CONFIDENCE BOUNDS ON VECTOR ANALOGUES OF THE “RATIO
OF MEANS” AND THE “RATIO OF VARIANCES” FOR TWO
CORRELATED NORMAL VARIATES AND SOME ASSOCIATED

TESTS

S. N. Roy anxp R. F. PorrHOFF
Unaversity of North Carolina

1. Summary and Introduction. In this paper confidence bounds are obtained (i)
on the ratio of variances of a (possibly) correlated bivariate normal population,
and then, by generalization, (ii) on a set of parametric functions of a (possibly)
correlated p 4 p variate normal population, which plays the same role for a
2p-variate population as the ratio of variances does for the bivariate case, (iii)
on the ratio of means of the population indicated in (i), and, by generalization,
(iv) on a set of parametric functions of the population indicated in (ii), which
plays the same role for this problem as the ratio of means does for the bivariate
case. For (i) and (iii) the confidence coefficient is any preassigned 1 — « and the
distribution involved is the ceniral t-distribution, while for (ii) and (iv), the
confidence statement in each case is a simultaneous one with a joint confidence
coefficient greater than or equal to a preassigned 1 — «. For (ii) the distribution
involved is that of the ceniral largest canonical correlation coefficient (squared),
and for (iv) the distribution involved is that of the central Hotelling’s T2, As
far as the authors are aware the results on (ii) and (iv) are new and so perhaps
that on (i). But the result on (iii) has been in the field for a long time in various
superficially different forms. An important point to keep in mind on these
problems is that, for such confidence bounds and the associated tests -of hy-
potheses to be physically meaningful, the two variates for the bivariate distribu-
tion should be comparable. For example, they might refer to the same char-
acteristic of a set of individuals before and after a feed. Likewise, for a (p +
p)-variate distribution, the p variates of the first set should be comparable to p
variates of the second set. For example, they might refer to several characteristics
of a set of individuals before and after a treatment. In each case the confidence
bounds are obtained by inverting the test of a certain hypothesis, which is
indicated at its proper place. Thus, for the (p 4+ p)-variate problem, we assume
that there are p pairs of comparable variates and it is the pairwise comparison
for these p pairs that seems, in this situation, to be physically more meaningful
than anything else. Any general bounds that will be obtained in this paper are to
be regarded, in a large measure, as a means to this end, although there could
conceivably be physical questions, some of which will be illustrated in a later
applied paper to be published elsewhere, to which these more general bounds
would be pertinent.
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2. Confidence bounds for the case (i). Suppose we have a random sample of

size n(> 2) from a population:
Z1 & g f poy1 02
K2 & po1o2 02

Let us denote the sample means by &1 , £, and the sample dispersion matrix by

2
81 81 87T
2 .
81827 S2

Then for any constant ), it is easy to check that covariance (1 — Azz, 1. + Ax2)
is var(z1) — A var(z) = o7 — Nos .

This will be zero if A* = oi/03. Thus, with a A\’ = oi/03, the variates
21 — Az2 and x,. + Az, will be uncorrelated and hence, denoting by r* the sample
correlation coefficient between these two variates, we have that r* has the
(central) r-distribution, i.e., v/n — 2r* / (1 — **! has the (central) ¢-distribu-
tion with d.f. (n — 2). But it is easy to check that
_ (si — N's3)

(s + N's% + 2As1 & 7) (51 + N's3 — 2\s; & 7))}

_ (st — Ns3)

[st + At + 2N%7 551 — 2

Now, starting from the statement (with a probability 1 — «)

*

2.1)

(2.2) Vi =2 /(1 — ™)} £ tap(n — 2), or < £ (more simply),

where £,2(n — 2) is the upper a/2-point of the (central) /-distribution with d.f.
(n — 2), and remembering that N = o1/ and substituting from (2.1) for r* in
terms of s, , s; and r, we have, for o}/03, the following confidence equation (2.3)
and confidence bounds (2.4) (with a confidence coefficient 1 — a)

4
n—2

2 4
21 — rz)] -:}; A+ z; <o,
2

2

(2.3) A — [2 +

and
2

A0+ gm0 - ) {0+ 25 ta0 - ) 1} ]2
s—g l+n_2ta/2(1 ) 11+n_2ta/2(1 ) 1 §0—§

= zz[(l + - E 2tfz/2(1 - 7’2)) +{(1 + - E 2ti/2(1 - 7'2))2 - l}i]-

2

(24)

We notice that A = ¢1/02 = 1 if and only if o1 = a2.

