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DISCRETE DYNAMIC PROGRAMMING WITH
UNBOUNDED REWARDS!

J. MicHAEL HARRISON
Stanford University

Countable state and action Markov decision processes are investi-
gated, the objective being to maximize expected discounted reward.
~ Well-known results of Maitra and Blackwell are generalized, their
assumption of bounded rewards being replaced by weaker conditions,
the most important of which is as follows. The expected reward to be
received at time n» + 1 minus the actual reward received at time n,
viewed as a function of the state at time »n, the action at time n and the
decision rule to be followed at time n + 1, can be bounded. It is shown
that there exists an e-optimal stationary policy for every ¢ > 0 and that
there exists an optimal stationary policy in the finite action case.

1. Introduction. Markov decision processes, first identified by Bellman[1],
constitute an important special class of dynamic programming problems.
This paper deals with a stationary Markov decision process over a discrete
state space S, the set of actions available in each state also being countable.
The objective is to maximize expected total discounted rewards over an
infinite planning horizon, the discount factor being fixed and less than one.
A precise formulation of the problem is contained in Section 2.

Discounted Markov decision processes were first studied by Howard [5],
who developed an algorithm for computing an optimal stationary policy in
the finite state and action case. Blackwell [2] then showed that in this case
an optimal stationary policy is optimal among all (non-randomized Markov)
policies. A later paper by Maitra [7] proved that if rewards are bounded then
there exists a stationary optimal policy in the countable state and finite action
case. Finally Blackwell [3], maintaining the assumption of bounded rewards
and allowing an even more general state space, showed that (amongall possibly
randomized and non-Markov policies) there exists a stationary e-optimal policy
for every ¢ > 0 in the countable action case and a stationary optimal policy
in the finite action case.

This later work of course constitutes a very significant extension of Howard’s
original treatment, but still the assumption of bounded rewards is quite re-
strictive. Many problems of stochastic control, notably those arising in
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conjunction with inventory systems, are most naturally formulated with
discrete state space and unbounded rewards. (For example, one component
of the reward function may be proportional to the state variable.) In our
treatment the assumption of bounded rewards is replaced by weaker conditions,
the most important of which is as follows. The expected reward to be received
at time n 4+ 1 minus the actual reward received at time »n, viewed as a function
of the state at time n, the action taken at time » and the decision rule to be
followed at time »n + 1, can be bounded. Allowing a general policy to be
randomized and non-Markov, our central result is that there exists a stationary
e-optimal policy for every ¢ > 0 and there exists a stationary optimal policy
in the finite action case. (Examples showing that an optimal policy need not
exist in the countable action case are easily constructed.) Additional results
are presented concerning the policy improvementand successive approximation
techniques for computation of optimal policies.

The methods used here are those developed by Blackwell [3] in his elegant
treatment of the bounded rewards case, a central role being played by the
Banach fixed point theorem for contraction mappings. The basic structure
of the argument is roughly as follows. In Section 2 the problem is formulated
and the assumptions are presented. In Section 3 it is shown that the expected
discounted reward from every policy is finite, and we develop bounds which
are satisfied by all such return functions. In Section 4 we define a set B of
functions S — reals which contains the return function for each policy and
is a complete metric space with the uniform metric p. (Blackwell takes Bas
the set of all bounded functions § — reals.) It is then shown that the optimal
return operator T is a contraction mapping on (B, p), implying by Banach’s
theorem that 7 has a unique fixed point in B. Using this basic result, the
optimality of stationary policies is then demonstrated in Section S.

Assuming a familiarity with Blackwell’s papers [2], [3], we shall in interest
of brevity omit discussion and interpretation of such standard concepts as the
optimal return operator.

2. Definitions and assumptions. A system with countable state space S is
observed at each of a sequence of points in time labelled 1, 2, - ... Each time
that the system is observed in state s an action a € 4, must be chosen, where
A, is countable for each se §. A reward r(s, a) is then received. The con-
ditional probability that the system will be observed in state re S at time
n + 1, given that it is observed in state se S at time » and action ac 4,
is selected, and given all other previous history of the decision process, is
p(t|s,a). Foreachse Sandac 4,, p(-|s, a) is a probability measure over S.

