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Integrative analysis of multiple experimental datasets measured over
a large number of observational units is the focus of large numbers of contem-
porary genomic and epigenomic studies. The key objectives of such studies
include not only inferring a hidden state of activity for each unit over individ-
ual experiments, but also detecting highly associated clusters of units based
on their inferred states. Although there are a number of methods tailored for
specific datasets, there is currently no state-of-the-art modeling framework
for this general class of problems. In this paper, we develop the MBASIC
(Matrix Based Analysis for State-space Inference and Clustering) framework.
MBASIC consists of two parts: state-space mapping and state-space cluster-
ing. In state-space mapping, it maps observations onto a finite state-space,
representing the activation states of units across conditions. In state-space
clustering, MBASIC incorporates a finite mixture model to cluster the units
based on their inferred state-space profiles across all conditions. Both the
state-space mapping and clustering can be simultaneously estimated through
an Expectation-Maximization algorithm. MBASIC flexibly adapts to a large
number of parametric distributions for the observed data, as well as the het-
erogeneity in replicate experiments. It allows for imposing structural assump-
tions on each cluster, and enables model selection using information criterion.
In our data-driven simulation studies, MBASIC showed significant accuracy
in recovering both the underlying state-space variables and clustering struc-
tures. We applied MBASIC to two genome research problems using large
numbers of datasets from the ENCODE project. The first application grouped
genes based on transcription factor occupancy profiles of their promoter re-
gions in two different cell types. The second application focused on identify-
ing groups of loci that are similar to a GATA2 binding site that is functional
at its endogenous locus by utilizing transcription factor occupancy data and
illustrated applicability of MBASIC in a wide variety of problems. In both
studies, MBASIC showed higher levels of raw data fidelity than analyzing
these data with a two-step approach using ENCODE results on transcription
factor occupancy data.

1. Introduction. The flow of genetic information through DNA transcription
and RNA translation is a highly regulated process. The underlying mechanisms
of regulation by both genomic and epigenomic factors are central targets in large

Received May 2015; revised January 2016.
1Supported in part by National Institutes of Health Grants HG006716 and HG007019.
Key words and phrases. State-space, clustering, E-M algorithm, transcription factors, ChIP-seq.

1348

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/16-AOAS938
http://www.imstat.org


DISCRETE STATE-SPACE MATRICES CLUSTERING 1349

numbers of genomic and epigenomic studies. This paper is motivated by a number
of such studies that aim to elucidate genomic regulatory mechanisms across mul-
tiple biological conditions. Experiments that investigate such processes produce a
plethora of data types. For example, relevant to DNA transcription is transcription
factor occupancy data that quantify which regions of DNA are occupied by DNA
binding proteins that can enhance or reduce gene expression. Histone modification
data map covalent post-translational modifications to histone proteins, core pro-
teins that make up the nucleosome structure of DNA. Such modifications impact
DNA transcription by altering the chromatin structure.

Computational and statistical analysis of these data often involve identifying
genomic loci that show a significant signal, that is, enrichment, compared to back-
ground noise in the experimental measurements, with the operating principle that
multiple loci might exhibit a similar signal profile over different biological condi-
tions.

Improvements in the next-generation sequencing technology further accelerated
rapid generation of these types of data. In return, the vast availability of such data
has revolutionized the scope of genome regulation studies. Previous analyses had
been restricted to detecting regions of the genome that were associated with one
particular factor in one single organism. Many recent studies focus on detecting
more complex functional patterns that integrate data from multiple organisms un-
der multiple conditions, namely, the associations between DNA elements and how
they change across biological and/or experimental conditions have been the focus
of many integrative modeling approaches. Examples of these studies include the
following:

Differential binding analysis among multiple ChIP-seq data. One of the key
mechanisms of gene expression regulation is through differential activities of tran-
scription factors and epigenetic modifications. Currently, chromatin immunopre-
cipitation followed by high throughput sequencing (ChIP-seq) is the state-of-the-
art method for genome-wide profiling of protein-DNA interactions. Two such key
interactions are DNA occupancy by transcription factors and histone modifica-
tions. Most transcription factors, that is, DNA binding proteins, recognize DNA
in a sequence-specific manner and promote or repress gene expression. Similarly,
histone modifications can induce diverse biological consequences such as tran-
scriptional activation/deactivation.

The study of gene regulation often involves comparing transcription factor occu-
pancy and histone modifications across multiple biological conditions. Such con-
ditions can be different treatment levels, time points of measurements, or different
dosage levels [Anders and Huber (2010), Ji et al. (2013), Liang and Keles (2012),
Wei, Tenzen and Ji (2015)].

