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Let X� Xi� i ∈ N, be independent identically distributed random vari-
ables and let h�x�y� = h�y�x� be a measurable function of two variables. It
is shown that the bounded law of the iterated logarithm, lim supn
log n�log n�−1 �∑1≤i<j≤n h�Xi�Xj�� <∞ a.s., holds if and only if the fol-
lowing three conditions are satisfied: h is canonical for the law of X [i.e.,
Eh�X�y� = 0 for almost all y] and there exists C < ∞ such that both
E�h2�X1�X2� ∧ u� ≤ C log log u for all large u and sup
Eh�X1�X2�×
f�X1�g�X2� � 
f�X�
2 ≤ 1� 
g�X�
2 ≤ 1� 
f
∞ <∞� 
g
∞ <∞� ≤ C.

1. Introduction. Although U–statistics [Halmos (1946), Hoeffding
(1948)] are relatively simple probabilistic objects, namely, averages over an
i.i.d. sample X1� � � � �Xn of measurable functions (kernels) h�x1� � � � � xm� of
several variables, their asymptotic theory has only recently attained a sat-
isfactory degree of completeness: see, for example, Rubin and Vitale (1980),
Giné and Zinn (1994), Zhang (1999) and Latała and Zinn (1999) on neces-
sary and sufficient conditions for the central limit theorem and the law of
large numbers. We are interested here in the law of the iterated logarithm for
U-statistics based on canonical (or completely degenerate) kernels, that is, on
kernels whose conditional expectation given any m− 1 variables is zero, and
only for m = 2.
U-statistics with nondegenerate kernels behave, as is well known, like sums

of independent random variables, and the LIL in this case was proved by
Serfling (1971). The LIL for canonical (or completely degenerate) kernels h
with finite absolute moment of order 2 + δ, δ > 0, was obtained by Dehling,
Denker and Philipp (1984, 1986), and with finite second moment by Dehling
(1989) and Arcones and Giné (1995). Giné and Zhang (1996) showed that there
exist degenerate kernels h with infinite second moment such that, neverthe-
less, the corresponding U-statistics satisfy the law of the iterated logarithm,
and obtained a necessary integrability condition as well. This last article and
Goodman’s (1996) also contain LIL’s under assumptions that do not imply
finiteness of the second moment of h, but that fall quite short of being nec-
essary. The LIL for finite sums of products

∑k
i=1 λiφi�x1� · · ·φi�xm� is easier

(Eh2 < ∞ is necessary) and was considered by Teicher (1995) for k = 1 and
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by Giné and Zhang (1996) for any k <∞. In the present article, the bounded
LIL problem is solved for kernels of order 2. Next we describe our result and
comment on its (relatively involved) proof.

In what follows, X�Xi, i ∈ N, are independent identically distributed
random variables taking values on some measurable space �S�� �, and
h� S2 �→ R is a measurable function that we assume, without loss of gen-
erality (for our purposes), symmetric in its entries, that is, h�x�y� = h�y�x�
for all x�y ∈ S. When h is integrable we say that it is canonical, or degen-
erate, for the law of X if Eh�X�y� = 0 for almost all y ∈ S (relative to the
law of X). The natural LIL normalization for U-statistics corresponding to
degenerate kernels of order 2 is n log log n as is seen with the following exam-
ple. A simple canonical kernel for S = R and X integrable with EX = 0 is
h�x�y� = xy. For this example, if moreover EX2 < ∞, then, by the LIL and
the law of large numbers for sums of independent random variables, we have

lim sup
n

1
2n log log n

∣∣∣∣ ∑
i�=j≤n

XiXj

∣∣∣∣
= lim sup

n

[
1√

2n log log n

n∑
i=1

Xi

]2

= VarX�

Our main result is as follows.

Theorem 1.1. LetX�Y�Xi, i ∈ N, be i.i.d. random variables taking values
in �S�� � and let h� S2 �→ R be a measurable function of two variables. Then,

lim sup
n

1
n log log n

∣∣∣∣ ∑
1≤i�=j≤n

h�Xi�Xj�
∣∣∣∣ <∞ a.s.(1.1)

if an only if the following three conditions hold:

(a) h is canonical for the law of X

and there exists C <∞ such that

(b) For all u ≥ 10,

E�h2�X�Y� ∧ u� ≤ C log log u(1.2)

and
(c)

sup
{
Eh�X�Y�f�X�g�Y� � Ef2�X� ≤ 1�Eg2�X� ≤ 1�


f
∞ <∞� 
g
∞ <∞} ≤ C�
(1.3)

It is easily seen that condition (b) implies

E
h2

�log� log��h� ∨ ee�1+δ <∞(1.4)

for all δ > 0 [and is implied by Eh2/ log log��h� ∨ ee� < ∞]. In particular,
condition (b) ensures the existence of the integrals in conditions (a) and (c).
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Condition (c) implies that the operator defined on L∞�� �X�� by Hf�y� =
Eh�X�y�f�X� takes values in L2�� �X�� and extends as a bounded
operator to all of L2�� �X��. Moreover, if with a slight abuse of notation we
set EXh�X�Y�f�X� �=Hf�Y� for f ∈ L2, then condition (b) is equivalent to

EY

(
EXh�X�Y�f�X�)2 ≤ C2Ef2�X� for all f ∈ L2�(1.5)

[Here and in what follows, EX (resp. EY) indicates expectation with respect
to X (resp. Y) only.]

The integrability condition (b) was proved to be necessary for the LIL (1.1)
by Giné and Zhang (1996), whereas the idea for condition (c) comes from
Dehling (1989), who showed that if h�x�y� is canonical and square integrable
then

lim set
{

1
2n log log n

∑
1≤i�=j≤n

h�Xi�Xj�
}

= {Eh�X�Y�f�X�f�Y�� Ef2�X� ≤ 1
}

a�s�

We will not prove Theorem 1.1 directly, but instead we will prove first that
conditions (b) and (c) are necessary and sufficient for a decoupled and ran-
domized version of the LIL, namely, for

lim sup
n

1
n log log n

∣∣∣∣ ∑
1≤i� j≤n

εiε̃jh�Xi�Yj�
∣∣∣∣ <∞ a�s��(1.6)

where 
εi� is a Rademacher sequence independent of all the other variables.
(We recall that a Rademacher sequence is a sequence of independent ran-
dom variables taking on only the values 1 and −1, each with probability 1/2.)
The reasons for this are multiple. One is that necessity of condition (c) fol-
lows as a consequence of a recent result of Latała (1999) on estimation of tail
probabilities of Rademacher chaos variables. Another reason is that, because
of the Rademacher multipliers, truncation of the kernel will result in sym-
metric, and hence mean zero, variables; this is important since the proof of
sufficiency contains several relatively complicated truncations of h. Moreover,
part of the core of the proof of sufficiency consists of an iterative application of
an exponential bound for sums of independent random variables and vectors,
and having decoupled expressions makes this iteration possible (although we
could use, alternatively, an exponential inequality for martingale differences
that does not require decoupled expressions).

The exponential inequality in question is Talagrand’s (1996) uniform
Prohorov inequality. This inequality depends on two parameters, the L∞
bound of the variables and the weak variance of their sum, and to apply
it iteratively requires not only that h be truncated at a low level, but that
the conditional second moments of these truncations of h be small as well.
This explains the relatively complicated multistep truncation procedure in
the proof of sufficiency.

Finally, the limit (1.6) will imply the limit (1.1) by a two-stage symmetriza-
tion argument that will also require control of the conditional expectations
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of the sums; this control will be achieved once more, again after multiple
truncations, by means of Talagrand’s exponential inequality.

Section 2 contains several known results needed in the sequel. Section 3
is devoted to the proof of the LIL for decoupled, randomized kernels, and
Section 4 reduces the LIL for canonical kernels to this case. In Section 5 we
complete the proof of Theorem 1.1 and make several comments about the
limsup in (1.1) and the limit set of the LIL sequence.

We adhere in what follows to the following notation (some of it already set
up above):

1. h is a measurable real function of two variables defined on �S2�� ⊗ � �,
symmetric in its entries.

2. X�X1�X2� � � � and Y�Y1�Y2� � � � denote two independent, equidistributed
sequences of i.i.d. S-valued random variables.

3. We write Ef�h� for Ef�h�X�Y�� and EX, PrX (resp. EY, PrY) denote
expected value and probability with respect to the random variables X�Xi

(resp. Y�Yi) only.
4. ε1� ε2� � � � � and ε̃1� ε̃2� � � � are two independent Rademacher sequences, inde-

pendent of all other random variables.
5. We write L2x and L3x instead of L�L�x�� and L�L�L�x���, where L�x� =

max�log x�1�.
6. In all proofs C̃ denotes a universal constant which may change from line

to line but does not depend on any parameters.

2. Preliminary results. For convenience, we isolate in this section
several known results needed below.

(A) Hoeffding’s decomposition. The U-statistics with kernel h (not
necessarily symmetric in its entries) based on 
Xi� are defined as

Un�h� =
1

n�n− 1�
∑

1≤i�=j≤n
h�Xi�Xj�� n ∈ N�

By considering instead the kernel h̃�x�y� = (h�x�y� + h�y�x�)/2, we have

Un�h� = Un�h̃� =
1

n�n− 1�
∑

1≤i�=j≤n
h̃�Xi�Xj� =

(
n

2

)−1 ∑
1≤i<j≤n

h̃�Xi�Xj��

So, we will assume h symmetric in its entries in all that follows.
Suppose E�h�X�Y�� <∞. Then,

h�x�y� −Eh�X�Y� = [h�x�y� −EYh�x�Y� −EXh�X�y� + Eh�X�Y�]
+ [EYh�x�Y� −Eh�X�Y�]
+ [EXh�X�y� −Eh�X�Y�]

�=π2h�x�y� + π1h�x� + π1h�y��

(2.1)
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where the identities hold a.s. for � �X� ×� �X�. The kernel π2h is canonical
(or degenerate) for the law of X as EXπ2h�X�Y� = EYπ2h�X�Y� = 0 a.s.,
and π1h�X� is centered. This decomposition of h gives rise to Hoeffding’s
decomposition of the corresponding U-statistics,∑

1≤i<j≤n
h�Xi�Xj�=

∑
1≤i<j≤n

π2h�Xi�Xj�

+ �n− 1�
n∑
i=1

π1h�Xi� +
(
n

2

)
Eh�X�Y��

(2.2)

and of their decoupled versions,∑
1≤i� j≤n

h�Xi�Yj�=
∑

1≤i�j≤n
π2h�Xi�Yj� + n

n∑
i=1

π1h�Xi�

+n
n∑
i=1

π1h�Yi� + n2Eh�X�Y��
(2.3)

(B) The equivalence of several LIL statements. The following lemma
contains necessary randomization and integrability conditions for the LIL.

