
The Annals of Applied Statistics
2017, Vol. 11, No. 3, 1561–1592
DOI: 10.1214/17-AOAS1046
© Institute of Mathematical Statistics, 2017

BAYESIAN LARGE-SCALE MULTIPLE REGRESSION WITH
SUMMARY STATISTICS FROM GENOME-WIDE

ASSOCIATION STUDIES1

BY XIANG ZHU AND MATTHEW STEPHENS

University of Chicago

Bayesian methods for large-scale multiple regression provide attractive
approaches to the analysis of genome-wide association studies (GWAS). For
example, they can estimate heritability of complex traits, allowing for both
polygenic and sparse models; and by incorporating external genomic data into
the priors, they can increase power and yield new biological insights. How-
ever, these methods require access to individual genotypes and phenotypes,
which are often not easily available. Here we provide a framework for per-
forming these analyses without individual-level data. Specifically, we intro-
duce a “Regression with Summary Statistics” (RSS) likelihood, which relates
the multiple regression coefficients to univariate regression results that are
often easily available. The RSS likelihood requires estimates of correlations
among covariates (SNPs), which also can be obtained from public databases.
We perform Bayesian multiple regression analysis by combining the RSS
likelihood with previously proposed prior distributions, sampling posteriors
by Markov chain Monte Carlo. In a wide range of simulations RSS performs
similarly to analyses using the individual data, both for estimating heritability
and detecting associations. We apply RSS to a GWAS of human height that
contains 253,288 individuals typed at 1.06 million SNPs, for which analyses
of individual-level data are practically impossible. Estimates of heritability
(52%) are consistent with, but more precise, than previous results using sub-
sets of these data. We also identify many previously unreported loci that show
evidence for association with height in our analyses. Software is available at
https://github.com/stephenslab/rss.

1. Introduction. Consider the multiple linear regression model:

(1.1) y = Xβ + ε,

where y is an n × 1 (centered) vector, X is an n × p (column-centered) matrix,
β is the p × 1 vector of multiple regression coefficients, and ε is the error term.
Assuming the “individual-level” data {X,y} are available, many methods exist to
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infer β . Here, motivated by applications in genetics, we assume that individual-
level data are not available, but instead the summary statistics {β̂j , σ̂

2
j } from p

simple linear regression are provided:

β̂j := (
X

ᵀ
j Xj

)−1
X

ᵀ
j y,(1.2)

σ̂ 2
j := (

nX
ᵀ
j Xj

)−1
(y − Xj β̂j )

ᵀ(y − Xj β̂j ),(1.3)

where Xj is the j th column of X, j ∈ {1, . . . , p}. We also assume that information
on the correlation structure among {Xj } is available. With this in hand, we address
the question: how do we infer β using {β̂j , σ̂

2
j }? Specifically, we derive a likelihood

for β given {β̂j , σ̂
2
j }, and combine it with suitable priors to perform Bayesian

inference for β .
This work is motivated by applications in genome-wide association studies

(GWAS), which over the last decade have helped elucidate the genetics of dozens
of complex traits and diseases [e.g. Donnelly (2008), McCarthy et al. (2008)].
GWAS come in various flavors—and can involve, for example, case-control data
and/or related individuals—but here we focus on the simplest case of a quantitative
trait (e.g., height) measured on random samples from a population. Model (1.1) ap-
plies naturally to this setting: the covariates X are the (centered) genotypes of n

individuals at p genetic variants (typically Single Nucleotide Polymorphisms, or
SNPs) in a study cohort; the response y is the quantitative trait whose relationship
with genotype is being studied; and the coefficients β are the effects of each SNP
on phenotype, estimation of which is a key inferential goal.

In GWAS individual-level data can be difficult to obtain. Indeed, for many pub-
lications no author had access to all the individual-level data. This is because
many GWAS analyses involve multiple research groups pooling results across
many cohorts to maximize sample size, and sharing individual-level data across
groups is made difficult by many factors, including consent and privacy issues,
and the substantial technical burden of data transfer, storage, management and
harmonization. In contrast, summary data like {β̂j , σ̂

2
j } are much easier to obtain:

collaborating research groups often share such data to perform simple (though
useful) “single-SNP” meta-analyses on a very large total sample size [Evangelou
and Ioannidis (2013)]. Furthermore, these summary data are often made freely
available on the Internet [Nature Genetics (2012)]. In addition, information on the
correlations among SNPs [referred to in population genetics as “linkage disequi-
librium,” or LD; see Pritchard and Przeworski (2001)] is also available through
public databases such as the 1000 Genomes Project Consortium (2010). Thus, by
providing methods for fitting the model (1.1) using only summary data and LD in-
formation, our work greatly facilitates the “multiple-SNP” analysis of GWAS data.
For example, as we describe later, a single analyst (X.Z.) performed multiple-SNP
analyses of GWAS data on adult height [Wood et al. (2014)] involving 253,288
individuals typed at ∼1.06 million SNPs, using modest computational resources
(Section 6). Doing this for the individual-level data appears impractical.
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Multiple-SNP analyses of GWAS compliment the standard single-SNP analyses
in several ways. Multiple-SNP analyses are particularly helpful in fine-mapping
causal loci, allowing for multiple causal variants in a region [e.g., Servin and
Stephens (2007), Yang et al. (2012)]. In addition, they can increase power to iden-
tify associations [e.g., Guan and Stephens (2011), Hoggart et al. (2008)], and can
help estimate the overall proportion of phenotypic variation explained by geno-
typed SNPs (PVE; or “SNP heritability”) [e.g., Yang et al. (2010), Zhou, Car-
bonetto and Stephens (2013)]; see Sabatti (2013) and Guan and Wang (2013)
for more extensive discussion. Despite these benefits, few GWAS are analyzed
with multiple-SNP methods, presumably, at least in part, because existing meth-
ods require individual-level data that can be difficult to obtain. In addition, most
multiple-SNP methods are computationally challenging for large studies [e.g., Loh
et al. (2015), Peise, Fabregat-Traver and Bientinesi (2015)]. Our methods help with
both these issues, allowing inference to be performed with summary-level data,
and reducing computation by exploiting matrix bandedness [Wen and Stephens
(2010)].

Because of the importance of this problem for GWAS, many recent publications
have described analysis methods based on summary statistics. These include meth-
ods for estimation of effect size distribution [Park et al. (2010)], joint multiple-
SNP association analysis [Ehret et al. (2012), Newcombe et al. (2016), Yang et al.
(2012)], single-SNP association analysis with correlated phenotypes [Stephens
(2013)] and heterogeneous subgroups [Wen and Stephens (2014)], gene-level test-
ing of functional variants [Lee et al. (2015)], joint analysis of functional genomic
data and GWAS [Finucane et al. (2015), Pickrell (2014)], imputation of allele fre-
quencies [Wen and Stephens (2010)] and single-SNP association statistics [Lee
et al. (2013)], fine mapping of causal variants [Chen et al. (2015), Hormozdiari
et al. (2014)], correction of inflated test statistics [Bulik-Sullivan et al. (2015)],
estimation of SNP heritability [Palla and Dudbridge (2015)], and prediction of
polygenic risk scores [Vilhjalmsson et al. (2015)]. Together these methods adopt
a variety of approaches, many of them tailored to their specific applications. Our
approach, being based on a likelihood for the multiple regression coefficients β ,
provides the foundations for more generally applicable methods. Having a likeli-
hood opens the door to a wide range of statistical machinery for inference; here
we illustrate this by using it to perform Bayesian inference for β , and specifically
to estimate SNP heritability and detect associations.

Our work has close connections with recent Bayesian approaches to this prob-
lem, notably Hormozdiari et al. (2014) and Chen et al. (2015). These methods posit
a model relating the observed z-scores {β̂j /σ̂j } to “noncentrality” parameters, and
perform Bayesian inference on the noncentrality parameters. Here, we instead de-
rive a likelihood for the regression coefficients β in (1.1), and perform Bayesian
inference for β . These approaches are closely related, but working directly with β
seems preferable to us. For example, the noncentrality parameters depend on sam-
ple size, which means that appropriate prior distributions may vary among studies
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depending on their sample size. In contrast, β maintains a consistent interpretation
across studies. And working with β allows us to exploit previous work develop-
ing prior distributions for β for multiple-SNP analysis [e.g., Guan and Stephens
(2011), Zhou, Carbonetto and Stephens (2013)]. We also give a more rigorous
statement and derivation of the likelihood being used (Section 2.5), which pro-
vides insight into what approximations are being made and when they may be
valid (Section 5). Finally, this previous work focused only on small genomic re-
gions, whereas here we analyze whole chromosomes.