Transcription factor regulatory network analysis. The combinatorial nature of
transcription factor regulation underlies the large diversity observed in eukary-
otic gene control. This largely motivates construction of regulatory networks that
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model gene expression as a combinatorial function of regulatory interactions be-
tween DNA and different transcription factors. The large-scale data from the EN-
CODE project [ENCODE Project Consortium (2012)] now enable joint analyses
of over one hundred human transcription factors across multiple cell types. Such
analyses are posed to reveal a great amount of information about co-association
patterns between different TFs, hierarchical network organizations, and systems-
level integration of complex cellular signals [Cheng et al. (2011), Gerstein et al.
(2012), Neph et al. (2012), Zeng et al. (2013)]. While the large number of TFs
makes it computationally formidable to exhaust all possible combinatorial associ-
ations for such analyses, it is important to detect the most significant combinatorial
patterns that preserve global regulatory dynamics.

Comparative functional genomic studies across different species. Functional
genomics analysis compares gene expressions or TF occupancy profiles between
multiple species. The main task is to identify divergent and conserved functional
modules that are central to evolutionary relationships [e.g., Kunarso et al. (2010),
Schmidt et al. (2010)]. Existing methods, that build on hidden Markov models
[Roy et al. (2013)] or biclustering [Waltman et al. (2010)], implicitly assume that
the functional modules should at least have similar signal profiles (i.e., expression,
occupancy) among some subsets of the species under consideration. For these
analyses, it is also important to identify functional modules that are fully diver-
gent across species. These regions play an equally important role in understanding
connectivity among species over the evolutionary history.

Although the types of data for these different studies vary, the underlying
statistical principles are largely shared. Therefore, we propose a unified frame-
work for the analysis of such data by formalizing the shared aspects. We for-
mulate the underlying statistical problem as follows. Suppose a dataset {Yik} is
collected over a set of observational units (e.g., loci in genomic experiments)
i = 1,2, . . . , I under conditions k = 1,2, . . . ,K . Inferring the association pat-
terns within a single experiment involves mapping the corresponding set of ob-
servations {Yik : i = 1,2, . . . , I } to a finite discrete state-space, S = {1,2, . . . , S}.
This space contains different levels of association (e.g., enrichment/nonenrichment
indicating the status of occupancy in ChIP-seq experiments, expressed/not ex-
pressed in RNA-seq gene expression experiments). This falls under the classical
finite-mixture modeling framework where a latent state variable θik ∈ S is in-
ferred for each observational unit Yik . A higher level of modeling on the matrix
� = (θik)1≤i≤I,1≤k≤K is required for integrating the association patterns under
different conditions. We call this matrix the state-space matrix since it describes
the latent states of individual observations.

We propose the following framework to model the state-space matrix �. We
assume that rows of � can be partitioned into J + 1 subsets: {1, . . . , I } = C0 ∪
C1 ∪ · · · ∪ CJ . Rows of � within partition Cj , j ≥ 1, are generated by the same
distribution parametrized by wj · = (wjk)1≤k≤K :

θik ∼ g(·|wjk), i ∈ Cj ,
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while the rows of C0, which denotes the group of “singleton” units, that is, units
that do not cluster in any of the J groups, are generated by row-specific distribu-
tions. The goal of this model is thus to estimate a partitioning that best character-
izes the row associations of the state-space matrix �.

We refer to the proposed framework as the Matrix Based Analysis for State-
space Inference and Clustering (MBASIC). MBASIC is related to classical fac-
tor analysis which considers the problem of projecting one dimension (either row
or column) of large noisy matrices into low-dimensional spaces. MBASIC has
two distinguished features compared to the existing literature in these areas. First,
MBASIC deals with matrices with discrete entries, while most existing methods
are designed for matrices on continuous scales. Second, MBASIC estimates the
low-dimensional projection by grouping the rows of the original matrix in contrast
to the Principle Component Analysis (PCA) approaches which form linear com-
binations of the rows [e.g., Ji et al. (2013), Lee, Huang and Hu (2010)]. This is
motivated by the following arguments:

1. In MBASIC, each factor estimate wj · characterizes the commonality of a
group of rows and is easily interpretable in practice. Such interpretability can fur-
ther be enhanced by imposing structural restrictions on the wj · vector for practical
purposes. Examples of such constraints are described in Section 3.3;

2. PCA for high-dimensional matrices are often accompanied by regularization
techniques which are computationally prohibitive for many epigenetic datasets. In
contrast, clustering the matrix rows can be implemented very efficiently and in a
straightforward manner.

The hierarchical structure of MBASIC is similar to two other recently proposed
statistical models: iASeq [Wei et al. (2012)] and Cormotif [Wei, Tenzen and Ji
(2015)]. Both these models incorporate a state-space clustering structure similar to
MBASIC. MBASIC extends these models in several critically essential directions.
First, MBASIC is developed for general purposes and can be easily implemented
for a wide range of parametric distributions, while Cormotif and iASeq operate
with specific distributions targeting the problems of differential expression and
allele-specific binding. Second, neither of these models include a group of single-
tons with idiosyncratic state-space profiles. When we are agnostic about the “true”
clustering structure in applications, separating the singletons can reduce their influ-
ence on the estimation of clustering parameters. Third, both iASeq and Cormotif
separate estimation for the distributional parameters from the clustering structure,
while MBASIC jointly fits all model parameters. A limiting assumption of MBA-
SIC compared to these models is that MBASIC does not allow the distributional
parameters within the same state to be heterogeneous. However, a preprocessing
step that accounts for the heterogeneity can overcome such a limitation. We evalu-
ate and discuss all of these features with extensive simulation studies in this paper.