An n-stage history for the decision processis a (2rn — 1)-tuple b, =(s;, a,, - - -,
s,)withs, e S,a,€4,, -+, s, €S, and we let H, denote the set of all possible
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such histories (n = 1). A policy = specifies for each n > 1 which act will be
chosen at time » as a function of the history 4,. More generally, a policy is
a sequence 7 = {gy(+ | ), g,(+ | ), - - -} where, for each n > 1 and &, = (s,,
a, -+, 5,) e H,, q,(+|h,) is a probability measure over 4, . Here ¢,(a|h,) is
interpreted as the probability that action a will be chosen at time r if the
history 4, is observed.

A policy = = {g,, ¢,, - - -} is called non-randomized if ¢,( - | h,) is a degenerate
measure for each n > 1 and h, e H,. It is called (non-randomized) Markov
if g,(+ | h,) further depends on only the last component of 4,. Thus a Markov
policy is of the form = = {f,, f;, - - -} where £, is a function which associates
with each state s € S'a corresponding action f{s) € 4, (n = 1). Such a function
is called a (Markov) decision rule, and we let F denote the set of all possible
decision rules. The set of all possible Markov policies will be denoted by F>.
A Markov policy is called stationary if all of its component decision rules are
identical, and we denote by f the stationary policy all of whose components
are f. If # = {f,, f;, ---} € F~ and g e F, we use the notation (g, 7) = {g, f;,
JSas <+ -}. Thus policy (g, =) uses decision rule g at time point 1 and then uses
the component rules of 7 in their given order at subsequent time points.

It is assumed that all rewards earned by the system are discounted using a
discount factor (0 < § < 1) which is fixed. Thus, if history h, = (s,,a,, - - -, 5,)
is observed, the total discounted reward earned through » time periods is

Vo= 21 B7r(si, a;) -

Without some assumptions concerning the reward function r(., .) or the
transition probability function p(- | «, +) there is of course no guarantee that
under an arbitrary policy ¥, has finite expectation. In order to avoid un-
necessary clumsiness, we now state our assumptions and prove some of their
consequences before stating the optimality criterion.

ASSUMPTIONS.
(1) Xiesp(t]s, a)r(t, fit)) is absolutely convergent forall se S, ae 4, and
feF.
(ii) There exists a bound d > 0 such that
| Zees pt] s, ayr(t, (1)) — r(s, )| = d

forall seS,ac 4, and feF.
(iii) For each se S

L(s) = inf,. , (s, a) and U(s) = sup,., r(s, a)
are finite. Moreover, U(s) — L(s) is bounded over se S.

Assumption (i) is of course very mild, requiring only that the expected reward
at time n + 1 be well defined for each possible state and action at time » and
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each decision rule which might be used at time » 4 1. Assumptions (ii) and
(iii) are much stronger and provide the key to our analysis. They are imme-
diately implied by an assumption of bounded rewards, however.

It is immediate that for any ¢ > O there exist decision rules f, g ¢ F such
that r(s, f(s)) < L(s) + ¢ and r(s, g(s)) = U(s) — ¢ forall se S. From this fact
and assumption (ii) it follows easily that

(1) [Zeesp(t]s, a)L(t) — r(s, @) < d
and
(2) | Ziesp(t] s, )U(t) — r(s, a)| < d

forall se Sand ae 4,.

3. The expected discounted reward is finite. Throughout this section let 7 =
{¢:> ¢,, - - -} be an arbitrary but fixed policy. Given the initial state of the sys-
tem, this policy together with the transition probability function p determines
the probability law of the random process {s,, a;, 0,, a,, - - -}, where g, is the
state of the system at time r and «, is the action taken at that time. It is
understood throughout this section that all expectations are with respect to
this probability law. Also, for n>1 let 5, = (¢, @}, - -+, 0,), a random
element of H,.