2. Likelihood based on summary data. We first introduce some notation.
For any vector v, diag(v) denotes the diagonal matrix with diagonal elements v.
Let β̂ := (β̂1, . . . , β̂p)ᵀ, Ŝ := diag(̂s), and ŝ := (ŝ1, . . . , ŝp)ᵀ, where

(2.1) ŝ2
j := σ̂ 2

j + n−1β̂2
j

and {β̂j , σ̂
2
j } are the single-SNP summary statistics (1.2, 1.3). We denote proba-

bility densities as p(·), and rely on the arguments to distinguish different distribu-
tions. Let N (μ,�) denote the multivariate normal distribution with mean vector
μ and covariance matrix �, and N (ξ ;μ,�) denote its density at ξ .

In addition to the summary data {β̂j , σ̂
2
j }, we assume that we have an estimate,

R̂, of the matrix R of LD (correlations) among SNPs in the population from which
the genotypes were sampled. Typically, R̂ will come from some public database of
genotypes in a suitable reference population; here, we use the shrinkage method
from Wen and Stephens (2010) to obtain R̂ from such a reference. The shrinkage
method produces more accurate results than the sample correlation matrix (Sec-
tion 4.1), and has the advantage that it produces a sparse, banded matrix R̂, which
speeds computation for large genomic regions (Section 3.2). For our likelihood to
be well defined, R̂ must be positive definite, and the shrinkage method also ensures
this.

With this in place, the likelihood we propose for β is

(2.2) Lrss(β; β̂, Ŝ, R̂) := N
(
β̂; ŜR̂Ŝ−1β, ŜR̂Ŝ

)
.

We refer to (2.2) as the “Regression with Summary Statistics” (RSS) likelihood.
We provide a formal derivation in Section 2.5 [with proofs in Appendix A, Zhu and
Stephens (2017)], but informally the derivation assumes that (i) the correlation of
y with any single covariate (SNP) Xj is small, and (ii) the matrix R̂ accurately
reflects the correlation of the covariates (SNPs) in the population from which they
were drawn.

The derivation of (2.2) also makes other assumptions that may not hold in prac-
tice: that all summary statistics are computed from the same samples, that there is
no confounding due to population stratification (or that this has been adequately
controlled for), and that genotypes used to computed summary statistics are accu-
rate (so it ignores imputation error in imputed genotypes). Indeed, most analyses
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of individual-level data also make these last two assumptions.These assumptions
can be relaxed, and generalizations of (2.2) are derived; see Appendix A, Zhu and
Stephens (2017). However, these generalizations require additional information—
beyond the basic single-SNP summary data (1.2, 1.3)—that is often not easily
available. It is therefore tempting to apply (2.2) even when these assumptions may
not hold. This is straightforward to do, but results in model misspecification and
so care is required; see Section 5.

2.1. Variations on RSS likelihood. We define Ŝ by (2.1). In a GWAS con-
text the sample sizes are often large and β̂2

j are typically small (Table 1), and so
ŝj ≈ σ̂j . Consequently, replacing ŝj in (2.2) with σ̂j produces a minor variation
on the RSS likelihood that, for GWAS applications, differs negligibly from our
definition (Supplementary Figure 4). This variation has slightly closer connections
with existing work (Section 2.4).

Another variation comes from noting that the mean term in (2.2) does not
change if we multiply Ŝ by any nonzero scalar constant: any constant will cancel
out due to the presence of both Ŝ and Ŝ−1. Note further that ŝj = σ̂y/(

√
nσ̂x,j ),

where σ̂ 2
y is the sample variance of y (phenotype), and σ̂ 2

x,j the sample variance
of Xj (genotype at SNP j ). Since n and σ̂y are constants, the RSS likelihood is
unchanged if we replaced Ŝ in the mean term with the matrix diag−1(σ̂ x), where
σ̂ x := (σ̂x,1, . . . , σ̂x,p)ᵀ; that is,

(2.3) L∗
rss(β) := N

(
β̂;diag−1(σ̂ x)R̂ diag(σ̂ x)β, ŜR̂Ŝ

)
.

This variation on RSS helps emphasize the role of Ŝ in the mean term of (2.2): it
is simply a convenience that exploits the fact that ŝj ∝ 1/σ̂x,j . The form (2.2) is
more convenient in practice than (2.3), both because Ŝ is easily computed from
commonly used summary data and because the appearance of the same matrix Ŝ

in the mean and variance terms of (2.2) produces algebraic simplifications that we
exploit in our implementation. However, this convenient approach—which is also
used in previous work (Section 2.4)—can contribute to model misspecification
when, for example, different SNPs are typed on different samples; see Section 5.1.

2.2. Intuition. The RSS likelihood (2.2) is obtained by first deriving an ap-
proximation for p(β̂|S,R,β), where S is the diagonal matrix with the j th diag-
onal entry sj ≈ SD(β̂j ), of which Ŝ is an estimate (see Section 2.5 for details).
Specifically, we have

(2.4) β̂|S,R,β
·∼ N

(
SRS−1β, SRS

)
,

from which the RSS likelihood (2.2) is derived by plugging in the estimates {Ŝ, R̂}
for {S,R}.

The distribution (2.4) captures three key features of the single-SNP association
test statistics in GWAS. First, the mean of the single-SNP effect size estimate β̂j
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depends on both its own effect and the effects of all SNPs that it “tags” (i.e., is
highly correlated with):

(2.5) E(β̂j |S,R,β) = sj ·
p∑

i=1

rij s
−1
i βi,

where rij is the (i, j)-entry of R. Second, the likelihood incorporates the fact that
the estimated single-SNP effects are heteroscedastic:

(2.6) Var(β̂j |S,R,β) = s2
j ≈ ŝ2

j = (
nX

ᵀ
j Xj

)−1yᵀy.

Since s2
j is roughly proportional to (X

ᵀ
j Xj )

−1, the likelihood takes account of dif-
ferences in the informativeness of SNPs due to their variation in allele frequency
and imputation quality [Guan and Stephens (2008)]. Third, single-SNP test statis-
tics at SNPs in LD are correlated:

(2.7) Corr(β̂j , β̂k|S,R,β) = rjk,

for any pair of SNP j and k.
Note that SNPs in LD with one another have “correlated” test statistics {β̂j } for

two distinct reasons. First, they share a “signal,” which is captured in the mean term
(2.5). This shared signal becomes a correlation if the true effects β are assumed
to arise from some distribution and are then integrated out. Second, they share
“noise,” which is captured in the correlation term (2.7). This latter correlation oc-
curs even in the absence of signal (β = 0) and is due to the fact that the summary
data are computed on the same samples. If the summary data were computed on
independent sets of individuals, then this latter correlation would disappear (Sec-
tion 5.1).

2.3. Connection with the full-data likelihood. When individual-level data are
available the multiple regression model is

(2.8) y|X,β, τ ∼N
(
Xβ, τ−1I

)
.

If we further assume the residual variance τ−1 is known, model (2.8) specifies
a likelihood for β , which we denote Lmvn(β;y,X, τ). The following proposi-
tion gives conditions under which this full-data likelihood and RSS likelihood are
equivalent.

PROPOSITION 2.1. Let R̂sam denote the sample LD matrix computed from
the genotypes X of the study cohort, R̂sam := D−1XᵀXD−1 where D := diag(d),
d := (‖X1‖, . . . ,‖Xp‖)ᵀ, ‖Xj‖ := (X

ᵀ
j Xj )

1/2.

If n > p, τ−1 = n−1yᵀy and R̂ = R̂sam, then

(2.9) logLrss(β; β̂, Ŝ, R̂) − logLmvn(β;y,X, τ) = C,

where C is some constant that does not depend on β .
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The assumption n > p in Proposition 2.1 could possibly be relaxed, but cer-
tainly simplifies the proof. The key assumption then is τ−1 = n−1yᵀy; that is, the
total variance in y explained by X is negligible. This will typically not hold in a
genome-wide context, but might hold, approximately, when fine mapping a small
genomic region since SNPs in a small region typically explain a very small pro-
portion of phenotypic variation.2 Hence, provided that R̂ = R̂sam, RSS and its full-
data counterpart will produce approximately the same inferential results in small
regions. This is illustrated through simulations in Section 4.1 (Figure 1); see also
Chen et al. (2015).