This paper is organized as follows. We start with a formal description of MBA-
SIC in Section 2, followed by model estimation and selection methods in Section 3.
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We also investigate general features of MBASIC compared to iASeq and Cormotif
with extensive simulations in this section. Section 4 presents results from several
real data examples. Mathematical details of the algorithm are included in the Sup-
plementary Material [Zuo et al. (2016)].

2. The hierarchical mixture model framework. Consider a dataset with ob-
servations from I different observational units under K different conditions. For
each condition k ∈ {1,2, . . . ,K}, there are nk replicate experiments, indexed by
l = 1,2, . . . , nk . We use Yikl to denote the observation for the lth replicate of unit
i under condition k. For each condition k at unit i, there exists a hidden state
variable θik ∈ S = {1,2, . . . , S}. The MBASIC model consists of the following
components:

1. State-space mapping:

(2.1) Yikl|θik = s
ind.∼ fs(·|μkls, σkls, γikls).

2. State-space clustering: θik’s are independently sampled from S with the
sampling probability:

(2.2) P(θik = s) = ζpis + (1 − ζ )

J∑
j=1

πjwjks.

In (2.1), μkls and σkls are the parameters related to the mean and dispersion for
the sth state for replicate l under condition k, and γikls is the covariate encoding
known information for unit i. In (2.2), pis , ζ , πj , and wjks are additional non-
negative parameters subject to restrictions:

0 ≤ ζ ≤ 1;
J∑

j=1

πj = 1;
S∑

s=1

wjks = 1, ∀j, k;
S∑

s=1

pis = 1, ∀i.

We further discuss these parameters in Section 2.2.

2.1. State-space mapping. Equation (2.1) partitions observational units i =
1, . . . , I into S subsets according to their hidden states. Within the same replicate,
data from the same hidden state follow the same distribution fs(·|μkls, σkls, γikls).
MBASIC assumes that the hidden states θik’s are independent of the replicate index
l, which means all replicates under the same condition have the same set of hidden
states. However, distributional parameters for a given state can be different among
replicates. Such a setting allows for the flexibility of modeling the heterogeneity
in replicate experiments.

The density function f can be from an arbitrary parametric distribution. We
consider three fundamental families of distributions commonly used for genomic
data analysis:
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• Log-normal distribution. LN(μklsγikls, σkls) with a density function:

(2.3) fs(y|μkls, σkls, γikls) = 1√
2πσkls

exp
{
−(log(y + 1) − μklsγikls)

2

2σ 2
kls

}
.

• Negative binomial distribution. NB(μklsγikls, σkls) with a density function:

(2.4) fs(y|μkls, σkls, γikls) = �(y + σkls)

�(σkls)�(y)

(μklsγikls)
yσ

σkls

kls

(μklsγikls + σkls)y+σkls
.

• Binomial distribution. Binom(γikls,μkls) with a density function:

(2.5) fs(y|μkls, γikls) =
(
γikls

y

)
μ

y
kls(1 − μkls)

γikls−y.

In these three examples, γikls represents the known heterogeneity across loci,
whereas μkls and σkls are unknown parameters. For example, when using equa-
tion (2.3) or (2.4) in a ChIP-seq analysis with S = 2 states, we can estimate γikl1
using data from the control samples so that the ChIP sample read counts in the
background state scale with the control sample data [e.g., as in Zuo and Keleş
(2014)], and assume γikl2 = 1 for the enriched states. Equation (2.5) can be used
to analyze allele-specific binding data, where γikls is the total read counts from
both paternal and maternal alleles and is constant across s. Application with the
binomial distribution also requires that μkls

∑I
i=1 γikls , ∀k, l, is strictly increasing

in s for model identification.
The MBASIC can be easily extended to other classes of parametric distributions

and estimation, for these distributions follow the same Expectation-Maximization
skeleton. While Section 3 relies on these three distributions to describe the model
and the estimation algorithms, the second real data example in Section 4 utilizes a
more complex parametrization, which demonstrates the wide applicability of the
MBASIC framework. Furthermore, we consider the following degenerate distribu-
tion:

(2.6) fs(y|μkls, σkls, γikls) = I (y = s),

where I (·) denotes the indicator function. This degenerate form corresponds to
the situation where the states, θik’s, are directly observed rather than inferred from
Yikl’s. We utilize this parametrization for comparing MBASIC to alternative two-
step analysis approaches in Section 3.5. Parameter estimation for this case follows
a slightly modified procedure from the nondegenerate cases, which is described in
Section 3.

