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SAMPLE PATH VARIATIONS OF HOMOGENEOUS PROCESSES

BY MICHAEL SHARPE!
Unaversity of California, San Diego

1. Introduction. Let X({) = X({, w) denote the variable at epoch ¢ of a ho-
mogeneous process (process with stationary independent increments) normalized
so that X(0) = 0 and almost all sample paths are right continuous and possess
left limits at all epochs ¢. This paper is concerned with limits of sums

(1.1) Z(f, ®) = 2oiueen f(X (tiar) — X (1))

where f is a certain non-negative function on the real line and © = {, - - - , ta}
is a partition of [0, {], the limit being taken along a sequence of partitions & as
the mesh of & tends to zero.

For some results concerning this type of transformation of a process, see
Blumenthal & Getoor [1], Bochner [2], Cogburn and Tucker [3] and Fristedt
[5]. Rather than considering a very special class of functions f as in the above
papers, we consider rather general functions f acting on a rather special class of
processes X. The most important class of processes treated is the class of strictly
stable processes.

2. Powerfully continuous processes. Let u. denote the distribution measure
of X(¢), and let M denote the Levy measure for the weakly continuous con-
volution semigroup u;. We know (see, e.g., Feller [4]) that

(2.1) f1e~(0)fd(t_lm) - f1e~t0}fdM

for every bounded continuous function f on R such that f(z) = 0(2") near 0.
We shall set M {0} = 0, even though M is usually not defined at 0, to avoid some
unpleasantness. The set of possible Levy measures M is characterized by the
conditions

(2.2) M(A) < o if A is bounded away from 0, and
(2.3) LM (dz) < =.

In case X (¢) is an increasing process, the u. are concentrated in [0, « ), and so
therefore is M. The set of possible Levy measures for increasing processes is
characterized by the conditions (2.2) and

(2.4) féxM(dx) < w,

DeriniTioN. The weakly continuous convolution semigroup p; with Levy
measure M is called powerfully continuous on the open set S in case there exists
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an absolute constant ¢ such that for all £ > 0 and all open subintervals B of S,
(2.5) w(B) = M (B).

We always let ¢ denote an absolute constant, not necessarily the same at each
occurrence.

LEMMa 2.1. Let p; be powerfully continuous on S, and let M be the Levy measure
for wi. Then, for every Borel set A C S,

(2.6) ui(A) < ctM(A).

Proor. If A is open, it is a countable union of open intervals, and (2.6) follows
immediately from (2.5). If A C Sis a Borel set with 0 < M (A) < o, there exists
an open set G such that A € G C Sand M (G n A°) < 3M(A), so that p,(A) =
(@) = M (G) = 2cM(A). In case M(A) = oo, there is nothing to prove,
and if M(A) = 0, we can find an open set G, A < G < 8§ such that M (G) is
arbitrarily small, and we see then that sup, ¢ ‘u,(A) can be made arbitrarily
small, hence zero. []

Lemma 2.2, Suppose M has infinite total mass, and that p: ts powerfully con-
tinuous on the open set S and has Levy measure M. Then M has no atoms in S.

Proor. If a e S and ¢ = 0, we are done since M {0} = 0, by convention. If
ae S and a # 0, there exists a decreasing sequence {J,} of open subintervals of
S, each bounded away from 0, such that nJ, = {a}, and no endpoint of any J,
is an atom of M. We know that

tglm{a} = t_lllt(Jl) - En_z_lt_lﬂt(v]n ﬂJ:z+1) —_ M(Jl) - anlM(Jn an.+1)

as t — 0, using the dominated convergence theorem for infinite sums. The last
expression is exactly M{a}, and since M has infinite total mass, a well known
result of Hartman and Wintner [6] implies that u;{a} = 0 for all¢, so M{a} = 0.[]

LemMA 2.3. For any Borel function f = 0 with support in S, if M has infinite
total mass, then

(2.7) fsfd#t St fsfdM, and
(2.8) [sfd(t7w) — [sfdM ast—0, if [«fdM < o.

Proor. The inequality (2.7) is true for indicator functions, their positive
linear combinations, and increasing limits of these functions, and so is true for all
positive Borel functions. For (2.8), we know its truth if f = 1,, A an interval in
S with M (A) < o, because of Lemma 2.2. To prove (2.8) for an arbitrary in-
dicator function f = 15, A < S, we use the regularity of M to approximate
14 by 1,0, where A is a finite union of open intervals in S, letting M (A A A%
be as small as desired. The convergence (2.8) holds for 140, and [ Ly — 1| dM
= M(A A A%, whilst [ [1x — 10| d(t'w:) < cM(A A A%), so that an easy
estimate proves (2.8) for arbitrary indicator functions.