Notice that (2.2) or (2.3) can be used as an acceptance region for the hy-
pothesis ¢1/02 = A (any specific value) against the alternative o1/o2 # A.
Since the paper was written it has been brought to the notice of the authors that
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this region, for the case of ¢1/02 = 1, i.e., for 1 = o2 , has been explicitly given
by Walker and Lev [5].

3. Confidence bounds for the case (ii). Suppose we have

Zn 2
coso-[ [ B 20
X | p &Lop 212 2o |p
1 1 p P

= N[E@2p X 1), =Z(2p X 2p)] (say),

and a random sample of size n(> 2p) from this population, with a sample
dispersion matrix denoted by

Siz Szzp
p

It is well known [3] that we can choose (non-singular) matrices u(p X p) and
v(p X p) such that

Su 8
3.1) [ ! “]p — 8@2p X 2p) (say).

3.2) Zn = ', Ze=w and Zjp = uDnv,
where v’s, i.e., 71, 72, *** , vs are the characteristic roots of >0 2125 212 and
D112 is a diagonal matrix whose diagonal elements are o 72, . Itisalso well

known [3] that these roots are all non-negative, that the number of positive
roots is the same as the rank of Z;, and that all the roots are zero if, and only if,
212 = 0.

Now introduce a new variate x* (2p X 1) defined by

3.3) x*¥(2p X 1) = P l:xlil (say) = A(2p X 2p)x(2p X 1),

pLX
1
where
I —w)p I —
(34) A(2p X 2p) = " = (say).
I w ) I
p 14
Then this x* is N(£*, Z*), where & = A% and
=h Zh
35) -, z* = o (say) = AZA/,
. 212 Zao

whence v;ve have that
21 = 2(Zu — uDyuiep’), 23 = 2(Zn + uDy1jw’)
(3.6) Zh=Zu — w S+ S’ W — w S
= Zn — uDypnop’ + uDyyjop’ — 21 = 0.
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This means that the transformed p-set x1 is uncorrelated with transformed p-set
x5. We shall put simultaneous confidence bounds on the largest and smallest
characteristic roots of AN/, i.e., of u %' 'y’ and then show at the end of this
section how these roots are, in a sense, a generalization of o1/03 for case (i).
We may note here, incidentally, that for p = 1, X does, in fact, reduce to o1/0; .
Neéxt, denoting by S* the sample dispersion matrix of x*, we have

S St
s*2p X 2) = |, f]p (say) = ASA’
L. 22 22_| P
P P

(3.7)

1 —x][su Se[ I I
| I Sta Swfl =N N ’
S;kl = Sy — >\S;z — SN + )\Szz)\’,
(3.8) 8t = Su — ASiz + S\ — ASm)N,

Sr2 = Su 4+ ASiz 4 S\ + NS\

Now we go back to (3.6). Note that, since >t = 0, the transformed xi-set is
uncorrelated with the transformed x;-set, and also that, in this case, the joint
distribution of the canonical correlation coefficients and also, in particular, of
the largest canonical correlation coefficient is known. Thus we can find
a ca(p, p,n — 1) = ¢, (say) such that

(3.9) Plenax(STT %2 S3:'8%2) S ¢a | 2B = 0] = 1 — a.

The set over which the probability statement (3.9) is made, namely,
cmax(srl__lsi'; S;kz—lsikz, é Ca )

can be used as an acceptance region for the hypothesis that u™" has a particular

(matrix) value, and, in particular, that u»™ = I(p), or in other words, =1 = 2.

The problem now is to start from (3.9), use (3.8) and try to obtain confidence

bounds on functions connected with A(=ur"). For this we proceed as follows.
Let ¢ be a characteristic root of the matrix in (3.9). Then

whence we have

(3.10) [eSH — Sk S%7'S% | = 0.
With ¢ = 1 — 4d, this reduces to
(3.11) | dST — 18% + 185 S5 'S | = 0.