Lemma 2.1. [Giné and Zhang (1996)]. (a) (Integrability). There exists a
universal constant K such that, if

∞∑
n=1

Pr
{

1
2nLn

∣∣∣ ∑
1≤i� j≤2n

εiε̃jh�Xi�Yj�
∣∣∣ > C

}
<∞(2.4)

for some C <∞, then

lim sup
u→∞

E
(
h2�X�Y� ∧ u)

L2u
≤KC2�(2.5)

(b) (Randomization and decoupling, partial). The LIL

lim sup
n

1
nL2n

∣∣∣∣ ∑
1≤i<j≤n

h�Xi�Xj�
∣∣∣∣ ≤ C a�s�(2.6)

for some C <∞ implies
∞∑
n=1

Pr
{

1
2nLn

max
k≤2n

∣∣∣ ∑
1≤i� j≤k

εiε̃jh�Xi�Yj�
∣∣∣ > 27C

}
<∞�

In particular, the LIL implies both the integrability condition (2.5) and the
randomized and decoupled LIL, that is,

lim sup
n

1
nL2n

∣∣∣∣ ∑
1≤i� j≤n

εiε̃jh�Xi�Yj�
∣∣∣∣ ≤ D a�s�(2.7)

with D =KC for some universal constant K.
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Part (a) is contained in the proof of Theorem 3.1 in Giné and Zhang (1996),
while part (b) is the content of Theorem 3.1 and Lemma 3.3 there.

We recall that the limsups at the left-hand sides of (2.6) and (2.7) are always
a.s. constant (finite or infinite) by the Hewitt–Savage zero–one law.

Decoupling gives the following equivalence between the LIL and its
decoupled version.

Lemma 2.2. (a) The LIL (2.6) is equivalent to the decoupled LIL, that is, to

lim sup
n

1
nL2n

∣∣∣ ∑
1≤i�=j≤n

h�Xi�Yj�
∣∣∣ ≤ D a�s�(2.8)

for some D <∞, meaning that if (2.6) holds for C then (2.8) holds for D =KC
and that if (2.8) holds forD then (2.6) holds forC =KD, whereK is a universal
constant.

(b) The decoupled and randomized LIL (2.7) is equivalent to the randomized
LIL,

lim sup
n

1
nL2n

∣∣∣∣ ∑
1≤i�=j≤n

εiεjh�Xi�Xj�
∣∣∣∣ ≤ C a�s�(2.9)

for some C finite �with C and D related as in part (a)].
(c) The LIL (2.7) implies convergence of the series (2.4) for some C =

KD < ∞, K a universal constant, hence it also implies the integrability con-
dition (2.5) �with C replaced by D��

Proof. (a) We can equivalently write (2.6) as

lim
k→∞

Pr
{
sup
n≥k

1
nL2n

∣∣∣ ∑
1≤i�=j≤n

h�Xi�Xj�
∣∣∣ ≥ C

}
= 0

for some C <∞, hence as

lim
k→∞

Pr
{∥∥∥ ∑

1≤i�=j<∞
hi∨j�k�Xi�Xj�

∥∥∥ ≥ C

}
= 0�

where

hi�k �=
(

h

kL2k
�

h

�k+ 1�L2�k+ 1� � � � � �
h

nL2n
� � � �

)
if i ≤ k and

hi�k �=
(

0� i−k� � ��0�
h

iL2i
�

h

�i+ 1�L2�i+ 1� � � � � �
h

nL2n
� � � �

)
if i > k are #∞-valued functions and 
 · 
 denotes the sup of the coordinates.
Then, the decoupling inequalities of de la Peña and Montgomery-Smith (1994)
apply to show that the above tail probabilities are equivalent up to constants to
those of the corresponding decoupled expressions, thus giving the equivalence
between (2.6) and (2.8).
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(b) If (2.9) holds, then (2.7) without diagonal terms (i.e., without the sum-
mands corresponding to i = j) holds, too, by the first part of the proof applied
to the kernel αβh�x�y�. Moreover, (2.9) implies the integrability condition
(2.5) by Lemma 2.1 (note that if 
ε�j�i �, j = 1�2�3, are three independent

Rademacher sequences, then 
ε�1�i ε
�2�
i � and 
ε�1�i ε

�3�
i � are also independent

Rademacher sequences) and, as a consequence, h is integrable. Hence, by the
law of large numbers, the diagonal in (2.7) is irrelevant, showing that (2.7)
holds with the diagonal included. If (2.7) holds, then we also have E�h� <∞:
a modification of the proof of the converse central limit theorem in Giné and
Zinn (1994), consisting of replacing use of the law of large numbers by use
of the inequality (3.7) in Giné and Zhang (1996), shows that if the sequence{�nL2n�−1∑

i� j≤n εiε̃jh�Xi�Yj��
}

is stochastically bounded, then Eh2�X�Y�
∧u ≤ C�L2u�2 for some C <∞, in particular, that E�h� <∞. So, we can delete
the diagonal in (2.7), and then apply the first part of the lemma to undo the
decoupling.

(c) Statement (c) follows from (b) because, by Lemma 2.1, (2.9) implies
convergence of the series (2.4) for some C <∞. ✷

The following lemma, together with the previous ones, will allow blocking
and will reduce the proof of sufficiency of the LIL to showing that a series of
tail probabilities converges (just as with sums of i.i.d random variables).

Lemma 2.3. There exists a universal constant C < ∞ such that for any
kernel h and any two sequences Xi, Yj of i.i.d. random variables we have

Pr
{

max
k≤m� l≤n

∣∣∣ ∑
i≤k� j≤l

h�Xi�Yj�
∣∣∣ ≥ t

}

≤ C Pr
{∣∣∣ ∑

i≤m�j≤n
h�Xi� Yj�

∣∣∣ ≥ t/C

}(2.10)

for all m�n ∈ N and for all t > 0.

Proof. Montgomery-Smith’s (1993) maximal inequality for i.i.d. sums
asserts that if Zi are i.i.d. r.v.’s with values in some Banach space B then
for some universal constant C1 and all t > 0 we have

Pr

{
max
k≤m

∥∥∥∑
i≤k

Zi

∥∥∥ ≥ t

}
≤ C1 Pr

{∥∥∥∑
i≤m

Zi

∥∥∥ ≥ t/C1

}
�
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We apply this inequality to B = #n∞ and Zi =
(∑

j≤l h�Xi�yj�� l ≤ n
)

for fixed
values of y1� � � � � yn to get

Pr

{
max

k≤m� l≤n

∣∣∣ ∑
i≤k� j≤l

h�Xi�Yj�
∣∣∣ ≥ t

}

≤ C1 Pr

{
max
l≤n

∣∣∣ ∑
i≤m�j≤l

h�Xi�Yj�
∣∣∣ ≥ t/C1

}
�

In a similar way we may prove

Pr
{
max
l≤n

∣∣∣ ∑
i≤m�j≤l

h�Xi�Yj�
∣∣∣ ≥ t/C1

}
≤ C1 Pr

{ ∑
i≤m�j≤n

∣∣∣h�Xi�Yj�
∣∣∣ ≥ t/C2

1

}
�

Thus the assertion holds with C = C2
1. ✷

Corollary 2.4. If

∞∑
n=1

Pr

{
1

2nLn

∣∣∣ ∑
1≤i� j≤2n

h�Xi�Yj�
∣∣∣ > C

}
<∞ a�s�(2.11)

for some C <∞, then there is a universal constant K such that

lim sup
n

1
nL2n

∣∣∣ ∑
1≤i� j≤n

h�Xi�Yj�
∣∣∣ ≤KC a�s�(2.12)

Proof. Since, for any 0 < D <∞,

Pr

{
sup
n≥N

1
nL2n

∣∣∣ ∑
1≤i� j≤n

h�Xi�Yj�
∣∣∣ > D

}

≤ Pr

{
sup

k>�logN/ log 2�
max

2k−1≤n≤2k

3
2kLk

∣∣∣ ∑
1≤i� j≤n

h�Xi�Yj�
∣∣∣ > D

}

≤ ∑
k>�logN/ log 2�

Pr

{
max

2k−1≤n≤2k

∣∣∣ ∑
1≤i� j≤n

h�Xi�Yj�
∣∣∣ > D2kLk

3

}
�

the result follows from Lemma 2.3. ✷

Applying Corollary 2.4 to the kernel αβh�x�y� we obtain the converse of
Lemma 2.2(c). Hence, we have the following.

Corollary 2.5. Consider the statements

lim sup
n

1
nL2n

∣∣∣∣ ∑
1≤i� j≤n

εiε̃jh�Xi� Yj�
∣∣∣∣ ≤ C a�s�
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and

∞∑
n=1

Pr

{
1

2nLn

∣∣∣ ∑
1≤i� j≤2n

εiε̃jh�Xi� Yj�
∣∣∣ > D

}
<∞�

There is a universal constant K such that if the first statement holds for some
C <∞ then the second holds for D = KC, and conversely, if the second holds
for some D <∞ then so does the first, for C =KD.

We will also require the following partial converse to Lemma 2.1(b) regarding
the regular LIL and convergence of series of tail probabilities.

Corollary 2.6. Suppose E�h� <∞. If
∞∑
n=1

Pr
{

1
2nLn

∣∣∣ ∑
1≤i� j≤2n

h�Xi�Yj�
∣∣∣ > C

}
<∞ a�s�

for some C < ∞ then the LIL holds; that is, there is a universal constant K
such that

lim sup
n

1
nL2n

∣∣∣∣ ∑
1≤i<j≤n

h�Xi�Xj�
∣∣∣∣ ≤KC a�s�

Proof. Convergence of the series implies (2.12), that is, the decoupled
LIL with diagonal terms included. Since E�h� < ∞, the diagonal terms are
irrelevant and therefore the decoupled LIL (2.8) holds. The result now follows
from Lemma 2.2(a). ✷

In Section 4 we will apply the conclusion of Corollary 2.6 under the
assumption that the decoupled and randomized LIL (2.7) holds: this is possible
because (2.7) implies integrability of h, as indicated in the proof of Lemma
2.2(b).

(C) Inequalities. As mentioned in the Introduction, the following two
inequalities will play a basic role in the proof of Theorem 1.1. The first consists
of a sharp estimate of the tail probabilities of Rademacher chaos variables (it
is in fact part of a sharper two sided estimate).

Lemma 2.7 [Latała (1999)]. There exists a universal constant c > 0 such
that, for all matrices �ai� j� and for all t > 0,

Pr
{∣∣∣∑

i� j

ai� jεiε̃j

∣∣∣ ≥ c����ai� j����t
}
≥ c ∧ e−t�(2.13)
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where ����ai� j����t is defined as

����ai� j����t �= sup
{∑
i� j

ai� jbicj�
∑
i

b2
i

≤ t�
∑
j

c2
j ≤ t� �bi�� �cj� ≤ 1 for all i� j

}
�

(2.14)

The second is a uniform Prohorov inequality due to Talagrand. It combines
Theorem 1.4 in Talagrand (1996) with Corollary 3.4 in Talagrand (1994).

