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QUADRATIC SUBSPACES AND COMPLETENESS

By JusTtus SEELY
Oregon State University

1. Introduction and summary. Since the notion of completeness for a family of
distributions was introduced by Lehmann and Scheffé [7], a problem of interest
has been to determine conditions under which a complete sufficient statistic exists
for a family of multivariate normal distributions. One approach to this problem,
first formulated for a completely random model in some work by Graybill and
Hultquist [2] and extended to a mixed linear model by Basson [1], has a basic
assumption of commutativity for certain pairs of matrices. In the present paper
some of the commutativity conditions and an associated eigenvalue condition
assumed in the theorems on completeness in both [1] and [2] are replaced by the
weaker requirement of a quadratic subspace. These subspaces, i.e., quadratic
subspaces, are introduced and briefly investigated in Section 2 and are found to
possess some rather interesting mathematical properties. The existence of .o7-best
estimators (e.g., [12]) is also examined for several situations; and it is found that
the usual estimators in the weighting factors for the recovery of interblock informa-
tion in a balanced incomplete block design (treatments fixed and blocks random)
have an optimal property when the number of treatments is equal to the number of
blocks.

Throughout the paper («/,(—,—)) denotes the FDHS (finite-dimensional
Hilbert space or finite-dimensional inner product space) of nx n real symmetric
matrices with the trace inner product. The notation Y ~ N(XB, Y7o, v;V)
means that Y is an nx 1 random vector distributed according to a multivariate
normal distribution with expectation Xf and covariance matrix ) j», v;V;; and
for such a random vector the following is assumed:

(a) X is a known nxp matrix and f is an unknown vector of parameters
ranging over Q; = RP.

(b) Each V(i =1,2,---,m) is a known n xn real symmetric matrix, V,, = [,
and v = (vq, -+, v,,)" is a vector of unknown parameters ranging over a
subset Q, of R™.

(c) The set Q, contains a non-void open set in R” and Y 7., v,V; is a positive
definite matrix for each ve Q,.

(d) The parameters v and f are functidnally independent so that the entire
parameter space is Q = Q; xQ,.

For the special case when X = 0 the notation ¥ ~ N,(0, Y7o, v;V)) is used and
for this situation the parameter space Q reduces to Q.
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The notation and terminology in the following sections is generally consistent
with the usage in [12]. The adjoint of a linear operator T is denoted by T* and
the transpose of a matrix A is denoted by A’. Additionally, the unique Moore-
Penrose generalised inverse of a matrix A is denoted by A*, and as in [12], only
real finite-dimensional linear spaces are considered.

2. Quadratic subspaces. In the following definition the notion of a quadratic
subspace of the vector space of real symmetric matrices & is introduced.

DEFINITION. A subspace # of .o/ with the property that B e % implies B*> € 4 is
said to be a quadratic subspace of «/.

Since quadratic subspaces are used in the sequel, an investigation of some
elementary properties associated with these subspaces is considered in this section.
The special case when the matrices in a quadratic subspace commute is briefly
considered near the end of this section, and such a subspace of .« is referred to as a
commutative quadratic subspace. Verification for most of the succeeding lemmas
and observations is straightforward, and so proofs are generally omitted. More
details regarding verification, however, may be found in [10].

LEMMA 1. Let & be a subspace of < and let 2, be an arbitrary spanning set for A,
then the following conditions are all equivalent:

(1) (a) A€ B = A%< A,
(b) A, Be B, = (A+B)* € 4,
(c) A,Be #, = AB+BA € %, and
(d) Ae B = A*e B for each finite integer k = 1.

LEMMA 2. Let % be a quadratic subspace of o and let A # 0 be a member of %.
If Ay, Ay, -+, A, are the distinct nonzero eigenvalues of A and Py, P,, ---, P, are the
corresponding symmetric, idempotent, and pairwise orthogonal (i.e., P.P; = O for
[ # j) matrices such that

A= Z::l ;”iPi:

then Py, P,, -+, P, are all members of the subspace 2.
PRrROOF. Define two matrices A and A, as follows:

[0 A2 e A 1Ay o A0
A=Ay 2% 2| and A = |1 24, - 2, 7!