To pass to the most general function f with support in S we define a funection
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¢ by the rules
(29) (1) q = 1 on ('—°°; _1] u [1’ °°))
(ii) q = 2-2]0 on (_2—k’ _2—(k+1)] u [2—(k+1)’ 2‘79).

Clearly, min (2%, 1) < ¢(z) < min (4% 1), so fqdM < . For any non-
negative function f on R, we define f™ by

(210) (i) on(—w, —Lu[l, ®),f® =j2™ifj2" S f< (j+1)-27
(11) on (_2—10’ _2—(k+l)] u [2—(k+1)’ 2—10)’ f(n) = j.2—(n+2k) if
j.2—(n+2lc) < f < (.7 + 1)2—(n+2k)’

Then 0 = f — f* < 27"¢, and ™ is an infinite positive linear combination of
indicator functions. The usual dominated convergence argument for infinite
sums shows that (2.8) holds when f = f, and a standard estimate shows that
(2.8) is true in general. []

If M has finite total mass, and the process has no Gaussian component, the
process is in fact compound Poisson, and the paths are a.s. step functions with a
finite number of jumps. In this case, our problem is rather trivial. We henceforth
always assume that the total mass of J/ is infinite, so that the results of Lemma,
2.2 and Lemma 2.3 hold. Also, one easily sees that the paths X (¢) have no con-
stancy intervals, almost surely.

3. Examples of powerfully continuous processes. To see that we are dealing
with a somewhat interesting class of processes, we shall show that our theory
applies to strictly stable non-Gaussian processes, and to processes which can
be subordinated by increasing stable processes.

TaEOREM 3.1. If p; can be subordinated by a subordinator process which is
powerfully continuous on (0, ), then . is powerfully continuous on (— o, ),

Proor. If Y(¢) = X(T'(t)), where T(t) is a powerfully continuous increasing
process with semigroup »; and Levy measure N, X (s) is a homogeneous process
independent of T', and having semigroup \; with Levy measure L, the process
Y (¢) has semigroup p, and Levy measure M given by

(3.1) p(A) = [T N(A)r.(ds)
so that Te(A) = [EN(A)E vi(ds) < ¢ [T N(A)N(ds).
However, if A is an open interval bounded away from 0, \,(A) is bounded and
O(s) near 0, so by Lemma 2.3
limesot p(A) = [TN(A)N(ds) = M(4),
so that p, is powerfully continuous. ]

With notation as in the proof of Theorem 3.1, if E(e™”?) = ¢™#™, E(e™*®)
= ¢ " and E(¢™""?) = ¢, then (see Feller [4], p. 427)

(3.2) ¢ =agoy.
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In dealing with stable processes, we shall use the results and notation of Feller
[4], p. 548. We denote by p(z; «, v) the strictly stable density

(3.3) p(x; e, v) = 1/7 Re f?exp (—izy — yaei1ry/2} dy
where
(3:4) Iyl = fo<a<l

23
vy £2—a ifl<a<2

In case @« = 1, the only strictly stable densities are translations of the Cauchy
density, and we let

(3.5) p(;1) = 7 '(1 + )7
denote this.density. Note that the characteristic function of p(x;a,y) is
exp {—|y/%e™ "™} and the characteristic function of p(z — 6; 1) is

exp {0y — |y|}. One can show that the density (3.3) is one-sided if and only if
ly| =aand 0 < e < 1.If1 < & < 2 and |y| = 2 — a, the Levy measure is
concentrated on one side of the origin, but p(z; «, v) is not one-sided.

The Levy measure for a strictly stable process with index e is k(z)|z|"*** da,
where k(z) depends only on the sign of z.

TueorREM 3.2. Let u; be strictly stable with index oo < 2. Then p,; is powerfully
continuous on (—®, ©) unless 1 < a < 2 and |y| = 2 — a. In this latter case,
s s powerfully continuouson (—«,0) if y =2 — a,on (0, ©)ify = —(2 — ).
The Gaussian process is not powerfully continuous on any interval.