2.2. State-space clustering. Equation (2.2) models the distribution of θik as a
mixture of multiple distributions. To illustrate this model, we introduce additional
variables. The goal is to identify J clusters from the set of observation units 1 ≤
i ≤ I . Let bi = I (unit i does not belong to any cluster) and zij = I (unit i belongs
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to cluster j ). The bi variables entertain the possibility that some observations are
“singletons,” that is, they do not cluster with any other observational units. With
these additional variables, the distribution in equation (2.2) can be hierarchically
decomposed as follows:

• bi
i.i.d.∼ Bernoulli(ζ );

• (zi1, zi2, . . . , ziJ )
i.i.d.∼ MultiNom(1, (π1, π2, . . . , πJ ));

• Conditional on bi and zij , θik’s are independent samples from S , with sampling
probabilities P(θik = s|bi = 1) = pis , P(θik = s|bi = 0, zij = 1) = wjks .

In this setup, although the singleton state-space probabilities pis are assumed
to be constant across conditions, that is, P(θik = s) = pis , ∀k, this assump-
tion is mildly restrictive since it accommodates (P (θik = 1), . . . ,P (θik = S))

to follow an arbitrary prior distribution [e.g., (P (θik = 1), . . . ,P (θik = S)) ∼
Dirichlet(α, . . . , α),∀k] as long as it leads to the same marginal distribution for
θik for all k.

It is worth noting that this hierarchical structure essentially seeks a low-rank rep-
resentation for the matrix � = (θik)1≤i≤I,1≤k≤K . To illustrate this, we introduce
additional matrices �s = (I (θik = s))1≤i≤I,1≤k≤K , Ws = (wjks)1≤j≤J,1≤k≤K ,
Z = (zij )1≤i≤I,1≤j≤J , and vectors ps = (pis)1≤i≤I , B = (bi)1≤i≤I . Then the con-
ditional expectation of �s is

(2.7) E(�s |Z,B) = (ZWs) ◦ (
(1 − B)1T

K

) + (ps ◦ B)1T
K,

where “◦” denotes the Hadamard product. We note that E(�s |Z,B) is a matrix of
rank J + 1, which is usually much smaller than the dimension of the matrix �s .
Similar models for low-rank representation of discrete matrices were considered
in Lee, Huang and Hu (2010), and turned out to be challenging both theoretically
and computationally. The row-clustering structure for the matrices E(�s |Z,B) in
MBASIC is more restrictive than the general low-rank structure. Such additional
restrictions not only reduce the difficulty in parameter estimation but also enable
the flexibility in many useful ways. For example, while Lee, Huang and Hu (2010)
can only estimate one matrix at a time and thus is only applicable when S = 2,
MBASIC can be applied to arbitrary values of S.

3. Model estimation and selection.

3.1. Likelihood functions. In the MBASIC model, the likelihood function for
both the observed random variables Yikl’s and the unobserved θik’s, zij ’s, bi ’s, that
is, the full data likelihood, is given by

l(μ,σ,π,p, ζ,w;y, θ, z, b)

=
I∏

i=1

ζ bi (1 − ζ )1−bi ·
I∏

i=1

K∏
k=1

S∏
s=1

p
I(θik=s)bi

is ·
I∏

i=1

J∏
j=1

π
zij

j(3.1)
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×
I∏

i=1

K∏
k=1

S∏
s=1

[
nk∏
l=1

fs(yikl|μkls, σkls, γikls)

]I (θik=s)

×
I∏

i=1

J∏
j=1

K∏
k=1

S∏
s=1

w
I(θik=s)(1−bi)zij

jks .

For nondegenerate distributions, we can show that the marginal likelihood is

l(μ,σ,π,p, ζ,w;y)

=
I∏

i=1

{
ζ

K∏
k=1

[
S∑

s=1

pis

nk∏
l=1

fs(yikl|μkls, σkls, γikls)

]
(3.2)

+ (1 − ζ )

J∑
j=1

πj

K∏
k=1

[
S∑

s=1

wjks

nk∏
l=1

fs(yikl|μkls, σkls, γikls)

]}
.

Equation (3.2) is easily interpretable. Conditional on bi and zij , the joint distri-
bution for each Yikl, 1 ≤ l ≤ nk is a mixture of S components, where the weight on
the sth component is either pis (when bi = 1) or wjks (when bi = 0 and zij = 1).
This yields the expressions in the square brackets. Integrating out bi and zij , the
joint distribution for Yikl of fixed i is a mixture of J + 1 components, with proba-
bility ζ of being a singleton and probability (1 − ζ )πj of belonging to cluster j .