2 ) -1
| A A AT LA A
The determinant of A, is a Vandermode determinant and so

Al = (T2 Ti< s i= ).
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Since the 1,’s are nonzero and distinct, it is clear that |A| # 0, which implies that
A is a nonsingular matrix. Let « be an arbitrary vector in R" and let § = A™1q,

then
Z:=1 BiA' = Z;=1 ﬂi(Z;:lik'Pk)
= 212:1(2::1 Biiki)Pk = er(=1 Py .
From (1.d) it is clear that 4, 4%, ---, 4" are in the subspace #; thus, Y /_, pA =
Y% _1 Py is an element of . Since o is arbitrary it follows that Py, ---, P, are all

members of #.
Suppose that 4 is a quadratic subspace of &, then some properties which follow
immediately from Lemmas 1 and 2 are the following:

@) (a) AeB=>A"eA.
(b) Ac B = AA" € A.
(c) A, Be # = ABA € 4.
(d) There exists a basis for & consisting of symmetric idempotent matrices.
() Ae B = {ABA: Be %} is a quadratic subspace of /.

In (2.b) note that 44" is the unique symmetric idempotent matrix with the same
column space as the matrix 4.

We now wish to show that a quadratic subspace % contains an identity element,
l.e., a matrix n such that nB = Bfor all B e #. To show this it is convenient to first
consider two lemmas. In the following, the notation R(—) denotes the range
(column space) of the indicated linear operator (matrix) and N(—) denotes the
null space.

LEMMA 3. Let A and B be linear operators between two real FDHS’s such that
AB* = 0, then R(A+B) = R(A)+ R(B).

LeMMA 4. To each pair of matrices A and B in a quadratic subspace # there is a
matrix T € & such that R(A)+ R(B) = R(T).

PROOF. Let A, Be # and let T = P+ NB*N where N = I—P and P is the sym-
metric idempotent matrix such that R (P) = R(A). Since

R(A)+R(B) = R(4) ® R(NB) = R(P)® R(NB*N),
it is clear from Lemma 3 that R(4)+ R(B) = R(T). Observe that
T = P+NB2N = P+ B>—(PB?+ B*P)+PB?P.

Since each term in this expanded form of T is in 4, it is clear that T € #. Thus,
the statement is established.

Suppose that & is a quadratic subspace of & and that By, B,, ---, B,, is a span-
ning set for 4. By consecutively applying Lemma 4, there exist matrices 7y, T, -+,
T,, in & such that

R(By)+R(By)+--+R(B) = R(Ty) for i=12 -, m.
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Let n = T,T,* for one such T,,, then by (2.b) it follows that 7 € # and itis clear
that 7B = B for all Be #. Thus, n is an identity element in 4. Some properties
associated with the matrix n are the following:

3) (a) The matrix = is unique; that is, if 7, B = B for all Be % and =, € %,
then n; = 7.

(b) B = Brnforall Be 4.
(¢) 4 € # and rank(4) = rank(n) = R(A4) = R(n).
(d) 4 € # and rank(4) = rank(n) = {ABA: Be #} = 4.

These properties are immediate to verify.

Consider now the case when £ is a commutative quadratic subspace of /. The
implications of commutativity are not investigated in detail; however, two points
may be mentioned. Since the elements in 4 commute, it follows from (1.c) that
A, Be # implies that AB = BA € 4. Using the usual definitions of matrix
addition and multiplication the class # becomes a ring, and since it is also a linear
space it follows that 4 is an algebra. Thus, under the usual definitions of matrix
addition and multiplication a commutative quadratic subspace is a real com-
mutative algebra with an identity element. Before passing on to a particular
characterization of a commutative quadratic subspace, it is convenient to state the
following lemma.