Lemma 1. |E[r(o,, a,)| 0, = s] — E[r(oy, ay) | 0, = 5]| £ (n — 1)d for all
n>1andsesS.

Proor. The proposition is trivially true for » = 1. Assume it for general
n > 1. We note first that

E[r(0,,1, @y1q) — K0, ,) | 0, = 5]

= E[Sees P(t] 0ur @) Taesy 9@ 70> @y O1(t, @) — 1(0,, @) | @y = 5]
S E[Xies p(t] 0 2)U(t) — 1(0,, @) [ 0, = 5]
é E[r(gn’ an) + d - r(0n9 an) | Ul = S] = d’
using (2). Using this inequality and the induction hypothesis,
E[r(0,15 @yia) | 01 = 5]
= E[r(o,, a,) [ 0y = S] 4 E[1(0411 @nss) — 1(00 @4) | 0, = 5]
< E[r(o,, &) |0y =$] + (n— 1)d + d.
That E[r(0,,1, @y11) | @, = 5] = E[r(s,, @,) | 0, = 5] — nd follows similarly, using
the induction hypothesis and (1) instead of (2).

For each n > 1 and s e S we define
Vi(m)(s) = 2 B E[r(o;, a)) |0, = 5],

the expected discounted n-period reward under policy = when the initial state
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is s. We use the notation ||V|| = sup, [V(s)| for V a real-valued function
over S.

THEOREM 2. V(m) = lim V,(r) exists and satisfies
V(@) — (1 = H V@)l < Bd(1 — ).

Proor. From Lemma 1 we have
L B E[(o;, @) |0y = s] = Vi(m)(s) | £ S, 7' — 1d = pd(1 — B)~*,
from which the proposition follows.

THEOREM 3. For any ¢ > O there exists a Markov policy n* ¢ F~ such that
V(z*) = V(r) — e.

Proor. We first note that if =’ = {¢,/, ¢,’, - - -} is another policy such that
¢ =q, -+, 9y = qy, then Vi(z) = V(z') and from Lemma 1

V() — V(x| £ 2 Xy B (i—1)d—0 as N— co.

Thus we may assume without loss of generality that = is Markov from some
point on, say for all time points » > N. We now show that for any y >0
and policy = = {q,, -+ -, gy, fy1, - -} of this form there exists a decision
rule f, € F such that V(z') = V(r) — 7, where 7’ = {q,, - -, qy_1s fy» - - - }-
Using this fact N times with y = ¢/N will produce the desired Markov policy

r*.

For each se S let
VVia)s) = Ziwa BYTE[No, fi(0) | oy = 5]
and choose f,(s) to be an action in A4, such that
r(S, fu($)) + B Lies P(E| S, fu() VP (x)(2)
= SUP.ey, {15, @) + B Zies p(2] 5, @) V¥ (m)(2)} — 7
Since
V(z)(s) = Vy_o(m)(s) + BYE[r(oy, ay) + B X,cs p(t] oy, a ) V¥ (r)(t)| o, = s]
and
V(@')(s) = Vy_a(m)(s)
+ BYTE[N 0y, fi(0x) + B Lies p(t] o, filoy)) VY (z)(2) | 0, = 5]
it follows easily that the decision rule f, has the desired property.
4. Markov plans and contraction mappings. Having shown in the previous
section that ¥(r), the expected total discounted reward under policy = as a

function of the initial state, is finite for all z, our optimality criterion can now
be stated. A policy =* is called e-optimal if ¥(z*) = V(z) — ¢ for all z, and
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it is called optimal if V(z*) = V(x) for all . In order to show that there
exists an e-optimal stationary policy, some preliminary results are needed.

