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THE BOREL–CANTELLI LEMMAS, PROBABILITY LAWS AND
KOLMOGOROV COMPLEXITY
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We formulate effective versions of the Borel–Cantelli lemmas using a
coefficient from Kolmogorov complexity. We then use these effective ver-
sions to lift the effective content of the law of large numbers and the law
of the iterated logarithm.

1. Introduction. Our aim is to show that ideas from Kolmogorov com-
plexity furnish tools that may be very useful for probability theory. In par-
ticular, we will use a coefficient which is naturally associated with every
Kolmogorov–Chaitin random sequence, to effectivize the Borel–Cantelli lem-
mas. The effectivized lemmas in their turn, lift the effective content of the law
of large numbers and the law of the iterated logarithm. Similar effectivizations
of many other probability laws should be possible.

2. Background. In 1966 Martin-Löf defined a set of sequences of
Lebesgue measure one, the Martin-Löf random sequences, which satisfy all
effective probability laws. Effective means here that the complement of the
set of sequences satisfying the probability law, must be covered by each of
a computably enumerable sequence of sets of intervals O1�O2� � � � such that
µ�Oi� < 2−i, where µ denotes the Lebesgue measure. Since all common prob-
ability laws can be written in this form or as a countable intersection of sets
of this form, all Martin–Löf random sequences satisfy laws such as the law of
large numbers and the law of the iterated logarithm. In particular, the defini-
tion of Martin–Löf allows us to replace the standard formulation of probability
theory:

P holds with probability one

with:

P holds for each (Martin–Löf) random infinite sequence ω,

for all effective predicates P. Since the Lebesgue measure of the Martin–Löf
random sequences is one, this increases the effectivity of the first statement.
Chaitin proposed to identify a different set of sequences (the Kolmogorov–

Chaitin random sequences, defined below) as the set of intuitively random
sequences. The definitions of Chaitin and Martin–Löf were shown to define

Received September 2000; revised January 2001.
AMS 2000 subject classifications. 68Q30, 60A05.
Key words and phrases. Effective Borel-Cantelli lemmas, Kolmogorov complexity, compress-

ibility coefficient, probability law.

1426



EFFECTIVE BOREL-CANTELLI LEMMAS 1427

the same set, by C. P. Schnorr, as refered to [4]. This means that every
Kolmogorov–Chaitin random sequences satisfies all effective probability laws.
For more details the reader is referred to the standard reference for Kol-
mogorov complexity, [2].

Notation 1. We follow the notation of �2��We will denote the set of natural
numbers by N� For ω an infinite binary sequence, we let ω1�n denote the initial
segment of ω of length n and let Sn�ω� denote the sum of the digits of ω1�n�

3. Definitions from Kolmogorov complexity. We will use the phrase
“given n we can effectively find f�n�” to mean that there exists an algorithm
which, on input n� will output f�n�� for all n�
The two definitions from Kolmogorov complexity that we will use, are the

following:

Definition 1. Let U be a universal prefix Turing machine �U is defined
on a prefix free set� which takes binary strings as inputs and gives as output
binary strings. Let x be a finite binary string. The prefix complexity K�x� of
x relative to U is the length of a shortest program for U which will output x
on the empty input.

Definition 2. An infinite binary sequence ω is Kolmogorov–Chaitin
random if there exists a natural number c such that K�ω1�n� > n − c for
all n�

Hence, by this definition, no initial segment ω1�n is the output, on the empty
input, of a program of length less than n− c� Or roughly, no initial segment of
ω is “compressible” by more than c. As mentioned above, the set thus defined
consists of exactly the Martin–Löf random sequences, hence in particular, has
measure one. This is somewhat surprising as no infinite binary sequence sat-
isfies the condition in the definition above if we do not require our program set
to be prefix free (i.e., we do not require that no program is an initial segment
of any other). Intuitively, the reason it works now is that we have fewer pro-
grams of a given length and the complexity of initial segments ω1�n of infinite
sequences in fact grows a bit quicker than the length n�

Definition 3. Let ω be random and let c�ω� be the smallest c for which the
condition in Definition 2 holds. We will call c�ω� the compressibility coefficient
of ω� We denote by Kc the set of infinite sequences ω for which c�ω� ≤ c�

We therefore have that for a random ω there exists (at least one) n such
that K�ω1�n� ≤ n − c�ω� but for no c > c�ω� do we have K�ω1�n� ≤ n − c for
any n�

4. The Borel–Cantelli lemmas. The Borel–Cantelli lemmas play the
central role in the proofs of many probability laws including the law of large
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numbers and the law of the iterated logarithm. We will use the above defined
compressibility coefficient to lift the effective content of the Borel–Cantelli
lemmas for those cases in which the associated sets are computably enumer-
able and have as Lebesgue measure of their union, a computable real. Recall
that

Definition 4. A binary real π is computable if there is an algorithm φ�
which on input n ∈ N� gives as output the first n digits in the binary expansion
of π� In case there are two possible binary expansions for a computable real
(e.g., 1�0 and 0�1̇) we choose the non-terminating expansion.