LEMMA 5. Let # = {Ry, R,, -, R, R} be k+1 nonzero symmetric idempotent
matrices such that R commutes with R, R,, ---, R,; R¢sp {R,, R,, -+, R, }; and

R, R,, .-+, R, are pairwise orthogonal. Define
P, = RR, i=12,-,k
P, = R,—RR,; i=1,2,-k
and Pyii = R—R(R{+R,+--+Rp).

It follows that each of the matrices in P = {P,, P,, -+, Py} is symmetric and
idempotent; the matrices in & are pairwise orthogonal; there exist at least k + 1
linearly independent matrices in #; and sp#Z < sp?.

Let 4 be a commutative quadratic subspace of &/ and by (2.c) let By, B,, -+, B,
be a basis for # such that each B, is idempotent. From Lemma 5 it is clear that
from the matrices

BIBZs BI_BZ’ BZ'—BIBZs B3a Tty Bk’
we may select a basis P, P,, ---, P, such that P,P, = 0. By considering the
matrices
PyPs, PPy, Py—PP, P,—P,B;, Py~ (P,P3+P,Py),
P4a B Pks

we may select another basis Q,0,, -+, O, for # such that 0,0, = 0,0;=
0,05 = 0. It is clear that this process may be continued until we obtain a basis
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Ry, Ry, -+, R, for # such that R;R; = 0 for i # j. From this observation the
necessity part of the following lemma is established.

LEMMA 6. A4 necessary and sufficient condition for a subspace % to be a com-
mutative quadratic subspace is the existence of a basis R,, R,, ---, R, for B such that
each R; is idempotent and such that R;R; = 0 for i # j. Moreover, apart from the
indexing such a basis for a commutative quadratic subspace is unique.

ProoF. Necessity follows from the preceding paragraph and the sufficiency is
obvious; thus, consider the uniqueness statement. Let Ry, ---, R, be a basis for a
commutative quadratic subspace # such that each R; is idempotent and such
R;R; = 0 for i # j. Suppose Py, P,, -+, Py is another such basis for #. Let m be
fixed and let {o;} and {B,,} be the unique sets of real numbers such that P,, = 3 o;R;
and such that R, = Y ;8,.P; for h = 1, ---, k. It follows that

oayRy= PRy, = ByPm for h =12 - k.

Since the R;’s are linearly independent, P,, # 0, and the «,’s and the f,,’s must be
zero or one it follows that P,, = R, for some A. Since this argument holds for
m = 1,2, ---, k the uniqueness statement is established.

3. Completeness and best quadratic estimators. Let ¥ ~ N,(0, > 7, v;V;) and let
o = {(4, U): A € o/} where U denotes the random variable YY'. Let W and X,
for T € & be linear operators into &/ defined by

xeR"=Wa =Y, oV,
Aest = XA = TAT.
For veQ, it is easily seen that the expectation of U is Wv and that X, the
covariance operator of U, is 2X,,. That is, E[(4, U)] = (4, Wv) and Cov [(4, U),
(B, U)] = (4, £,B) = 2(4, WvBWv). By assumption , contains a non-void open
set in R™; thus, for ¥ ~ N,(0, Y7, v;V,) it follows that
& = Sp {WVZVGQZ} = §p {Vl’ V2’ HRREY Vm},
VYV =sp{E,:veQ,} =sp {E,: Ve&}.
Expressions for the expectation and the covariance operator of U when Y has a
nonzero mean are omitted ; however, such expressions may be found in [9] where a

discussion is given concerning locally best quadratic and locally best linear plus
quadratic estimators when Y ~ N,(XB, > ,v;V)).

THEOREM 1. Suppose that Y ~ N0, Y7, v.V,). To each s/-estimable function
there exists an sf-best estimator if and only if

B(W) = Sp{Vl’ VZ, BT Vm}
is a quadratic subspace of .

