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ASYMPTOTIC EXPANSIONS OF THE NON-NULL DISTRIBUTIONS OF
THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR
HYPOTHESIS AND INDEPENDENCE!

By NARIAKI SUGIURA AND YASUNORI FUJIKOSHI
University of North Carolina and Hiroshima University

0. Summary. Asymptotic non-null distribution of the likelihood ratio criterion
for testing the linear hypothesis in multivariate analysis is obtained up to the
order N2, where N means the sample size, by using the characteristic function
expressed in terms of hypergeometric function with matrix argument. This
result holds without any assumption on the rank of non-centrality matrix.
Asymptotic non-null distribution of the likelihood ratio ecriterion for inde-
pendence between two sets of variates is also obtained up to the order N,

1. Expansion of the criterion for multivariate linear hypothesis.

1.1. Introduction. Let each column vector of p X N matrix X = (X;, X,
.-+, X») be distributed independently according to a p-variate normal distribu-
tion with common covariance matrix =. Then the canonical form of the multi-
variate linear hypothesis is defined by testing the hypothesis

(1.1) H:EX,)]=0
forj=1,2,---,bands+ 1, ---, N with b < s against alternatives
(1.2) K:E[X;] #0 forsomej(1 £ j =< 0b)

=0 forj=s+1,---,N.
The likelihood ratio test for this problem is based on the statistic
(1.3) N = (8/18e 4+ 8™,

where S, = > v—oi1 XoXs and Si = Y ae1XoXs. The matrix S, is called
the sum of squares and products due to error and has the Wishart distribution
W,o(N — s, Z). The matrix S; is called the sum of squares and products due to
departure from the hypothesis and has the noncentral Wishart distribution
W, (b, =; ), where the non-centrality matrix is @ = 3AA’>" with A = E[X;, Xz,
.-+, X,] under alternative K.

In this paper, we shall derive the asymptotic expansion of the non-null distri-
bution P (—2p log X > 2) up to the order N%, where a correction factor p is de-
termined such that under H, the first remainder term in the asymptotic expansion
of P(—2plog A > z) vanishes, thatis, pisgivenbypN =N —s+ (b —p — 1)/2
(Anderson [1], p. 208). The non-null distribution depends only on the non-
centrality matrix Q. Posten and Bargmann [10] obtained the same asymptotic
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expansion when the non-centrality matrix @ is of rank two. Our result holds for
arbitrary non-centrality matrix. We shall state some necessary results for hyper-
geometric function with matrix argument due to Constantine [4] and then prove
a lemma for zonal polynomials, which is fundamental for our asymptotic expan-
sion.

1.2. Preliminaries. The following two hypergeometric functions are used in
this paper.
(14) Wi (@505 Z) = 250 2w (@) (0)Ce(Z) (RY) 7,

oF1 (a1, 023,05 Z) = D jmo 2o (a1)e(@2)e(0)s'C(Z) (k1) 7,
where
@i=I12x@—(@—1)/2)@a+1-(2—1)/2) -~ (@+ka — 1 — (@ —1)/2)

and the function C(Z) is a zonal polynomial of the p X p symmetric matrix Z
corresponding to the partition x = {k1, ks, -+ -, kp} withky + ko4 -+ + k, =k
and ki = ko = -+ = k, = 0. The symbol > means the sum of all such parti-
tions for fixed k. C.(Z) is a kth degree homogeneous symmetric polynomial of
the p characteristic roots of Z. The following formulae are established by Con-
stantine [4].

(1.5) = 2" = 2 2w ()Ce(Z)/RY,
(16) oF’o (Z) = Z;;o Z‘(K) CK(Z)/IC’ = etr Z,
(17) Jsofetr (—Z7S)S|ITFECUST) S = Ty(1) (1)dZ|'Cu(T2),

where the first formula (1.5) holds when all characteristic roots of Z are less
than one and the last formula (1.7) holds for any p X p positive definite matrices
Z, 8 and any p X p symmetric matrix T with ¢ > (p — 1)/2. The function
T, (¢) is defined by

(1.8) r,(t) = 7 P42l @t — (a — 1)/2).

We shall also use the following asymptotic formula for the gamma function
shown by Box [3] (Anderson [1], p. 204).