2.4. Connection with previous work. The RSS likelihood is connected to sev-
eral previous approaches to inference from summary data, as we now describe.
[These connections are precise for the variation on the RSS likelihood with ŝj = σ̂j

(Section 2.1), which differs negligibly in practice from (2.2).]
In the simplest case, if R̂ is an identity matrix, then β̂|β, Ŝ ∼ N (β, Ŝ2), which

is the implied likelihood based on the standard confidence interval [Efron (1993)].
Wakefield (2009) has recently popularized this likelihood for calculation of ap-
proximate Bayes factors; see also Stephens (2017).

If we let z denote the vector of single-SNP z-scores, z := Ŝ−1β̂ , and plug {Ŝ, R̂}
into (2.4), then

(2.10) z|Ŝ, R̂,β ∼ N
(
R̂Ŝ−1β, R̂

)
.

This is analogous to the likelihood proposed in Hormozdiari et al. (2014), z ∼
N (R̂ν, R̂), where they refer to ν as the “noncentrality parameter.” If further β = 0,
then z ∼ N (0, R̂), a result that has been used for multiple testing adjustment [e.g.,
Seaman and Müller-Myhsok (2005); Lin (2005)], gene-based association detection
[e.g., Liu et al. (2010)] and z-score imputation [e.g., Lee et al. (2013)].

If β is given a prior distribution that assumes zero mean and independence
across all j , that is, p(β|Ŝ, R̂) = ∏

j p(βj |Ŝ, R̂), E(βj |Ŝ, R̂) = 0, then integrat-

ing β out in (2.10) yields E(z2
j |Ŝ, R̂) = 1 + ∑p

i=1 r̂2
ij ŝ

−2
i E(β2

i |Ŝ, R̂). This is a key
element of LD score regression [Bulik-Sullivan et al. (2015)]; see Appendix C,
Zhu and Stephens (2017), for further details and discussion.

2.5. Derivation. We treat the (unobserved) genotypes of each individual, xi

(the ith row of X), as being independent and identically distributed draws from
some population. Without loss of generality, assume these have been centered,
by subtracting the mean, so that E(xi ) = 0. Let σx,j > 0 denote the population
standard deviation (SD) of xij , and R denote the p×p positive definite population

2There are exceptions; for example, the human leukocyte antigen region is estimated to explain
11–37% of the heritability of rheumatoid arthritis [Kurkó et al. (2013)].
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TABLE 1
Summary of per-SNP sample squared correlation {ĉ2

j } and sample size {nj } for 42 large GWAS performed in European-ancestry individuals. The full
names of phenotypes and corresponding references are provided in Supplementary Table 1. The five-number summaries and histograms are across SNPs.

The sample correlation ĉj between phenotype and genotype of SNP j is defined as ĉj := (‖y‖ · ‖Xj‖)−1(X
ᵀ
j y). Note that

ĉ2
j = (nj σ̂ 2

j + β̂2
j )−1β̂2

j = (nj ŝ2
j )−1β̂2

j , and ĉj
p→ cj . The SD of sample sizes per SNP {nj } is NA when {nj } are not publicly available

GWAS phenotype # of SNPs
(million)

log10(ĉ2) log10(n)

Min Q1 Median Q3 Max Histogram Median Mean SD

Height (GIANT, 2010) 2.82 −12.64 −6.25 −5.60 −5.12 −2.90 5.26 5.26 NA
Height (GIANT, 2014) 2.53 −10.74 −6.06 −5.41 −4.93 −2.54 5.40 5.37 0.09
BMI (GIANT, 2015) 2.54 −10.89 −6.30 −5.65 −5.18 −2.66 5.37 5.34 0.09
WHRadjBMI (GIANT, 2015) 2.53 −10.81 −6.11 −5.46 −4.99 −2.81 5.15 5.13 0.08

HDL (GLGC, 2010) 2.68 −10.78 −5.90 −5.25 −4.77 −1.23 5.00 4.89 0.33
HDL (GLGC, 2013) 2.43 −10.16 −5.89 −5.25 −4.78 −1.59 4.97 4.97 0.06
LDL (GLGC, 2010) 2.68 −10.72 −5.89 −5.23 −4.75 −1.44 4.98 4.87 0.33
LDL (GLGC, 2013) 2.42 −9.95 −5.89 −5.24 −4.78 −1.40 4.95 4.95 0.06
TC (GLGC, 2010) 2.68 −10.33 −5.91 −5.25 −4.77 −1.38 5.00 4.89 0.33
TC (GLGC, 2013) 2.43 −10.28 −5.91 −5.26 −4.79 −1.79 4.98 4.97 0.06
TG (GLGC, 2010) 2.68 −10.55 −5.89 −5.24 −4.76 −1.17 4.98 4.87 0.33
TG (GLGC, 2013) 2.42 −10.07 −5.88 −5.24 −4.78 −1.90 4.96 4.96 0.06
Cigarettes per day (TAG, 2010) 2.46 −14.16 −5.84 −5.19 −4.73 −2.69 4.87 4.87 NA
Smoking age of onset (TAG, 2010) 2.43 −11.27 −5.82 −5.18 −4.73 −3.44 4.87 4.87 NA

Ever smoked (TAG, 2010) 2.45 −11.89 −5.82 −5.17 −4.71 −3.44 4.87 4.87 NA
Former smoker (TAG, 2010) 2.45 −12.68 −5.83 −5.19 −4.73 −3.40 4.87 4.87 NA
Years of education (SSGAC, 2013) 2.14 −7.10 −5.70 −5.30 −4.85 −3.51 5.10 5.10 NA
College or not (SSGAC, 2013) 2.25 −8.37 −5.93 −5.33 −4.88 −3.39 5.10 5.10 NA
Depressive (SSGAC, 2016) 6.03 −7.44 −6.00 −5.46 −5.01 −3.60 5.21 5.21 NA
Neuroticism (SSGAC, 2016) 6.04 −7.88 −5.92 −5.45 −4.98 −3.29 5.23 5.23 NA
Schizophrenia (PGC, 2014) 9.43 −12.50 −6.01 −5.35 −4.88 −3.04 5.18 5.18 NA
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TABLE 1
(Continued)

GWAS phenotype # of SNPs
(million)

log10(ĉ2) log10(n)

Min Q1 Median Q3 Max Histogram Median Mean SD

Alzheimer (IGAP, 2013) 7.04 −11.20 −5.69 −5.04 −4.57 −1.33 4.73 4.73 NA
CAD (CARDIoGRAM, 2011) 2.42 −17.43 −5.84 −5.18 −4.71 −2.74 4.91 4.88 0.08

T2D (DIAGRAM, 2012) 2.09 −7.83 −6.00 −5.49 −5.13 −2.93 4.80 4.78 0.10
Hb (HaemGen, 2012) 2.58 −9.79 −5.64 −4.99 −4.52 −2.47 4.74 4.68 0.15
MCHC (HaemGen, 2012) 2.57 −9.72 −5.62 −4.98 −4.51 −2.50 4.70 4.65 0.15

MCH (HaemGen, 2012) 2.58 −10.24 −5.56 −4.91 −4.44 −2.02 4.67 4.62 0.14
MCV (HaemGen, 2012) 2.59 −11.02 −5.61 −4.96 −4.48 −2.09 4.71 4.66 0.15

PCV (HaemGen, 2012) 2.59 −10.67 −5.59 −4.94 −4.47 −2.70 4.69 4.63 0.14
RBC (HaemGen, 2012) 2.56 −8.92 −5.55 −4.91 −4.45 −2.11 4.69 4.63 0.15
FGadjBMI (MAGIC, 2012) 2.61 −11.63 −5.70 −5.07 −4.61 −2.10 4.76 4.76 NA

FIadjBMI (MAGIC, 2012) 2.60 −11.54 −5.65 −5.02 −4.56 −2.96 4.71 4.71 NA
Heart rate (HRgene, 2013) 2.52 −12.08 −5.88 −5.23 −4.76 −2.88 4.95 4.93 0.07
Serum urate (GUGC, 2013) 2.44 −10.36 −5.95 −5.30 −4.83 −1.49 5.04 5.03 0.02
Gout (GUGC, 2013) 2.54 −12.17 −5.80 −5.15 −4.69 −2.68 4.84 4.84 0.01
RA (Okada et al, 2014) 7.70 −8.16 −5.44 −4.97 −4.55 −1.09 4.77 4.77 NA
IBD (IIBDGC, 2015) 12.70 −13.05 −5.49 −4.84 −4.38 −2.07 4.54 4.54 NA
CD (IIBDGC, 2015) 12.27 −12.97 −5.28 −4.62 −4.16 −1.89 4.32 4.32 NA
UC (IIBDGC, 2015) 12.24 −12.69 −5.40 −4.75 −4.28 −2.07 4.44 4.44 NA
CAD (CARDIoGRAM+C4D, 2015) 9.46 −15.00 −6.26 −5.61 −5.14 −2.62 5.27 5.27 NA

MI (CARDIoGRAM+C4D, 2015) 9.29 −18.89 −6.22 −5.56 −5.09 −2.69 5.22 5.22 NA
ANM (ReproGen, 2015) 2.09 −7.40 −5.44 −4.84 −4.56 −2.16 4.84 4.84 NA
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correlation matrix, and so Var(xi ) := �x := diag(σ x) · R · diag(σ x), where σ x :=
(σx,1, . . . , σx,p)ᵀ.

