A CHARACTERIZATION OF NORMALITY

By M. V. TAMHANKAR
U’riivérsity of Poona

0. Summary. A probability distribution on an n-dimensional Euclidean space
can be specified by giving either the joint distribution of the usual rectangular
coordinates or by the joint distribution of the polar coordinates. The object of
this note is to obtain a characterization of normality in terms of independence
of these coordinates under suitable regularity conditions. Further, if we slightly
relax these conditions we get a new class of distributions which includes the nor-
mal distribution.

1. Introduction. When we consider only the absolutely continuous distribu-
tions the joint density function pi(z;, ---, z,) of the rectangular coordinates
X1, -+, X, and the joint density function ps(r, 61, -- -, 6,—1) of the polar co-
ordinates R, ©;, - - -, ©,_; are related by
(1'1> pl(xl’ Tty Il?n>7'

where the coordinates are related as

—1 . n—2 . n— .
" sin™t 6y sin" " 0y - sin Opy = pa(r, Oy, -, Ony),

1 = rcos b,
Xy = 7 8in 64 cos 6,

(1.2) Z3 = r sin 6 sin 6, cos s,

XTpg =7siné --- sin 6,y COS Opy,
T, =78in6 - sin b, sin 6, ;

—wo << ofori=1,--- , n;0=sr<wand0 =26 <2rfore=1,---,
n — 1.
We note that »* = D> *, 2’

2. Characterization. We now make the following assumption:

AssUMPTION (A). po(r, Oy, =+, 0py)/r" " sin® > 6y - - sin 6, is well-defined
and nonzero everywhere, continuous in r, and equal to pi(#1, - -+, #») which is
then continuous in each z;.

Then we get the following interesting result.

TreoreM 2.1. Under Assumption (A), X1, - -+, X, are mutually independent
and R is independent of ©1, - -+, O,1 of and only if Xy, -+, X, are distributed
independently normally with zero means and equal variances.

Proor. The ‘if’ part of the theorem is obvious. The ‘only if’ part can be proved
as follows:
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Let the marginal density functions of X; be fi, ¢ = 1, -+, n, the marginal
density function of R be ¢: and the joint marginal density function of
(@1, -+, ©,.1) be g: so that in view of the assumed independence we have

P, <oy Ta) = H?=1fi(x¢)

and
pa(r, 1,y - vy Onr) = gi(r)ga(Br, -+ -y On1)

which we substitute in (1.1) to get
i fdz) = (gu(r) /7" ™) -ga(Br, -+ -, Bp1)/sin" " 61 -+ sin G,_s.
Writing the two factors on the right-hand side as ha(r) and hy(81, - -+, 6u-1)
we get
(2.1) Tiwfimi) = ha(r)ha(by, -+, 6n1)
so that letting » — 0 we have in view of continuity in (A)
(2.2) IIi-fi(0) = ha(0)ho(by, - -+, On1)

where, in view of (A) f«(0) # 0,7 = 1, , m, and hi(0) # 0.
Dividing (2.1) by (2.2) and ertlng f1 (y) fy)/f«0) and h(r)
hi(r)/ma(0) we get

(2.3) T fi*(z) = k(7).

Putting z; = 0 for all ¢ # j and z; = y in (2.3) we get fj*(y)
r(ly)), 7 = 1,2, , n, because f(0) = h(0) =

Substituting in (2 3) we get [[i= h(|zi]) = h(r), which we write as
(24) Il t(z?) = 1),

where t(2) = h(z),z = 0.
Letting . = u;in (2.4) we get

(2.5) HE‘=1 t(us) = t Z;L=1ui), us; = 0.

Putting us = -+ = u, = 0in (2.5) and noting that {(0) = 1 we get a well-
known functional equation

H(u)t(us) = t(ur + u2) uy, uz = 0.

Here in view of Assumption (A) tis continuous and nonzero so that the general
solution of the equation is #(z) = exp (cz). (See [1], p. 45)

Hence we havef(z) = £0)f*(2) = £ 0)h(Je]) = fi(0)i(2") = F(0) exp (c2*)
= b exp (), say.