Now, using (3.8), we have
— 18h = — Su+ ¥(Sh + S + S)

3.12 , I
(8.12) = — Su + 1(Sh + 85)S85 (S + S5) — 8% S5 St -
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Hence

* % */ %
(3.13) \ dsh — Su + (‘S——” : S”) S <———S“ + S") =0
or

|dSti — Su + (Su + S1N) 835 (Su + ASiz) | = 0.
Next, we recall that for a non-singular M4(q X ¢) we have
M, M,

M, M,
P g
and, using this, we observe that (3.13) is equivalent to

p
q

(3.14) = |M,| | M, — M, M:'Ms|

(3.15) Su = dsik‘ Su + S”,)‘, =0,
Su+ M2 Su + Mtz + SN 4+ ASxu N
that is,
Sy —dSti SuN +dSh |
Su+ Sk S\ + ASmN |
that is,
Su —dSHi  SeN + dSh
\Sls + dSE ASmMN — dSh|
that is,

[ Su Su N } y4 d [ Sikl _Sikl]
Az ASm N [p -8t Sk

p p

But we have
X B Su Slz )\/ 7 -I 0 Sll S12 I O
(3.16) , = ,
L_AS]Z wﬂ )\,_ _O )\ S12 S22 0 )\/
and

[ S;kl _Sll—
| -8t Sh

7 :l .
= S11 [I _IJ
-1

R
-1 Sty S|l =N '

Hence (3.15) reduces to
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[ T ey af-e

which is equivalent to

' I oI I I 0
0 N1l -1 Y 0 N7]|

where e = 1/d, which again reduces to
(3.18) leI(2p X 2p) — S~ BSA’ | =0,

where

I o1 I -
(319)  B(2p X 2p) = [ _l][ ][I -\ = [ o ]
0 A -1 —\ I

Now we go back to (3.9), reeall that e =1/d = 4/(1 —¢), put e, =
4/(1 — ca), observe that “cmax = ca”’ is equivalent to “emsx < €.,” and hence

that (3.9) is equivalent to B
Plomax[S78881 S € | 21 = 0] = 1 — @,

3.17)

or to

=2 21250 for all non null

P[_w_ﬁ_b.)i_ < ea.a,_Sa . b,S_lb
(a’a)(b’b) = © a'a b’b

(3.20)
a@2p X 1) and b(2p X 1)] =1-a

Next, consider, for all non null a and b, the statement
(a’gb)’ _ a'Sa b'S”'b

(3.21) @a)bb) = “7a b
Now specialize a’(2p X 1) and b/(2p X 1) into [a; 0] 1 and bi 0] 1, and
, , P P P P
alsointo [0 a;] 1and [0 by] 1.
p D P P
We next set
11 Sl2 p
(3.22) S-1(2p X 2p) = [S”’ S”:I p,
p P

whence we have
Su = (Su — S Sz—zlsiz)_l, Sn = (Szz - Siz S1_11S12)_1,

3.23
( ) S = _‘Sn‘Sl2 S;zl — —Sl—llsn S22,
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Back in (3.21) we now observe that (3.21) implies

(a{ Ab,)® <e a1 Su a; b; Sb,
(a{ a;) (b; b)) * a; a b; b,

for all non null a; and b;, and that (3.21) also implies

(@A7b) _  a:Swa biS'h
(a; ay) (b{ by) = a; a, bi b, ’

for all pon null a; and b, . If now we consider the left side of (3.24), then it follows
from Cauchy’s inequality that for all non null b., (ai\bs)?/(a1a;) (bsbs) <
(aiA\Nay)/(a1ay), and it is also well known that for all non null a1, cmi(A\\) =
(a1AN'a;)/(a181) < Cmax(A\'). We have also exactly similar results by inter-
changing a, and b, , and similar results on the left side of (3.25), in terms of
A" and a; and b; and then again by the interchange of a; and b; .

Next, maximizing the left side of (3.24) w.r.t. a1 and b, , we observe ([2], (3],
|14]) that (3.24) and hence (3.21) =

Cmax()\x,) é eacmax(sll)cmax(‘sﬂz);
or, after substitution from (3.23),
(3.26) Cmax(xxl) é eacmax(Sll)/cmin(S‘lZ - S;.Z S1_1.1S12)~

Likewise, maximizing the left side of (3.25) w.r.t. a; and b, , we observe [4] that
(3.25) and hence (3.21) imply

(3.27) Cmax()\,_l)‘_]) = eacmaX(‘Sﬂ)cmaX(Su)~

Now recall that [3], since all non zero roots of A"\’ are also roots of e
ie., of )™ and \ is nonsingular, therefore, Coin AN ™) = Cain(WN) T =
1/¢mex(\) and also similarly that cmin™A™") = 1/cmax(A\’). At this point,
using (3.23) we observe that (3.27) and hence (3.25) and hence (3.21) imply

(3.24)

(3.25)

(3.28) CasnW) 2 L caia(S = S S5 510 / Cmae(Sin)-

Also, going back to (3.24) and first maximizing the left side of it w.r.t. b, and
then minimizing the right side w.r.t. a,, we observe [4] that (3.24) and hence
(3.21) imply

(3.29) CainON) £ €aCmin(S11)/Cmin(S2 — Stz ST Si2),

and, furthermore, first maximizing the left side w.r.t. a; and then minimizing the
right side w.r.t. by, we observe [4] that (3.24) and hence (3.21) also imply

(3.30) Cain(AN) S €aCamax(S11)/Cmax(S22 — Stz Sz Sta).