(19) logT(x 4+ h) = log (2,"_)% + @+h—3)logz —a
— 3 (1 Ben () G + 1)7) ™ + O (a7,

which holds for large [x| and fixed A with Bernoulli polynomial B, (k) of degree r.
Forr = 2 and 3,

(1.10) Bu(h) = W' — b + (), Bs(h) = K — @ + i
1.3. A lemma. In (1.6) replacing Z by zZ, we have
(1.11) exp (@trZ) = Doneo 2o 2°Ce(Z)/k!
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and differentiating with respect to z yields
(1.12) Do Do Ce(Z)/ (ke — 1)1
20 25w Ce(Z)/ (b — 2)!

which was used by Fujikoshi [5] in deriving the asymptotic expansion of the
distribution of the generalized variance under the noncentral case. We now prove
the following lemma which is fundamental for our asymptotic expansion.

Lemmva. Let C(Z) be a zonal polynomial corresponding to the partition
k= {kl’]{b) ""kp} with by 4+ ks + - -+ +kp= kandby zZz ke = -+ = kp =0.
Putting

If

(tr Z) etr Z,
(tr Z)* etr Z,

(1.13) a1(k) = 2 2aka(ka — @),  a2(k) = D E21ka(dks’ — 6ak. + 3a’)
then the following equaliiies hold. )
(1.14) > 0 2w °C(Z)ar (k) /K = (2 tr Z°) etr (2Z),

(1.15) D w2 Ce(Z)ar(k)/ (b — 1)1 = (22°tr Z°* + 2° tr Z° tr Z) etr (2Z),
(1.16) Do X0 £°C(Z)ar (k) /K

={2'tr 22 + 4P 0 22 + & tr Z° + v 2)F etr (22),
(L17) Dm0 2w 2°Ce(Z)as (k) /K

= {4l tr Z° + 3X°tr Z° + 327 (tr Z)* + x tr Z} etr (2Z).

Proor. From (1.5) we can write
I —n7'ZI™ = Do 2w () Co(Z)/n*k!
(1.18) = Y > wdC(Z) )7L 4+ a1 (k) (2nz)”
+ @4 )k — a2 (x) + 3w (k)’} + 0 @),

which holds for any number  and any positive definite matrix Z with large n.
The left-hand side can be expanded asymptotically in another way by the
formula

(1.19) —log| I — n7'Z| = tr (Z/n) + $tr (Z/n)* + itr (Z/n)* + O (™),
as
I — n7'Z[™ = exp {—nz log |I — n'Z|}
fetr (xZ)}[1 + (z/2n) tr Z°
+ (z/247°) {3z (tr Z°)* + 8tr Z*} + O (n™°)].

(1.20)

Comparing the coefficients of each term of the order ™ in (1.18) and (1.20),
we can obtain the first equality (1.14). Equality (1.15) follows immediately by
differentiating (1.14) with respect to z. From the terms of order n~* in (1.18)
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and (1.20) with the help of the formula (1.12), we have
(1.21) ke 2w 2" Ce(Z) (k1) {Bar ()" — @z (x))}
= {32*(tr Z°)* + 8’ tr Z° — x tr Z} etr (2Z).

By (1.7) we can also get the following asymptotic formula for any p X p posi-
tive definite matrix Z and large n;

(1.22) T,Gn)|Z1" " [esofetr (—Z7S)HSF"C,(28/n) dS
= (2/n)*@En)Cc(Z) = {1 + a()n™ + 0 ()} Ce(2).

Multiplying on both sides of (1.22) by 2"y (k)/k! and using the first formula
(1.14), we can get

(1.23) {T,Gn)|Z[") ™ [sso {etr (—Z78)}|S[F"P t;* (28 /n)* etr (2xS/n) dS
= Do 2w {2°C(Z) /B {a (k) 4+ @ (x)/n 4+ O (7).