The term “vector” is used hereafter to mean a function V: S — reals, and
“the sth component” of a vector V refers to ¥(s). Similarly a “matrix” is a
function P: S x S — reals, and “the (s, f)th element” of a matrix P refers to
P(s, 1). All vectors should be envisioned as column vectors, and we define
matrix multiplication and matrix-vector multiplication in the usual way when
all the sums involved are absolutely convergent. For each fe F we define
r(f) to be the vector whose sth component is r(s, f(s)) and P(f) to be the
matrix whose (s, f)th element is P(¢|s, f(s)). For a Markov policy = =
(fis fos -+ -) we define P(z) = I, the identity matrix, and P*(x) = P(f)) - - -
P(f,) for n = 1. It is immediate then that

Vi(z) = X% B P(m)r(find) » nzl.
We define B to be the set of all vectors V satisfying
(I—=B'L—pdl =)=V =(1—p7'U+ pd(l — p)~.

Since clearly L < Vy(z) < U for any policy =, it is immediate from Theorem
2 that ¥(z) € B for each z.

Lemma 4. If Ve Band n = {f,, fo, - - -} € F~, then 3"P"(7)V -0 as n— co.

Proor. From the definition of Bit clearly suffices to show that g"P(z)L — 0
and g"P*(z)U — 0. From Lemma 1 we have that ||[P*(z)r(f) — r(f)|| < nd
for any f'e F, and hence || P*(z)L — r(f,)|| < nd. Thus ||g"P*(z)L — B*r(f))|| <
B*nd — 0 as n — co. Since 8"r( f;) — 0, we conclude that 3*P*(z)L — 0. That
BP*(z)U — 0 follows in identical fashion.

Now for each fe F we define a mapping T, on B by letting

T,V =r(f) + BP(f)V, VeB.
LEMMA 5. For each fe F, T, maps B into itself.
Proor. If Ve B, then V' = (1 — 8)~'L — Bd(1 — p)~2, implying
T,V = r(f) + BP(N)V 2 1(f) + B(1 — B"P(/)L — pd(1 — B)™*.
But P(f)L = r(f) — d by (1), so
T,V 2 r(f) + B(1 — B)7r(f) — B(1 — p)7d — Fd(1 — )
=1 =p7r(f) —pd1 = p = (1 — 7L — pd(1 — p)~*.
That T,V < (1 — B)~'U + Bd(1 — B)~* follows similarly. Hence T,V ¢ B.
Assumption (iii) states that ||[U — L|| < co and thus
oV, Vo)) = ||V — V|| < o0 if Vv, V,eB.

The following proposition is then elementary.
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LEMMA 6. (B, p) is a complete metric space.

THEOREM 7. For each f e F, T, is a contraction of modulus f8 on (B, p). That
is, if V,, V,€ B then || T, V, — T, V|| < B|IVi — Vil.

PROOF.
T Vi — T, Vill = |Ir(f) + BP(NY)Vy — r(f) — BE(SHHVA
= Bsup,es | Lies P(EIs, fSNIVA(Y) — Va(D)]]
S Bsup,es Zues P2L S fODIIV — Vil = BV — Vil -

COROLLARY 8. For each fe F

(a) T, has a unique fixed point V¢ B,

by T,*V—>V,asn— oo and ||T,"V — V|| < (1 — BT,V — V|| for
each Ve B,

© V, =V

Proor. Parts (a) and (b) follow directly from Lemma 6, Theorem 7, and
the Banach fixed point theorem for contraction mappings (see [6]). Now
note that

TV = L% BRI + PV = Vu(f*) + P ()Y
Since V,(f*) — V(f~) and B "P*(f~)V — 0 by Lemma 4, we have T,*V —

V(f=). Thus ¥V, = V(f~) by (b), establishing (c).
We next define the familiar optimal return operator 7' on B by letting

TV =sup;ep T,V = supsex [1(f) + BE(N)V], VeB.

From the structure of the sequential decision process it is immediate that for
any ¢ > 0 and ¥ e B there exists an fe F such that T,V = TV — . It then
follows from Lemma 5 that 7 maps B into itself. We now show in the usual
way that T inherits the contraction property of the mappings 7.

THEOREM 9. T is a contraction of modulus 8 on (B, p).