PRrROOF. Since /€ & = R(W) it follows that the identity operator X; on .sz/ is in
¥". From Corollary 5.2 in [12] it follows that an .o7-best estimator exists for each
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&/-estimable function if and only if R(W) is an invariant subspace of £, for all
A € R(W). That is, if and only if

4 € R(W) = Z,[R(W)] = RW),
which is equivalent to
A, Be R(W) = ABA € R(W).

Since 7€ R(W) this last condition implies that R(W) is a quadratic subspace.
Conversely, if R(W) is a quadratic subspace, then (2.c) implies the desired result.

If Y ~ N0, Y7 ; v;V;) and R(W) is a quadratic subspace of &, then Theorem 1
implies that .o7-best estimators exist for all .&Z-estimable functions. It seems natural
to ask if these Z-best estimators are uniformly minimum variance unbiased
estimators. Before answering this question some preliminary results are needed
concerning an expression for the inverse of the matrix Wv when veQ, and
R(W) is a quadratic subspace of /.

Assume that R(W) is a quadratic subspace of 7. From (2.a) it is clear that for
each A e R(W) there is a conditional inverse for 4 which is also in R(W). Thus, for
each vector « there is a vector y such that (Wa)(Wy)(Wa) = Wa. An explicit
expression for a vector y satisfying this last expression is given in Appendix II of
[10]; for present considerations, however, it is more convenient to utilize another
representation. In the remainder of this paragraph suppose that the matrices
Vis Vs o, V,, are linearly independent, then W*W is an invertible linear operator
on R™ and Wy = Wa if and only if n = «. Let Q* be the collection of all & € R™
such that (Wa)~! exists. For each a e Q* let O(x) = 04(), -+, 0,,(x))" denote
some vector in R™ such that

(Wo)™! =3, 0@V = WH(a).

Such a vector always exists since R(W) is a quadratic subspace of &, and the linear
independence of V', ---, V,, implies that («) is unique. Thus, 6 is a well defined
function from Q* into R™. Moreover, 6 is a one to one mapping of Q* onto Q*
and considering 0 as a function from Q* to Q* it is easily verified that 67! = 6.
An expression for 6(«) involving (Wa) ™! is given by

2 eQ* = 6(a) = (W*W) 'WH*(Wa)~ 1.
In the following two lemmas some properties of the set Q* and of the function 6

are investigated. A proof of Lemma 7 may be found in Appendix I of [10]. Note
also that the matrices 4, ---, 4,, in Lemma 7 need not be linearly independent.

LEMMA 7. Let Ay, -+, A,, be real nxn symmetric matrices such that A, = I
and let \y denote the collection of all vectors o = (ay, oy, -, a,) such that
YTy oA, is non singular. The set s is both an open and a dense set in R™.

LeMMA 8. Suppose that the matrices Vi, V,, ---, V,, used to define the linear
operator W are linearly independent and that Q* and 6 are defined as in the paragraph
preceding Lemma 7. Let Q* be given the relative topology of R™, then the function
0:Q* - Q* is one to one, continuous, and onto. Moreover, the function 6:Q* — R™
is an open mapping, i.e., 0[O] is an open set in R™ for every open set O in Q*.
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PRrROOF. It was previously noted that € is one to one and onto Q*. Let o/ be
given the topology induced by the norm.

Aest = ||A|| = sup {(¢'4*a)*:d'a < 1};

and let #, the matrices 4 € o/ such that 4~ exists, be given the relative topology
of «. 1t is well known (e.g., Theorem 9.8 in Rudin [8]) that the function from
# onto S which takes 4 into 47! is continuous. Since the functions W:Q* — &
and (W*W)~!'W*:#  R™ are also continuous, it follows that

0(x) = (W*W) ™ 'W*(Wo)~ !

is continuous since it is the composition of continuous functions. Let O be an open
set in Q*. Since @ is one to one, continuous, and onto Q*, it follows that 6[0]
is open in Q*. However, by Lemma 7 Q* is an open set in R™ and hence 0[O] is an
open set in R™,

THEOREM 2. Let Y ~ N,(XB, Y7 v;V,) and suppose the following two con-
ditions are satisfied:

4 (@) R(W) = sp{Vy, V,, -+, Vu} is a quadratic subspace of </,

and  (b) R(X) is an invariant subspace of V; fori = 1, ---, m;

then the vector statistics W*U = (Y'V Y, -, Y'Y) and X'Y are jointly a
complete sufficient statistic.