Lemma 2.8 [Talagrand (1996)]. Let 
Xi�, i = 1� � � � � n for any n ∈ N, be
independent random variables with values in a measurable space �S�� �, let
� be a countable class of measurable functions on S and let

Z �= sup
f∈�

n∑
i=1

f�Xi��

There exists a universal constant K such that for all t > 0 and n ∈ N, if

max
1≤i≤n

sup
f∈�

ess sup
ω∈.

∣∣f�Xi�ω��
∣∣ ≤ U� E

(
sup
f∈�

n∑
i=1

f2�Xi�
)
≤ V

and

sup
f∈�

n∑
i=1

Ef2�Xi� ≤ σ2�

then

Pr
{
�Z−EZ� ≥ t

}
≤K exp

(
− t

KU
log
(

1+ tU

V

))

≤K exp

(
− t

KU
log
(

1+ tU

σ2 + 8UE�Z�
))

�

(2.15)

In fact, we will only use the corresponding deviation inequality, that is, the
bound (2.5) for Pr
Z > EZ+ t�. Ledoux (1996) contains a simple proof of this
result based on logarithmic Sobolev inequalities.

When � consists of a single function f and the variables f�Xi� are
centered, this inequality reduces, modulo constants, to the classical Prohorov
inequality. For convenience, we will refer below to Lemma 2.8 even in cases
when Prohorov’s inequality suffices.

3. Symmetrized kernels. In this section we prove the following theorem,
which constitutes the basic component of the proof of Theorem 1.1.
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Theorem 3.1. The decoupled and randomized LIL holds; that is,

lim sup
n

1
n log log n

∣∣∣ ∑
1≤i� j≤n

εiε̃jh�Xi�Yj�
∣∣∣ <∞ a�s�(3.1)

if and only if the following two conditions are satisfied for some C <∞:
Emin�h2� u� ≤ CL2u for all u > 0(3.2)

and

sup
{
Eh�X�Y�f�X�g�Y� � Ef2�X� ≤ 1�Eg2�Y� ≤ 1�


f
∞<∞� 
g
∞ <∞} ≤ C <∞�
(3.3)

Remark. We recall that, by Corollary 2.5, a necessary and sufficient con-
dition for the LIL (3.1) to hold is that

∞∑
n=1

Pr
{

1
2nLn

∣∣∣ ∑
1≤i� j≤2n

εiε̃jh�Xi�Yj�
∣∣∣ > C

}
<∞(3.4)

for some C <∞.

Proof of necessity. The integrability condition (3.2) is necessary for (3.1)
by Lemma 2.2(c). The necessity of (3.3) will follow from Lemma 2.7. For this,
we estimate first ����h�Xi�Yj�� i� j ≤ 2n����log n, where ��� · ���t is as defined in
(2.13). Suppose that f�g ∈ L∞ are such that Ef2�X� = Eg2�X� = 1 and set

K �= �Eh�X�Y�f�X�g�Y���(3.5)

that we can assume strictly positive. Note that the integral exists by (3.2).
Then by the SLLN for i.i.d. r.v.’s and U-statistics we have a.s.,

n−1 ∑
i≤n

f2�Xi� → Ef2 = 1� n−1 ∑
j≤n

g2�Yj� → Eg2 = 1

and

n−2
∣∣∣ ∑
i� j≤n

h�Xi�Yj�f�Xi�g�Yj�
∣∣∣→ ∣∣Eh�X�Y�f�X�g�Y�∣∣�

So, for large enough n,

Pr
{
2−n

∑
i≤2n

f2�Xi� ≤ 2
}
≥ 3

4 � Pr
{
2−n

∑
j≤2n

g2�Yj� ≤ 2
}
≥ 3

4

and

Pr
{
2−2n

∣∣∣ ∑
i� j≤2n

h�Xi�Yj�f�Xi�g�Yj�
∣∣∣ ≥K/2

}
≥ 3

4

with K as in (3.5). Since f�g ∈ L∞ we have that, for large enough n,∣∣∣∣
√

log n

2n+1
f�Xi�

∣∣∣∣�
∣∣∣∣
√

log n

2n+1
g�Yj�

∣∣∣∣ ≤ 1 a�s�
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Then it follows directly from the definition of ��� · ���t that, on the intersection
of the above five events, we have the bound

����h�Xi�Yj�� i� j ≤ 2n����log n ≥K2n−2 log n�

Therefore, for large n,

Pr
{∣∣∣∣∣∣(h�Xi�Yj�� i� j ≤ 2n

)∣∣∣∣∣∣
log n

≥K2n−2 log n
}
≥ 1

4 �

Then Lemma 2.7 implies that, for all n large enough,

Pr
{∣∣∣ ∑

i� j≤2n
h�Xi�Yj�εiε̃j

∣∣∣≥ cK2n−2 log n
}
≥ 1

4
e− log n = 1

4n
�

By (3.4), this implies that if the LIL holds then K is uniformly bounded,
proving necessity of condition (3.3). ✷

Before starting the proof of sufficiency, it is convenient to show how the
integrability condition (3.2) limits the sizes of certain truncated conditional
second moments. To simplify notation, we define

fn�x� = EY min
(
h2�x�Y��24n

)
and

fn�y� = EX min
(
h2�X�y��24n

)
�

(3.6)

Lemma 3.2. For any kernel h satisfying condition (3.2) we have that, for
all a > 0, ∑

n

2nPrX
{
EY min

(
h2�X�Y��2an) ≥ 2n�log n�2

}
<∞�(3.7)

Moreover,∑
n

2n

�log n�k Pr
{
fn�X� ≥ 2n�log n�2−k

}
<∞ for all k ≥ 0�(3.8)

Proof. For a fixed, we set γk = exp�2k+1� and f̃k�X� = EY min�h2�2aγk�.
Then, ∑

2k≤log n≤2k+1

2n PrX
{
EY min

(
h2�X�Y��2an) ≥ 2n�log n�2

}
≤ ∑

2k≤log n≤2k+1

2nPrX
{
f̃k�X� ≥ 2n+2k}

≤ E
∑
n

2nI
(
f̃k�X� ≥ 2n+2k)

≤ 21−2kEf̃k�X� ≤ 21−2kCL2�2aγk�
≤ 21−2kC�log a+ 2k+1��

(3.9)

Convergence in (3.7) follows from (3.9). Condition (3.8) is an easy consequence
of (3.7) [as can be seen, e.g., by making the approximate change of variables
2n/�log n�k � 2m in (3.8) and comparing with (3.7) for a > 4]. ✷
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Proof of sufficiency. Since this is only a matter of normalization we will
assume that conditions (3.2) and (3.3) are satisfied with C = 1. By the remark
below Theorem 3.1, proving the LIL is equivalent to showing that the series
(3.4) converges for some C <∞. To establish this we will show in several steps
that we may suitably truncate h by proving inequalities of the form∑

n

Pr
{∣∣∣ ∑

i� j≤2n
εiε̃jhn�Xi�Yj�

∣∣∣ ≥ C2n log n
}
<∞�(3.10)

where hn �= hIAn
and An are suitably chosen subsets of the product space.

Then, we will apply Lemma 2.8 conditionally to the truncated h (several
times, and after some additional preparation).

Step 1. Inequality (3.10) holds for any C > 0 if

An ⊂
{�x�y�� max

(
fn�x�� fn�y�

) ≥ 2n �log n�2}�
In this case, by (3.8),∑

n

Pr
{∣∣∣ ∑

i� j≤2n
εiε̃jhn�Xi�Yj�

∣∣∣ > C2n log n
}

≤∑
n

Pr
{
∃i ≤ 2n� fn�Xi� ≥ 2n�log n�2

}

+∑
n

Pr
{
∃j ≤ 2n � fn�Yj� ≥ 2n�log n�2

}
≤ 2

∑
n

2n Pr
{
fn�X� ≥ 2n�log n�2} <∞�

Step 2. Inequality (3.10) holds for any C > 0 if

An ⊂
{�x�y�� h2�x�y� ≥ 22n�log n�2}�

Indeed, by Chebyshev’s inequality,∑
n

Pr
{∣∣∣ ∑

i� j≤2n
εiε̃jhn�Xi�Yj�

∣∣∣ > C2n log n
}

≤∑
n

1
C2n log n

E
∣∣∣ ∑
i� j≤2n

εiε̃jhn�Xi�Yj�
∣∣∣

=∑
n

2n

C log n
E�h�I
�h�≥2n log n�

= C−1E�h�∑
n

2n

log n
I��h� ≥ 2n log n�

≤ C̃E
h2

�L2�h��2
<∞�
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Step 3. Inequality (3.10) holds for any C > 0 if

An ⊂
{�x�y�� 22nn−4 ≤ h2�x�y� < 22n �log n�2� fn�x�� fn�y� ≤ 2n�log n�2}�

If we use again Chebyshev’s inequality, it suffices to prove that∑
n

E
∣∣∑

i� j≤2n εiε̃jhn�Xi�Yj�
∣∣4

24n�log n�4 <∞�(3.11)

Notice however that, by iteration of Khinchin’s inequality (or by direct
computation), there is C <∞ (e.g., C = 18) such that

C−1 E
∣∣∣ ∑
i� j≤2n

εiε̃jhn�Xi�Yj�
∣∣∣4

≤ E
∣∣∣ ∑
i� j≤2n

h2
n�Xi�Yj�

∣∣∣2
≤∑

i� j

Eh4
n�Xi�Yj� +

∑
i�=i′� j

Eh2
n�Xi�Yj�h2

n�Xi′�Yj�

+ ∑
i� j �=j′

Eh2
n�Xi�Yj�h2

n�Xi�Yj′ �

+ ∑
i�=i′� j �=j′

Eh2
n�Xi�Yj�h2

n�Xi′�Yj′ ��

So, to prove (3.11) we have to check convergence of these four series.
First series:∑

n

22nEh4
n

24n�log n�4 ≤
∑
n

1
22n�log n�4Eh

4I
h2≤22n�log n�2�

= Eh4∑
n

1
22n�log n�4 I�h

2 ≤ 22n�log n�2�

≤ C̃Eh4 1
h2�L2�h��2

<∞�

Second series (below we use the notation hn �= hn�X�Y�, h̃n = hn�X̃�Y�
and X̃ is an independent copy of X):∑

n

23nEh2
n�X�Y�h2

n�X̃�Y�
24n log4n

=∑
n

Eh2
nh̃

2
n

2n�logn�4

≤2
∑
n

Eh2
nh̃

2
nI��h�≤�h̃��

2n�logn�4

≤2Eh2h̃2I��h�≤�h̃��∑
n

1
2n�logn�4 I�EXmin�h2�24n�≤2n�logn�2�h̃2≤24n�
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≤2Eh2h̃2I��h�≤�h̃��∑
n

1
2n�logn�4 I�EXmin�h2�h̃2�≤2n�logn�2��h̃�≤22n�

≤C̃Eh2h̃2I��h�≤�h̃�� 1

EXmin�h2�h̃2��L2�h̃��2

≤C̃E h̃2

�L2�h̃��2
<∞�

Third series: Convergence follows just as for the second.
Fourth series: Here we have, by (3.2),∑

n

24n�Eh2
n�2

24n�log n�4 ≤ C̃
∑
n

Eh2
n

�log n�3

= C̃Eh2∑
n

1
�log n�3 I�2

2nn−4

≤ h2�x�y� < 22n�log n�2�

≤ C̃E
h2

�L2�h��2
<∞�

where we use the fact that

Card
{
n� 22nn−4 ≤ h2�x�y� < 22n log2 n

} ∼ 2L2h�

This completes the third step.