We assume that the phenotypes y := (y1, . . . , yn)
ᵀ are generated from the

multiple-SNP model (1.1), where E(ε) = 0 and Var(ε) = τ−1In. We also assume
that X, ε and β are mutually independent.

Let c := (c1, . . . , cp)ᵀ denote the vector of (population) marginal correlations
between the phenotype and genotype of each SNP:

(2.11) c := σ−1
y diag−1(σ x)μxy

where μxy := E(xiyi) and σ 2
y := Var(yi).

We first derive the asymptotic distribution of β̂ (with n → ∞ and p fixed) using
the multivariate central limit theorem and the delta method.

PROPOSITION 2.2. Let � := σ 2
y diag−1(σ x)(R + �(c))diag−1(σ x), where

�(c) ∈R
p×p is a continuous function of c and �(c) =O(maxj c2

j ):

(2.12)
√

n
(
β̂ − diag−1(σ x)R diag(σ x)β

) d→ N (0,�).

Proposition 2.2 suggests that the sampling distribution of β̂ is close to
N (diag−1(σ x)R diag(σ x)β, n−1�) for large n. Without additional assumptions,
this may be the best3 probability statement that can be used to infer β . It is diffi-
cult to work with this asymptotic distribution, mainly because of the complicated
form of �(c) [Appendix A, Zhu and Stephens (2017)]. However, we can justify
ignoring this term in a typical GWAS by the fact that {c2

j } are typically small in
GWAS (Table 1), and the following proposition.

PROPOSITION 2.3. Let S := n− 1
2 σy diag−1(σ x). For each β ∈ R

p ,

logN
(
β̂;SRS−1β, SRS

) − logN
(
β̂;diag−1(σ x)R diag(σ x)β, n−1�

)
= Op

(
maxj c

2
j

)
.

These propositions justify the approximate asymptotic distribution of β̂ given
in (2.4), provided n is large and {c2

j } close to zero, yielding

(2.13) Lrss(β; β̂, S,R) := N
(
β̂;SRS−1β, SRS

)
.

Finally, the RSS likelihood (2.2) is obtained by replacing the nuisance parameters
{S,R} with their estimates {Ŝ, R̂}. There remains obvious potential for errors in
the estimates {Ŝ, R̂} to impact inference, and we assess this impact empirically
through simulations (Section 4) and data analyses (Section 6).

3A more rigorous approximation of likelihood based on the convergence in distribution requires
additional technical assumptions; see Boos (1985) and Sweeting (1986).
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3. Bayesian inference based on summary data. Using the RSS likelihood,
we perform Bayesian inference for the multiple regression coefficients.

3.1. Prior specification. If {S,R} were known, then one could perform
Bayesian inference by specifying a prior on β:

(3.1) p(β|β̂, S,R)︸ ︷︷ ︸
Posterior

∝ p(β̂|S,R,β)︸ ︷︷ ︸
Likelihood

·p(β|S,R)︸ ︷︷ ︸
Prior

.

To deal with unknown {S,R}, the RSS likelihood (2.2) approximates the likelihood
in (3.1) by replacing {S,R} with their estimates {Ŝ, R̂}. We take a similar approach
to prior specification: we specify a prior p(β|S,R) and replace {S,R} with {Ŝ, R̂}.

Our prior specification is based on the prior from Zhou, Carbonetto and
Stephens (2013) which was designed for analysis of individual-level GWAS data.
This prior assumes that β is independent of R a priori, with the prior on βj being
a mixture of two normal distributions

(3.2) βj ∼ πN
(
0, σ 2

B + σ 2
P

) + (1 − π)N
(
0, σ 2

P

)
.

The motivation is that the first (“sparse”) component can capture rare “large” ef-
fects, while the second (“polygenic”) component can capture large numbers of
very small effects. To specify priors on the variances, {σ 2

B,σ 2
P }, Zhou, Carbonetto

and Stephens (2013) introduce two free parameters h,ρ ∈ [0,1], where h4 repre-
sents, roughly, the proportion of variance in y explained by X, and ρ represents
the proportion of genetic variance explained by the sparse component. They write
σ 2

B and σ 2
P as functions of π,h,ρ and place independent priors on the hyperpa-

rameters (π,h,ρ):

(3.3) logπ ∼ U
(
log(1/p), log 1

)
, h ∼ U(0,1), ρ ∼ U(0,1);

see Zhou, Carbonetto and Stephens (2013) for details.
Here we must modify this prior slightly because the original definitions of σB

and σP depend on the genotypes X (which here are unknown) and the residual
variance τ−1 (which does not appear in our likelihood). Specifically, we define

(3.4) σ 2
B(S) := hρ

(
π

p∑
j=1

n−1s−2
j

)−1

, σ 2
P (S) := h(1 −ρ)

( p∑
j=1

n−1s−2
j

)−1

,

where sj is the j th diagonal entry of S. Because ns2
j = σ 2

y σ−2
x,j , definitions (3.4)

ensure that the effect sizes of both components do not depend on n, and have
the same measurement unit as the phenotype y. Further, with these definitions,

4Parameter h is related to heritability [Visscher, Hill and Wray (2008)], which is often denoted

as h2 in genetics literature. We use h here to keep notation consistent with previous closely related
work [Guan and Stephens (2011), Zhou, Carbonetto and Stephens (2013)].
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ρ and h have interpretations similar to those in previous work. Specifically, ρ =
(πσ 2

B)/(πσ 2
B + σ 2

P ), and so it represents the expected proportion of total genetic
variation explained by the sparse components. Parameter h represents, roughly,
the proportion of the total variation in y explained by X, as formalized by the
following proposition:

PROPOSITION 3.1. If β|S is distributed as (3.2), with (3.4), then

(3.5) E
[
V (Xβ)

] = h · E
[
V (y)

]
,

where V (Xβ) and V (y) are the sample variance of Xβ and y, respectively.

Because of its similarity with the prior from the “Bayesian sparse linear mixed
model” [BSLMM, Zhou, Carbonetto and Stephens (2013)], we refer to our mod-
ified prior as BSLMM. We also implement a version of this prior where ρ = 1.
This sets the polygenic variance σ 2

P = 0, making the prior on β sparse, and cor-
responds closely to the prior from the “Bayesian variable selection regression”
[BVSR, Guan and Stephens (2011)]. We therefore refer to this special case as
BVSR here.

3.2. Posterior inference and computation. We use Markov chain Monte Carlo
(MCMC) to sample from the posterior distribution of β; see Appendix B, Zhu and
Stephens (2017), for details.

To fit the RSS-BSLMM model, we implement a new algorithm that is different
from previous work [Zhou, Carbonetto and Stephens (2013)]. Instead of integrat-
ing out β analytically, we perform MCMC sampling on β directly. Most of the
MCMC updates in this algorithm have linear complexity, with only a few “ex-
pensive” exceptions. The costs of these “expensive” updates are further reduced
from being cubic in the total number of SNPs to being quadratic by leveraging the
banded structure of the LD matrix R̂ [Wen and Stephens (2010)].

Our algorithm of fitting the RSS-BVSR model largely follows those developed
in Guan and Stephens (2011) which exploit sparsity. Specifically, computation
time per iteration scales cubically with the number of SNPs with nonzero effects,
which is much smaller than the total number of SNPs under sparse assumptions.
Setting a fixed maximum number of nonzero effects, and/or using the banded LD
structure to guide variable selection, can further improve computational perfor-
mance, but we do not use these strategies here.