Proor. We assume, without loss in generality, that the matrices Vy, V,, -+, V,,
are linearly independent and that rank (X) = p. Let 0 and Q* be defined as in
Lemma 8. For each v € Q, and f € R” the density of Y is of the form

h(v, B) exp {—3(y— XB) (LI viV) ™' (y— XB)}

= h*(v, B) exp (371 — DOy Viy+B X' (LI 10,0V ) X(X'X) ™ (X'y)}

= h*(v, By exp {L1_16:(V)y' Viy+ [0y, B (X ')},
where ¢,(v) = —(5)0:(v) and 8(v, B) = (X' X) "' X'Q 1L, 6:(»)V)XP. Let

Q' = {(51(‘)’ ﬁ)a Tt 51,(\/, ﬂ)s¢1(v)a Ty (l)m(V))/:V 6923 ﬂ € Rp}
For a fixed v € Q, the matrix (X'X) ™' X'(}7., 0(v)¥;)X is non singular so that as
B ranges over R? it is clear that d(v, ) also ranges over R?. Thus
RPX(1(v), -+, pm(v)) €Y

and so Q' = R x ¢[Q,] where ¢ = —(3)0. Since there is a non-void open set
in Q, and since 6 is an open mapping from Q* into R™, it follows that there is a
non-void open set in ¢[Q,]. Hence from Section 4.3 in Lehmann [6] it follows that
W#*U and X'Y are jointly a complete sufficient statistic.

Suppose that ¥ ~ N,(XB, Y7, v;V,) and that the conditions in (4) are satisfied.
Let P denote the symmetric idempotent matrix such that R(P) = R(X) and let
T denote the linear operator XyW where N = I—P, i.e., .

ae R" = Toa = ZyWa = YT ¢;,NV,N.
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Since (4.b) is satisfied it is clear that ;N = NV, = NVN for i = 1,2, -+, m;
thus, for « € R™

(NV,N, NV,N)
(5) T*Ta = 57 o

(NV,N, NV, N)

tr (ViNVy) - tr (V{NV,)) oy
tr (V ,NVy) - tr (V,NV,) -

From this matrix expression for T*Ta it follows from Theorem 3 in [11] that a
parametric function ) , A, v, is .&7-estimable if and only if there exists an « such that
T*Ta = 4; and for such an « an unbiased estimator for Y WAxVi is given by

(To, U) = Y, 0 Y'NV,NY = ¥, 0, Y'(V,— PV, P) Y.

Moreover, this last expression shows that (Tx, U) is a function of the complete
sufficient statistic and hence (Ta, U) is a uniformly minimum variance unbiased
estimator for ) ,4,v,. It may also be noted that the vector statistics T*U and PY
are independent and are jointly a complete sufficient statistic.

Now suppose that Y ~ N,(XB, Y ,v;V)) and that R(X) is not necessarily an
invariant subspace of V(i = 1,2, -+, m). For o € R™ the form of T*Tx is

tr (NV,NV,N) --- tr (NV,NV,N) oy
(6) T*To =

tr (NV,NVN) - tr (NV,NV,N) | | o

m

It is no longer necessarily true that ), 4, v, is Z-estimable if and only if there exists
an a such that T*Ta = A. However, for the linear space of random variables