Step 4. Inequality (3.10) holds for any C > 0 if

An ⊂
{
�x�y�� h2�x�y� ≤ 22n

n4
�

2n

log n
≤ max

(
fn�x�� fn�y�

) ≤ 2n�log n�2
}
�

We follow the proof of the previous step. The only difference is in the proof of
convergence of the fourth series. We have for n ≥ 2,

Eh2
n ≤ 2

3∑
k=1

E min�h2�22n�I
2n �log n�2−k≤fn�X�≤2n�log n�3−k�

≤
3∑

k=1

2n+1�log n�3−k Pr
{
fn�X� ≥ 2n�log n�2−k}�

Thus, by (3.8),

∑
n

Eh2
n

�log n�3 ≤
3∑

k=1

∑
n

2n+1

�log n�k Pr
{
fn�X� ≥ 2n�log n�2−k} <∞�

For the next step, we define the functions

gn�x� = EY�h�I
�h�≥2nn2��(3.12)
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Step 5. Inequality (3.1) holds for any C > 0 if

An ⊂
{�x�y�� max

(
gn�x�� gn�y�

) ≥ 1
}
�

Assumption (3.2) implies that Pr
�h� ≥ v� ≤ v−2L2v
2. Hence, E�h�I
�h�≥s� ≤

C̃s−1L2s for s ≥ 1. Therefore,∑
n

2n Pr
{�gn�X�� ≥ 1

} ≤ C̃
∑
n

Ln

n2
<∞�

and the same is true for gn�Y�.
Step 6. Inequality (3.10) holds for any C > 0 if

An ⊂
{
�x�y�� fn�x� ≥

2n

n
� fn�y� ≥

2n

n
� h2�x�y� ≤ 22n

n4

}
�

To see this we note first that

Eh2
n ≤

22n

n4
EIAn

≤ 22n

n4
Pr
{
fn�X� ≥

2n

n

}
Pr
{
fn�Y� ≥

2n

n

}

≤ 22n

n4

(
nEfn�X�

2n

)2

≤ C̃
�log n�2

n2
�

since Efn�X� = Emin�h2�24n� ≤ C̃ log n by (3.2). Now we may conclude
Step 6 by Chebyshev’s inequality as

∑
n

E
∣∣∑

i� j≤2n εiε̃jhn�Xi�Yj�
∣∣2

22n�log n�2 ≤∑
n

Eh2
n

�log n�2 ≤ C̃
∑
n

1
n2

<∞�

Step 7. Inequality (3.10) holds for some C > 0 if

An=
{
�x�y�� fn�x�≤

2n

logn
�fn�y�≤

2n

n
�gn�x�≤1�gn�y�≤1�h2�x�y�≤ 22n

n4

}
�

This is the most involved step, and the only one (except for the similar
Step 8 below) where we use condition (3.3). To prove (3.10) in this case, we
will use Prohorov’s inequality (or Lemma 2.8) together with the following four
lemmas (one of which also uses Talagrand’s inequality).

Lemma 3.3. For all n ∈ N,

Pr

{∣∣∣ ∑
i≤2n

εihn�Xi�Y�
∣∣∣ ≥ 2n+4

}
≤ 2−4n

and ∑
n

Pr

{
max

1≤j≤2n

∣∣∣ ∑
i≤2n

εihn�Xi�Yj�
∣∣∣ ≥ 2n+4

}
<∞�
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Proof. We note that An ⊂
{�x�y�� �h�x�y�� ≤ n−12n� fn�y� ≤ n−12n

}
and

then apply Bernstein’s inequality or Prohorov’s inequality to obtain that, for
any Y,

PrX

{∣∣∣ ∑
i≤2n

εihn�Xi�Y�
∣∣∣ ≥ 2n+4

}
≤ e−4n�

which clearly implies the lemma. (Lemma 2.8 instead of Bernstein’s or
Prohorov’s inequality would simply change multiplicative constants.) ✷

Before formulating the next lemma it is convenient to define a sequence cn
by the formula

cn = Eh2I
2nn−2<�h�≤2nn2�� n ∈ N�(3.13)

Lemma 3.4. We have ∑
n

exp
(
− 2 log n√

1+ cn

)
<∞�

Proof. Condition (3.2) implies that, for any k ≥ 2,∑
k≤log n≤k+1

cn ≤ C̃kE�h�2I
�h�≤2ek+1 �ek+1�2� ≤ C̃k2�

(where the second constant is different from the first) since the largest number
of intervals In = �n−22n� n22n�, k ≤ log n ≤ k + 1, that can overlap with any
given one of them is not larger than 6�k+ 1�. Hence,

Card
n� k ≤ log n ≤ k+ 1� cn ≥ 1� ≤ C̃k2�

Condition (3.2) also implies cn ≤ 2 log n (note that c1 = 0). So,∑
n

exp
(
− 2 log n√

1+ cn

)
≤∑

n

exp
(−√2 log n

)+ ∑
cn≥1

exp
(
− 2 log n√

1+ 2 log n

)
≤∑

n

exp
(−√2 log n

)+∑
k

C̃k2 exp
(−√k) <∞� ✷

The following lemma is well known but a proof is provided for the reader’s
convenience.

Lemma 3.5. If a kernel k satisfies EX�k�X�y�� ≤ 1 and EY�k�x�Y�� ≤ 1
a.s., then k defines an operator on L2�� �X�� with norm bounded by 1, that is,
condition (3.3) holds for h = k andC = 1 [and therefore so does condition (1.5)].

Proof. We need to check that

�EXEYk�X�Y�f�X�g�Y�� ≤ �Ef2�X�Eg2�Y��1/2
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whenever 
f
∞� 
g
∞ < ∞. But, assuming (without loss of generality) that
k, f and g are nonnegative,

EXEYk�X�Y�f�X�g�Y� = EX

[
f�X�EY

(
k1/2�X�Y�k1/2�X�Y�g�Y�)]

≤ EX

[
f�X��EYk�X�Y��1/2�EYk�X�Y�g2�Y��1/2

]
≤ EX

[
f�X�(EYk�X�Y�g2�Y�)1/2]

≤ (EXf
2�X�)1/2[EX

(
EYk�X�Y�g2�Y�)]1/2

and now the inequality follows by applying Fubini and using EXk�X�Y�
≤ 1. ✷

Lemma 3.6. There exists C1 <∞ such that∑
n

Pr
{
EY

(∑
i≤2n

εihn�Xi�Y�
)2
≥ C1

√
1+ cn 2n log n

}
<∞�

Proof. Let HY be L2�.�σ�Y��Pr�, that is, HY is the space of all square
integable random variables f�Y� where f is a Borel measurable function. Let
Xi �= εihn�Xi�Y� for i = 1� � � � �2n. Then, Xi are symmetric i.i.d. random
vectors with values in HY. We define

Z = sup
f∈�

2n∑
i=1

f�Xi� =
[
EY

(∑
i≤2n

εihn�Xi�Y�
)2
]1/2

�

where � is a countable dense subset of the unit ball of H′
Y = HY and we

write f�·� �= !f� ·". We will apply Lemma 2.8 to Z. For this, we must estimate
EZ and determine suitable U and σ2. We have

EZ ≤ (EZ2)1/2 = [2nEh2
n

]1/2 ≤ √2n log n(3.14)

by (3.2). Since

sup
f∈�

∣∣f�Xi�ω��
∣∣ = 
Xi�ω�
Y =

√
EYh

2
n�Xi�ω��Y� ≤

√
2n

log n
�

we can take

U =
√

2n

log n
(3.15)

in Lemma 2.8 for Z. Moreover, for each f ∈ � ,

Ef2�Xi� = E
(
EYhn�Xi�Y�f�Y�

)2 ≤ 3
3∑
i=1

E
(
EYh

�i�
n �Xi�Y�f�Y�

)2
�
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where

h
�1�
n �= hIBn

� h
�2�
n �= hIBn∩
2nn−2<�h�≤2nn2�� h

�3�
n �= hIBn∩
�h�≥2nn2��

with

Bn �=
{
�x�y�� fn�x� ≤

2n

log n
� fn�y� ≤

2n

n
� gn�x� ≤ 1� gn�y� ≤ 1

}
�

since

hn = h
�1�
n − h

�2�
n − h

�3�
n �

Now,

E
(
EYh

�1�
n �Xi�Y�f�Y�

)2 ≤ 1

by condition (1.5) [which is equivalent to �1�3� = �3�3�],

E
(
EYh

�2�
n �Xi�Y�f�Y�

)2 ≤ E�h�2�n �2 ≤ cn

by Cauchy–Schwarz and the definition of cn in (3.13) and

E
(
EYh

�3�
n �Xi�Y�f�Y�

)2 ≤ 1

by Lemma 3.5 [see (1.5) once more]. Therefore, we can take σ2 in Lemma 2.8
for Z to be

σ2 = 3 · 2n�2+ cn� < 6 · 2n�1+ cn��(3.16)

Then, on account of (3.14)–(3.16), Lemma 2.8 gives, with C2 = �
√
C1 − 1�2,

Pr
{
EY

∣∣∣ ∑
i≤2n

εihn�Xi�Y�
∣∣∣2 ≥ C1

√
1+ cn 2n log n

}

= Pr
{
Z ≥

√
C1

√
1+ cn 2n log n

}
≤ Pr

{
Z−EZ ≥

√
C2

√
1+ cn 2n log n

}

≤K exp
(
−
√
C2

K
4
√

1+ cn log n log
(
1+

√
C2

4
√

1+ cn
6�1+ cn� + 8

))