All computations were performed on a Linux system with a single Intel E5-
2670 2.6 GHz or AMD Opteron 6386 SE processor. Computation times for simu-
lation studies and data analyses are shown in Supplementary Figure 5 and Supple-
mentary Table 6, respectively. Software implementing the methods is available at
https://github.com/stephenslab/rss.

Compared with existing summary-based methods, an important practical ad-
vantage of RSS is that multiple tasks can be performed using the same posterior
sample of β . Here we focus on estimating PVE (SNP heritability) and detecting
multiple-SNP associations.

https://github.com/stephenslab/rss
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3.2.1. Estimating PVE. Given the full data {X,y} and the true value of {β, τ }
in model (2.8), Guan and Stephens (2011) define the PVE as

(3.6) PVE(β, τ ) := V (Xβ)/
(
τ−1 + V (Xβ)

)
.

By this definition, PVE reflects the total proportion of phenotypic variation ex-
plained by available genotypes. Guan and Stephens (2011) then estimate PVE us-
ing the posterior sample of {β, τ }.

Because X is unknown here, we cannot compute PVE as defined above even if
β and τ were known. Moreover, τ does not appear in our inference procedure. For
these reasons we introduce the “Summary PVE” (SPVE) as an analogue of PVE
for our setting:

(3.7) SPVE(β) := ∑
i,j

r̂ij βiβj√
(nσ̂ 2

i + β̂2
i )(nσ̂ 2

j + β̂2
j )

.

This definition is motivated by noting that PVE can be approximated by replacing
τ−1 with V(y) − V (Xβ):

(3.8) PVE ≈ V (Xβ)

V (y)
= ∑

i,j

X
ᵀ
i Xj

yᵀy
βiβj = ∑

i,j

r̂sam
ij βiβj√

(nσ̂ 2
i + β̂2

i )(nσ̂ 2
j + β̂2

j )
,

where r̂sam
ij is the (i, j)-entry of the (unknown) sample LD matrix of the study

cohort (R̂sam), which we approximate in SPVE by r̂ij , and the last equation in (3.8)
holds because of (1.2)–(1.3). Simulations using both synthetic and real genotypes
show that SPVE is a highly accurate approximation to PVE, given the true value
of β (Supplementary Figure 1).

We infer PVE using the posterior draws of SPVE, which are obtained by com-
puting SPVE(β(i)) for each sampled value β(i) from our MCMC algorithms. Un-
like the original PVE (3.6), the definition of SPVE (3.7) is not bounded above by 1.
Although we have not seen any estimates above 1 in our simulations or data anal-
yses, we expect this could occur if the posterior of β is poorly simulated and/or R̂

is severely misspecified.

3.2.2. Detecting genome-wide associations. Under the BVSR prior, a natural
summary of the evidence for a SNP being associated with phenotype is the pos-
terior inclusion probability (PIP), Pr(βj �= 0|y,X). Similarly, we define the PIP
based on summary data

(3.9) SPIP(j) := Pr(βj �= 0|β̂, Ŝ, R̂).

Here we estimate SPIP(j) by the proportion of MCMC draws for which βj �= 0.
[We also provide a Rao–Blackwellized estimate [Casella and Robert (1996), Guan
and Stephens (2011)] in Appendix B, Zhu and Stephens (2017).]
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4. Simulations. We benchmark the RSS method through simulations using
real genotypes from the Wellcome Trust Case Control Consortium (2007) (specif-
ically, the 1458 individuals from the UK Blood Service Control Group) and sim-
ulated phenotypes. To reduce computation, the simulations use genotypes from a
single chromosome (12,758 SNPs on chromosome 16). One consequence of this
is that the simulated effect sizes per SNP in some scenarios are often larger than
would be expected in a typical GWAS (Table 1 and Supplementary Figure 3). This
is, in some ways, not an ideal case for RSS because the likelihood derivation as-
sumes that effect sizes are small (Proposition 2.3). We use the simulations to (i) in-
vestigate the effect of different choices for R̂, and (ii) demonstrate that inferences
from RSS agree well with both the simulation ground truth, and with results from
methods based on the full data (specifically, BVSR and BSLMM implemented in
the software package GEMMA [Zhou and Stephens (2012)]).

4.1. Choice of LD matrix. The LD matrix R̂ plays a key role in the RSS like-
lihood, as well as in previous work using summary data [e.g., Bulik-Sullivan et al.
(2015), Hormozdiari et al. (2014), Yang et al. (2012)]. One simple choice for R̂,
commonly used in previous work, is the sample LD matrix computed from a suit-
able “reference panel” that is deemed similar to the study population. This is a
viable choice if the number of SNPs p is smaller than the number of individuals
m in the reference panel, as the sample LD matrix is then invertible. However,
for large-scale genomic applications p � m, and the sample LD matrix is not in-
vertible. Our proposed solution is to use the shrinkage estimator from Wen and
Stephens (2010), which shrinks the off-diagonal entries of the sample LD matrix
toward zero, resulting in an invertible matrix.

The shrinkage-based estimate of R can result in improved inference even if
p < m. To illustrate this, we performed a small simulation study, with 982 SNPs
within the ±5 Mb region surrounding the gene IL27. We simulated 20 independent
datasets, each with 10 causal SNPs and PVE = 0.2. (We also performed simula-
tions with the true PVE being 0.02 and 0.002; see Supplementary Figure 2.) For
each dataset, we ran RSS-BVSR with two strategies for computing R̂ from a ref-
erence panel (here, the 1480 control individuals in the WTCCC 1958 British Birth
Cohort): the sample LD matrix (RSS-P), and the shrinkage-based estimate (RSS).
We compared results with analyses using the full data (GEMMA-BVSR), and also
with our RSS approach using the cohort LD matrix (RSS-C), which by Proposi-
tion 2.1 should produce results similar to the full data analysis. The results (Fig-
ure 1) show that using the shrinkage-based estimate for R produces consistently
more accurate inferences—both for estimating PVE and detecting associations—
than using the reference sample LD matrix, and indeed provides similar accuracy
to the full data analysis.

4.2. Estimating PVE from summary data. Here we use simulations to assess
the performance of RSS for estimating PVE. Using the WTCCC genotypes from
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FIG. 1. Comparison of PVE estimation and association detection on three types of LD matrix:
cohort sample LD (RSS-C), shrinkage panel sample LD (RSS) and panel sample LD (RSS-P). Per-
formance of estimating PVE is measured by the root of the mean square error (RMSE), where a lower
value indicates better performance. Performance of detecting associations is measured by the area
under the curve (AUC), where a higher value indicates better performance.

12,758 SNPs on chromosome 16, we simulated phenotypes under two genetic ar-
chitectures:

• Scenario 1.1 (sparse): randomly select 50 “causal” SNPs, with effects coming
from N (0,1); effects of remaining SNPs are zero.

• Scenario 1.2 (polygenic): randomly select 50 “causal” SNPs, with effects com-
ing from N (0,1); effects of remaining SNPs come from N (0,0.0012).

For each scenario we simulated datasets with true PVE ranging from 0.05 to 0.5
(in steps of 0.05, with 50 independent replicates for each PVE). We ran RSS-
BVSR on Scenario 1.1, and RSS-BSLMM on Scenario 1.2. Figure 2 summarizes
the resulting PVE estimates. The estimated PVEs generally correspond well with
the true values, but with a noticeable upward bias when the true PVE is large. We
speculate that this upward bias is due to deviations from the assumption of small
effects underlying RSS in Proposition 2.3. (Note that with 50 causal SNPs and
PVE = 0.5, on average each causal SNP explains 1% of the phenotypic variance,
which is substantially higher than in typical GWAS; thus the upward bias in a
typical GWAS may be less than in these simulations.)

Next, we compare accuracy of PVE estimation using summary versus full data.
With the genotype data as above, we consider two scenarios:

• Scenario 2.1 (sparse): simulate a fixed number T of causal SNPs (T =
10,100,1000), with effect sizes coming from N (0,1), and the effect sizes of
the remaining SNPs are zero;
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FIG. 2. Comparison of true PVE with estimated PVE (posterior median) in Scenarios 1.1 (sparse)
and 1.2 (polygenic). The dotted lines indicate the true PVEs, and the bias of estimates is reported on
the top of each box plot. Each box plot summarizes results from 50 replicates.

• Scenario 2.2 (polygenic): simulate two groups of causal SNPs, the first group
containing a small number T of large-effect SNPs (T = 10,100,1000), plus
another larger group of 10,000 small-effect SNPs; the large effects are drawn
from N (0,1), the small effects are drawn from N (0,0.0012), and the effects of
the remaining SNPs are zero.

