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A NOTE ON SOME ERGODIC THEOREMS OF A. PAZ

By RicHARD W. MADSEN

Iowa State University

In a paper entitled “Ergodic theorems for infinite probabilistic tables,”
Paz studies the ergodic properties of non-homogeneous Markov chains with
countably infinite state space. This note is to draw attention to the fact that
Paz’s theory is easily extended to arbitrary state spaces.

0. Summary. In [4], Paz studies the ergodic properties of non-homogeneous
Markov chains with countably infinite state space. This note is to draw attention
to the fact that Paz’s theory is easily extended to arbitrary state spaces.

1. Introduction. Let (S, 4, u) be a o-finite measure space. Doob ([3] page 190)
defines stochastic transition density functions for the general state space in the
homogeneous case. In the non-homogeneous case, we must consider a sequence of
transition density functions {P,(x, y)} on S x .S with the following properties:

(a) P(x, y) is the density function for P,(x, B), i.e. P,(x, B) = j,,P,,(x, y)u(dy) for
Be%.

(b) P,(x, *) for fixed x determines a probability on £.

(c) P,(:, B) for fixed B, determines a function of x which is measurable with
respect to 4.

P,(x, y) will be referred to as a stochastic kernel and can be thought of as a one
step transition kernel from time »— 1 to n. In view of the properties a, b, and c, the
multi-step stochastic kernels P, ,.(x, y), from time n—1 to time n+k, are well
defined:

Pn,n+k(x’ y) = IS' : '_‘.s Py(x,21)Pyy ((21,22)" " Ppyil(Zh YAz )(dz,) - - - u(dz).

Following Paz, we define a non-homogeneous Markov chain for a general state
space.

DEerFINITION 1. A non-homogeneous Markov chain (NMC) is a couple
(S, {Px,)}) where S is the state space and {P,(x, y)} is an infinite sequence
of transition density functions satisfying conditions (a), (b), and (c).

NortaTioN. For simplicity we take P,, K, etc., to mean P,(x, y), K(x, y), etc.

2. Norms and ergodic coefficients. Dobrushin [2] has defined the ergodic co-
efficient a(P) of a stochastic kernel as follows:

DErFINITION 2. If P is a stochastic kernel, the ergodic coefficient a(P) is
a(P) = 1—sup|f [P(x, y) = P(z, y)1u(dy)]
where the sup is taken over all Be # and all x, z€e S.
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REMARK. Paz [4] defined the ergodic coefficient y(P) as
y(P) = inf;, ;, Z;o= 1 min(p;,;, P, )-

It can be shown that the analog in the continuous case is equivalent to a(P) as
defined here.

DEFINITION 3. Let P be a stochastic kernel. The ergodic coefficient 3(P) is defined
as:

‘ 5(P) = 1 —o(P).
DErFINITION 4. If K is y-integrable, then the norm ||K|| is defined as:
K| = sup. f [K(x, )] ().
If fis a function of a single variable, we take || ]| as the L,(S) norm of f(||f]| =
J1£0o)| medx)).
DEFINITION 5. A stochastic kernel is called constant if it is independent of x, i.e.
P(x, y) =f(y) for all x.

ReMARK. This is equivalent to taking a(P) = 1.
LeMMA 1. If P is a stochastic kernel then 0 < 8(P) £ 1,
(P) = sup, . [ (P(x, y) = P(z, y))* u(dy) and
28(P) = sup,. . [ |P(x, y)— P(z, y)| u(dy).

PrROOF. Straightforward and is left to the reader.
LEMMA 2. Assuming the required integrability, define

KL(x, y) = [K(x, 2)L(z, y)u(dz).

Then
KLl < (K L and(l-+L]) < 1K+

PRrooF. This is a simple application of Fubini’s theorem for the first part and the
triangle inequality for the second.

LEMMA 3. Let P be a stochastic kernel and let E, be the constant stochastic kernel
defined by E, (x, y) = P(x,, y), where x, is a fixed point in S then

(a) 26(P) = ||P—Ex0|| and
(b) for every & > 0 there is some x,€ S such that

20(P) £ ||P—E,|| +e.
ProoOF. Follows from Lemma 1 and properties of sup.