For the degenerate case, by substituting (2.6) into (3.2), it can be shown that the
marginal likelihood is

l(μ,σ,π,p, ζ,w; θ)
(3.3)

=
I∏

i=1

{
ζ

K∏
k=1

S∏
s=1

p
I(θik=s)
is + (1 − ζ )

J∑
j=1

πj

K∏
k=1

S∏
s=1

w
I(θik=s)
jks

}
.

3.2. An Expectation and Maximization (E-M) algorithm. The hierarchical
structure of MBASIC naturally fits in the Expectation-Maximization algorithm
Dempster, Laird and Rubin (1977), which maximizes the marginal likelihood
[equations (3.2) or (3.3)] by iteratively maximizing the complete data log-
likelihood function. We let φ denote a vector including all unknown parameters μ,
σ , π , p, ζ , w, and let φ̂(t) denote the parameter estimates at the t th iteration. The
complete data log-likelihood function is

Q
(
φ|φ̂(t−1)) =

I∑
i=1

K∑
k=1

S∑
s=1

[
nk∑
l=1

logfs(yikl|μkls, σkls, γikls)

]
E

[
I (θik = s)|φ̂(t−1)]

+
I∑

i=1

K∑
k=1

S∑
s=1

logpisE
[
I (θik = s)bi |φ̂(t−1)](3.4)
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+
I∑

i=1

J∑
j=1

logπjE
[
zij (1 − bi)|φ̂(t−1)]

+
I∑

i=1

{
log ζE

[
bi |φ̂(t−1)] + log(1 − ζ )

(
1 − E

[
bi |φ̂(t−1)])}

+
I∑

i=1

K∑
k=1

J∑
j=1

S∑
s=1

E
[
I (θik = s)zij (1 − bi)|φ̂(t−1)] logwjks.

The E-M algorithm for MBASIC is outlined by Algorithm 1. Computational
details for variable updates in each iteration are provided in Section 1.1 of the
Supplementary Material [Zuo et al. (2016)]. Our parametrization allows for closed-
form updates in the E-Step, which is important for computational speed. The M-
Step updates are distribution dependent. We provide the updating formulum for
distributions (2.3)–(2.6). Derivations for the updating formulum are provided in
Section 1.2 of the Supplementary Material [Zuo et al. (2016)].

3.3. Estimating structured clusters. In integrative functional genomics stud-
ies, the set of experimental conditions usually consists of interactions of multi-
ple experimental factors; hence, it is often important to identify clusters, states of
which are homogeneous across the levels of one or more factors. For example,
in a typical transcription factor network analysis, experimental conditions include
the combination of different cell types and TFs. It is often desirable to separate
loci groups whose states are homogeneous within each cell type from those with
cell type-specific states for the purpose of cell type comparison. Depending on
the cell types involved, such comparison can yield insights on cell development,
pathology, and/or cell-specific functions. We refer to clusters with homogeneous
states within each cell type as TF-homogeneous. Another example is encountered
in comparative functional genomics studies across different species where exper-
imental conditions range across both species and TFs. Clusters of loci, states of
which are homogeneous across species conditional on each TF, constitute con-
served functional modules. The TF-homogeneous clusters in this context represent

Algorithm 1 Expectation-Maximization (EM)
for t = 1,2, . . . until convergence do

Expectation Step: Compute the conditional expectations E[I (θik =
s)|φ̂(t−1)], E[bi |φ̂(t−1)], E[I (θik = s)bi |φ̂(t−1)], E[zij (1 − bi)|φ̂(t−1)],
E[I (θik = s)zij (1 − bi)|φ̂(t−1)];
Maximization Step: Update estimates for parameters μkls , σkls , ζ , πj , wjks ,
pis as maximizers for (3.4).

end for
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FIG. 1. A graphical description for a parametrization with structural constraints. Interactions of 2
cell types and 3 TFs result in six experimental conditions. Parameters with homogeneous values are
shaded by the same color.

the marginal effect of the species factor, and play a central role in understanding
the evolutionary relationships.

To estimate a cluster with homogeneity for a particular experimental factor,
MBASIC allows structural constraints on its state-space parameters. Recall that
the parameters of cluster j are represented by wj.s = (wj1s,wj2s, . . . ,wjKs).
Marginalizing the effect of this factor, the K experimental conditions can be par-
titioned into M sets, {1,2, . . . ,K} = T1 ∪ T2 ∪ · · · ∪ TM , where conditions within
each set differ only in the levels of this factor. The parameters of this cluster satisfy
the following constraints:

(3.5) wjk1s = wjk2s, if ∃ m s.t. k1, k2 ∈ Tm.

A pictorial depiction with six experimental conditions due to full interaction
between 2 cell types and 3 TFs is depicted in Figure 1. Estimating structured
clustering models follows the previous E-M algorithm with a slight modification.
A constrained maximizer for wjks subject to constraint (3.5) is computed as

ŵ
(t)
jks =

∑
k′:k′∈Tm

∑I
i=1 E[I (θik′ = s)zij (1 − bi)|φ̂(t−1)]

#{Tm}∑S
s=1

∑I
i=1 E[I (θik = s)zij (1 − bi)|φ̂(t−1)] , k ∈ Tm.