= {4, U):des, AX =0},

the existence of an « such that T*To = 1 is both a necessary and sufficient con-
dition for ) ,4,v, to be .#-estimable. We now consider conditions under which
A -best estimators exist. By considering only the subspace .4 instead of the entire
space ./ we may utilize our previous results. In addition, there is at least some
Justification for restricting attention to the subspace _#* when searching for unbiased
quadratic estimators for parametric functions of the form Y «AcVi. One criterion
which leads to considering only the subspace .4 is to require that the variance of a
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quadratic form Y’'AY be independent of the parameter f. Hsu [3] used this
criterion and showed that by requiring Var (Y’'A4 Y) to be independent of § implied
that AX = 0. Hsu considered what is generally referred to as a fixed linear model
and he did not assume normality; however, the result remains true for the present
situation. Another criterion which leads to considering only the subspace 4 is to
require that a quadratic estimator of the form Y’'AY be invariant under the class
of all transformations of the form Y+ Xu for arbitrary a. This criterion seems to
be a reasonable requirement of estimators for linear functions of the parameters
in the covariance matrix. The class of distributions

{Nn(Xﬁ9 ZiviVi):ﬁ € Rp, v GQZ}
also remains invariant under this class of transformations.
THEOREM 3. Suppose that Y ~ N (XB, Y7, v;V}). Let ¢ = n—rank(X) and let

Q be an nxq matrix such that R(Q) = N(X") and such that Q'Q = I,. To each
N -estimable function there exists a N -best estimator if and only if

# =sp{Q'V,0Q, -, 0V, 0}
is a quadratic subspace of /1 where /% denotes the collection of real q x q matrices.

PrOOF. Observe that Q'Y ~ N,(0,Y 7, v,Q'V;0) and that Q'V,,Q = I,. For
the subspace of quadratic estimators

A= {Y'QAQ'Y: A e 4},

Theorem 1 implies that to each ./%estimable function there exists an .o7%best
estimator if and only if £ is a quadratic subspace of /2. Since

{QAQ": Ae st} = {d: Aesd, AX =0},

the desired result follows.

COROLLARY 3.1. Let Y ~ N,(XB, Y7, v;V)) and suppose that Q and & are
defined as in Theorem 3. If A is a quadratic subspace of /4, then the class of distri-
butions induced by the vector random variable

(Y'QQ'V,0Q'Y, -, Y'QQ'V,0Q0'Y) = (Y'NV,NY, ---, Y'NY)
is complete.
Forarandomvector Y ~ N, (XB, Y v, V,i) it was noted previously that a necessary
and sufficient condition for ) 4, v, to be _#-estimable is the existence of an a such

that T*Ta = A. It is also clear thatif « is a vector such that T*Ta = A, then an
unbiased estimator for ) ,4,v, is given by

(Ta, U) = Y04, Y'NV,NY.

Thus, if the conditions in Corollary 3.1 are satisfied and Y ;4. v, is 4 -estimable,
then the best (minimum variance unbiased) estimator for ) 4, v, within the class
of all unbiased estimators which are only a function of the random vector Q'Y
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is given by (Ta, U) where « is any vector such that T*Ta = A. In addition, if the
conditions in Theorem 2 (i.e., conditions (4)) are satisfied, then (Ta, U) is the
uniformly minimum variance unbiased estimator for ) 4, v;.

4. An example. Consider a mixed linear model corresponding to a balanced
incomplete block design (Kempthorne [5], Chapter 26) with treatments fixed and
blocks random. Let ¢, b, k, r, and A denote the parameters associated with the design
and express the n = rt = bk observations Y;; = u+y;+1;+e;; in matrix form by

Y =ul+Xt+By+e.
Assume that y ~ Ny(0, 6,21), e ~ N,(0, 6*I), y and e independent; then
Y ~ N(ul + Xz, 6,°BB’ + a%I).

Let A = X'B denote the incidence matrix, let Jj‘ denote an i xj matrix consisting
of all ones, and suppose that the parameters , 1, 6,2, and ¢* are all unknown. For
the case k = ¢, i.e., a balanced complete block, it is clear that BB'X = BJ> = J!
so that R(X)is an invariant subspace of BB’; and since (BB')?> = kBB’, it follows
from Theorem 2 that there exists a complete sufficient statistic. Thus, let us now
consider the more interesting case when k£ < ¢.