LEMMA 4. Every stochastic kernel P can be represented in the form P = E+Q
where E is a constant stochastic kernel and ||Q|| < 25(P).



A NOTE ON SOME ERGODIC THEOREMS OF A. PAZ 407

PrOOF. Follows from Lemma 3 with E= E, .
LemMMA 5. If P and Q are stochastic kernels, then 6(PQ) < 6(P)5(Q).
PrOOF. This is proven by Dobrushin ([2] page 333).

LEMMA 6. Let P be a stochastic kernel and f an integrable function such
that 0<||f]| <o and [f(x)u(dx) =0, then ||fP| < ||f||6(P) where fP(y)=
[0 P(x, y)u(dx).

Proor. Define g(x) = 2f*(x)/||f|| and A(x) = —2f~(x)/||f|| where f*(x)=
max (f(x), 0) and f ~(x) = min(f(x), 0). Since g and A are nonnegative and integrate
to 1, a stochastic kernel can be defined as:

ox,y)=g(y) if x=x,
= h(y) otherwise

where x, is an arbitrary point. With these definitions the reader can complete the
proof by referring to Paz [4].

REMARK. Lemma 6 is a consequence of the inequality (1) found in [1].

LeMMA 7. Suppose that ||K|| < oo and that, for each fixed x, 0 < [|K(x, y)| u(dy)
and [K(x, y)u(dy) = 0. If P is a stochastic kernel, then “KP” < ”K ” o(P).

PRrOOF. Straightforward using Lemma 6.

3. Ergodic theorems for non-homogeneous Markov chains. Following Paz, we
distinguish two types of long run behavior of an NMC. If lim,_, ., 8(P,,,) = 0 for
all m, then the chain is called weakly ergodic. If there is a constant stochastic kernel
Q such that, for any m, lim,_, ||P,,— Q|| =0, then the chain is called strongly
ergodic.

REMARK. Our definition of strongly ergodic is in fact equivalent to Paz’s which
can be seen as follows. If K(p) is a function satisfying lim,_, ,, || (X, ¥)— K(»)|| = 0,
then K(y) will be a constant stochastic kernel.

PrOOF. K(y) integrates to 1 since |1 —[K(»)u(dy)| = |[[Pp (%, ¥) — K()]u(dy)| £
§1Pn (%, ) = K(3)| 1ldy) < sUp, f|Prn (x, )= K()| 1(@9) = || Py (x, ) — K(»)|| = 0.

Also K(y) must be nonnegative a.e. If not, let B be the set where K(y) <0, i.e.
u(B)>0 and [K(y)u(dy)= —B for B>0. Then [|P,,(x,y)—K»)| udy) 2
{5—K(»)u(dy) = B for all n, which contradicts || P,,,(x, ») —K(»)|| - 0.

The following theorems and corollaries are stated without proof. The proofs
can be supplied by the reader using the above definitions and lemmas and following
the earlier work of Paz.

THEOREM 1. Let {P,} be an NMC. The following are equivalent:

(a) {P,} is weakly ergodic.
(b) There exists a subdivision of the chain into blocks of kernels {P; 1, ;,,,} such
that ) 7y (P 4 15 4,,,) diverges.
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(c) For each m there is a sequence of constant stochastic kernels {E,,,} such that
1im, -, o || Prun— Enmn|| = O
(d) If P, = E,+ R, where E, is a constant stochastic kernel, then lim,_, , || R,,,|| = 0.

THEOREM 2. An NMC is strongly ergodic iff for every m there is a sequence of
constant stochastic kernels {E,,} and a constant stochastic kernel E,, such that

(a) lim,—, o || Prun— Ena|| = 0.
() lim,, o ||Epn— Enl| = 0.

COROLLARY 1. A strongly ergodic chain is also weakly ergodic. A weakly ergodic
chain which satisfies (b) of Theorem 2 is strongly ergodic.

THEOREM 3. Let {P;} and {Q;} be two NMC’s such that Y ||P,— Q|| < oo, then
for any & > O there is an integer m,, such that ]IPmn— Q,,,,,” < g for all m Zm, and all
n>m.

COROLLARY 2. Let {P;} and {Q;} be two NMC’s satisfying the conditions of
Theorem 3. If one of the chains is weakly (strongly) ergodic then so is the other.
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