≤K exp
(
−
√
C2

K
4
√

1+ cn log n log
(
1+

√
C2

14�1+ cn�3/4
))

≤K exp
(
−
√
C2

K
log
(
1+

√
C2

14

) log n√
1+ cn

)
�

where in the last line we have used that the function x−1 log �1+x� is monotone
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decreasing. Taking K−1
√
C2 log�1+√C2/14� ≥ 2 yields the bound

Pr

{
EY

∣∣∣ ∑
i≤2n

εihn�Xi�Y�
∣∣∣2 ≥ C1

√
1+ cn 2n log n

}
≤K exp

(
− 2 log n√

1+ cn

)
and Lemma 3.6 follows from Lemma 3.4. ✷

Now we complete the proof of Step 7. For n fixed, set

d�y� �= ∑
i≤2n

εihn�Xi�y�

and

d̃j �= ε̃jd�Yj�� I{�d�≤2n+4� EYd
2�Y�≤C12n�log n�

√
1+cn

}�Yj�

for 1 ≤ j ≤ 2n. Then,

Pr
{∣∣∣ ∑

i� j≤2n
εiε̃jhn�Xi�Yj�

∣∣∣ > C2n log n
}

= Pr
{∣∣∣ ∑

j≤2n
ε̃jd�Yj�

∣∣∣ > C2n log n
}

≤ Pr
{∃ j ≤ 2n� d̃j �= d�Yj�

}+ Pr
{∣∣∣ ∑

j≤2n
ε̃jd̃j

∣∣∣ > C2n log n
}

�= In + IIn�

But,

In ≤ Pr
{
max
j≤2n

∣∣∣ ∑
i≤2n

εihn�Xi�Yj�
∣∣∣ > 2n+4

}

+ Pr
{
EY

∣∣∣ ∑
i≤2n

εihn�Xi�Y�
∣∣∣2 > C12

n�log n�
√

1+ cn

}
and Lemma 3.3 and Lemma 3.6 show that∑

n

In <∞�(3.17)

To estimate IIn we can apply Bernstein’s or Prokhorov’s inequality condition-
ally on the sequence 
Xi�. For convenience we will use Lemma 2.8. We can
take U = 2n+4 and V = C122n�log n�√1+ cn to get

PrY

{∣∣∣ ∑
j≤2n

ε̃jd̃j

∣∣∣ > C2n log n
}

≤K exp
(
− 1
K

C2n log n
2n+4

log
(

1+ C22n+4 log n

C122n�log n�√1+ cn

))

≤K exp
(
− C

24K
log
(

1+ 24C

C1

)
log n√
1+ cn

)
�
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Taking C so that

C

24K
log
(
1+ 24C

C1

)
≥ 2

shows, by Lemma 3.4, that ∑
n

IIn <∞�(3.18)

Inequalities (3.17) and (3.18) complete the proof of Step 7.

Step 8. Inequality (3.10) holds for some C <∞ if

An =
{
�x�y�� fn�x� ≤

2n

n
� fn�y� ≤

2n

log n
�

gn�x� ≤ 1� gn�y� ≤ 1� h2�x�y� ≤ 22n

n4

}
�

This can be done in the same way as Step 7.
It is clear that we can write S × S = ∪8

i=1A
i
n with A1

n� � � � �A
8
n disjoint,

and Ai
n satisfying the conditions in Step 1 for each n. Then, h =∑8

i=1 hIAi
n
=∑8

i=1 h
i
n. Since for each i the kernels hin satisfy condition (3.10) for some

C < ∞, it follows by the triangle inequality that the series (3.4) for h con-
verges for some C <∞, proving the sufficiency part of Theorem 3.1. ✷

4. Canonical kernels. In this section we show that, for canonical
kernels, the LIL (1.1) is equivalent to the decoupled and randomized LIL.
The preliminary results in Section 2(B) yield that the regular LIL implies the
decoupled and randomized one. The converse implication, however, seems to
require Theorem 3.1. The first step consists of the following simple inequality,
rooted in known symmetrization techniques.

Lemma 4.1. For any kernel h, and for any n ∈ N and t > 0, we have

Pr

{∣∣∣ ∑
i� j≤n

h�Xi�Yj�
∣∣∣ ≥ 10t

}
≤ 16 Pr

{∣∣∣ ∑
i� j≤n

εiε̃jh�Xi�Yj�
∣∣∣ ≥ t

}

+ 4 Pr

{
EY

∣∣∣ ∑
i� j≤n

εih�Xi�Yj�
∣∣∣ ≥ t

}

+ Pr

{
EX

∣∣∣ ∑
i� j≤n

h�Xi�Yj�
∣∣∣ ≥ t

}
�

Proof. Let 
Zi� be a sequence of independent random variables such
that E�∑i Zi� ≤ s and let 
Z′

i� be an independent copy of 
Zi�. Then, by
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Chebyshev’s inequality, Pr
{�∑i Z

′
i� ≤ 2s

} ≥ 1/2. So, for any t > 0,

Pr
{∣∣∣∑

i

Zi

∣∣∣ ≥ 2t+ 2s
}
≤ 2 Pr

{∣∣∣∑
i

Z′i
∣∣∣ ≤ 2s�

∣∣∣∑
i

Zi

∣∣∣ ≥ 2t+ 2s
}

≤ 2 Pr
{∣∣∣∑

i

�Zi −Z
′
i�
∣∣∣ ≥ 2t

}

= 2 Pr
{∣∣∣∑

i

εi�Zi −Z
′
i�
∣∣∣ ≥ 2t

}

≤ 2 Pr
{∣∣∣∑

i

εiZi

∣∣∣ ≥ t

}
+ 2 Pr

{∣∣∣∑
i

εiZ
′
i

∣∣∣ ≥ t

}

= 4 Pr
{∣∣∣∑

i

εiZi

∣∣∣ ≥ t

}
�

Using the above inequality conditionally we get

Pr
{∣∣∣∑

i� j

h�Xi�Yj�
∣∣∣ ≥ 10t

}
≤ 4 Pr

{∣∣∣∑
i� j

εih�Xi�Yj�
∣∣∣ ≥ 4t

}

+ Pr
{
EX

∣∣∣∑
i� j

h�Xi�Yj�
∣∣∣ ≥ t

}
and

Pr
{∣∣∣∑

i� j

εih�Xi�Yj�
∣∣∣ ≥ 4t

}
≤ 4 Pr

{∣∣∣∑
i� j

εiε̃jh�Xi�Yj�
∣∣∣ ≥ t

}

+ Pr
{
EY

∣∣∣∑
i� j

εih�Xi�Yj�
∣∣∣ ≥ t

}
� ✷

The next lemma shows that if the second moment and the conditional
second moment of a canonical kernel h are suitably truncated, then
Talagrand’s inequality (Lemma 2.8) allows control of the last two terms on
the right-hand side of the inequality in Lemma 4.1.

Lemma 4.2. Let h be a canonical kernel such that

Eh2�X�Y� ≤ c2 log n

and

EYh
2�X�Y� ≤ c22n� X-a�s�

for some c <∞. Then we have that, for some universal constant C,

Pr
{
EY

∣∣∣ ∑
i� j≤2n

h�Xi�Yj�
∣∣∣ ≥ cC2n log n

}
≤ n−2�
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Proof. We can assume c = 1. If we define

Z �= EY

∣∣∣ ∑
i� j≤2n

h�Xi�Yj�
∣∣∣

then

Z = sup

{∑
i≤2n

EY

( ∑
j≤2n

h�Xi�Yj�g�Y�
)}

�

where the supremum is taken over all g�Y� = g�Y1� � � � �Y2n� with 
g
∞ ≤ 1,
actually over a countable L1-norm determining subset of such functions. Thus
Z has the same form as in Lemma 2.8. Then, since∥∥∥∥EY

∣∣∣∣ 2n∑
j=1

h�x�Yj�
∣∣∣∣
∥∥∥∥
∞
≤
∥∥∥∥
(

2n∑
j=1

EYh
2�x�Yj�

)1/2∥∥∥∥
∞
≤ 2n

and
2n∑
i=1

E

(
EY

∣∣∣∣ 2n∑
j=1

h�Xi�Yj�
∣∣∣∣)2

≤
2n∑
i=1

E

(
2n∑
j=1

EYh
2�Xi�Yj�

)
= 22nEh2 ≤ 22n log n�

we can take

U = 2n and V = 22n log n(4.1)

in Talagrand’s exponential bound for Z. Moreover,

EZ ≤
(
E

∣∣∣∣ ∑
i� j≤2n

h�Xi�Yj�
∣∣∣∣2)1/2

= 2n�Eh2�1/2 ≤ 2n log n�(4.2)

Now the statement follows by (4.1), (4.2) and the exponential bound in
Lemma 2.8. ✷

The following lemma will allow us to carry out truncations for canonical
kernels exactly in the same way as we did for randomized kernels in the first
four steps of the sufficiency proof of Theorem 3.1.

Lemma 4.3. For any integrable kernel h, n ∈ N and p ≥ 1 we have∥∥∥∥ ∑
i� j≤n

π2h�Xi�Yj�
∥∥∥∥
p

≤ 4
∥∥∥∥ ∑
i� j≤n

εiε̃jh�Xi�Yj�
∥∥∥∥
p

�

Proof. Since π2h is canonical, by Jensen’s inequality we have that, for all

Yj�,

EX

∣∣∣∣ ∑
i� j≤2n

π2h�Xi�Yj�
∣∣∣∣p ≤ EX

∣∣∣∣ ∑
i� j≤2n

(
π2h�Xi�Yj� − π2h�X

′
i�Yj�

)∣∣∣∣p
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= EX

∣∣∣∣ ∑
i� j≤2n

εi
(
π2h�Xi�Yj� − π2h�X

′
i�Yj�

)∣∣∣∣p

= EX

∣∣∣∣ ∑
i� j≤2n

εi
(
h�Xi�Yj� −EYh�Xi�Yj�

− h�X′
i�Yj� +EYh�X

′
i�Yj�

)∣∣∣∣p�
Thus, by the triangle inequality,∥∥∥∥ ∑

i� j≤2n
π2h�Xi�Yj�

∥∥∥∥
p

≤
∥∥∥∥ ∑
i� j≤2n

εi
(
h�Xi�Yj� −EYh�Xi�Yj�

)∥∥∥∥
p

+
∥∥∥∥ ∑
i� j≤2n

εi
(
h�X′

i�Yj� −EYh�X
′
i�Yj�

)∥∥∥∥
p

= 2
∥∥∥∥ ∑
i� j≤2n

εi
(
h�Xi�Yj� −EYh�Xi�Yj�

)∥∥∥∥
p

�

In a similar way we may prove that∥∥∥∥ ∑
i� j≤2n

εi
(
h�Xi�Yj� −EYh�Xi�Yj�

)∥∥∥∥
p

≤ 2
∥∥∥∥ ∑
i� j≤2n

εiε̃jh�Xi�Yj�
∥∥∥∥
p

� ✷

Now we can prove the main result of this section.