For k < t it is no longer true that R(X) is an invariant subspace of BB’. If
R(X) were an invariant subspace of BB’, then best linear unbiased estimators
would exist, i.e., independent of the parameters a,> and 2. Moreover, for the
mixed linear model we are considering, a minimal sufficient statistic that is not
complete was exhibited by Hultquist and Graybill [4]. For these reasons we
investigate if Theorem 3 may be utilized.

Let Q be an nxg(q'= n—1t) matrix such that R(Q) = N(X") and such that
Q’'Q = I,. To utilize Theorem 3 it must be true that # = sp{Q'BB'Q, ,} is a
quadratic subspace. In [12] a similar situation is considered and from the results in
[12] it follows that # is a quadratic subspace if and only if Q'BB’Q has no more
than two distinct eigenvalues. For a balanced incomplete block design it is well

known that
AA' = (r=AL+1J, .

Since k& < ¢ implies that r > A, it is clear that the eigenvalues of 44’ are the
nonzero real numbers (r—A) and (r— 1) + At = rk. Thus, the matrix

B'QQ'B = B'(I—(1/r)XX")B = kI,—(1/r)A’A

has the eigenvalues k—(r—A)/r = At/r and k—rkjr =0 when b =t and the
eigenvalues At/r, k, and zero when b > t. Since the matrix Q'BB’Q is always
singular, it follows that the eigenvalues of Q'BB’'Q are At/r and zero when b = ¢
and At/r, k, and zero when b > t. Thus, from Theorem 3 it follows that _#"-best
estimators exist for each _#-estimable function if and only if b = ¢; and from
Corollary 3.1 it follows that the class of distributions induced by the random vector

(Y'QQ'BB'QQ'Y, Y'QQ'Y) is complete when b = ¢.



720 JUSTUS SEELY

Assume now that b = ¢t and let us find the form of the equations T*Toa = 9.
Since N = QQ/', it is clear from (6) that

tr [(Q'BB'Q)*] tr (Q'BB'Q)][«,
twr(Q'BBQ) () ||
The eigenvalue (r— A1) of the matrix 44" has a multiplicity of (+—1) and so the
eigenvalue At/r of the matrix Q 'BB’Q also has a multiplicity of (—1). Moreover,
when b = ¢ the only nonzero eigenvalue of Q’'BB’Q is At/r. Thus, noting that
(t—1)At/r = n—t = g, it follows that

Mlr 1
T*Ta=q[ 1/’ 1][21}
.|

Upon solving the equations T*Ta = § and substituting the solution into the
expression for (Ta, U), we obtain

0) (T, U) = (Atf)~1(Atd,—rd,) Y'[N—(r/A{)NBB'N]Y
+(3,/9)Y'[(r/At)NBB'N]Y,

T*Ta = I:

where fequals the degrees of freedom for the intrablock error mean square in the
usual analysis of variance table, i.e., f = n—2¢+1. Thus, as an estimator for
8,0,% 49,07 the statistic given in (7) is the one with minimum variance among all
unbiased estimators which are a function only of the random vector Q'Y. It might
also be noted that (Ta, U) is a linear combination of the usual intrablock error
sum of squares and the sum of squares for blocks eliminating treatments. To see
this, note that when b = ¢, the matrix Q'BB’Q has At/r as its only nonzero eigen-
value. This implies that E, = (r/At)NBB'N and £ = N—E, are both symmetric
idempotent matrices. Thus, from the relationship

R(X)+R(B) = R(X) O R(NB),

it is clear that Y'E, Y is the sum of squares for blocks eliminating treatments and
Y'EY is the intrablock error sum of squares. From this observation we note that
when b = t the pertinent quantities used for estimating weights in the recovery of
interblock information (e.g., Kempthorne [5], Chapter 26) have the property that
the class of distributions corresponding to the vector (Y'E,Y, Y'EY) is complete.
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