Likewise, back in (3.25), first maximizing the left side w.r.t. b; and then mini-
mizing the right side w.r.t. a, , we observe [4] that (3.25) and hence (3.21) imply
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(331) cmux(xxl) _.>—_- é—l‘cmin(sll - SlZ 8;21S{2)/cmin(822)7

and first maximizing the left side w.r.t. a, and then minimizing the right side
w.r.t. by, we observe [4] that (3.25) and hence (3.21) also imply

(332) cmax()\>\,( g e“l‘ Cmax(Sll - Slz 85_21812)/ Cmax(Sn)-

Now combining (3.26), (3.28), (3.29)—(3.32), we observe that (3.21) implies all
these statements, and hence, going back to (3.20), we have with a joint prob-
ability = 1 — «, the bounds

(3.33) é}'cmiu(sll — S Sz—zlS;z)/ Cmax(S22) S Cmin(AN')

= €a min [cmin(sll)/cmin(s22 - S;2 81—11312), cmax(Sll)/cmax(Sﬂ - S{2 S2_21812)]

and

(3.34) e—l-max [cmin(Su — Sie 2_218;2)/Cmin(s22), Cmax (S — St S?zlsiz)/cmax(szz)]

= Cmaxo\)\I) = eacmax(sll)/cmin(sﬂ - Si? Sl—llslz)-

It is interesting to use [3] and check that the lower bound of (3.33) is = the
upper bound of (3.34), but that the upper bound of (3.33) might be = or < the
lower bound of (3.34). However, it is to be always remembered that cnin(AN") =
cmax(AN'), which should imply an obvious restriction on combined bounds on
Cmax(AN) and cmin(AN).

Truncation. Going back to (3.24) again we can proceed as in [4], equate to zero
any element of a; and the corresponding elements of b, , a,, and b, (it has to be
the corresponding elements, in order to make the process physically meaningful)
and then apply the process of maximization, minimization, etc., leading ulti-
mately to the same kind of statements as (3.33) and (3.34) in terms, however, of
truncated matrices everywhere, with one variate of the first p-set and the cor-
responding variate of the second p-set being cut out. Thus there wiil be (21) ,
i.e., p pairs of such statements. Likewise equating to zero any two elements of
a; and the corresponding elements of b, , a; and b, , we are ultimately led to (72)),
pairs of statements like (3.33) and (3.34) based on different possible sets of
(p — 2) variates, and so on. Ultimately we have 1 4 (?) + <g> + o+ < P _Zz 1),

ie., 2° — 1 pairs of statements like (and including) (3.33) and (3.34) with a
joint probability = 1 — a. It should be noticed that on all these statements e,

however, stays the same.
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It follows from the above remarks that, with a joint confidence coefficient
=z 1 — @ (3.33) and (3.36) imply, among other things, the following set of

. 2 2
confidence statements on the ratios oi:/o3; :

2
(3.34.1) -,1~8—“(1—- M =l<e 5 s fori =1,2 -, p,
€a 821 02; t(]- )

where si;, ss;, oi:, o3; and r; stand respectively for the sample variances of the
1th variate for the two sets, the population variances of the ¢th variate for the
two sets and the sample correlation coefficient between the ¢th variate for the

first set and for the second set.

Interpretation of the role of the characteristic roots of AN'. The characteristic
roots of AN, i.e., of v %'~y are all equal to unity if and only if w ™%’ is an

identity matrix, i.e., if and only if

(3.35) w'=A4, ie., u= Ay,

where A is any arbitrary orthogonal matrix. Going back to (3.2} we easily check
that (3.35) implies

(3.36) 2y = A?zzA’ ,

which, if we recall that A is orthogonal, and Z;; and 2, are symmetric, is pre-

cisely the condition that Zi; and Zs are to be similar matrices. Furthermore,
using (3.2) again it is easy to see that (3.35) also implies