Proor. We firstly treat the case of a stable subordinator with index e,
4 < a < 1. By a trivial change of time scale, we may assume that the density
f¢ of u; is determined by the rule

(3.6) fi(z) = p(@; 0, —a)

together with the strict stability condition

(3.7) fi(@) = (@),

To prove that u is powerfully continuous, it suffices to prove that

(3.8) af(z) T L ¢, t>0 and z > 0.

Setting s = xt ™%, we see that (3.8) is equivalent to
(3.9) st(s; 0, v) £ ¢ §>0(y = —a).
By Zolotarev’s Lemma (Lemma 2 on p. 549 of [4]),

§(s; 0 —a) = (s a7, =2 + 1/a)

Noting that the parameter y = —2 + 1/« indeed satisfies (3.4) for o, we deduce
that the term on the right is uniformly bounded, since it is a Fourier transform

of an integrable function ((3.3)).
According to (3.2), when we subordinate a strictly stable process with param-
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eters (e, v) by a stable subordinator with index 3, the process obtained is strictly
stable with parameters (a8, v8). Considering the range of the mappings («, v)
— (aB, v8) for § < B < 1, and using Theorem 3.1, we see that every strictly
stable process with parameters (a, v), @ # 1, whereif 1 < a < 2, |v| < 2 — «q,
is powerfully continuous on (— o, » ), The case of the Cauchy process with a
translation can be settled easily using elementary calculus.

Ifl1 <a<2andy = —(2 — a), then M is concentrated on (0, =) and
M(dz) = kz “** dz. We may suppose that u, has density f, given by fi(z) =
p(at™%; a, v)t'*. We must prove (3.8) for t > 0 and z > 0. As before, this is
equivalent to (3.9) with y = —(2 — a), and Zolotarev’s Lemma shows in this
case that

$T(s; 0, v) = p(s% a7, —2/a),

and the term on the right is certainly uniformly bounded, being a density with
an integrable characteristic function.

To deal with the case v = 2 — «, note simply that p(—z;a,v) = p(z; @, — 7v),
and use the above result. []

4. Variations of the sample paths. For the remainder of the paper, X(¢) is
assumed to be a homogeneous process almost all of whose sample paths are right
continuous and possess left limits for all £ > 0. We assume that g, is the distribu-
tion semigroup of X (¢), that the Levy measure, M, of u, has infinite total mass,
and that the process is powerfully continuous on an open set S. We shall denote
by J () = J({, w) the jump of X (¢, w) at {;ie.J(t) = X(t) — X(t—).

The functions f with which we operate will always be assumed to satisfy
fz0,

(4.1) Miz|f(x) > ¢} < =, and

(4.2) Jzir@zafdM < =

for some ¢ > 0. It is easy to see that (4.1) and (4.2) are then satisfied for all
¢ > 0. Note that (4.1) and (4.2) are exactly the conditions required to assure
that M o f* satisfies (2.2) and (2.4), and so is a Levy measure for an increasing
homogeneous process. To avoid a little notation at a later point, we make the
harmless assumption

(4.3) f(0) = 0.

We shall'take as known the result that for any Borel set A such that M (A) < o,
the number of jumps of size A up to epoch ¢ is a Poisson process with parameter
M(A).

TaEOREM 4.1. Let f = 0 satisfy (4.1), (4.2) and (4.3). Then Z,§tf(Js) con-
verges for all t > 0, almost surely, and defines a subordinator with Levy measure
Mof.

Proor. For almost all w, J; is non-zero for only countably many s. Also, if we
define "f(z) = f(x)ly@sm, m = 1,2, ---. Then M{z|f(x) # "f(x)} < «
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for all m, by (4.1), and {z|f(z) # "f(z)} decreases to the empty set, so
M{z|f(x) = "f(x)} — 0. For any Borel set A, let N (¢, A) denote the number of
jumps of X of size A up to epoch ¢. The sums D e<:f(Js) and De<i"f(J,) differ
only on {N(t, (m, »)) ¥ 0} and this latter set decreases as m — <, and
P{N(t, (m, ©)) # 0} =1 — ¢ ™ — 0asm — . To prove a.s. convergence
for a fixed ¢ > 0, it may therefore be assumed that f is bounded, say 0 = f = K.
Let T, = £ Y(K-27", K-27"™),n = 1. Then

EXecif(Us) = EX 2 YectrwernfJe) = 2o B 2ogtaern )
© E-K-2"ON(@, Tn) = t 2 e K2 " PM(T)
2t [ aM o f M (dx) = 2t [¢f(2)M (dzx) < .