We state the lemmas in their conventional form:

Theorem 1 (Borel–Cantelli lemmas). LetA1�A2� � � � be an infinite sequence
of events each of which depends only on a finite number of digits of a binary
sequence. Denote the probability of Ak occurring by Pk�

(i) If
∑
Pk converges, then with probability one only finitely many of the

events Ak occur.
(ii) If the events Ak are mutually independent, and if

∑
Pk diverges, then

with probability one, infinitely many of the events Ak occur.

We will use the notationAi both for the eventAi and for the set of sequence
in which Ai occurs. Hence µ�Ai� will denote the Lebesgue measure of the set
of sequences for which Ai occurs. That is, µ�Ai� is the probability that Ai

occurs. When dealing with enumerations of intervals we will often view a
binary string x as the dyadic interval �0�x�0�x+ 2−�x���
We will now use the compressibility coefficient to prove the following effec-

tive forms:

Theorem 2 (Borel–Cantelli lemmas–effective forms). LetA1�A2� � � � be an
infinite sequence of events such that each of the events depends only on a finite
number of digits of a binary sequence. Suppose further that each of the sets Ai

is computably enumerable and that there is an algorithm φ which on input
�i� k� gives as output the kth interval in the enumeration of Ai� then�

(i) If
∑∞

i=1 µ�Ai� converges to a computable binary real π� then we can
effectively find, for each c ∈ N� an n�c� such that none of the events Am�m >
n�c� occur in any ω ∈ Kc.
(ii) If (a) the events Ak are mutually independent and

(b)
∑∞

i=1 µ�Ai� diverges, then we can effectively find, for each m and
c ∈ N� an n�c�m� such that at least one of the events An�m < n < n�c�m�
must occur for each ω ∈ Kc.

The idea in both parts of the proof will be that a sequence with fixed com-
pressibility c cannot be part of a small set of low Kolmogorov complexity as
we could then specify some initial segment of the sequence of length l with
fewer than l− c digits, giving a contradiction.
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Proof. (i) Given c and n we use the algorithm φ to dovetail an enumer-
ation E of all elements of

⋃∞
i=1Ai until π − µ�Es� is smaller than 2−c−2 log c�

where Es is the approximation to E at stage s (i.e., E = lims→∞Es). Consider
now any sequence ω which has not appeared by this time.
Let ω appear between the following two occurrences:
The measure of the enumerated set reaches π1�c+2 log c+s and the measure of

the enumerated set reaches π1�c+2 log c+s+1� (Both may occur together, of course,
in which case we have only one interval to consider.)
Let the maximum of the lengths of the strings enumerated between these

two occurrences be l�
Now list all continuations of all listed strings up to length l and call the set

thus obtained Sl�
ω1�l is then contained in Sl and hence is specifiable by giving its position

in Sl. Since Sl has associated Lebesgue measure less than 2−�c+2 log c+s�� there
are at most 2l−�c+2 log c+s� strings in Sl.
We can therefore specify the position of ω1�l in Sl using at most

l− �c+ 2 log c+ s�
digits.
Hence, if p1 is a program for φ and p2 is a program for π� then K�ω1�l� <

l+ �p1� + �p2� + 2 log s+ 2 log c+ k− �c+ 2 log c+ s� since a program p3 with
�p3� = k outputting ω1�l� will need as inputs p1� p2� c and s�
We can therefore clearly choose, for given c� a c′ such that no ω ∈ Kc

can be enumerated after the measure of the enumerated intervals reaches
π1�c′+2 log c′+s.
(ii) Given n� consider the sequences of events

An�An+1�An+2� � � � �

The probability that none of the events An�An+1�An+2� � � � take place in an
arbitrary ω is of course limk→∞�∏k

i=n�1 − µ�Ai�� = 0� Given therefore c and
m� we can write a program p for φ to dovetail an enumeration of sequences
in Ai� i ≥ n until