(3.37) i = uDy1j2v’ = AvDy12 v’ = A X a symmetric matrix,

where A is the same orthogonal matrix that occurs in (3.36). Thus (3.35) implies
(3.36) and (8.37)-and it is also easy to verify that (3.36) and (3.37) imply (3.35).
Hence all the characteristic roots of A\, i.e., of %'y’ being unity is a neces-
sary and sufficient condition that the relations (3.36) and (3.37) should hold.
The deviation of these characteristic roots from unity might be regarded,as a
(joint) measure of departure from the hypothesis given by (3.36) and hence
(3.87), of which a very special case is the onethat we get for the bivariate problem.
Further statistical implications of (3.36) and (3.37) will be discussed in a later
paper. '

4. Confidence bounds for the case (iii). Starting from the bivariate normal
distribution characterized in section 2, put ¢ = &/& and introduce a new
variate z = x1 — Q%2 (assume that & # 0, 1.e., ¢ # ). Then z is N(0, a,),
where o2 = — 2gpoio2 + q o2 . Thus

\/ﬁ /s, = V(& — ¢B)/ (s — 2gsi8r + qzsg)*
has the (central) ¢-distribution with d.f. (n — 1), so that we can find a #./; such
that

P [n(ﬁl’:l - q:l-ig)z/(sg —_ 2qsl Sr+ qzsg) < ti/z l q = %] =1 -«
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or
(4.1) P& — ks3)q" — 2(&Fs — ksysr)g + (72 — ks}) 0] =1 — «

where k& = (1/n)t22. We can use the statement within the parentheses in (4.1)
as an acceptance region for the hypothesis that the population ratio of means
has a specific value ¢. But such an acceptance is, of course, well known, at least
in an implicit form.

Subject to the restriction that ¢ is to have real values, the statement within
the parentheses in (4.1) gives the confidence bounds on ¢ = £ /£, . There is also
the further restriction that (4.1) is supposed to be a probability statement on
Z1, &, 81 and s for all real values of ¢ = £,/£ , except for & = 0, ie., for ¢ =
=+ . Equating to zero the expression on the left side of the inequality state-
ment under the probability sign in (4.1), we have an equation in ¢ whose co-
efficients involve stochastic variates. The actual confidence bounds on ¢ are
given by
A (Z1Zy — ks18o7) — [(Fady — ksiser)’ — (& — ks)) (F — ksg)]i' <

2 2 =1
(&2 — ks3)
< (F18s — ks18o7) + [#1Zs — ksyser)® — (& — ks) (@ — ksy)}
= (&3 — ks) '
The bounds will be physically meaningful only if the expression under the radi-
cal is non-negative, i.e., only if,

(4.2)

=2 =2 - - =2 =2

Z1 X xT X xT T2 2
4.3) S+3z22 - Zr+k-S o530 =1

8 83 St 8 St 8

Notice that (Z1/s1) + (&5/s3) is always greater than or equal to 2(&:/s1)(£2/s0)r
but may not always be greater than or equal to the right side of (4.3). Thus,
if in the sample, the inequality (4.3) breaks down we should not, in that situa-
tion, attempt to put any confidence bounds on £/%, .

Going back to (4.1) and tying it up with (4.2) and (4.3) we now observe that
a is the probability of choosing a sample such that either (4.2) is not a real
interval or (4.2) is real but does not cover the true value.

6. Confidence bounds for the case (iv). Starting from the (p + p) variate
normal distribution characterized in section 3, define a set of ¢’s, ¢1, 92, -+ , ¢»
by & = D& where D,(p X p) is a diagonal matrix whose diagonal elemenfs
are q1, --- , gp . Introduce a new variate z(p X 1) defined by
5.1 z(p X 1) = pll — DJ[x|p = A(p X 2p)x(2p X 1) (say).

-V p P X2 | P

It is easy to check that E(y) = & — D& = 0, whence z is N(0, Z.) where
=, = AZA’. Also, given the sample dispersion matrix of x(2p X 1), in the form

5.9 S(2 x 2 ) [Sll Sl2 }
. P p) = ’
( ) Sl2 S22 ]
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we have sample dispersion matrix of z(p X 1) given by

(5.3) 8. = ASA’ = Su — DS — 81Dy + D,SuD, .
Also the sample mean vector of z(p X 1) is given by

(5.4) =% — DgX,.