For each scenario we created datasets with true PVE 0.2 and 0.6 (20 indepen-
dent replicates for each parameter combination). For Scenario 2.1 we compared
results from the summary data methods (RSS-BVSR and RSS-BSLMM) with
the corresponding full data methods (GEMMA-BVSR and GEMMA-BSLMM).
For Scenario 2.2 we compared only the BSLMM methods since the BVSR-based
methods, which assume effects are sparse, are not well suited to this setting in
terms of both computation and accuracy [Zhou, Carbonetto and Stephens (2013)];
see also Appendix B, Zhu and Stephens (2017). Figure 3 summarizes the re-
sults. With modest true PVE (0.2), GEMMA-BVSR and RSS-BVSR perform bet-
ter than other methods when the true model is very sparse (e.g., Scenario 2.1,
T = 10), whereas GEMMA-BSLMM and RSS-BSLMM perform better when the
true model is highly polygenic (e.g., Scenario 2.2, T = 1000). When the true PVE
is large (0.6), the summary-based methods show an upward bias [Figures 3(b)
and 3(d)], consistent with Figure 2. This bias is less severe when the true signals
are more “diluted” (e.g., T = 1000), consistent with our speculation above that the
bias is due to deviations from the “small effects” assumption. Overall, as expected,
the summary data methods perform slightly less accurately than the full data meth-
ods. However, using different modeling assumptions (BVSR versus BSLMM) has
a bigger impact on the results than using summary versus full data.
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FIG. 3. Comparison of PVE estimates (posterior median) from GEMMA and RSS in Scenarios 2.1
and 2.2. The accuracy of estimation is measured by the relative RMSE, which is defined as the RMSE
between the ratio of the estimated over true PVEs and 1. Relative RMSE for each method is reported
(percentages on top of box plots). The true PVEs are shown as the solid horizontal lines. Each box
plot summarizes results from 20 replicates.

4.3. Power to detect associations from summary data. Previous studies using
individual-level data have shown that the multiple-SNP model can have higher
power to detect genetic associations than single-SNP analyses [e.g., Guan and
Stephens (2011), Hoggart et al. (2008), Moser et al. (2015), Servin and Stephens
(2007)]. Here we compare the power of multiple-SNP analyses based on summary
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data with those based on individual-level data. Specifically, we focus on compar-
ing RSS-BVSR with GEMMA-BVSR because the BVSR-based methods naturally
select the associated SNPs (whereas BSLMM assumes that all SNPs are associ-
ated).

To compare associations detected by RSS-BVSR and GEMMA-BVSR, we sim-
ulated data under Scenario 2.1 above. With BVSR analyses, associations are most
robustly assessed at the level of regions rather than at the level of individual SNPs
[Guan and Stephens (2011)], and so we compare the association signals from the
two methods in sliding 200-kb windows (sliding each window 100 kb at a time).
Specifically, for each 200-kb region, and each method, we sum the PIPs of SNPs
in the region to obtain the “Expected Number of included SNPs” (ENS), which
summarizes the strength of association in that region. Results (Figure 4) show a
strong correlation between the ENS values from the summary and individual data
across different numbers of causal variants and PVE values. Consequently, the
summary data analyses have similar power to detect associations as the full data
analyses (Figure 5). As above, the agreement of RSS-BVSR with GEMMA-BVSR
is highest when PVE is diluted among many SNPs (e.g., T = 1000).

5. Practical issues. The simulations in Section 4 show that, in idealized set-
tings, RSS can largely recapitulate the results of a full multiple regression analy-
sis. Specifically, these idealized settings involve summary data computed from a
single set of individuals at fully observed genotypes. In practical applications sum-
mary data may deviate from this ideal. In addition, other issues, such as imputation
quality and population stratification, can impact inferences from both full data and
summary data. In this section we consider these practical issues, and make sugges-
tions for how to deal with them—both when generating the summary dataset for
distribution and when analyzing it.

5.1. Data on different individuals. In many studies data are available on dif-
ferent individuals at different SNPs (Table 1 and Supplementary Figure 7). This
can happen for many reasons. For example, it can happen when combining infor-
mation across individuals that are typed on different genotyping platforms. Or it
can happen when combining data across multiple cohorts if quality control filters
remove SNPs in some cohorts and not others.

It is important to note that the derivation of the RSS likelihood assumes that the
summary statistics are generated from the same individuals at each SNP. Specifi-
cally, the covariances in likelihoods (2.2) and (2.3) depend on this assumption. [In
contrast, the mean in likelihood (2.3) holds even if different individuals are used
at each SNP; see Appendix A, Zhu and Stephens (2017), for details.] To take an
extreme example, if entirely different individuals are used to compute summary
data for two SNPs, then the correlation in their β̂ values (given β) will be 0, even
if the SNPs are in complete LD.
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FIG. 4. Comparison of the 200-kb region posterior expected numbers of included SNPs (ENS) for
GEMMA-BVSR (x-axis) and RSS-BVSR (y-axis) based on the simulation study of Scenario 2.1. Each
point is a 200-kb genomic region, colored according to whether it contains at least one causal SNP
(reddish purple “*”) or not (bluish green “+”).
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FIG. 5. Trade-off between true and false positives for GEMMA-BVSR (dash) and RSS-BVSR (solid)
in simulations of Scenario 2.1.
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While RSS can be modified to allow for the use of different individuals when
computing summary data at different SNPs [Propositions A.1 and A.2, Zhu and
Stephens (2017); see also Zhang et al. (2016)], in practice this modification is
unattractive because it requires considerable additional information in addition to
the usual summary data—specifically, specification of sample overlaps for many
pairs of SNPs. Instead, we recommend that genotype imputation [e.g., Marchini
et al. (2007), Servin and Stephens (2007)] be used when generating GWAS sum-
mary data for public release so that summary statistics are computed on the same
individuals for each SNP.

When distributing summary data that are not computed on the same individuals,
we recommend that at least the sample size used to compute data at each SNP also
be made available, since these may be helpful both in modeling and in assessing
the likely scope of the problem (Section 5.5). (Absent this, analysts may be able
to estimate the number of individuals used at each SNP from {ŝj } and information
on allele frequency of the SNP.)

5.2. Imputation quality. Many GWAS make use of genotype imputation to es-
timate genotypes that were not actually observed. Like almost all GWAS analysis
methods that are used in practice, the RSS likelihood (2.2) does not formally in-
corporate the potential for error in the imputed genotypes.

In principle, the RSS likelihood can be extended to account for imputation errors
[Propositions A.3 and A.4, Zhu and Stephens (2017)]. However, this extension re-
quires extra information—the imputation quality for each SNP—that is not always
available. Fortunately, however, applying RSS to imputed genotypes, ignoring im-
putation quality, seems likely to provide sensible (if conservative) inferences in
most cases. This is because imputation errors will tend to reduce estimated effects
compared with what would have been obtained if all SNPs were typed: for ex-
ample, if a SNP is poorly imputed, then its estimated coefficient in the multiple
regression model will be shrunk toward zero, and some of that SNP’s contribution
to heritability will be lost. This issue is not restricted to RSS: indeed, it will also
occur in analyses of individual-level data that use imputed genotypes.

A complimentary approach is to compile a list of SNPs that are expected, a
priori, to be “well imputed” [Bulik-Sullivan et al. (2015)], and to apply RSS only
to these SNPs. This cannot remedy the loss of poorly imputed SNPs’ contributions
to heritability, but it may help avoid poorly imputed SNPs undesirably influencing
estimates of model hyperparameters.

5.3. Population stratification. Another important issue that can impact many
association studies is “confounding” due to population stratification [Devlin and
Roeder (1999), Price et al. (2010)], which can cause overestimation of genetic
effects and heritability if not appropriately corrected for. A standard approach to
dealing with this problem is to use methods such as principal components analysis
[Price et al. (2006)] and/or linear mixed models [Kang et al. (2010)] to correct
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for stratification. These methods require access to the individual-level genotype
data, and so cannot be used directly by analysts with access only to summary data.
Instead they must be used by analysts who are computing the summary data for
public distribution: doing so should substantially reduce the effects of confounding
on summary data analyses, including RSS.