The sum Zsét f(J,) clearly represents a subordinator and the number of jumps
of size A is clearly the same as the number of J, in f~ '(A), which has expectation
tM o f*(A), so the process D_s<:f(Js) has Levy measure M of [0

We denote Zsé +f(Js) by ’X (t). Our main result, Theorem 4.2, says that we
can obtain “X (¢) in a slightly weaker way by taking limits of Z(f, &) as described
in the introduction.

Theorem 4.2. With hypotheses on X (t), u: and M as above, if f is a non-negative
Borel function with support in S and satisfying (4.1) and (4.2), and if {S,} s @
sequence of partitions of [0, {] with mesh @, — 0 asn — «, then Z(f, ©.) — X (2)
in probability asn — . If [fdM < «, convergence takes place in L' norm.

To prove this theorem, we begin with the simplest possible function f, and
work up to complete generality.

Lemma 4.1. If & = {to, -+, ta} @s a partition of [0, ¢, then EZ(1,,©) =
Dk b it (A) — tM (A) as mesh © — 0. If f is any non-negative Borel function.
with support in S such that f fdM < o, then

(4.4) EZ(f, &) < ct [fdM.
Proor. The first equality is clear, and
| 22k Byt (A) — tM(4)]
< {sups |(tar — b)) atppr—to (A) — M)} 206 (B — &) =0
as mesh & — 0.

IIA

IIA

The inequality (4.4) is certainly true if f is the indicator function of a set A C S
with finite M -measure. It is therefore true for non-negative linear combinations
of indicators and their monotone limits, and consequently must hold generally
if f=0,suppfC S, and [fdM < «=.[]

LemMa 4.2. Suppose {W,} is a sequence of non-negative random variables such
that

(4.5) lim inf, W, = W, and
(4.6) lim, E(W,) = E(W).
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Then W, converges to W in L.

Proor. Let V,, = inf {Wi |k = n}, and let lim, V, = V = lim inf, W, = W.
By Fatou’s Lemma, E(V) < E(W),so V = W. Since V, increases, V, — W
in L'. Now, W, = V,, so

EW, =V, =EW,—V,) =EW,—W)+EV -V, —>0 as n— .

Hence W, — W in L'.[]

Lemma 4.3. If f = la, where G is an open interval bounded away from 0 and
strictly interior to S, and if ©, is a sequence of partitions of [0, t], then Z(f, ©,)
— N(t, @) in L' asn — , if mesh &, — 0.

Proor. Let H be an open interval bounded away from 0 and containing ¢
strictly in its interior. The number of jumps in H is almost surely finite, and for
any sample path with a finite number of jumps in H, suppose the jumps occur at
81, -+, S. Since M has no atoms at the endpoints of , we may assume that
no jumps have the magnitude of the endpoints of G. We may therefore construct
intervals I; about the s; so that X(s) — X(r) eGifr < 8; £ s, rel;, s¢el;
and J(s;) € G. Then, when the mesh of & is sufficiently small, © includes points
in each I; straddling the s;, implying that Z(1¢, ©,) = N(¢, G) when n is large.
Hence lim inf, Z(1l¢, ©,) = N(¢{, @), and by Lemma 4.1, EZ(1ls, &,) —
EN(t, G). Hence, by Lemma 4.2, Z(le, ©,) — N(¢, G) in L[

LemMA 4.4. If f = 14, where A C S is a Borel set with M(A) < , and if
mesh &, — 0, then Z(f, ©,) — N(t,A) in L' asn - .

Proor. Let e > 0 be given; choose A’, a finite union of open intervals bounded
away from 0 and strictly interior to S such that M (A A A") < /3. Choose no
so large that E|Z(1p, &.) — N(i, A < ¢/3 when n = my. Now,
E|N(t,A) — N(t, A)| < EN(t, A A A°) = tM(A A A°) < ¢/3, so we obtain,
when n = no, B|Z(f, ©,) — N(¢, A)| £ 2¢/3 + E|Z(14, ©,) — Z(lo, S,)]
< 2¢/3 + EZ(1sp 10, ©4) < ¢, because of Lemma 4.1.[]

LemMa 4.5. Letf = D % o;ls; , where the A; C 8 are disjoint Borel sets, a; > 0,

(4.7) Dotesa M(A;) < », and
(48) Z(mjgc) aiM(Af) < ®

for some ¢ > 0. Then, if {S,} is a sequence of partitions of [0, ¢] with mesh &, — 0,
then 7 (f, ©,) converges in probability to X (t) = D YNt Ap). If [fdM < o,
the convergence takes place in L