Theorem 4.4. For any canonical kernel h the following two conditions are
equivalent:

lim sup
n→∞

1
n log log n

∣∣∣∣ ∑
1≤i<j≤n

h�Xi�Xj�
∣∣∣∣ <∞ a.s.(4.3)

and

lim sup
n→∞

1
n log log n

∣∣∣∣ ∑
1≤i� j≤n

εiε̃jh�Xi�Yj�
∣∣∣∣ <∞ a.s.(4.4)

Here, again, each of the two limsups is a.s. bounded by a universal constant
times the other.

Proof of Theorem 4.4. Inequalities (4.3) implies (4.4) (even without
degeneracy of the kernel) by Lemma 2.1(b).

To prove the opposite implication, by Corollary 2.6 it is enough to show
that if (4.4) holds [which is equivalent to the two conditions (3.2) and (3.3) by
Theorem 3.1], then∑

n

Pr
{∣∣∣∣ ∑

i� j≤2n
h�Xi�Yj�

∣∣∣∣ ≥ C2n log n
}
<∞�



544 GINÉ, KWAPIEŃ, LATAłA AND ZINN

Since h is canonical, we may replace h by π2h in this series (h = π2h). As in
the case of decoupled and randomized kernels, convergence of the series will
follow in a few steps by showing that

∑
n

Pr
{∣∣∣∣ ∑

i� j≤2n
π2hn�Xi�Yj�

∣∣∣∣ ≥ C2n log n
}
<∞�(4.5)

where hn = hIAn
for suitably chosen sequences of sets An. We can assume, as

in Theorem 3.1, that C = 1 in conditions (3.2) and (3.3).

Step 1. The series in (4.5) converges for

An =
{�x�y�� fn�x� > 2n �log n�2 or fn�y� > 2n�log n�2}�

By the degeneracy of h we have

�Ehn� =
∣∣EhI
fn�x�>2n�log n�2� +EhI
fn�y�>2n�log n�2�

− EhI
fn�x�>2n�log n�2�fn�y�>2n�log n�2�
∣∣

= ∣∣EhI
fn�x�>2n�log n�2�fn�y�>2n�log n�2�
∣∣

≤Pr
{
fn�X� > 2n�log n�2}1/2 Pr

{
fn�Y� > 2n�log n�2}1/2

≤ C̃2−n�

(4.6)

where the last two inequalities follow by (3.3) and (3.8), respectively. We also
have

π1hn�x� = π1hI
fn�y�>2n�log n�2� fn�x�≤2n�log n�2��x��
as can be seen using the decomposition of hn given in the first line of (4.6)
together with the fact that EYhI
fn�x�>2n�log n�2� = 0. Thus, by Chebyshev’s
inequality,∑

n

Pr
{∣∣∣∣ ∑

i≤2n
π1hn�Xi�

∣∣∣∣ ≥ c log n

}

≤∑
n

2n

c2�log n�2E
∣∣π1hI
fn�y�>2n�log n�2�fn�x�≤2n�log n�2��X�

∣∣2
≤∑

n

2n

c2�log n�2EX

[(
EYhI
fn�y�>2n�log n�2�

)2
I
fn�X�≤2n�log n�2�

]
≤∑

n

2n

c2�log n�2EX

(
EYhI
fn�y�>2n�log n�2�

)2
≤∑

n

2n

c2�log n�2 Pr
{
fn�Y� > 2n�log n�2} <∞�

(4.7)
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where in the last line we used (1.5) with C = 1 [i.e., condition (3.3)] and (3.8).
Finally, as in step 1 of the proof of sufficiency of the symmetrized LIL,∑

n

Pr
{∣∣∣∣ ∑

i� j≤2n
hn�Xi�Yj�

∣∣∣∣ ≥ C2n log n
}
<∞�(4.8)

Inequalities (4.6)–(4.8) imply (4.5) by Hoeffding’s decomposition (2.1).

Step 2. The series in (4.5) converges for

An ⊂
{
�x�y�� �h�x�y�� > 2n log n or fn�x� > 2n or fn�y� > 2n

}
∩
{
�x�y�� max�fn�x�� fn�y�� ≤ 2n�log n�2}�

To prove this we may proceed just as in Steps 2–4 of the proof of the sym-
metrized LIL, with only formal changes: note that in Steps 2–4 we used there
only Chebyshev’s inequality to bound probabilities; thus Lemma 4.3 reduces
proving inequality (4.5) here to Steps 2–4 in that proof, where the lower bounds
for h and fn are even smaller.

Step 3. The series in (4.5) converges for

An = 
�x�y�� �h�x�y�� ≤ 2n log n�fn�x� ≤ 2n� fn�y� ≤ 2n��
The LIL (4.4) implies that

∑
n

Pr

{∣∣∣∣ ∑
i� j≤2n

εiε̃jh�Xi�Yj�
∣∣∣∣ ≥ C2n log n

}
<∞

for some C < ∞ by Lemma 2.2(c). Steps 1–4 from the proof of sufficiency in
Theorem 3.1 show that∑

n

Pr

{∣∣∣∣ ∑
i� j≤2n

εiε̃jhIDn
�Xi�Yj�

∣∣∣∣ ≥ C2n log n

}
<∞�

for any Dn ⊂
{�x�y� � �h�x�y�� > 2n/n or max�fn�x�� fn�y�� > 2n/ log n

}
, in

particular for Dn = Ac
n. Therefore we have

∑
n

Pr

{∣∣∣∣ ∑
i� j≤2n

εiε̃jhn�Xi�Yj�
∣∣∣∣ ≥ C2n log n

}
<∞(4.9)

for some C <∞. In order to deduce (4.5) from (4.9) we show first that we can
replace hn by π2hn in (4.9), and then apply Lemmas 4.1 and 4.2 to π2hn. So,
we begin by proving (4.9) for hn − π2hn or, what is the same by Hoeffding’s
decomposition, we prove (4.9) with hn replaced by π1hn and by Ehn. We can
write hn as

hn = h− hI
fn�x�>2n� − hI
fn�y�>2n�

+hI
fn�x�>2n� fn�y�>2n� − hI
�h�>2n log n�fn�x�≤2n� fn�y�≤2n��
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Then, by the degeneracy of h and (3.3), we have

∣∣∣∣ ∑
i� j≤2n

εiε̃jEhn

∣∣∣∣ ≤ 22n
(∣∣EhI
fn�x�>2n�fn�y�>2n�

∣∣+E�h�I
�h�>2n log n�
)

≤ 22n
(
Pr
{
fn�X� > 2n

}1/2 Pr
{
fn�Y� > 2n

}1/2
+ E�h�I
�h�>2n log n�

)
�

Now, we note that (3.2) implies E�h�I
�h�>2n log n� ≤ C̃2−n (as Pr
�h� > u� ≤
u−2L2u) and

Pr
{
fn�X� > 2n

} ≤ E�h2 ∧ 24n�
2n

≤ C̃
Ln

2n
�

Hence,

∣∣∣∣ ∑
i� j≤2n

εiε̃jEhn

∣∣∣∣ ≤ C̃2n log n�(4.10)

The above decomposition of hn together with the degeneracy of h also give

π1hn�x� = −π1hI
fn�y�>2n� fn�x�≤2n��x� − π1hI
�h�>2n log n�fn�x�� fn�y�≤2n��x��

So, by Chebyshev’s inequality and (3.2), we have

∑
n

Pr

{∣∣∣∣ ∑
i� j≤2n

εiε̃jπ1hI
�h�x�y��>2n log n�fn�x�� fn�y�≤2n��Xi�
∣∣∣∣ ≥ c2n log n

}

≤∑
n

2n

c log n
E
∣∣π1hI
�h�x�y��>2n log n�fn�x�� fn�y�≤2n��X�

∣∣
≤∑

n

1
c log n

2n+1E�h�I
�h�>2n log n�

≤ c−1E�h�∑
n

2n+1

log n
I��h� > 2n log n�

≤ C̃E
h2

�L2�h��2
<∞�

(4.11)
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Also, by Chebyshev’s inequality, (1.5) with C = 1 and (3.8),∑
n

Pr
{∣∣∣∣ ∑

i� j≤2n
εiε̃jπ1hI
fn�y�>2n� fn�x�≤2n��Xi�

∣∣∣∣ ≥ c2n log n
}

≤∑
n

1

c2 log2 n
E

∣∣∣∣π1hI
fn�y�>2n� fn�x�≤2n��X�
∣∣∣∣2

≤∑
n

1

c2 log2 n
EX

(
EYhI�fn�y� > 2n�

)2

≤∑
n

1

c2 log2 n
Pr
{
fn�Y� > 2n

}
<∞�

(4.12)

Inequalities (4.9)–(4.12) imply, by the Hoeffding decomposition,∑
n

Pr
{∣∣∣∣ ∑

i� j≤2n
εiε̃jπ2hn�Xi�Yj�

∣∣∣∣ ≥ C2n log n
}
<∞(4.13)

for some C <∞. By (3.2), E�π2hn�2 ≤ Eh2
n ≤ C̃ log n, and, by the definition of

An and (3.2), EY�π2hn�2�x� ≤ 2EYh
2
n + 2Eh2

n ≤ 2n+1 + C̃ log n, and likewise
for EX�π2hn�2. Then, it follows from Lemma 4.2 that∑

n

Pr
{
EY

∣∣∣∣ ∑
i� j≤2n

εiπ2hn�Xi�Yj�
∣∣∣∣ ≥ C2n log n

}
<∞(4.14)

for some C <∞ and that, likewise,∑
n

Pr
{
EX

∣∣∣∣ ∑
i� j≤2n

π2hn�Xi�Yj�
∣∣∣∣ ≥ C2n log n

}
<∞�(4.15)

Then, (4.13)–(4.15) give (4.5) by Lemma 4.1, concluding the proof of Step 3.
Steps 1–3 together show that∑

n

Pr
{∣∣∣∣ ∑

i� j≤2n
π2h�Xi�Yj�

∣∣∣∣ ≥ C2n log n
)
<∞�

concluding the proof of the theorem. ✷

5. Arbitrary kernels: final comments. We conclude with the proof of
Theorem 1.1, a conjecture on the LIL for kernels of more than two vari-
ables and several remarks on the limsup in (1.1) and the limit set of the
LIL sequence.

Proof of Theorem 1.1. Conditions (1.2) and (1.3) are sufficient for the
LIL for degenerate kernels by Theorems 3.1 and 4.4.