�1− µ�An�s����1− µ�An+1�s����1− µ�An+2�s��� · · ·
is smaller than 2−c−2 log c−2 logm−�p�−1� where Ai�s� is the approximation to Ai

at stage s of the enumeration [i.e., Ai = lims→∞Ai�s�].
Let k be the largest index for which strings in Ak are enumerated and

let the maximum length of enumerated strings be l and, as in (i) pad all the
strings up to length l and call this set Sl� Now make the (finite) list all strings
in SC

l .
Now, the Lebesgue measure of SC

l is at most 2−c−2 log c−2 logm−�p�−1 and hence
SC
l contains at most 2l−c−2 log c−2 logm−�p�−1 strings.
The position of any ω ∈ SC

l can therefore be specified using at most l− c−
2 log c− 2 logm− �p� − 1 digits. To specify SC

l we of course also need p�m and
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c hence at most a further �p� + 2 log c + 2 logm digits. Our ω1�l can therefore
have complexity at most

l− c− 2 log c− 2 logm− �p� + 2 log c+ 2 logm+ �p� − 1

< l− c�

Therefore any ω for which none of the events An�An+1� � � � �Ak hold is in Kg

for g > c so at least one of these events must hold for all ω ∈ Kd�d ≤ c� ✷

5. Application to two probability laws. In the context of binary se-
quences, the strong law of large numbers (first formulated by Cantelli; see [1]
for references) is the following:

Theorem 3 (Strong law of large numbers). With probability one we have

Sn

n
→ 1

2
�

In the words of [1]: with probability one Sn

n
− 1

2 “becomes and remains small.”
The law of large numbers is clearly equivalent to the following:

Theorem 4 (The law of large numbers). For every ε > 0� with probability
one, there occur only finitely many of the events∣∣∣∣Sn

n
− 1
2

∣∣∣∣ > ε�

The law of the iterated logarithm (due to Khintchine; see [1] for references)
gives upper bounds for the fluctuations of

S∗
n = Sn − n

2
1
2

√
n

�

Theorem 5 (The law of the iterated logarithm–Khintchine). With prob-
ability one we have

lim sup
n→∞

Sn − n
2√

n
2 log log n

= 1�

This means� For λ > 1� with probability one, only finitely many of the events

Sn >
n

2
+ λ

√
n

2
log log n

occur; and for λ < 1� with probability one, infinitely many of the events

Sn >
n

2
+ λ

√
n

2
log log n

occur.
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6. Ineffectivity of the probability laws. Note that these two laws are
non-effective on (at least) two counts. Given a randomly chosen infinite binary
sequence ω, the laws firstly only hold with probability one and, secondly, we
are told nothing about the waiting times involved. That is, for a given ω�
nothing is stated about any of the following:

1. In the strong law of large numbers: For a given ε� the largest m for which∣∣∣∣Sm

m
− 1
2

∣∣∣∣ > ε

or

2. In the law of the iterated logarithm:
(i) For a given λ > 1� the largest n for which

Sn >
n

2
+ λ

√
n

2
log log n

or
(ii) For a given λ < 1 and n� the smallest n′ > n such that

Sn′ >
n′

2
+ λ

√
n′

2
log log n′�

We now consider the above objections. As mentioned in the first paragraph,
the definitions of Martin–Löf and Chaitin means that we can change the state-
ment

P holds with probability one

to

P holds for each random ω.

We are now also able to address the waiting time objection using the effec-
tivized Borel–Cantelli lemmas.

7. Effective forms of the probability laws. We use the standard proofs
by Feller [1], as reference when discussing the effective forms of the two laws.

Theorem 6 (Strong law–effective form). For any given c and ε we can find
effectively an n�c� ε� such that, if ω ∈ Kc then, for all n > n�c� ε��∣∣∣∣Sn�ω�

n
− 1
2

∣∣∣∣ < ε�
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Proof sketch. Following [1], let a > 1 and let Ak be the event

�S∗
k� =

∣∣∣∣∣∣
Sk − k

2√
k
4

∣∣∣∣∣∣ ≥
√
2a log k�

Now, since

�2a log k� 3
2√

k
→ 0

it follows (see, e.g., page 192 of [1]) that we can choose n large enough such
that