The fact that fz(z) is a density function leads us to conclude that ¢ must be
negative, say —1/2¢", so that b must be 1/ (27)%, in view of the assumption that
fi(z) > 0 for all 2.

,Thus X has the density function ((27) 1) exp (—z/2¢") which was to be
proved
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If we remove the restriction that pi(21, - -, #,) be nonzero everywhere and
replace it by a weaker one that it should be nonzero at the origin then we still
can prove that fi(x;) is of the form b exp (cz’) and then, noting that the ranges
of X /s should be independent and also. that the range of R should be independent
of the ranges of ®’s, we can deduce that for each X; the range is either [0, « ),
(—, 0] or (—x, ) and, hence, that each X, is distributed as |Y|, —|Y]| or
Y respectively where Y is normal with zero mean.

If we also drop the restriction that py(z1, ---, ,) be nonzero at the origin
then it is conjectured that the distribution of X; will belong to a wider class whose
typical density function is az® exp (cz’). But this conjecture is proved here only
with some additional conditions on the density functions.

Let @ be the class of all density functions f(z) for which zf'(2)/f(2) is well-
defined and continuous within the range. Let also 3 be the class of all density
functions f(z) expressible as az® exp (cz*), within the range, where the range is
either [0, © ), (— o, 0] or (— o, »). It can be verified that 3 C €.

It may be noted that in 3, ¢ must be negative and b greater than —1. If the
range is (— o, 0] or (— «, «) then b should further be rational and expressible
with even numerator and odd denominator.

THEOREM 2.2. If the density function of the marginal distribution of X, is
fist=1,2, -+ n,of Ris g, where f; and g1 belong to @ and R, 0y, - -+, Ony
arerelated to Xy, - -, X, by (1.2) then Xy, - -+ , X, are mutually independent and
R is independent of O, - -+, O,_1 if and only if f; belongs to 3.

Proor. Here again the ‘if’ part is obvious. For the ‘only if’ part we have as
in the previous case ((2.1))

H:‘=1fz(xz) = hl(T)h‘Z(ol y Ty 0”—1>
where h(r) = gui(r)r "™ and h e @ because g; € €.

Now differentiating logarithmically (2.1) partially wrt r we get

= f () /f@)(8xi/dr) = h'(r)/ha(r) for x; for which f; > 0,

1=1,-+-,n.

Noting that r(dz:/9r) = x; this becomes

Dot xifi () [fi(x:) = rhy (1) /la(r)

which, we can say, is true for all z; because iy e @ and f;c@, 7 = 1, ---, n.
Putting f,**(2) = #f/(2)/f(2) and k(z) = zh(2)/M(2) we write this as

(2.6) S (@) = k(r)  forall x;.

Now letting z; — 0 for ¢ 5 j and 2; — y in (2.6) we get f;**(y) = k(|y|) —
D i £(0) which gives, by substituting back in (2.6),

(2.7) 2ot k(lzd) = k(r) + (n — 1) 22 f**(0).

Here we may write k(2) = s(2°) + X 1= f: *(0) for z = 0 and get a functional
equation, satisfied by s, as D ims(z’) = s(r*).



A CHARACTERIZATION OF NORMALITY 1927

. . 2
Now, as in the previous case, we let x = u; so that r* = > raius and

(2.8) Soras(u) = (Dot us), u; = 0.
Since % € @, s is continuous. Also s(0) = k(0) — 2 f¥*(0) = 0 so that

the general solution of (2.8) can be written as s(z) = 2cz. (See [1], p. 45.)
This gives us f/'(2)/fi(z) = £**(2) = k(le]) — Zawifi**(0) = (") +

9i(0) = 2¢ + b;, say.
Thus f;(2) is a solution of the differential equation f'(2) = f(2)(2cz + b;/2)
so that f;(z) = a2’ exp (c2*) i.e., fj e 3 which was to be proved.
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