The left-hand side can be regarded as the expectation of the statistic f(V) =
tr (@V)® etr 2V with respect to the Wishart distribution W, (n, Z) on nV. We
shall expand it asymptotically in another way by using a matrix of differential
operators due to James [8], Ito [7], Siotani [12] and etc. Considering the trans-
formation V.— HVH’ for some orthogonal matrix H, we may assume that posi-
tive definite matrix Z is a diagonal matrix ' = diag (A1, s, - -+, \,) with the p
characteristic roots of Z as its nonzero elements. Then the statistic V' converges
to T' in probability as n tends to infinity. So we shall expand the function f(V')
in a Taylor series about T' as {etr (V' —T")d}f(2)|z—r, where symbol d means the
matrix of differential operators having (1 4 8:;) (8/904;) as its (7, j)th element
for a symmetric matrix Y, = (0i;) with 8;; = 0 (Z % j) and 8;; = 1. Taking the
expectation with respect to V regarding the matrix d as a constant, we can re-
write the left-hand side of (1.23) as

[etr {—T9 — inlog |l — (2/n)T}}If () |s=r

={1 + o tr @)’ + O )} tr (@) -etr @Z)|s-r
(@ tr T*) etr («T)
(1.24) + AN 9%/00% 4 21 2a<s 5p Nahs 8°/00 )

{2’ (Cha0ha + 2 X igacszp0as) et @Z)) [zr + O(7)
(@ tr Z°) etr (xZ)
+ 02 (r Z2°) + 42° tr Z° 4+ & tr Z° + 2P (tr Z)Y etr (xZ)
+0@®™).
Comparing the coefficients of each term of order n~" in the last equation of (1.23)
and (1.24), we can see that the third formula (1.16) is true. The fourth formula

(1.17) is an immediate consequence from the third formula (1.16) and the
equality (1.21). Thus the lemma is proved.
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1.4. Approximate non-null distribution. Now we shall derive the asymptotic
expansion of the non-null distribution of the likelihood ratio criterion A\ given by
(1.3). Constantine [4] showed that the Ath moment of the ratio of determinants
[Se|/|Se + Si| under K could be expressed by our notation as

ElIS"/ISs + Sul'
(1.25) =T, + NV — 8)/2) T, (N — s+ b)/2)
TN — 8)/2)T,¢ + N — s + b)/2)]
aFy (hyh 4+ (N —s+b)/2; — Q).

Putm = pN =N — s+ (b — p — 1)/2 and let m tend to infinity instead of N
as in Posten and Bargmann [10]. We can express the characteristic function of
—2p log \ from (1.25) as

Ct) =[TpyGm@A —2¢) — b—p—1)/4)T,Gm + (0 +p+1)/4)]
(1.26) (CpGm — b —p = 1)/4)T,Gm(L —2it) + G +p +1)/4)]"
<y (—itm; gm (1 — 24¢) + (b + p + 1)/4; —Q)
= C1(t)-C: ().
Under the hypothesis H, the non-centrality matrix Q is equal to zero matrix and
the hypergeometric function 1/ is equal to unity. So the first four gamma
products give us the characteristic function under H, which we shall denote by
C1(t) and 1Fy by Co(¢). The first part C1(t) can be expanded for large m in the
usual manner as shown by Box [3] (Anderson [1], p. 204). Applying the asymp-
totic formula for gamma function (1.9) to Cy(¢), we have
log Ci(t) = —3bp log (1 — 2it)
+m D5 1 {Ba((b+ p+ 3 — 2a)/4) — Bo((—b+ p + 3 — 2a)/4)}
{1 — 1= 2)Y — 23m’)™
32 (By((0+p+ 3 — 2a)/4) — Bs((—b + p + 3 — 2a)/4)}
1 — (1 =207 +0@m™).
The second term of the above expression vanishes, giving
(1.27) Ci(t) = (1 — 23it)™"
[1+ bp (a8m*) " 0* + p* — 5){ (1 — 2)™ — 1} + O(m™)].
The second factor of C'(¢) in (1.26) can be written, by the definition (1.4), as