A complementary approach to dealing with population stratification is to di-
rectly model its effects on the summary data. One recent and innovative approach
to this is LD score regression [Bulik-Sullivan et al. (2015)], which uses the inter-
cept of a regression of association signal versus “LD score” to assess the effects
of confounding. Along similar lines, we could modify the RSS likelihood to in-
corporate the effects of confounding by introducing an additional dispersion pa-
rameter (7.1); see Appendix C, Zhu and Stephens (2017). This modification would
not require extra information, and may have an additional benefit of improving
robustness of RSS to other model misspecification issues (e.g., genotyping error,
mismatches between LD in the reference panel and sample). However, this modi-
fication requires additional computation [some linear algebra simplifications used
in (2.2) do not hold for (7.1)], and we have not yet implemented it.

5.4. Filtering and diagnostics. Some of the recommendations above can only
be implemented when the summary data are being computed from individual data
for public distribution, and not at a later stage when only the summary data are
available. This raises the question, what can analysts with only access to summary
data do to check that their results are likely reliable? This may be the trickiest
part of summary data analysis: even with access to the full individual-level data,
it can be hard to assess all sources of bias and error. Recognizing that there is
no universal approach that will guarantee reliable results, we nonetheless hope to
provide some useful suggestions.

Since the RSS likelihood (2.2) defines a statistical model, it is possible to per-
form a model fit diagnostic check. A generic approach to model checking (e.g.,
common in linear regression) is to first fit the model, compute residuals that mea-
sure deviations of observations from expected values, and then discard outlying
observations before refitting the model. We have implemented an approach along
these lines for identifying outlying SNPs as follows. First, after fitting the model,
we compute the residual (the difference between the observed β̂ and its fitted
expected value) at each SNP. We then perform a “leave-one-out” (LOO) check
on each residual: we compute its conditional expectation and variance given the
residuals at all other SNPs, and compute a diagnostic z-score based on how the
observed residual compares with this expectation and variance; see Appendix D,
Zhu and Stephens (2017), for details. This approach targets SNPs whose summary
data are most inconsistent with data at other nearby SNPs in LD. If the model
is correctly specified for a given SNP, then its diagnostic z-score approximately
follows a standard normal distribution, from which a large deviation indicates po-
tential misspecification. To assess robustness of RSS fit, one can filter out SNPs
with large diagnostic z-scores, and refit the RSS model on the remaining SNPs.
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Other simpler filters are of course possible, and multiple filters can be used
together. One widely used filter simply discards SNPs with sample sizes lower
than a certain cutoff [Pickrell (2014)]. This can reduce problems caused by SNPs
being typed on different subsets of individuals discussed above (Section 5.1). An-
other possibility is to filter out SNPs that are in very strong LD with one another,
since these have the potential for producing severe misspecification (Section 5.5).
Some advantages of the model-based LOO diagnostic include that it could de-
tect model misspecification problems from several sources—including genotyping
error or misspecification of the LD matrix R—and not only those caused by typ-
ing of different individuals at different SNPs. Also, the sample size filter cannot
be used unless the sample size for each SNP is made available, which is not al-
ways the case (Table 1). Finally, choice of threshold for the diagnostic z-score
can be guided by the standard normal distribution; in contrast, selecting principled
thresholds for sample sizes seems less straightforward (and a stringent threshold
can yield conservative results; see Supplementary Figure 8). On the other hand, the
LOO diagnostic may tend to filter out SNPs that show a particularly strong signal
(if they are not in LD with other SNPs), an undesirable property that should be
remembered when interpreting results post-filtering (Supplementary Figure 9).

5.5. Extreme example. One way to help avoid problems with model misspec-
ification is to be aware of the most severe ways in which things can go wrong.
In this vein, we offer one illustrative example that we encountered when applying
RSS to the summary data of a blood lipid GWAS [Global Lipids Genetics Consor-
tium (2013)].

Table 2 shows summary statistics for high-density lipoprotein (HDL) choles-
terol for seven SNPs in the gene ADH5 that are in complete LD with one another
in the reference panel (1000 Genomes European r2 = 1). If summary data were

TABLE 2
Example of problems that can arise due to severe model misspecification. The table reports the

sample sizes (nj ), single-SNP effect size estimates (β̂j ), SEs (σ̂j ), and 1-SNP BFs of seven SNPs
that are in complete LD in the reference panel (1000 Genomes, European ancestry). The 2-SNP BFs
reported are for rs7683704 with each of the other SNPs. These unreasonably large 2-SNP BFs are

due to model misspecification

SNP nj β̂j σ̂j 1-SNP log10 BF 2-SNP log10 BF r2

rs7683704 187,124 0.0096 0.0058 −0.676 NA 1.0
rs13125919 94,311 0.0038 0.0079 −1.084 172.638 1.0
rs4699701 94,311 0.0054 0.0081 −1.028 88.364 1.0
rs17595424 94,274 0.0055 0.0081 −1.024 83.925 1.0
rs11547772 94,311 0.0056 0.0081 −1.021 79.756 1.0
rs7683802 94,311 0.0056 0.0081 −1.021 79.756 1.0
rs4699699 94,311 0.0058 0.0081 −1.013 71.580 1.0
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computed on the same set of individuals at each SNP, then they would be expected
to vary very little among SNPs that are in such strong LD. And, indeed, the RSS
likelihood captures this expectation. However, in this case we see that the sum-
mary data actually vary considerably at some SNPs. The differences between one
SNP (rs7683704) and the others are likely explained by the fact that this SNP was
typed on more individuals: data at this SNP come from both GWAS (up to 94,595
individuals) and Metabochip arrays (up to 93,982 individuals). Thus this is an ex-
ample of model misspecification due to SNPs being typed on different individuals.
However, another SNP, rs13125919, also shows notable differences in summary
data from the other SNPs for reasons that are unclear to us. (This highlights a chal-
lenge of working with summary data—it is difficult to investigate the source of
such anomalies without access to individual data.)

Whatever the reasons, applying RSS to these data results in severe model mis-
specification: based on their LD patterns, RSS expects data at these SNPs to be
almost identical, but they are not. This severe model misspecification can lead to
unreliable results. For example, we used the RSS likelihood (2.2) to compute the
1-SNP and 2-SNP Bayes factors (BFs) [as in Servin and Stephens (2007); see also
Chen et al. (2015)]. None of the SNPs shows evidence for marginal association
with HDL (log10 1-SNP BF are all negative, indicating evidence for the null).
However, the 2-SNP BFs for rs7683704 together with any of the other SNPs are
unreasonably large due to the severe model misspecification.

We emphasize that this is an extreme example, chosen to highlight the worst
things that can go wrong. We did not come across any examples like this in spot-
checks of results from the adult human height data below (Section 6). For sim-
ulations illustrating the effects of less extreme model misspecification on PVE
estimation see Supplementary Figure 6.

6. Analysis of summary data on adult height. We applied RSS to summary
statistics from a GWAS of human adult height involving 253,288 individuals of
European ancestry typed at ∼1.06 million SNPs [Wood et al. (2014)]. Access-
ing the individual-level data would be a considerable undertaking; in contrast, the
summary data are easily and freely available.5

Following the protocol from Bulik-Sullivan et al. (2015), we filtered out poorly
imputed SNPs and then removed SNPs absent from the genetic map of HapMap
European-ancestry population Release 24 [Frazer et al. (2007)]. To avoid negative
recombination rate estimates, we excluded SNPs in regions where the genome as-
sembly had been rearranged. We also removed triallelic sites by manual inspection
in BioMart [Smedley et al. (2015)]. This left 1,064,575 SNPs retained for analy-
sis. We estimated the LD matrix R using phased haplotypes from 379 European-
ancestry individuals in the 1000 Genomes Project Consortium (2010).

5https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
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Although the summary data were generated after genotype imputation to the
same reference panel [Section 1.1.2, Supplementary Note of Wood et al. (2014)],
only 65% of the 1,064,575 analyzed SNPs were computed from the total sample
(Supplementary Figure 7). This is because SNP filters applied by the consortium
separately in each cohort often filtered out SNPs from a subset of cohorts [Sec-
tion 1.1.4, Supplementary Note of Wood et al. (2014)]. As shown in Appendix A
of Zhu and Stephens (2017), properly accounting for the sample difference would
require sample overlap information that is not publicly available. Instead, we di-
rectly applied the original RSS likelihood (2.2) to the summary data. As discussed
in Section 5.1, this simplification results in model misspecification. To assess the
impact of this, in addition to the primary analysis using all the summary data,
we also performed secondary analyses after applying the LOO residual diagnostic
described in Section 5.4 to filter out SNPs whose diagnostic z-scores exceeded a
threshold (2 or 3).