Proor. Suppose f fdM < . Let ¢ > 0 be given; choose m so large that
Z:.H Ole(Aj) < C_lt—1€/3. Letf,,. = i"alej and Om = f — fm . By Lemma 4.4:,
E\Z(fn, ©a) — 2T a,N(t, A;)] < ¢/3 when n is large. Now,

EZ(f, @) — Z(fn, @a)| = BZ(gn, @) = ct [ gndM < ¢/3,

and EX(t) — X(1)| = EXmuaaiN(t, &) = 2mnatM () < ¢¢/3.
Hence, E|Z(f, ©,) — 'X(t)] > 0asn — o.

If [fdM = o, let h = min (f, K), and let 4 = {z|f(2) # h(z)} =
{z|f(z) > K}. Then M(4) — 0 as K — ». The sums Z(f, ©,) and Z(k, S,)
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differ only on the paths where X () — X (t—1) ¢ A for some k, and the probability
of this event is
1 — P{X () — X(ti) € A°V k}
1 — ITesemnn@) = 1 — TL1 — seen_n(4)]

<1 —JL0 — e(te — tea) M(A)].
Now,1 —s= ¢ ™, 0 = s < 4, for some v (depending on 8), so the last expression
above is

1 — Hk e—'yo(tk—tk-l)M(A)

_ —yctM(A)
=1—e ,

IIA

if mesh & < 8¢ M (A)™ so that when M (4) is very small, the sums Z(f, S,)
and Z(h, ©,) differ on a set of arbitrarily small measure, when mesh &, is small.
Since Z(h, ©,) converges in L' to "X (), and "X (¢) converges in probability to
’X(t) ask — o, it is easy to see that Z (f, S.) converges in probability to X (¢).[]
Proor oF THEOREM 4.2. Recall the function ¢ of (2.9) and define f™ as in
(2.10). Evidently, /™ is a function of the type described in Lemma 4.5, and

(4.9) 0<f—f™ =<2

Hence

(4.10) 0= Z(f, &) — Z(f™, 8,) = 27"Z(q, S,),
and by Lemma 4.1,

(4.11) E(27Z(q,©,)) £ c-27" [ qdM.

If [fdM < o, [f™dM < =, and
E|Z(f, ) — 'X(1)| £ BZ(f — /™, &)

+ EIZ(f™, &,) — "X ()] + EPX() — T™X@)]
and by Lemma 4.1, and inequalities (4.10) and (4.11),

(4.12) EZ(f — f™,&,) < 27"t [ qdM.
It is also easy to see that
(4.13) E'X(t) —"™X®)| £ t-27" [ qdM.

By Lemma 4.5, E|Z(f™, &,) — "X (t)| — 0asn — «. Using this fact together
with (4.12) and (4.13) we see that E|Z(f, ©,.) — "X (¢)] - 0ast — 0.
In case [ fdM = «», we have

P{Z(f, @) — "X (t)| > 8}
< PIZ(f — §™, &) > &/3} + Pz &) — 'X(1)| > 4/3}
+ PPX(t) — X () > 6/3).
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The first and last terms may be made as small as desired by taking m sufficiently
large, using (4.12) and (4.13). The proof is completed by applying Lemma
4.5 to the middle term. []

As an example, if X (¢) is strictly stable with parameters («, v), and f(z)
= |z/®, except when 1 < @ < 2 and |y| = 2 — a, when we take f(z) = |z/® if the
sign of x is opposite to the sign of v, and f(z) = 0 otherwise, we see that
Ju<ufdM < w if and only if 8 > . The measure M of *(dz) = cx dz,
z > 0, so the resulting limit process is the stable subordinator with index a/8.
In case & < B = 1, f(z) is subadditive and one can see (Blumenthal and Getoor
[1]) that the limit holds almost surely.

Our main theorem should be extendable to processes in R with a simple
extension of the notion of powerfully continuous processes. With the obvious
extension, a symmetric stable process in R* can be obtained from Brownian mo-
tion using a stable subordinator, and so should be powerfully continuous on R*
by the analogue of Theorem 3.1.

6. Acknowledgment. The author wishes to acknowledge many useful con-
versations with R. K. Getoor on this subject.
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