If the kernel h satistifies the LIL (1.1), then it satisfies the decoupled
and randomized LIL by Lemma 2.1(b). Then, by Theorem 3.1, it also satisfies
conditions (1.2) and (1.3). So, it suffices to prove that if the LIL (1.1) holds
then the kernel h is canonical.
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Since by (1.2) E�π2h�p <∞ for any p < 2, we have by the Marcinkiewicz
type strong law of large numbers for U-statistics [Giné and Zinn (1992),
Theorem 2],

lim
n→∞

1
n2/p

∑
i�=j≤n

π2h�Xi�Yj� = 0 a.s. for all 0 < p < 2�(5.1)

The LIL for h implies the decoupled LIL (2.8) by Lemma 2.2(a), and therefore
also that

lim
n→∞

1
n2/p

∑
i�=j≤n

h�Xi�Yj� = 0 a.s. for all 0 < p < 2�(5.2)

Subtracting (5.1) from (5.2) and using the Hoeffding decomposition we obtain

lim
n→∞n

1−2/p

∣∣∣∣∑
i≤n

(
π1h�Xi� − 1

2Eh
)+ ∑

j≤n

(
π1h�Yj� − 1

2Eh
)∣∣∣∣ = 0 a.s.

However, if p ≥ 4/3, this yields, by the CLT or the LIL in R, that

π1h�X� − 1
2Eh = 0 a.s.

Since π1h is centered, it follows that Eh = 0 and π1h�X� = 0 a.s. Hence
h = π2h is canonical for the law of X. ✷

The following conjecture for kernels of more than two variables seems only
natural.

Conjecture 5.1. Let h be a kernel of d variables symmetric in its entries.
Then h satisfies the law of the iterated logarithm,

lim sup
n→∞

1
�n log log n�d/2

∣∣∣∣ ∑
1≤i1<i2<���<id≤n

h�Xi1
� � � � �Xid

�
∣∣∣∣ <∞ a.s.(5.3)

if and only if the following conditions hold:

(a) h is canonical for the law of X; that is, EXi
h�X1� � � � �Xd� = 0 a.s. and

there exists C <∞ such that
(b)

E min�h2� u� ≤ C�L2u�d−1(5.4)

for all u > 0 and
(c)

sup
{
E�h�X1� � � � �Xd�

d∏
i=1

fi�Xi�� � Ef2
i �X� ≤ 1�


fi
∞ <∞� i = 1� � � � � d
}
<∞�

(5.5)
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We know at present that the necessity part of this conjecture is true.
The problem of determining the lim sup in (1.1) when Eh2 = ∞ is open and,

a fortiori, so is the problem of determining the limit set of the LIL sequence.
We now briefly comment on these questions. The previous results do give the
order of the limsup in (1.1) up to constants as we show next. In the theorem
that follows we denote the quantity in (1.3) as 
h
L2 �→L2

.

Theorem 5.2. Suppose that h�x�y� is canonical for the law of X. Then
there exists a universal constant C such that, almost surely,

C−1


h
L2 �→L2
+ lim sup

u→∞

√
E�h2 ∧ u�

L2u


≤ lim sup

n→∞
1

nL2n

∣∣∣∣ ∑
1≤i<j≤n

h�Xi�Xj�
∣∣∣∣

≤ C


h
L2 �→L2
+ lim sup

u→∞

√
E�h2 ∧ u�

L2u

 �
(5.6)

The same inequality holds true if h is arbitrary and h�Xi�Xj� is replaced in
(5.6) by the randomized εiεjh�Xi�Xj�, or by the decoupled versions.

Proof. Lemma 2.1 and the proof of necessity of Theorem 3.1 (see also
Corollary 2.4) give the left-hand side bound for decoupled and randomized
kernels. The right-hand side bound, also for decoupled and randomized
kernels, follows from the proof of sufficiency of Theorem 3.1. Let

K �= max


h
L2 �→L2
� lim sup

u→∞

√
E�h2 ∧ u�

L2u

 �
if K = 1, the proof of Theorem 3.1 produces (3.4) for a fixed constant C that
could be computed if necessary, as can be seen from Steps 7 and 8 (the only
ones that contribute to the limsup), and if K �= 1, (3.4) with C replaced by
CK is obtained by considering the kernel h/K. Then, Corollary 2.5 yields the
right-hand side of (5.6). Derandomization as in Section 4 gives the bounds
(5.6) for canonical kernels. ✷

We know that when Eh2 < ∞ and h is a canonical kernel of d variables,
the limsup in (5.3) is just the quantity in (5.5), and even more, that the limit
set of the sequence{

d!
�2n log log n�d/2

∑
1≤i1<i2<···<id≤n

h�Xi1
� � � � �Xid

�
}



550 GINÉ, KWAPIEŃ, LATAłA AND ZINN

is, a.s., {
E�h�X1� � � � �Xd�

d∏
i=1

f�Xi�� � Ef2�X� ≤ 1
}

[Dehling (1989) for d = 2 and Arcones and Giné (1995) in general]. Then,
restricting to kernels of two variables, several concrete questions arise: (1) Is
any of the two summands in the bounds (5.6) superfluous? (2) At least in the
case when the kernel h defines a compact operator of L2, can we determine
the limit set of the LIL sequence from the limit set for finite rank h by oper-
ator approximation? and of course, (3) What is the limit set in general? We
will answer (1) by means of examples showing that, in general, both sum-
mands in the bound (5.6) are essential, and, regarding question (2) we will
also determine the limit set for a class of kernels that induce compact oper-
ators in L2. We will show, moreover, that there are kernels h that give non-
compact operators for which the LIL holds [the examples in Giné and Zhang
(1996) define compact operators and suitable modifications will give noncom-
pact ones]. Finally, question (3) will remain open but we will show that the
limit set is always an interval.

Example 5.3. We consider the kernel

h�x�y� =
∞∑
n=1

an
bn
In�x�In�y��(5.7)

where 
In� is a sequence of functions on R with disjoint supports contained
in �0�1� such that

∫
R In�u�du = 0, In�x� ∈ 
−1�0�1� for each x ∈ R, the

sequence 
bn� is defined by bn =
∫
R I

2
n�u�du and 
an� is an arbitrary bounded

sequence of real numbers. Then, if, as will be the case, for X�Y i.i.d. uniform
on �0�1�, E�h�X�Y�� <∞, h is a canonical kernel for the uniform distribution
on �0�1�. Since 
b−1/2

n In� is an orthonormal sequence in L2 �= L2�� �X��, we
have


h
L2 �→L2
= sup

n∈N
�an��(5.8)

If we further assume that 
an/bn� is an increasing sequence, then

lim sup
u→∞

E�h2 ∧ u�
L2u

= lim sup
n

∑n
k=1 a

2
k + �a2

n/b
2
n�
(∑∞

k=n+1 b
2
k

)
L2�b−1

n �
�

So, if we choose an = a for all n and In such that bn = exp
[− exp�a2n/b�] for

large n, then

lim sup
u→∞

E�h2 ∧ u�
L2u

= b�(5.9)

Thus, in this case, the kernel h satisfies the LIL by Theorem 3.1. Moreover,
(5.8) and (5.9) show that the two quantities appearing in the bounds (5.6) are
not comparable (and, in particular, neither of them is superfluous). In these
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types of examples, the operator in L2 with kernel h is compact if and only if
limn an = 0, thus showing that there are canonical kernels h which satisfy
the LIL but that do not define a compact operator on L2.

If Eh2 < ∞, then the operator norm dominates the bound in (5.6), as the
limsup of the normalized truncated second moments of h is zero. Even for
kernels h defining compact operators we may have that it is this second term
that dominates the bound: for an = 1/

√
n and bn = 2−n, consider the kernels

hm�x�y� =
∑∞

n=m anb
−1
n In�x�In�y�; then we have 
hm
L2 �→L2

= 1/
√
m → 0

whereas lim supu→∞�E�h2
m ∧ u�/L2u� = 1 for all m.

There is, however, a class of canonical kernels h satisfying the LIL and
defining compact operators for which the limit set of the LIL sequence is the
numerical range of the operator defined by h, as is the case when h has finite
second moment. In the next proposition H will denote the operator on L2
defined by extension of the equation Hf�y� = Eh�X�y�f�X�, f ∈ L∞�� �X��
[this operator exists under condition (1.3)].

Proposition 5.4. Let h be a canonical kernel for the law of X such that

(a)

lim sup
u→∞

E�h2 ∧ u�
L2u

= 0(5.10)

and
(b) The operator H is a compact operator on L2�� �X��. Then, the limit set

of the sequence {
1

2nL2n

∑
1≤i�=j≤n

h�Xi�Xj�
}

(5.11)

is almost surely the closure of the set{
Eh�X�Y�f�X�f�Y�� Ef2�X� ≤ 1� 
f
∞ <∞

}
�(5.12)

that is, the numerical range of the operatorH, 
E�f�X�Hf�X���Ef2�X� ≤ 1�.

Proof. We set, from now on, L2 �= L2�� �X��. The proof consists in
approximating the operator H with kernel h by suitable operators Hm with
simple kernels, in particular, square integable kernels. We begin by show-
ing that there exists an increasing sequence �m of finite sub-σ-algebras of
� such that, if Pm denotes the orthonormal projection onto the subspace of
�m-measurable functions,


PmHf−Hf
L2
→ 0� f ∈ L2�

Indeed, H being a compact operator, its range is a separable set in L2. There-
fore we can find a sequence 
gi� ⊂ L2 of simple functions such that the range
of H is contained in the closure of the sequence 
gi�. Now, it is enough to set

�m �= σ�g1� � � � � gm�
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to get the desired property. This is so because, obviously, Pmgi → gi for each
i ∈ N, and the set 
f ∈ L2� Pmf → f in L2 norm� is closed in view of

Pm
L2 �→L2

≤ 1.
For each m ∈ N we define

hm�x�y� =
∑

A�B atoms of�m
Pr
X∈A�Y∈B��=0

Eh�X�Y�IA�X�IB�Y�
Pr
X ∈ A�Pr
Y ∈ B� IA�x�IB�y��

where, as usual, Y is an independent copy of X. In other words, h is defined
by the condition

hm�X�Y� = E
(
h�X�Y�∣∣σ�X−1��m��Y−1��m��

)
�

The operator Hm of L2 with kernel hm satisfies Hm = PmHPm, as is seen
from its definition. Then, since 
PmHf −Hf
L2

→ 0 for any f ∈ L2, and
since H is a compact operator in L2, we obtain that

lim
n→∞
Hm −H
L2 �→L2

= 0�(5.13)

To see this, we note that, since �Pm − I�H is the adjoint of H�Pm − I� and
Pm has norm 1,


