞

0 [exp(n
2�2(

Sn

n
, Sn

n
)),‖Sn

n
‖B < ε], but the

summation does not converge asN → ∞. On the other hand, whenA = {‖Y‖H1 ≤√
nεδ} ∩ Bn,1/2, the term of the expectation on the left-hand side (if one writes it

as a summation with respect tok1 andk2) converges asN → ∞, but instead of
giving us a pure polynomial expansion, it only gives us an approximation, for any
fixed N ∈ N, which can be written as a polynomial plus a term which converges
to 0 faster than any polynomial order asn → ∞, and a remainder term.

EXAMPLE 3.15. For example, whenN = 1, since

EY

[
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)
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and
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as we claimed before, Theorem 3.14 gives us that there exists anε0 > 0 such that
for anyε ∈ (0, ε0],
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asn → ∞.

4. Higher orders. The study of (2.3) is easy. First, as we observed in
Section 1, Sn√

n
→ Y in law, whereY is the random variable defined there (or in

Section 3). Next, since� is four times continuously Fréchet differentiable by
our assumption, we get that�3 and �4 are bounded, so there exist functions
K3,K4 :B × B → R which are bilinear, symmetric and bounded such that
|�3(y, y, y)| ≤ ‖y‖BK3(y, y) and|�4(y, y, y, y)| ≤ ‖y‖2

BK4(y, y) for anyy ∈ B.
Also, by our Assumption A5, there exist constantsδ0 > 0 andC5 > 0 such that
|R5(x

∗, y)| ≤ ‖y‖3
BK5(y, y) for any y ∈ B with ‖y‖B < δ0. Now, by using the

fact that|ex − 1| ≤ |x|e|x| and|ex − 1− x| ≤ |x|2e|x| for anyx ∈ R, we get that on
the set{‖Sn

n
‖B < ε},
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Sn√
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,

which converges to 0 asn → ∞, ν⊗∞
0 -a.s. Moreover, by Proposition 3.2, for any

p > 1, there exists anε0 > 0 such that for anyε ∈ (0, ε0], the right-hand side above
is Lp(ν⊗∞

0 )-bounded forn ∈ N.
Also,

exp
(

n

3!�3

(
Sn

n
,
Sn

n
,
Sn

n

))
→ 1 asn → ∞, ν⊗∞

0 -a.s.,

and for anyp > 1, there exists anε0 > 0 such that for anyε ∈ (0, ε0], it is
Lp-bounded on the set{‖Sn

n
‖B ≤ ε} for n ∈ N.

Therefore, we have the following fact concerning (2.3): there exists a constant
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ε0 > 0 such that for anyε ∈ (0, ε0],
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asn → ∞.

5. Third order. We deal with the term (2.2) in this section.
First, as claimed in Section 4, since�3 is a bounded operator, there exists

a function K3 :B × B → R which is bilinear, symmetric and bounded such
that |�3(y, y, y)| ≤ ‖y‖BK3(y, y) for any y ∈ B. So by using the fact that

|ex − 1− x − x2

2 | ≤ e|x| |x|3
3! , it is easy to see that
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and the expectation on the right-hand side above is bounded forn ∈ N if ε > 0
is small enough, by Proposition 3.2. Therefore, we get that there exists anε0 > 0
such that for anyε ∈ (0, ε0], the left-hand side above converges to 0 asn → ∞.

Also, as observed in Section 1,Sn√
n

→ Y in law asn → ∞, whereY is the
random variable defined there (or in Section 3). Therefore, there exists anε0 > 0
such that for anyε ∈ (0, ε0], asn → ∞,
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where in the last line, we used Proposition 3.1 and the general fact that a.s.-
convergence andLp-boundedness for somep > 1 imply L1-convergence.

Therefore, we only need to study the term

1

3!
√

nEν⊗∞
0

[
exp

(
1

2
�2

(
Sn√
n
,

Sn√
n

))
�3

((
Sn√
n

)3)
,

∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]

= 1

3!
√

nEν⊗∞
0

[
EY

[
exp

( ∞∑
k=1

√
akek

(
Sn√
n

)
ek(Y )

)]
�3

((
Sn√
n

)3)
,

∥∥∥∥Sn

n

∥∥∥∥
B

< ε

]
,

for ε > 0 small enough, whereak , ek , k ∈ N, andY are as defined in Section 1.
First, and similarly as in Section 3, we have the following three propositions

(with the same notation as there).

