ON A CLASS OF ADMISSIBLE PARTITIONS!

By T. CacouLLos?

University of Minnesota

0. Introduction and summary. In many multi-decision problems the existence
of admissible decision functions (for definitions we refer to [5]) depends upon the
existence of corresponding partitions of the sample space into regions of specified
shape. Usually the requirements for such statistical partitions differ from those
relating to less restricted partitions of a set S according to a vector of finite
measures on the measurable subsets of S, usually referred to under the general
title of the “ham sandwich problem” (see, e.g., [3], where further references
may be found). Nevertheless, as indicated here, the solutions to a wide class of
division problems rest very heavily on the fundamental result of Lyapunov and
generalizations of this (see, e.g., [4]).

Several multi-decision problems (Section 4 below) relating to the mean u of a
k-variate normal distribution N (u, Z) reduce to the problem of locating (hence
called “topothetical,” cf. [2]) the parameter point x into one of k£ + 1 convex
k-dimensional polyhedral cones w;, we, -, wry1 (hereafter referred to as
“cones’) with common vertex po which form a partition of the parameter space
E; of u (see (1) below). Let us identify the sample space Ej of an observation X
from N (u, £) with the parameter space E;. It was shown in [2] that the
family R, of all translations R(7) = (Ri(7), ---, Rru1(7)) of the system
o= (w1, -+, wet1) (see Definition 2) defines a class of admissible procedures,
henceforth referred to as partitions; the decision d; that u € w; is taken when the
actual observation z £ R; . Furthermore, there exists a unique partition R(79) ¢ R,
which is minimax. The minimax character of R(7,) amounts to the following
proposition: There exists a unique, in R,, , partition of Ey into ¥ 4 1 cones with
the same probability content under the normal k-variate distribution (Corollary
5.1 of [2]). The distribution may be assumed spherical normal (unit variance in
any direction) without any loss of generality, since a nonsingular linear trans-
formation T such that TET’ = I preserves the shape of the partition w.

The purpose of this note is to extend the above result to the case of arbitrary
probability contents for such conical regions (Theorem 1), and at the same time
show how the corresponding partitions are related to classes of admissible par-
titions for a family of classification and topothetical problems relating to the
normal mean u. Several problems which have been extensively studied in the
statistical literature emerge as special cases of our general topothetical problem

(Section 4).
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190 T. CACOULLOS

1. Preliminary results. For the proof of the main result (Theorem 1), we
require certain preliminary results, which are of some interest in themselves.
First some notation and definitions.

Let ¢ denote an arbitrary but fixed k-simplex with vertices u;, - - - , ur41 and
center (i.e., the center of the hypersphere passing through the points g, - - -,

ur41) the common vertex uo of the cones wy, -+, wri1, such that for each
1 =1, ---,k 4 1, if d denotes the usual distance function in E} ,
(1) wi={p’£Ek:8iJ'("') 0,545 =1---,k + 1}

where for ¢ # 7,
(2) i) = d(u, ) — & (u, 15) = 2w — ws — w5) (s — pa).

REmARK. The simplex ¢ is characterized by the property that the &k bounding
faces of w; are the perpendicular bisectors of the edges of o emanating from the
vertex u; ; the hyperplane 8;;(u) = 0 is perpendicular to the edge (u; , u;). How-
ever, the exposition below shows that any k-simplex whose edges through vertex
u; are perpendicular to the bounding hyperplanes of w; would suffice for our pur-
poses. Note also that convexity of w; is essential for the existence of o above.

Derinrrion 1. For any k-simplex ¢ the corresponding classification problem
of choosing one of its & + 1 vertices as the true mean u on the basis of an observa-
tion X from N (g, I) will be called the o *-classification problem.

AssumptioN.. Throughout this paper we assume a simple loss function, i.e.,
0 or 1 according to whether a correct or incorrect decision is taken. Therefore the
risk function becomes the probability of error.

DEerFINITION 2. Any partition R in R, , defined as a translation of the system
w= (w1, - ,wet1), will be called a similar partition to . The class R,, coincides
with the totality of partitions R = (R, ---, Ry1) where

Ri={x£Ek:6ii(x)-s—ci_ci,j ¢'L}’ i=1)"';k+1’

and ¢ = (¢, +*-, Ce41) is a constant vector of non-negative components (cf.
an.