(128) Co(t) = Do 200 (—imt)Ce(—)
TGmQ — 2it) + 20 + p + 1))k
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The coefficients can be arranged according to the order of the power of m as
(—atm)e = (—itm)*[1 — ay (k) (26tm )™
+ (24@tm)") 7 {k — a(x) + 301 (x)"} + O(m™)],
Gm@ —2it) + 30+ p+ 1))
(1.29) = {Im@1 — 2} 1 + (0 + p + 1k + 2a1())
Sm@1 — 2it)) + 24am’ (1 — 26t)")
{4k + 30 +p + 1)’k(k — 1)
+120 + p + DE — Dak) — 4mk) + 120 ()%
+0m™)], '
where a; (k) and a, (k) are defined by (1.13). Hence we can write C;(¢) as
o0 2w (2it/ (1 — 26t))"Ce(@) (b))
=m0+ p + DEQA — 2i6))™ + @) @it — 2it)) 7Y
+ m (1 — 4at)k(24 () (1 — 26t)°)"
(130) + b4+ p+ 1’61 — 2it)") k(k + 1)
+ 04 p 4+ Daa(e) 21 — 2it)")7 (1 + k/24t)
— (1 — 44t)aa (k) (24 (&) (1 — 23t)")™"
+ (k) B@)' (1 — 2t)") 7} + 0(m™)).

By the lemma in Section 1.3, with the formulae (1.12), we can simplify the above
expression, getting

Co(t) = {exp (201 — 26) tr @) }[1 — m ™ {(® + p + 1)it(l — 26 trQ

+ 20t (1 — 2it) tr Q%)
+m O+ p+ QA —2i) ) tre

(1.31) +2b+p+2+ &+p+ )it — 2it) " tr @
+ M4+ & +p+ D%kt — 2i))7 (tre)’
+ 8(1 4+ 2t)it(3(1 — 2)°)  tr @°
+20 +p+ 1)E)A —2) " tr@’ tro
+ 201 — 2" (tr @)} + 0.

Combining this result with the expression for C;(f) in (1.27), we finally obtain
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the following asymptotic formula for the characteristic function C (¢);
C@t) = (1 — 2it) " exp (2061 — 2t) tr Q)
L+ Em)™MOG+p+1)A —2) tro
(1.32) — A =2)[b+p+1)trQ—2tr Q] —20r (A — 20t)"%
+ m*{2bp @ + p* — 51 — 2t)”" — 1]
+ D a2 g2 (@) (1 — 2i)7} + O (m™)],
where each coefficient gz (Q) is given by
(@) = §b 4+ p + 1){ (tr @) — 2tr Q) + 30+ p + 1) tr &,
6@ =30 +p+ 1) trea— {1 +20+p+ 1)} trd
—{14+310+p+ 1)} (tre)
(1.33) + #tr @+ 30+ p + 1) (trQ) tr 2,
gs@) =1+ 30 +p+ D} tr@ + {14+ 40 +p + 1)} tro)’
—4trQ — b+ p+ 1)rQ) tr @ + (trQ°),
gu@) = $tr@ +30+p+1)tre) r" — (tr*),
(@) = §(tr @°)"

By inverting this characteristic function using the well-known fact that
(1 — 26t) 7 exp {206/ (1 — 2it)} is the characteristic function of the non-
central x* distribution with f degrees of freedom and non-centrality parameter &°,

we obtain the following theorem.
TaroreM 1.1. The non-null distribution of the likelthood ratio criterion (1.3) for

the multivariate linear hypothests can be approximated asymptotically up to the order
m™" by
P(—2plog\ < 2)
=Px/@) <z)+ @m)[b + p + 1) tr2P(x}(0") < 2)

(1.34) — {0+ p+ 1)tr2 — 2tr }P (x5 (8®) < 2)

— 260 @ P (G (8) < 2)]

+ m7dgbp O + p° — BNP(Gnu(@)< 2) — PO/ () < 2)}

+ o2 022 (@) P (xhea 0F) < 2)] + O(m™),

wherem = pN =N —s+ (b—p — 1)/2,f = bp,8* = tr @ = 1 tr AA'’Z " and
the coefficients g2, (2) (@ = 2,3, - - - , 6) are given by (1.33). The symbol x,* (8*)
means the non-central x’-variate with f degrees of freedom and non-centrality

parameter 8.
If we specialize the rank of @ to two, we can easily see the agreement between
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our result and that of Posten and Bargmann [10], after minor changes of no-
tation.

2. Expansion of the criterion for independence.

2.1. Test criterion for independence. There is a close connection between the
multivariate linear hypothesis and the test for independence between two sets
of variates. In fact we can reduce the test for independence to that of the linear
hypothesis by considering the conditional distribution of one set of variates,
given another set. A monotonicity property of the power function of the test
criteria was proved in this way by Anderson and Das Gupta [2]. Thus we can
expect that the same may be true in regard to asymptotic expansion.