PROPOSITION5.1. There exists a ε0 > 0 such that for any ε ∈ (0, ε0] and any
ε1 > 0,
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}]
converges to 0 exponentially as n → ∞.

PROOF. The proof goes in the same way as the one of Proposition 3.3. (We
remark again that�3 is bounded by our assumption.)�

PROPOSITION5.2. There exists an ε0 ≥ 0 such that for any ε ∈ (0, ε0] and
any δ > 0,

√
nEY

[
Eν⊗∞

0

[
exp

( ∞∑
k=1

√
akek

(
Sn√
n

)
ek(Y )

)
�3

((
Sn√
n

)3)
,

∥∥∥∥Sn

n

∥∥∥∥
HM

< ε

]
,

‖ ˆYM‖H1 ≥ √
nεδ

]
converges to 0 exponentially as n → ∞.

PROOF. It suffices to remark thatn ≤ ‖ ˆYM‖2
H1

ε2δ2 on the set{‖ ˆYM‖H1 ≥ √
nεδ}.

The proof goes then in the same way as the one of Proposition 3.3.�
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PROPOSITION5.3. There exists a δ0 ≥ 0 such that for any δ ∈ (0, δ0] and any
ε > 0,

√
nEY

[
Eν⊗∞

0

[
exp

( ∞∑
k=1

√
akek

(
Sn√
n

)
ek(Y )

)
�3

((
Sn√
n

)3)
,

∥∥∥∥Sn

n

∥∥∥∥
HM

≥ ε

]
,

‖ ˆYM‖H1 <
√

nεδ

]

converges to 0 exponentially as n → ∞.

PROOF. The idea is the same as before, except that this time, we haven ≤
1
ε2‖ Sn√

n
‖2
HM

on the set{‖Sn

n
‖HM

≥ ε}. �

By the above results, we only need to discuss the asymptotic expansion in
powers of 1

n1/2 asn → ∞ of

1

3!
√

nEY

[
Eν⊗∞

0

[
exp

( ∞∑
k=1

√
akek

(
Sn√
n

)
ek(Y )

)
�3

((
Sn√
n

)3)]
,

‖ ˆYM‖H1 <
√

nεδ

]

for ε > 0 andδ > 0 small enough.
In the same way as for Proposition 3.8, we have the following.

PROPOSITION5.4. For any ξ > 0,

EY

[
Eν0

[
exp

(
1√
n

∞∑
k=1

√
akek(X1)ek(Y )

)]n

,

{‖ ˆYM‖H1 <
√

nεδ
} ∩ Bc

n,ξ

]
→ 0

as n → ∞, faster than any polynomial order. �

Therefore, we only need to discuss the asymptotic expansion of

1

3!
√

nEY

[
Eν⊗∞

0

[
exp

( ∞∑
k=1

√
akek

(
Sn√
n

)
ek(Y )

)
�3

((
Sn√
n

)3)]
,

{‖ ˆYM‖H1 <
√

nεδ
} ∩ Bn,1/2

]
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for ε > 0 and δ > 0 small enough. We notice that this expectation can be
decomposed as follows:

1

3!
1

n
EY

[
Eν⊗∞

0

[
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( ∞∑
k=1

√
akek

(
Sn√
n

)
ek(Y )

)
�3(Sn, Sn, Sn)

]
,

{‖ ˆYM‖H1 <
√

nεδ
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]

= 1

3!E
Y

[
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0

[
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( ∞∑
k=1

√
akek

(
Sn−1√

n

)
ek(Y )

)]

× Eν0

[
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( ∞∑
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√
akek

(
X1√

n

)
ek(Y )

)
�3(X1,X1,X1)

]
,

{‖ ˆYM‖H1 <
√

nεδ
} ∩ Bn,1/2

]

+ 1

2
(n − 1)EY

[
Eν⊗∞

0

[
exp

( ∞∑
k=1

√
akek

(
Sn−2√

n

)
ek(Y )