The following two lemmas summarize relevant results obtained in [2]:

LemMa 1. The class of conical partitions R, s

(a) the minimal complete class of partitions (procedures) for the o-classification
problem (cf. Theorem 6.7.1 of [1]),

(b) an admissible class of partitions for the topothetical problem of locating u into
one of the cones wy, * -+« , wiy1 (Theorem 6.4 of [2]).

LemMa 2. The (unique) admissible minimax partition for the o-classification
problem s such

(a) for the topothetical problem of locating u into one of the conmical regions
wi(e) = {pe By :8;5(n) £ —d*(pi, p), 7 #d},5=1,---,k+ 1, with vertices
ui , respectively, the complement of w1 (o) + we(a) + « -+ + wry1(o) constituting an
indifference region (Theorem 5.1 of [2]),

(b) for the topothetical problem of locating u into one of the subsets e, we
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of the wi(c), + -+, wir1(a), respectively, provided w;* contains the point u; and the
complement of w1™ + w® + -+ + win constitutes an indifference region.

(Follows immediately from (a) and the following Lemma.)

LemmMA 3. For each r > 0, denote by o, the homothetic k-simplex of ¢ with center of
simalitude the point uo , vertices ui(r), - -+, mer1(r) and homothetic ratio r (i.e.,
lwo — wi(r)| = 7 |wo — wil). Define wi(o,) analogously to wi(c) of Lemma 2. Then
foreachi =1, --- , k + 1 and every partition R = (Ry, - - , Rey1) € R, we have

min,,g,,,i(,,> P[X SRi I y.] = P[X SRi l Mm = M,;(T)].

Lemma 3 is equivalent to Lemma 5.3 of [2].

LemMA 4. For each r > 0, define o, as tn Lemma 3. Let p;(8) denote the proba-
bility of correctly taking decision D; that p = p;(r) in the o-classification problem
when using procedure 5. Then

(i) for any vector a« = (ai,-:+, aw1) Of positive componenis with
a1+ -+ + w1 = 1, there exists a unique partiton R™ similar to w (i.e.,R ¢ R,)
with
(3) pi(r) = pi(R") = ai, t=1,-,k;

(ii) prsi(r) s a (strictly) increasing and continuous function of r in (0, «)
and

(4) im0 Pt 1(7) = infrso Pesr(r) = k4

Proor. Let p(8) = (p1(8), - -+, Pr41(8)). It may be shown [4 ] that the set of
points p(8) for all decision functions 6 constitutes a convex and compact subset
M of Ei,; contained in the unit hypercube K and containing all the corners of K
with coordinates adding to 1. The “upper” surface U of M corresponds to the
set of admissible procedures, which by Lemma 1 (a) are the similar partitions
R, to w. The line parallel to the k& 4 1-coordinate axis through the point
(oz, *++, axr,0) intersects U in a single point, namely, the p(r) corresponding
to the admissible partition R" which satisfies (3).

For (ii) note first that px41(7) > aiqs for r > 0, since otherwise the completely
randomized (“guess’) procedure & with p;(8) = «;,¢ = 1, - - -,k 4 1, would also
be admissible.

Now observe that the (unique) admissible partitions R™ = (Ry, - -+, Rit1)

andR” = (Ry”, - -+ , Ritn) for the o,- and o,-classification problems, respectively,
which satisfy ‘
(5) pi(r) = pi(r’) = ai, i=1,---,k

have the following relation: the partitioning point 7,» , which defines R as the
translation of 7, of w, lies in Rj;; whenever # < 7. To see this note that if 7.
were in the complement RL;; of Ri,1 , then at least one of the B;”, say R} would
be a proper subset of B+ . But then, by Lemma 3, we would have

PIX eRi|p = pis(r')] < PIX e Riw | 1 = nis(7)] = asr,
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and hence also

PIX eRi|p = poo(?')] < s, forsome *=1,--- Fk
which contradicts (5). Therefore 7,- lies in the interior of Ri,; , and, by the same
argument of Lemma 3,

pk+1(1‘,) = P[X eRl:-'I-l | B = I-tk+1(1")] < PIX £erc:|-1 | r = prsr(r)]
< PX eRia|p = mna(r)] = pra(r).

Since the continuity of piy1(r) is an immediate consequence of the continuity of
the normal distribution, the monotonicity and continuity of pxy1(r) have been
established.