P
{
�S∗

n� >
√
2a log n

}
< e−a log n = 1

na
�

Since
∑∞

k=1
1
ka
converges for a > 1� we can find for any given σ� an n such that∑∞

k=n P��S∗
k� >

√
2a log k� < ∑∞

k=n
1
ka
< 2−σ . So for given ε and a� the measure

of the union of the events Ak converges effectively, hence is a computable real.
The law of large numbers then follows by Theorem 2(i). ✷

Theorem 7 (Law of the iterated logarithm–effective form). (i) For a given
c and λ > 1, we can find effectively an n�c� λ� such that, if ω ∈ Kc then, for all
n > n�c� λ��

Sn�ω� ≤
n

2
+ λ

√
n

2
log log n�

(ii) For a given c, λ < 1 and m ∈N, we can find effectively an n�c� λ�m� such
that, if ω ∈ Kc then, for some n such that m ≤ n ≤ n�c� λ�m��

Sn�ω� >
n

2
+ λ

√
n

2
log log n�

Proof sketch of (i). Following [1], let λ > 1� let γ be a number between
1 and λ and let nr be the integer nearest to γr� Let Br be the event that the
inequality

Sn −
n

2
> λ

√
nr
2
log log nr

holds for at least one n with nr ≤ n ≤ nr+1�
We will show that

∑
P�Br� converges effectively and hence is a computable

real.
We now have (see, e.g., page 205 of [1]) that

P�Br� ≤ σ−1P

{
Snr+1 −

nr+1
2

> λ

√
nr
2
log log nr

}

= σ−1P
{
S∗
nr=1 > λ

√
2
nr
nr+1

log log nr

}
�
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Now nr+1/nr ∼ γ < λ� and we can therefore choose r large enough such that

P�Br� ≤ σ−1P
{
S∗
nr+1 >

√
2λ log log nr

}
�

And we can thus choose r large enough such that

P�Br� ≤ σ−1e−λ log log nr = 1
σ�log nr�λ

and 1
σ�log nr�λ is as close as we like to

1
σ�r log γ�λ . Thus we can choose for any given

k� an s such that
∑∞

r=s P�Br� < 2−k and hence
∑∞

r=s P�Br�—the sum of the
Lebesgue measures of the events Br—is a computable number. The first half
of the law then follows by Theorem 2(i).

Proof sketch of (ii). Following [1], let λ < 1 and choose a number η so
close to 1 that

1− η <

(
η− λ

2

)2

and choose for γ an integer so large that γ−1
γ

> η > λ� Put nr = γr� Let
Dr = Snr

−Snr−1 and let Ar be the event

Dr −
nr − nr−1

2
> η

√
nr
2
log log nr�

Note that the events Ar are independent.
Now

P�Ar� = P

{
Dr − �nr − nr−1� 12

�nr − nr−1� 14
> η

√
2

nr
nr − nr−1

log log nr

}
�

Here nr/�nr − nr−1� = γ/�γ − 1� < η−1� Hence

P�Ar� ≥ P



Dr − �nr − nr−1� 12√

�nr − nr−1� 14
>

√
2η log log nr


 �

We can therefore choose r large enough such that

P�Ar� >
1

log log nr
e−η log log nr = 1

�log log nr��log nr�η
(using [1], page 192 again.) Since nr = γr and η < 1, we can choose r large
enough such that P�Ar� > 1

r
� (Showing that Snr−1 can be dropped will follow

a similar argument to that of the proof of the first half of the law.) ✷

Remark. Of course, we may be “given” non-computable numbers for ε
and/or λ� We need then merely take ε′ < ε with ε′ computable for the law
of large numbers or 1 < λ′ < λ �for the first part of the law of the iterated
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logarithm�� or 1 > λ′ > λ (for the second part of the law of the iterated log-
arithm) with λ′ computable and the method will prove the theorem for the
non-computable ε and λ.

It is well known that one can examine and prove version of the laws of large
numbers and of the iterated logarithm directly from their being random. For
example, in the paper [3], the law of the iterated logarithm is examined for
sequences of which the Kolmogorov complexity of each initial segment is high.
The author’s main goal is to examine the range of compressibility which will
force the probability laws to hold.
In [2] a general theorem is proved to the effect that if the deficiency function

(roughly the deviation from maximally complex) is of a certain form, then
the difference between the number of 0’s and the number of 1s in each ω1�n
is bounded by another given function in n� implying that the law of large
numbers and the first part of the law of the iterated logarithm hold for random
sequences.
It is the author’s opinion that these results and those of this paper con-

tribute to the idea that Kolmogorov complexity gives us sharper insight into
probabilistic phenomena.
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