)]

× Eν⊗2
0

[
exp

( 2∑
i=1

∞∑
k=1

√
akek

(
Xi√

n

)
ek(Y )

)
(5.1)

× �3(X1,X2,X2)

]
,

{‖ ˆYM‖H1 <
√

nεδ
} ∩ Bn,1/2

]

+ 1

3!(n − 1)(n − 2)

× EY

[
Eν⊗∞

0

[
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( ∞∑
k=1

√
akek

(
Sn−3√

n

)
ek(Y )
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× Eν⊗3
0

[
exp

( 3∑
i=1

∞∑
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√
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(
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n

)
ek(Y )

)
�3(X1,X2,X3)

]
,
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√

nεδ
} ∩ Bn,1/2

]
.

From now on, we study each of the three terms above. As before, we show the
convergence for a.e.-Y ; then with the fact that there exists ap > 1 such that the



ASYMPTOTIC EXPANSIONS FOR LAPLACE APPROXIMATIONS 329

three integrands in (5.1) areLp (with respect to the distribution ofY )-bounded
on the set{‖ ˆYM‖H1 <

√
nεδ} ∩ Bn,1/2 with respect ton ∈ N, and the dominated

convergence theorem, we get our assertion. The proof of theLp-boundedness (for
somep > 1) is similar to the one given before, and therefore we will omit it.

It is easy to see by Theorem 3.14 that for a.e.-Y ,

√
n

(
Eν0

[
exp

( ∞∑
k=1

√
akek

(
X1√

n

)
ek(Y )

)]n

− exp

(
1

2

∞∑
k=1

akek(Y )2

))

→ exp

(
1

2

∞∑
k=1

akek(Y )2

)
1

3!E
ν0

[( ∞∑
k=1

√
akek(X1)ek(Y )

)3]

asn → ∞. Hence, fori = 1,2,3,

Eν0

[
exp

( ∞∑
k=1

√
akek

(
X1√

n

)
ek(Y )

)]n−i

→ exp

(
1

2

∞∑
k=1

akek(Y )2

)
(5.2)

and

√
n

(
1− Eν0

[
exp

( ∞∑
k=1

√
akek

(
X1√

n

)
ek(Y )

)]i)
→ 0.

Therefore,

√
n

(
Eν⊗∞

0

[
exp

( ∞∑
k=1

√
akek

(
Sn−i√

n

)
ek(Y )

)]
− exp

(
1

2

∞∑
k=1

akek(Y )2

))

= √
n

(
Eν0

[
exp
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√
akek

(
X1√

n

)
ek(Y )

)]n

− exp

(
1

2

∞∑
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akek(Y )2

))

+ Eν0

[
exp
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k=1

√
akek

(
X1√
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)
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)]n−i

× √
n

(
1− Eν0

[
exp
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√
akek

(
X1√
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)
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)]i)

→ 1

3! exp

(
1

2
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k=1

akek(Y )2

)
Eν0
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√
akek(X1)ek(Y )

)3]
,

asn → ∞.
The first term in the decomposition (5.1) converges to

1

3!E
Y

[
exp

(
1

2

∞∑
k=1

akek(Y )2

)]
Eν0[�3(X1,X1,X1)],
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by (5.2) and the easy fact that

Eν0

[
exp

( ∞∑
k=1

√
akek

(
X1√

n

)
ek(Y )

)
�3(X1,X1,X1)

]

→ Eν0[�3(X1,X1,X1)] asn → ∞.

For the second term in the decomposition (5.1), we notice that since�3 is
trilinear andν0 has mean 0, we have thatEν0[�3(X1, ·, ·)] = 0, so

√
nEν⊗2

0

[
exp
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]
asn → ∞.

Moreover, since

EY

[
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(
1
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)
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= 0 for j ∈ N,

we have also that
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Therefore, we have that the second term of (5.1) is equal

1
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The third term of (5.1) can be dealt with in the same way. We have that
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Therefore, the third term of (5.1) is equal
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In conclusion, we have proven the following.

LEMMA 5.5. There exists an ε0 > 0 such that for any ε ∈ (0, ε0),
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This concludes the proof of Theorem 1.3.
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