Finally (4) follows from the fact that psa(r) is bounded below by aiyy ; for
when r = 0, the vertices u1(0), - - - , ux1(0) coincide with the point uo and clearly
the oo-classification problem degenerates. However, for the topothetical problem
of locating u into one of the cones w;, - - -, wpyy intersecting at wo, if a;(8) de-
notes the minimum probability of correctly taking decision d; that u & w; when
the decision rule 6 is used, then no 6 with @;(8) = a;,7 =1, --- , k can improve,
in a minimax sense, upon the completely randomized (inadmissible, cf. [2]) &
with a;(6) = a;, 2 =1, ---, k 4+ 1, i.e., for all these 8, ax11(8) = ary1. But
pi(r) = a;(R"),2=1, ---,k 4+ 1 (by Lemma 3), and, therefore, as r — 0,

Pet1(r) — aryr = infrso Prya(r),

which completes the proof of the lemma.
LemMA 5. For 0 < r < 1,.the points 7. which determine the admissible partitions
R’ of Lemma 4 with pi(r) = a;, 1 =1, --- , k, lie in a compact subset T of Ej, .
Proor. Let 0 < ¢; < a;such thate; < 4,72 =1, --- , k 4+ 1. Then there are

finite negative constants c¢;; such that for each ¢ = 1, ---, k 4+ 1, since X is
N(l", I),
(6) Plo:;(X) < cij|lp = nil = e, J # 1.
Define

Ty = {z e By : 8ii(2) < cil, T # ]

Note that 7, must be in the complement T';; of T; for each ¢ = 7, since otherwise,
R being a subset of T; for each j 5 4,

PIXeR) | p=p)l <PXeTi|lp=mnl=€<ai.

Hence 7, must lie in the intersection T' = () s« T's; ; this is the desired compact
set. To see this note that each T',; is a half-space determined by the hyperplane
H; :8,;(x) = cisuch that,by (6),u & T; ; each H;intersects every other hyper-
plane except H;; : §;:(x) = c;; , and therefore the set 7T is in general the boundary
and the interior of a polyhedron. Hence T is a compact set. Now if 0 < r < 1,
then again 7, must lie in 7T, since, for each¢,s =1, --- ,k + 1, if 7. ¢ T;; then by
Lemma 3
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Plii(X) < cij|p = pi(r)] < P3ij(X) < ¢l p = pi = & < i,

which contradicts either (3) (since P[X ¢ R, | p = pi(r)] < P[6:;(X) <cij| p =
#i(r)]) or prya(r) > arr (by Lemma 4 (ii)).

2. Main results. We are now ready for the proof of the main result of
THEOREM 1. Given any vector o = (a1, - - , axy1) of positive components with
a1+ -+ + ar = 1, there exists a unique partition R(7(a)) similar to » such
that g
PX eRi(r(a))| p = m) = as, t=1---,k+ 1.

Proor. Consider a decreasing sequence {r.} converging to 0; then the cor-
responding sequence of points 7., of Lemma 4 has at least one limit point =*
(which lies in the compact set T of Lemma 5). Let R(+*) denote the similar par-
tition to w with vertex r*. It follows from Lemma 4 that

(7) PIX & Ria(7%) | o = po] = limpo prsa(r) = oy,
P[X ¢ Ry(+¥) | 1

Furthermore, there is no other partition similar to w satisfying (7) sinceif 7’ 5« r*
was another point defining a similar partition R(+') = (Ri(7'), -+ - , Ria (7)),
then at least one of the R;(r'), Ri«(7') say, would be a subset of the Rio(7*) and
P[X € Ris(7") | b= po] < ;. Taking R(r(a)) = R(+*) completes the proof.
From Lemma 1 and Theorem 1, we obtain immediately
CoROLLARY 1. Given any vector o = (a1, -+ , axy1) of positive components such

I-‘0]=pi(r)=ai, 1 = ]_’...,k.

that Y vt a; = 1, the partition R(7(a)) which is similar to w and satisfies
P[XSR‘!'(T(C‘))I":”O]:“‘!') 7'=1”k+1’

is an admissible partition for the topothetical problem of locating u into one of
w1, * -, Wiy on the basis of X from N (u, I), and it takes decision d; correctly with
probability at least a;, © = 1,---, k + 1. The partition corresponding to
ar=ar= -+ = app1 = (k+ 1)7"is an admissible minimaz for the same problem.