Let p X 1 vector X;, Xz, --+, Xy be a random sample from a multivariate
normal distribution with mean vector u and covariance matrix 2. Put
S=>2%1 Xa— X)X, — X),X = N X ¥_1 X, and let us partition X and
S into p; and ps rows and columns (p1 + p: = p) as

Zu 2p Su Sw
2 = = .
(Ezl Zzz) ’ s (821 S22>
Without loss of generality we may assume p; < p: . The likelihood ratio test for

the hypothesis of independence H:Z1, = 0 (p1 X p2) against all alternatives
K:Zy, # 0 is given by

2.1) N = (I81/I8ul- 8| )M = |I — 818182 Sul*".

This can be also expressed by [[24 (1 — rjz)%N, using the sample canonical cor-
relations r;where r; are given by the characteristic root of S11S1Sz2Sx for
J=12-,p1.
2.2. Moments of the criterion. First we shall obtain the moments of the likeli-
hood ratio statistic A under K in a convenient form for our asymptotic expansion.
Taeorem 2.1. Under alternative K, the moment of the likelihood ratio statistic N
given by (2.1) can be expressed as

ENISI"/ (18ul Szl )]
(2.2) =Tp(t+ 3N —p— 1)) GV — 1))
GO — po — )T 4+ 3 — T TI2 @ — o)
< oFy (hy b3 h 4+ 3(N — 1); P*),

where p; is the population canonical correlation and P* = diag (o, po, - - - , pry)-
Proor. Considering the conditional distribution of the first p; components of
the sample, given the ps second components ¥ (p: X (N — 1)) in the canonical
set up of =, Constantine [4] showed that the statistic |S|/ (|Su| |Se|) is expressed
by |[VV'|/|UU’ 4+ VV’|, where the p1 X p; matrix VV"’ has the Wishart distribu-
tion W, (N — 1 — ps, T') and the py X p1 matrix U U’ has the non-central
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Wishart distribution W, (ps, T'; 3T "AYY’'A’) with

010---0 0---0
Opz---0 0---0

Apr Xpo) = {77 0 T and
00 --:pp, O 0
(23) .
1— p 0 0
2
I(ps X p1) = Olpz ....... 0
0 0 'l_pil

The random matrices VV’ and UU’ are independent for given ¥ and the p; X pa
matrix Y'Y’ has the Wishart distribution W,, (N — 1, I). It follows from (1.25)
that

E[SI"/ (1Sul 182 )* | YY'] = Tpy (b + 3(N — pa — 1))Tp, GV — 1))
(24) Lo GWN — pp — 1))Tp, (k + 3V — 1))
AFy (b b+ (N — 1); —4TAYY'A).

Applying the Kummer transformation formula 17, (¢;b; Z) = (etrZ) F1 (b —a;
b; —Z) (Herz [6]) to the second factor and taking expectation with respect to
YY’ by the Wishart distribution W,,(N — 1, I') with the formula (1.7), we can
obtain the second factor as

(2.5) Do 2w ((N — 1)/2)((N — 1)/2).
L+ 3@ — 1)) I + ATTAYVPC (P ()7

Applying again the Kummer transformation formula F; (@, a2; b; Z) =
I — Z|" ™ ,F, (b — a1,b — az;b; Z) due to Herz [6] to the above expression
and using the identity |I + A'T™'A| = [I — P*™, we can get the moment (2.2).

2.3. Approximate non-null distribution. Now we shall derive the asymptotic
expansion of the non-null distribution of the likelihood ratio statistic —2 log A
defined by (2.1). Olkin and Siotani [9] have shown that the limiting distribution
of N*}{|S|/ (|Sul-Sz|) — [Z|/(|Zul-[Z2])} is normal with mean zero and variance
4{|2|/ (|Zu|- [Z2])}*- tr 21212225 21 , 50 the statistic

2

—2N Hlog N — log 24 (1 — o)™
2

has the same limiting distribution with mean zero and variance 4 Y 2% p/. It
may be remarked that this limiting distribution is different from that for the
linear hypothesis in Theorem 1.1. Under the hypothesis the test statistic —2p log A
is recommended instead of —2 log A\, where the correction factor p is so chosen
that the first remainder term vanishes in the asymptotic expansion of the dis-
tribution under H. We have pN = N — (§) — (p1 + p2)/2 (Anderson, [1],
p. 239).