Proor. Let V,, V,, eBand for ¢ >0 choose fe Fsuchthat T, V, > TV, —e.
Since TV, = TV, we then have TV, ~ TV, < T,V, — T, V, + ¢, implying
that ‘

sup, s [TVi(s) — TVy9)] = sup,es [T, Vi) + T, Vils)] + ¢

ST Vi =T Vil + e S BlVi— Vil + ¢

using Theorem 7. Letting e — 0 we have TV, — TV, < ||V, — V,||. Similarly
TV, — TV, < ||V, — Vil|, s0 || TV, — TV,|| < B|Vs — Vi

CorOLLARY 10. (a) T has a unique fixed point V* e B. (b) T"V — V* as
n— oo and||T"V — V*|| < B~(1 — B)7||TV — V|| for all V e B.
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5. The optimality of stationary policies. Since P(f) = 0 it is immediate that
T, is monotone for each fe F and hence T is monotone as well. We shall
use these facts frequently and without comment in the proofs of this section.

THEOREM 11. (a) WV(z) < V* for all policies =. (b) For each ¢ > 0 there
exists an fe F such that V(f~) = V* — ¢. The stationary policy f* is c-optimal.
(c) If w e F~ and V(g, ©) > V(x) then V(9~) > V(x). (d) A policy n* is optimal
if and only if V(z*) = V*.

Proor. (a) Let = = {fi, f, - - -} be an arbitrary Markov policy. Clearly
T, - T, V*<TV*=V*for each n= 1. But T, ... T, V* = V,(x) +
BrP*(m)V*, so letting n — oo and using Lemma 4 we have V(z) = lim V,(z) <
V*. Thus the desired result holds for Markov =, and by Theorem 3 it must
then hold for all =.

(b) Let fe Fbesuchthat T, V* = TV* — ¢(1 — B) = V* — ¢(1 — ). Then
using the fact that T(V + ¢) = T,V + fc for any constant ¢ and V e B, itis
easily shown by induction that

TV z Ve — el = B+ f+ -+ 6, nzl.

Letting n — co and using Corollary 8 we have ¥V, = V(f~) = V* — ¢. That
[ is e-optimal is then immediate from (a).

(c) Since V(g,n) = T,V(z) we have by the monotonicity of T, that
TV(r) = --- = T,V(z) > V(x). Thus, letting n — co and using Corollary 8,

V,= V(") = T,V(z) > V(x) .

(d) If V(z*) = V* then =* is optimal by (a). Now note that either
T,V(z*) < V(z*) for all ge Forelse T,V(z*) > V(z*) for some g € F. Thus
if #* is optimal we have from (c) that T, V(z*) < V(z*) for all g € F, implying
TV(z*) < V(=*) and hence T"V(z*) < V(z*) for alln > 1. Lettingn — oo
and using Corollary 10 then gives V* < V(z*). Thus V(z*) = V* by (a).

THEOREM 12. If A, is finite for each s € S then there exists a stationary policy
which is optimal.

Proor. If the action sets are finite then, noting that the supremum which
defines the operator T can be taken' component-wise, there exists an fe F
such that 7T, V* = TV* = V* and hence T,"V* = V*. Letting n — oo gives
V(f=) = V*, implying by Theorem 11 (d) that = is optimal.

6. Additional remarks. Theorem 11 (c) shows that the policy improvement
routine of Howard [5] remains valid in this more general setting. Corollary
10 (b) shows that the method of successive approximations (i.e., repeated
application of the optimal return operator T to an arbitrary initial function
V') converges uniformly and at a geometric rate. The reader will note that
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assumption (iii) is critical in obtaining this uniform convergence, since it
allows us to metrize the space B with the usual uniform metric. This is the
only sense, however, in which assumption (iii) is important to our results.
If it is dropped a more complicated metric must be used, but one can still
show that there exists a stationary e-optimal policy for each ¢ > 0 and a
stationary optimal policy in the case of finite action sets. See Harrison [4]
for details in the finite action case. That same paper presents extensions to
Markov renewal decision processes under assumptions similar to those used
here.
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