Also, combining the preceding discussion with the observation that there exists
one-to-one correspondence between the set of similar partitions RB(7), and the
corresponding probability vectors a(r) gives

CoROLLARY 2. Given any vector a = (ay, - - , axy1) as above and any partition
R of Ex into k 4 1 convex polyhedral cones with the same vertex, there exists a unique
point u(a, R) such that

PXeRi|p=pule,R)] = a;, t=1, .-+, k+4+1.
In addition, the partition R is admissible for the topothetical problem of locating the

normal mean u into one of the k + 1 cones which constitute the similar partition to R
with vertex u(a, R); the a;’s determine the minimum probabilities of correct decision.

3. Partitioning F) into more than &k + 1 regions. So far we have considered
the case of k 4 1 convex polyhedral conical regions in E; . The question now
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! @,
Ho
(a) (b)

Fic. 1. Examples of nonexistence of four equiprobable angular regions under the circular
normal distribution centered at uo .

arises as to whether it is possible to partition E; into more than ¥ 4+ 1 regions of
the same type with preassigned probability contents. One can easily construct
examples, such as the ones indicated in Figure 1 for k = 2, which show that, in
general, this is no longer possible. This, in a way, reflects the fact that in a classifi-
cation problem with more than k + 1 alternatives the class of admissible pro-
cedures is no more determined by regions of the type considered, though still
each of the regions is bounded by hyperplanes. (A study of such regions and
related topothetical problems will appear in a subsequent paper.) Thus, in the
case of k 4+ 2 alternatives, the specification of an admissible partition, roughly
speaking, requires in general, besides the directions of the bounding hyperplanes,
the specification of two points and not one (the translation vector 7) as in the
case of k + 1 alternatives. Indeed, it should be observed that the limiting argu-
ment employed before rests very heavily on the conical shapeof the admissible
partitions.

Analogous counter-examples can easily be constructed for the case of unequal
probabilities «; , as well as for the case of more than k& + 2 cones.

ReMARK. The nonexistence of similar partitions to a given partition » with
specified probability contents under the k-variate normal distribution when the
number m of conical components of w are more than & + 1 should be expected
in view of the fact that a similar partition to w is completely specified by its vertex
V, and hence there are & unknowns, the coordinates of V, whereas, there are
m — 1 > k independent equations which, in general, do not have a solution. For
m = k 4+ 1 however, the k independent equations corresponding to any prob-
ability vector &« = (a1, *-- , ar1), @; > 0, have, by Theorem 1, a unique solu-
tion V = V,. Nevertheless, the author has not been able to prove the result
without the assumption of convexity of the & + 1 cones.

4. Some applications. Several multi-decision problems concerning normal
population means may be reduced to the topothetical problem of locating a
k-variate normal mean into one of k¥ + 1 convex polyhedral cones. If an indiffer-
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ence region is properly chosen (cf. Lemma 2 and [2]) then a unique admissible
minimax partition may be found.

Following are some multiple-decision problems lending themselves to our
topothetical approach. The reader may certainly find more such examples.

ExawmpLE 1. Selecting the Largest Mean. On the basis of n independent observa-
tions o = (T1a, *** , Tpa), @ = 1, -+, non X distributed according to N (u, =),
choose the largest component of u = (w1, - -+, pp) assuming that the covariance
matrix Z is known. By sufficiency and invariance considerations the selection
procedures may be based on a maximal invariant, e.g., y = (& — &, -,
T, — &1) where &i = n" D i1 Zia,i = 1, - -+, p. Clearly y is N(s, %), where
8= (ma— m, - ,up— m) and =¥ is a known (p — 1) X (p — 1) positive
definite matrix. It is seen that the decision d; , that u, is the largest, is appropriate
when § lies in a convex (p — 1)-dimensional polyhedral cone in the (p — 1)-space
of 6. The same reduction holds when we have n; observations on the sth compo-
nent of X. In the statistical literature the case of = = ¢°I has been studied quite
extensively both when ¢ is known or unknown.

ExampLE 2. A Slippage Problem. This may be obtained as a special case of
Example 1 if we assume that all the components of u are equal except one which
is larger (slips to the right by some positive amount A > 0). Here we do not
allow the possibility of all the u; being equal. The decision d; that u; slipped
corresponds to points$ on a ray through the origin. It follows that if A is bounded
away from zero, i.e., A > ¢ > 0, then by Lemma 2 (b) there exists a unique
invariant procedure which is minimax and which is admissible among invariant
procedures.
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