To reduce computation time and hardware requirement, we separately analyzed
each of the 22 autosomal chromosomes so that all chromosomes were run in par-
allel in a computer cluster. In our analysis, each chromosome used a single CPU
core. To assess convergence of the MCMC algorithm, we ran the algorithm on
each dataset multiple times; results agreed well among runs (results not shown),
suggesting no substantial problems with convergence. Here we report results from
a single run on each chromosome with 2 million iterations. The CPU time of RSS-
BVSR ranged from 1 to 36 hours, and the time of RSS-BSLMM ranged from 4 to
36 hours (Supplementary Table 6).

We first inferred PVE (SNP heritability) from these summary data. Figure 6
shows the estimated total and per-chromosome PVEs based on RSS-BVSR and
RSS-BSLMM. For both methods, we can see an approximately linear relation-
ship between PVE and chromosome length, consistent with a genetic architecture
where many causal SNPs each contribute a small amount to PVE (a.k.a. “poly-
genicity”), and consistent with previous results using a mixed linear model [Yang
et al. (2011)] on three smaller individual-level datasets (number of SNPs: 593,521–
687,398; sample size: 6293–15,792). By summing PVE estimates across all 22
chromosomes, we estimated the total autosomal PVE to be 52.4%, with 95% cred-
ible interval [50.4%, 54.5%] using RSS-BVSR, and 52.1%, with 95% credible
interval [50.3%, 53.9%] using RSS-BSLMM. Our estimates are consistent with,
but more precise than, previous estimates based on individual-level data from sub-
sets of this GWAS. Specifically, Wood et al. (2014) estimated PVE as 49.8%, with
standard error 4.4%, from individual-level data of five cohorts (number of SNPs:
0.97–1.12 million; sample size: 1145–5668). The increased precision of the PVE
estimates illustrates one benefit of being able to analyze summary data with a large
sample size.

One caveat to these results is that the RSS likelihood (2.2) ignores confounding
such as population stratification (Section 5.3). Here the summary data were gen-
erated using genomic control, principal components and linear mixed effects to
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FIG. 6. Posterior inference of PVE (SNP heritability) for adult human height. Panel A: posterior
distributions of the total PVE, where the interval spanned by the arrows is the 95% confidence inter-
val from Wood et al. (2014). Panel B: posterior median and 95% credible interval for PVE of each
chromosome against the chromosome length, where each dot is labeled with chromosome number
and the lines are fitted by simple linear regression (solid: RSS-BVSR; dash: RSS-BSLMM). The sim-
ple linear regression output is shown in Supplementary Table 2. The data to reproduce Panel B are
provided in Supplementary Table 3.

control for population stratification within each cohort [Section 1.1.3, Supplemen-
tary Note of Wood et al. (2014)]. Thus we might hope that confounding has limited
impact on PVE estimation. However, it is difficult to be sure that all confounding
has been completely removed, and any remaining confounding could upwardly
bias our estimated PVE. (Unremoved confounding could similarly bias estimates
based on individual-level data.)

Next, we used RSS-BVSR to detect multiple-SNP associations, and compared
results with previous analyses of these summary data. Using a stepwise selection
strategy proposed by Yang et al. (2012), Wood et al. (2014) reported a total of 697
genome-wide significant SNPs (GWAS hits). Among them, 531 SNPs were within
the ±40-kb regions with estimated ENS ≥ 1. Since only 384 GWAS hits were
included in our filtered set of SNPs, we expected a higher replication rate for these
included GWAS hits. Taking a region of ±40-kb around each of these 384 SNPs,
our analysis identified almost all of these regions (371/384) as showing a strong
signal for association (estimated ENS ≥ 1). Only 125 of the 384 SNPs showed,
individually, strong evidence for inclusion (estimated SPIP > 0.9). This suggests
that, perhaps unsurprisingly, many of the reported associations are likely driven by
a SNP in LD with the one identified in the original analysis.

To assess the potential for RSS to identify novel putative loci associated with hu-
man height, we estimated the ENS for ±40-kb windows across the whole genome.
We identified 5194 regions with ENS ≥ 1, of which 2138 are putatively novel in
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that they are not near any of the previous 697 GWAS hits (distance > 1 Mb). Some
of these 2138 regions are overlapping, but this nonetheless represents a large num-
ber of potential novel associations for further investigation. We manually examined
the putatively novel regions with highest ENS, and identified several loci harbor-
ing genes that seem plausibly related to height. These include the gene SCUBE1,
which is critical in promoting bone morphogenetic protein signaling [Liao, Tsao
and Yang (2016)], the gene WWOX, which is linked to skeletal system morpho-
genesis [Aqeilan et al. (2008), Del Mare et al. (2011)], the gene IRX5, which is
essential for proximal and anterior skeletal formation [Li et al. (2014)], and the
gene ALX1 (a.k.a. CART1), which is involved in bone development [Iioka et al.
(2003)]; see Supplementary Table 5 for the full list of putatively new loci (ENS
> 3).

Finally, to check for misspecification, we performed the LOO residual-based
diagnostic. Specifically, we ran the LOO residual imputation using the RSS-
BVSR output, and then refitted the models on the filtered SNPs (absolute LOO
z-score ≤ 2). This resulted in a substantial reduction in PVE estimates (RSS-
BVSR: 34.0%, [32.9%, 35.0%]; RSS-BSLMM: 45.3%, [44.7%, 46.0%]). How-
ever, this may reflect the fact that the filter removed 12% of SNPs, possibly biased
toward SNPs showing the association signal (Supplementary Figure 9). By com-
parison, association results were more robust. Among the ±40-kb regions around
the previous GWAS hits, our reanalysis identified 532 of the 697 total hits, and
373 of the 384 included hits. Moving the ±40-kb window across the genome, we
identified 6426 regions with ENS ≥ 1, of which 2798 were at least 1 Mb away
from the 697 GWAS hits. Results are similar based on a less stringent threshold
(3) (Supplementary Table 4).

7. Discussion. We have presented a novel Bayesian method to infer multiple
linear regression coefficients using simple linear regression summary statistics,
and demonstrated its application in GWAS. On both simulated and real data our
method produces results comparable to methods based on individual-level data.
Compared with existing summary-based methods, our approach takes advantage
of an explicit likelihood for the multiple regression coefficients, and thus provides a
unified framework for various genome-wide analyses. We theoretically extend this
framework to capture certain features of GWAS summary data, and provide practi-
cal suggestions when the theoretical extensions cannot be easily implemented. We
illustrate the applications of our framework on heritability estimation and associ-
ation detection. Other potential applications include training phenotype prediction
models, prioritizing causal variants and testing gene-level effects.

We view the present work as the first stage of what could be done with RSS
using GWAS summary statistics. One possibility for future work is to modify the
RSS likelihood (2.2) to incorporate confounding by introducing an additional dis-
persion parameter a:

(7.1) β̂|S,R,β ∼N
(
SRS−1β, SRS + na · S2)

.
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From model (7.1) we can derive relationships to LD score regression [Bulik-
Sullivan et al. (2015)], which distinguishes confounding biases from polygenic-
ity using GWAS summary statistics; see Appendix C, Zhu and Stephens (2017),
for details. Another important extension is to integrate additional genomic infor-
mation into the prior distributions. For instance, Carbonetto and Stephens (2013)
allow the prior probability of each SNP being included to depend on a covariate,
such as biological pathway membership,

(7.2) βj |S ∼ (1 − πj )δ0 + πjN
(
0, σ 2(S)

)
, logit(πj ) = θ0 + θaj ,

where aj = 1 when SNP j is in the pathway. Unlike prior (3.2), prior (7.2) re-
flects that biologically related gene sets might preferentially harbor associated
SNPs, essentially integrating the idea of gene set enrichment into GWAS [Wang,
Li and Hakonarson (2010)]. As a second example, some functional categories of
the genome could contribute disproportionately to the heritability of complex traits
[Gusev et al. (2014)], which could be incorporated by letting the prior variance of
the SNP effects depend on functional categorization, for example, by

(7.3) βj |S ∼ N
(
0, σ 2

j (S)
)
, log

(
σ 2

j

) = w0 +
G∑

g=1

wgfj,g,

where fj,g = 1 when SNP j belongs to category g, w0 captures the baseline (log)
heritability and {wg} reflect the contribution of each category. This could provide
a different way to partition heritability by functional annotation using GWAS sum-
mary statistics [Finucane et al. (2015)].
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