Thus, with the ¢’s defined as above, nz’S7 'z is distributed as (central) Hotel-
ling’s T?, which means that we can find a T% such that

(5.5) P [2 Sz < ;1; T% | ¢’s defined as above] =1—-a

The set over which the probability statement (5.5) is made, can be used as an
acceptance region for the hypothesis that the population mean ratios have
specific values g¢;s. This, of course, is implicit in the possible applications of
Hotelling’s T°. Now consider the statement within the parentheses in (5.5).
It is well known that this statement is equivalent to the statement that all
clzz’S;' < T%/n, which again is equivalent to

a'zz'a < i . a'S;a

(5.6) a'a n a’‘a

’

for all non null a(p X 1)’s. Considering the left side of (5.6), we use
again Cauchy’s inequality to obtain that for all nonnull a’s, a’z/ (a'a)! = +(@'z)}
whence we see that under variation of a the largest value of the left side of
(5.6) = 7'z, that is, = >_:2: (F1; — qiFas)’, Where Z; and & (fori = 1,2, ---,
p) stand for the sth elements of the vectors X; and X, . We also note that, aside
from the constant factor T%/n, the largest value of the right side of (5.6) under
variation of a’s iS Cmax (S:), i.€., Cmax (ASA’), i.e., Cmax (SA’A). Now we use
[1] to obtain that

Cmax (SA,A) = Cmax (S)cmax (A,A)7 i'e'y S Cmax (S)Cmax (‘A‘AI)’
(5,7) i.e., = Cmax (S)cmax [I + Dqlzly
i€, < Cmax (S)max[l + ¢i,14 g2, -+, 1 + g3l.

Now, if we go back to (5.6) and maximize the left side w.r.t. a, it is easy to
check that (5.6) implies

yd
%Tf.cmu(S)maX[l+qf,l+q§,°°°,1+q§]—Z;(:Eu—q;ist%O
or

y 4
(5.8) % T cmex(S) max [1+ gf, -+, 1 + @3] — %k — 2 i s

yd
+ 2> qiFid = 0.
=
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Also notice that

b4 b4
Z QT Tos | = Z Qi || $1s Tas
=1 i=1
(5.9) )
< [max(gl , -+, gp)P Z; | &14 &2 |
=
and

P P
- Zlqgfgd = - min(q:;"' 7qu) Zlﬁgi-
Hence it is easy to check that (5.8) and hence (5.6) imply
1

ﬁTicmax(S)max [1 +qf,"‘,1+Qi]
D
(5.10) +2_Z}|azl.-i2.-lmax lgt, -, @)}

o - ! . . 9 2
— %% — XX min (g1, -+ ,¢p) 2 0.

Going back to (5.5) we now observe that with a probability =1 — «, we have
the confidence statement (5.8) or (5.10).

Truncation. Here again, as in section 4, it is possible to go back to (5.6),
proceed in the same way as before and get statements like (5.8) or (5.10) on
any (p — 1) variate-pairs, or on any (p — 2) variate-pairs, and so on, and
finally any variate-pair, thus ultimately obtaining 2» — 1 confidence state-
ments like (5.8) or (5.10), all of them with a joint confidence coefficient >1 — a.

If we are interested in pairwise comparisons we go back to (5.6), set k = T3/n
and choose a to be the vector with 1 in the ¢th position and 0’s elsewhere. The
resulting inequality can be written as (4.2) (with k = T2%/n). Thus (5.6) im-
plies a set of inequalities like this for ¢ = 1, 2, --- | p, and hence, with a con-
fidence coefficient greater than or equal to a preassigned 1 — «, we have the
set of confidence bounds on £/&; given by

(5.11) (e — €4)/esi < ¢ = b/t = (e + eai)/eai )
where, fori = 1,2, --- , p,

e1; = L1iCa; — kS1iSeitai €3 = a-;:" - ksg" ’
(5.12)

6y = (fufgi - ksuszt"'m)z - (ifi - ksfs)(iigi - ksgi).

As in section 4, the bounds will be physically meaningful only if

2 2 o 2 _2
T, , Ta T1i Tos Ty Tas 2
(5.13) 4+ 5 =2 riee + 5550 (1 — rie).
S1¢ S 814 824 S1i S2¢

As in section 4 so also here, the remarks made after (4.3) will be pertinent
again as an indication of how to use these bounds.



CONFIDENCE BOUNDS 841

In conclusion it is a great pleasure to thank the referee and the associate
editor for their valuable comments and suggestions. The result (5.11), in par-
ticular, is entirely due to the referee and provides shorter bounds than the ones
obtained by the authors’ originally, starting from (5.10) rather than directly
from (5.6).
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