Hm −H
L2 �→L2
= 
PmH�Pm − I� + �Pm − I�H
L2 �→L2

≤ 2
�Pm − I�H
L2 �→L2
�

now (5.13) follows by a simple compactness argument.
The result follows from the previous observation together with Theorem 5.2

applied to hm and to h− hm, by a standard approximation argument that we
now sketch. Before we do this, we should note that the closure in L2 of the set
(5.12) is the numerical range of H because bounded functions are dense in L2,
the unit ball of L2 is weakly compact and if fn → f weakly, with 
fn
L2

≤ 1,
then, by compactness of H, Hfn →Hf weakly. Let us write !·� ·" for the inner
product in L2, set

L �= 
!Hf�f"� 
f
L2
≤ 1�

and, for any kernel g�x�y� of two variables,

αn�g� �=
1

2nL2n

∑
1≤i�=j≤n

g�Xi�Xj��

If x ∈ L let f ∈ L2 with 
f
L2
≤ 1 be such that x = !Hf�f". Then, by the LIL

for kernels with finite second moment, given m ∈ N, for almost every ω there
is a subsequence nk�ω� such that

αnk�ω� �hm�ω�� → !Hmf�f"�(5.14)

Also, since h satisfies (5.10) and hm has finite second moment, Theorem 5.2
gives

lim sup
n

�αn�hm − h�� ≤K
Hm −H
L2 �→L2
a�s�(5.15)
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Moreover, by (5.13),

!Hmg�g" → !Hg�g"� g ∈ L2�(5.16)

Combining these three limits we obtain that x is a.s. a limit point of the
sequence 
αn�h��. Conversely, suppose now that x is a limit point of this
sequence. Then, by (5.15), given ε > 0, for all m large enough and for almost
every ω there exists a subsequence nk�ω� such that

�x− αnk�ω� �hm�ω��� <
ε

2
�

Therefore, by the LIL for square integrable kernels and (5.16), there is f ∈ L2
with 
f
L2

≤ 1 such that

�x− !Hf�f"� < ε�

So, taking ε = 1/n, there is a sequence fn in the unit ball of L2 such that

x = lim
n
!Hfn�fn"�

Since the unit ball of L2 is weakly compact, the sequence 
fn� has a
subsequence 
fnk� that converges weakly to a function f in the unit ball of
L2. It then follows by compactness of H that x = !Hf�f", that is, x ∈ L. ✷

For example, the previous proposition applies to the kernels h of Example
5.2 for an = n−1/2#�n� and bn = 2−n, where #�n� is any slowly varying function
tending to zero as n→∞. However, if #�n� = 1 then h still satisfies the LIL
(1.1) by Theorem 1.1 and defines a compact operator in L2, but Proposition
5.4 does not apply to it; actually, we do not know what the limit set is in this
case.

As mentioned, the problem of determining the a.s. limit set of the sequence
(5.11) in the general case remains open but we can show that it is an interval.

Proposition 5.5. Let h be a canonical kernel satisfying conditions (1.2)
and (1.3). Then, the limit set of the LIL sequence (5.11) is an interval.

Proof. To prove that the limit set of the sequence (5.11) is an interval, it
suffices to show that the difference of two consecutive terms of the sequence
tends to zero a.s. By (1.2) and the law of large numbers for U-statistics (or by
the LIL), this reduces to showing that

1
n log log n

∑
1≤i<n

h�Xi�Xn� → 0 a�s�(5.17)

We will first prove

1
n log log n

∑
1≤i<n

εih�Xi�Yn� → 0 a�s�(5.18)

and then will show that εi can be removed and that Yn can be replaced by Xn.
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To prove (5.18), it is enough to prove that for all δ > 0,∑
n

Pr
{

max
2n−1<k≤2n

1
2n log n

∣∣∣∣ ∑
1≤i<k

εih�Xi�Yk�
∣∣∣∣ > δ

}
<∞(5.19)

(see, e.g., the proof of Corollary 2.4). Let hn = hIAn
and h̃n = h− hn, where

An =
{�x�y�� �h�x�y�� ≤ 2n log n� fn�y� ≤ 2n �log n�2}�

Then as in Steps 1 and 2 of the proof of Theorem 3.1 we get∑
n

Pr
{

max
2n−1<k≤2n

1
2n log n

∣∣∣∣ ∑
1≤i<k

εih̃n�Xi�Yk�
∣∣∣∣ > δ

}
<∞�

In order to prove∑
n

Pr
{

max
2n−1<k≤2n

1
2n log n

∣∣∣∣ ∑
1≤i<k

εihn�Xi�Yk�
∣∣∣∣ > δ

}

≤∑
n

2n Pr
{∣∣∣∣ ∑

1≤i<2n
εihn�Xi�Y�

∣∣∣∣ > δ2n log n
}
<∞�

we apply Chebyshev’s inequality as in Step 3, reducing the above inequality
to convergence of the two series∑

n

1
22n�log n�4Eh

4
n�X�Y� <∞�

∑
n

1
2n�log n�4Eh

2
n�X1�Y�h2

n�X2�Y� <∞�

But these two series converge, just like the first and second series in Step 3.
Equation (5.19) is thus proved.

Next we show that we can remove the Rademacher variables from (5.18),
that is, that (5.18) implies

1
n log log n

∑
1≤i<n

h�Xi�Yn� → 0 a�s�(5.20)

Let 
X̃i� be a copy of 
Xi�, independent of 
Xi� and 
Yi�, and set

ξn �=
1

n log log n

∑
1≤i<n

h�Xi�Yn�� ξ̃n �=
1

n log log n

∑
1≤i<n

h�X̃i�Yn��

If (5.18) holds, then ξn − ξ̃n → 0 a.s. by Fubini’s theorem and the equidistri-
bution of the variables Xi. Hence, (5.20) will follow by a standard argument
if ξn → 0 in probability conditionally on the sequence 
Yi�. So, assuming
(wlog) that the variables X and Y are defined on different factors of a product
probability space .′ ×., we must show that

1
an

∑
1≤i<n

h�Xi�Yn�ω�� → 0 in pr�� ω-a.s.�(5.21)
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where, for ease of notation, we set an �= �nL2n�−1. Now, since

1
an

∑
1≤i<n

εih�Xi�Yn� → 0 in pr�� ω-a.s.

by (5.18), Lévy’s inequality applied conditionally on 
Yi� gives

nPrX
{�h�X�Yn�� > an

}→ 0 a.s.(5.22)

and then, Hoffmann-Jørgensen’s inequality applied conditionally after trun-
cation, yields

n

a2
n

EXh
2�X�Yn�I
�h�X�Yn��≤an� → 0 a.s.(5.23)

Moreover,

n

an
EXh�X�Yn�I
�h�X�Yn��≤an� → 0 a.s.(5.24)

To prove that this last limit holds, note first that, since EXh = 0,

EXh�X�Yn�I�h�X�Yn��≤an = −EXh�X�Yn�I
�h�X�Yn��>an��

and then that ∑
n

n

an
E�h�X�Y��I�h�X�Y��>an <∞

because, after exchanging expectation and sum and then summing on n, we
see that this series is bounded by a constant times E�h2/�L2

2�h���, which is
finite. Now, (5.22)–(5.24) give that, for all ε > 0,

PrX

{
1
an

∣∣∣∣ ∑
1≤i≤n

h�Xi�Yn�
∣∣∣∣ > ε

}
≤ nPrX

{�h� > an
}

+ I
na−1
n �EXhI
�h�≤an��>ε/2� +

4
ε2

n

a2
n

EXh
2I
�h�≤an�

→ 0 a�s��

proving (5.21), hence, (5.20).
Finally, to undecouple, assume (5.20) holds. By Theorem 1.1 and the 0–1

law we know that

lim sup
n

1
n log log n

∣∣∣∣ ∑
1≤i<n

h�Xi�Xn�
∣∣∣∣ = C a�s�(5.25)

for some C < ∞, and must show that C = 0. Then, we can assume that this
limsup is attained by the sequence of even terms, that is,

lim sup
n

∣∣∑
1≤i<2n h�Xi�X2n�

∣∣
2n log log�2n� = C a�s�(5.26)
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[otherwise we can take the subsequence of odd terms from (5.25) and continue
in the same way as we will now proceed]. However,

lim sup
n

1
2n log log�2n�

∣∣∣∣ ∑
1≤i<2n

h�Xi�X2n�
∣∣∣∣

≤ lim sup
n

1
2n log log�2n�

∣∣∣∣ ∑
1<i<2n
i even

h�Xi�X2n�
∣∣∣∣

+ lim sup
n

1
2n log log�2n�

∣∣∣∣ ∑
1≤i<2n
i odd

h�Xi�X2n�
∣∣∣∣

= lim sup
n

1
2n log log�2n�

∣∣∣∣ ∑
1≤i<n

h�Xi�Xn�
∣∣∣∣

+ lim sup
n

1
2n log log�2n�

∣∣∣∣ ∑
1≤i<n+1

h�Xi�Yn+1�
∣∣∣∣ = C

2

by (5.25) and (5.20). This contradicts (5.26) unless C = 0, proving (5.17). ✷
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Giné, E. and Zinn, J. (1994). A remark on convergence in distribution of U–statistics. Ann.
Probab. 22 117–125.

Goodman, V. (1996). A bounded LIL for second order U–statistics. Preprint.
Halmos, P. R. (1946). The theory of unbiased estimation. Ann. Math. Statist. 17 34–43.
Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math.

Statist. 19 293–325.



LIL FOR U-STATISTICS 557

Latała, R. (1999). Tails and moment estimates for some type of chaos. Studia Math. To appear.
Latała, R. and Zinn, J. (1999). Necessary and sufficient conditions for the strong law of large

numbers for U-statistics. Studia Math. 135 39–53.
Ledoux, M. (1996). On Talagrand’s deviation inequalities for product measures. European Series

in Applied and Industrial Mathematics, Probability and Statistics 1 63–87. Also avail-
able at www.emath.fr/Maths/Ps.

Montgomery-Smith, S. (1993). Comparison of sums of independent identically dsitributed ran-
dom variables. Probab. Math. Statist. 14 281–285.

Rubin, M. and Vitale, R. A. (1980). Asymptotic distribution of symmetric statistics. Ann. Statist.
8 165–170.

Serfling, R. J. (1971). The law of the iterated logarithm for U–statistics and related von Mises
statistics. Ann. Math. Statist. 42 1794.

Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22
28–76.

Talagrand, M. (1996). New concentration inequalities in product spaces. Invent. Math. 126
505–563.

Teicher, H. (1995). Moments of randomly stopped sums revisited. J. Theoret. Probab. 8 779–794.
Zhang, C.-H. (1999). Sub-Bernoulli functions, moment inequalities and strong laws for nonnega-

tive and symmetrized U-statistics. Ann. Probab. 27 432–453.

E. Giné
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