MBASIC requires that such structural constraints must be specified a priori and
remain fixed during model fitting. MBASIC incorporates a model selection pro-
cedure to compare models with different hypothesized structural constraints and
numbers of clusters. We next describe the details of this model selection proce-
dure.

3.4. Model selection. The MBASIC framework so far assumes that the total
number of clusters J is known a priori. In practice, models with varying values
of J need to be fitted independently and compared with each other according to
some information criterion to determine the best value of J . Since the E-M al-
gorithm aims to maximize the data likelihood function, AIC and BIC criteria can
be utilized with MBASIC. The degrees of freedom for a model with J clusters
is df = F1S

∑K
k=1 nk + (S − 1)I + J + F2, where F1 = 2 for distributions (2.3)

and (2.4), F1 = 1 for (2.5), and F2 is the total number of free variables among
wjks ’s. If there are no structured clusters, we have F2 = JK(S − 1).
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When there is no prior information available, both the total number of clusters
and the number of clusters following structural constraints have to be determined.
This results in a prohibitively large number of candidate models, and computing
the information criterion for each of them is not practical. In such cases we incor-
porate the following two-phase strategy to limit the number of candidate models:

1. Evaluate models with a varying total number of clusters without any structural
constraints. Select Jopt according to the minimal AIC or BIC value.

2. Evaluate models with the fixed number of Jopt clusters while varying the num-
ber of clusters following each structural constraint. Select the number of clus-
ters following each structural constraint based on the minimal AIC or BIC
value.

We acknowledge that the above two-step strategy is only a practical compromise
to restrict the space of candidate models and does not guarantee finding the best
model that globally minimizes the information criterion. However, we have con-
ducted extensive simulation studies which illustrated that the proposed two-phase
strategy performs well in a wide variety of settings.

3.5. Simulation studies. We conducted 6 model-based simulation studies to
investigate the performance of MBASIC in various settings as summarized in Ta-
ble 1. Each simulation study has multiple settings that vary the distributional as-
sumptions, size of the state-space (S), proportion of singletons (ζ ), number of
units (I ), number of clusters (J ), and number of conditions (K). We provide the
details of these simulation studies in Section 2 of the Supplementary Material and
highlight the overall conclusions in this section.

Data in Simulation Studies 1–2 were simulated according to MBASIC’s distri-
butional assumptions. In Simulation Study 1, we emphasized the two most impor-
tant features of MBASIC: the joint estimation procedure of all model parameters
and the inclusion of a singleton cluster. We derived six alternative algorithms (Sup-
plementary Table 1) to benchmark MBASIC’s performance in various settings.

TABLE 1
Design of the simulation studies. S: size of the state-space; ζ : proportion of singletons; I : number

of units; J : number of clusters; K : number of experimental conditions

Model
Study Distribution S ζ I (J,K) selection

1 LN, NB, Bin 2, 3, 4 0, 0.1, 0.4 4000 (20, 30) No
2 LN, NB, Bin 2 0.1, 0.4 4000 (20, 30) Yes
3 iASeq 3 0, 0.1, 0.4 4000 (10, 20), (20, 30) Yes
4 Cormotif 2 0 10,000 (4, 4), (5, 8), (5, 10) Yes
5 Cormotif 2 0, 0.1, 0.4 4000 (10, 20) Yes
6 LN 2 0, 0.33 4120, 4600, 6120 (8, 30) Yes
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Three of the algorithms (SE-HC, SE-MC, PE-MC) use two-stage procedures for
model estimation, decoupling either the estimation of the state-space variables or
the distributional parameters from the mixture modeling of clustering analysis. The
other three algorithms are created as variations on these by excluding the singleton
feature (SE-MC0, PE-MC0, MBASIC0). These benchmark algorithms are in spirit
analogous to procedures in many applied genomic data analyses where the asso-
ciation between observational units are estimated separately from the estimation
of individual dataset-specific parameters [e.g., Gerstein et al. (2012), Wei, Tenzen
and Ji (2015), Wei et al. (2012)].

Supplementary Figures 2–4 summarize the performance comparisons in Simu-
lation Study 1. We observed that MBASIC’s joint estimation feature improved the
inference for both the clustering structure and the individual states. In the pres-
ence of many singletons, the inclusion of their idiosyncratic state-space profiles
was essential for robust clustering. In Simulation Study 2, we evaluated the effect
of using BIC to select the number of clusters as well as the structural constraints
within each cluster. Supplementary Tables 2 and 3 indicate that MBASIC was al-
ways able to select models with similar structures with the simulated truth.