We now put m = pN and let m tend to infinity instead of N. Then the charac-
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teristic function of the statistic —2om *{log X — log [[24 (1 — o} )™ is ob-
tained by putting & = —4tm? in (2.2).

Ct) = TpGm — mhit + 11 — po + 1))Tp, Gm + (o1 + p2 + 1))
(2.6) ‘[0 Gm + 11 — p2 + DIT,,Gm — miit + 21 + pot- 1))
D 2o (—mbit) (—miit)[Gm — m¥it + 2 (py + pa + 1))

-C(P*) (k)7

Applying the asymptotic formula (1.9) for the gamma function to each of the
four gamma, products, we get

(2.7) First factor = 1 + étm " *pips + m ™ (@) {pps + % (p1p2)’} + O(m™?).
In the same way as in (1.29), we can see that
(—mHit),
= (—mhit)"[1 — a1 () itm*) ™ + (24 (6t)'m) ™ {k — @ () + 301 (c)?}
(2.8) +0m™))
Gm — miit + 3@+ p2 + 1))
= Gm)1 — 2tkm™* + m {3k (1 + p2 + 1)
+ 2k — 1)@)" + a(e)} + 0(m™)],

which implies that (—m%it),(—m¥t),/ 3m — m¥it + 2 (1 + p2 + 1))s can be
expressed as

(=21 + m 26tk — @) e (c)} + (12m)7{[24@Gt)® + (it)
— 61 + p2 + DIk + 24(t)’K — 122k 4+ Dasl) — (i) aa(x)
+ 63t) "o (x)*} + O(m ™).
It follows from the lemma in Section 1.3 that the second factor of the character-
istic function C(¢) in (2.6) can be written as

oFy (—mbit, —mlit; dm — m¥it + 2(p1 + p2 + 1); P?)
= {etr (—2°P)}[1 + 4m ™ (it)" (trs — trs)
(2.9) + m Y @) [trs — tr’ — (p1 + pe + 1) tr)
+ @) Str — 20trs + £2trs) + (i)°(Strd + 8tr’ — 16tritr))
+0m™),
where the symbol tr; is an abbreviation for tr P’. Multiplying the first factor

given by (2.7) to the above expression, we have the following asymptotic formula
for the characteristic function.

(210) C(@t) = etr (—2£P*)-[1 + m ™ {pupuit + 4(@it)* (br P* — tr P*)}
+ m7{[pipe + § (=)’ 1 (6t) + 2 %a ba (P) (i)™} + O (m7Y),
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where the coefficients by (P) (@ = 1, 2, 3) are given by
L(P) =tr P4+ (tr P’ — (pr + po + 1) tr P,
(2.11) L(P) = 4pips(tr P* — tr P*) + StrP® — 20tr P'J+ (40/3) tr P°,
ls(P) = 8(tr P*)* + 8(tr P*)* — 16 tr P* tr P
By inverting this characteristic function we can conclude the following theorem.
TrarorREM 2.2. The non-null distribution of the likelihood ratio statistic —2p log M
gwen by (2.1) with a correction factor p = 1 — N (py + p2 + 3)/2 for testing the
independence between two sets of variates with p1 components and p. components
(p1 < p2), 18 expanded asymplotically for large N in the following way. Put
A= — (m /T) log |S|/(|Sn| 1S22]) — log |2|/(|211| [Z2])} for m = pN and
= 2(tr P?)}, where P* = diag (o, po, -+, po,) with population canonical
correlatzon p; . Then we have .

P(A<z2)=®@) —m{ (pps/7)8Y (2) + 4/7)2P (2) (tr P* — tr P*)}
(212) + m 7 (ppe/7*) (1 + 3p1p2)@® (2)
+ 21 % (@)ba (P)/7} + O (m™?),

where ba (P) are given by (2.11) and 7 (z) means the rth derivative of the standard
normal distribution function ® ().

In the case p = 2 the problem reduces to that of testing that the correlation
coefficient vanishes. It would be of interest to compare this formula numerically
with another formula due to Ruben [11].
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