In Simulation Studies 3 to 5, we simulated data according to the models pro-
posed by iASeq [Wei et al. (2012)] and Cormotif [Wei, Tenzen and Ji (2015)].
These models allow heterogeneous distributional parameters within the same state,
a potential advantage over MBASIC in specific data analysis such as differential
expression or allele-specific binding. Comparison to these two models is intended
to enable investigation of whether MBASIC is robust against such within-state
heterogeneity. In Simulation Study 3, we showed that MBASIC with the binomial
distribution could directly handle data generated under the iASeq framework and
achieve competitive performance (Supplementary Figure 5). In Simulation Study
4, we inherited the simulation settings from Wei, Tenzen and Ji (2015), where dis-
tributions from different states were weakly separable, but the individual states
were completely deterministic from the clustering. We explored more dynamic
settings in Simulation Study 5, where we had easier separation between different
states, but randomness among the states within the same cluster. We showed that
a preprocessing step homogenizing the within-state units followed by MBASIC
leads to comparable performance to Cormotif in Simulation Study 4 (Supplemen-
tary Figure 6) and much better performance in Simulation Study 5 (Supplementary
Figure 7).

Wei, Tenzen and Ji (2015) discuss an interesting point that when the clustering
model does not accommodate singletons, small clusters tend to be merged together
to form spurious clusters, estimated state-space patterns of which are the averages
among several true clusters. In order to investigate whether such a phenomena
exists for MBASIC, we conducted Simulation Study 6, where we simulated data
with two large clusters and six small clusters, and compared the performance of
MBASIC and MBASIC0 to highlight the effect of including a singleton cluster.



1360 C. ZUO ET AL.

We found that compared to MBASIC0, MBASIC was significantly less aggres-
sive in merging small clusters. Overall, it captured large clusters and allocated the
small cluster units as singletons (Supplementary Figures 10 and 11, Supplemen-
tary Tables 6, 7, and 8). This study highlighted the utility of a singleton cluster as
a potential remedy for the merging of small clusters.

Combining results from all of our simulation studies, we conclude that MBA-
SIC is a powerful model for both state-space estimation and clustering structure
recovery. Its adaptability to singletons, effectiveness in model selection, and ro-
bustness against within-state heterogeneity strongly support its applicability for
real datasets.

4. Applications of MBASIC to genome research problems.

4.1. Transcription factor enrichment network. Regulation of gene expression
relies heavily on the context-specific combinatorial activities of TFs. Gene cluster-
ing analysis based on TF occupancy data, that is, ChIP-seq, aims to identify com-
binatorial patterns of TF occupancy and group genes based on such patterns. The
ENCODE consortium [ENCODE Project Consortium (2012)] has generated TF
ChIP-seq datasets for over 100 TFs across multiple cell types, and has motivated
several integrative studies for learning regulation patterns [Gerstein et al. (2012),
Wang et al. (2012)]. In this study, we applied MBASIC to the analysis of such data.
Specifically, we focused on the TF enrichment patterns at the promoter regions,
that is, −5000 bps and +1000 bps the transcription start site, of the 10,290 genes
that had significant expression, as measured by RNA-seq, in either the Gm12878
or the K562 cells. The input data to MBASIC were the mapped numbers of reads
at these promoter regions from the uniformly processed ChIP-seq data by Gerstein
et al. (2012). We chose the cell types Gm12878 and K562 because they had the
largest numbers of TF ChIP-seq experiments. The final dataset utilized included
ChIP-seq data for I = 10,290 observational units over 30 TFs corresponding to
K = 60 experimental conditions (cell type × TF) with a total of 166 replicate
experiments.

We fitted MBASIC with S = 2 states and used log normal distributions as in
equation (2.3). s = 1 corresponded to the unenriched state, and we let γikl1 =
log(1 + xik), where xik is the count from the matching control experiment at unit
i. s = 2 corresponded to the enrichment state, and we let γikl2 = 1 for all loci.

We followed the two-phase procedure using BIC from Section 3.4 to select both
the number of clusters and the structure of each cluster. In Phase 1, we selected the
number of clusters as 24. In Phase 2, we considered two types of structural con-
straints for each cluster, referred to by TF-homogeneity and cell type-homogeneity
and defined as wjk1s = wjk2s if k1 and k2 corresponded to the same TF or cell type.
We found that imposing cell type-homogeneity to any cluster would cause that
cluster to be degenerate (i.e., no unit was assigned to that cluster). Therefore, we
chose the final model among those with TF-homogeneity structures. The BIC and
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FIG. 2. (a) BIC and (b) log-likelihood values for models with different structures. All the clusters
are unstructured in the Phase 1 models and the x-axis denotes the total number of clusters. The total
number of clusters is 24 for Phase 2 models and the x-axis denotes the number of unconstrained
clusters. The remaining clusters have TF-homogeneity.

log-likelihood values for different models fitted in both phases are shown in Fig-
ure 2. The final model had 24 unconstrained clusters, consisting of 1 − ζ = 89.8%
of the 10,290 loci. The ranges of the estimated distribution parameters among
replicates within the same cell type-TF combination are shown in Supplementary
Figure 12. We notice that these parameters can be substantially different among
replicated experiments. This provides further support for our replicate-specific
parametrization.

To compare the normalized data and the predicted enrichment probability for
each cluster, we computed the normalized signals2 and compared them to the esti-
mated cluster parameters. Figure 3 depicts such normalized signals from five ran-
domly selected loci within each predicted cluster [Figure 3(a)], as well as the pre-
dicted enrichment probabilities at the corresponding condition and cluster (wjk2’s)
[Figure 3(b)]. We observe that the estimated enrichment probabilities at the cluster
level capture the commonality among loci within each cluster. In addition, each
loci cluster exhibits distinct combinatorial patterns of activity across all cell type-
TF combinations. The cell type-TF combination enriched within each cluster is
listed in Supplementary Table 9.

Our clustering results are consistent with the existing literature on the TF en-
richment networks. For example, cooperating TFs tend to be enriched at the same
loci. This pattern can be observed in Figure 3(b) between Bcl3 and Bclaf1. Pol2

2The normalized signal for unit i and condition k is

θ̃ik =
∏nk

l=1 fs(yikl |μ̂kl2, σ̂kl2, γikl1)∏nk

l=1 fs(yikl |μ̂kl2, σ̂kl2) + ∏nk

l=1 fs(yikl |μ̂kl1, σ̂kl1, γikl2)
.
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FIG. 3. (a) Normalized data for each cell-TF combination at five subsampled loci within each
cluster. (b) Estimated enrichment probability at each cell-TF combination for each cluster.

and Pol24h8 represent Pol2 experiments with different antibodies. As expected,
we observe enrichment at the same loci for these two different versions of Pol2
experiments. Moreover, pairs of TFs that have similar binding motifs have similar
enrichment probabilities over the clusters. For example, Wang et al. (2012) dis-
covered the UA1 motif as common to both Chd2 and Ets1 and the USF motif for
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FIG. 4. (a), (b) Plots of the transformed Pol2 ChIP sample read counts against the transformed
control sample read counts for all units in (a) Gm12878 and (b) K562 cells. Data from unenriched
units are expected to reside around the 45 degree dashed line.

Max, Usf1, and Usf2. Interactions between Taf1 and Tbp have also been studied
by Anandapadamanaban et al. (2013). Similar enrichment probabilities of these
TFs across clusters can be observed in Figure 3(b). In addition to these observa-
tions that are consistent with the literature, our results illustrate how the genome-
wide TF association patterns can be attributed to specific clusters. We explored
the loci clusters with distinct patterns between cell types (e.g., Pol2 in Cluster 12,
Figure 4), TFs from the same families (e.g., Bcl3 vs. Bclaf1 in Cluster 3, Supple-
mentary Figure 13), and TFs with similar genome-wide enrichment (e.g., Max vs.
Usf1 in Cluster 2, Supplementary Figure 14) using raw data. We further evaluated
each cluster of genes for their KEGG pathway enrichment [Subramanian et al.
(2005)], and identified 8 KEGG pathways that are significantly enriched in indi-
vidual clusters (Table 2). Three of our clusters (Clusters 7, 9, and 19) have more

TABLE 2
Significantly enriched KEGG pathways across the 24 clusters

# Genes Cluster
KEGG.name overlapped Z score Cluster size

Protein processing in endoplasmic reticulum 156 5.652 7 391
Fatty acid elongation in mitochondria 7 7.518 8 133
B cell receptor signaling pathway 74 6.016 9 146
Lysine biosynthesis 3 6.53 9 146
D-Glutamine and D-glutamate metabolism 3 5.548 12 184
Vitamin B6 metabolism 4 5.28 14 156
Nonhomologous end-joining 12 7.539 17 213
Lysosome 116 5.402 19 187
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than half of their genes in one single pathway. Since KEGG pathways curate the
known knowledge of molecular interaction systems, these clusters may be driven
by unknown biological processes that warrant further investigation.

MBASIC infers the clustering structure based on its own estimates of the state-
space profiles. The ENCODE consortium provides the estimated enrichment re-
gions (i.e., peaks) for each experiment in this study. Then a natural question
is whether MBASIC reveals more information compared to clustering of genes
based on ENCODE-estimated binary enrichment profiles of TFs. To address this,
we created a binary vector for each gene by overlapping its promoter with the
ENCODE peaks. Then we applied the state-of-the-art MClust model [Fraley and
Raftery (2002)] to cluster the 10,290 promoter regions based on these peak pro-
files. MClust selected 90 clusters based on BIC. Supplementary Figure 15 displays
cluster-level estimated enrichment probabilities of TFs across the conditions con-
sidered. Compared to Figure 3, we can see that many of the MClust clusters have
very similar enrichment profiles. For example, Clusters 51, 7, 8, 32, and 54 con-
tained almost no enrichment for any TFs, but are classified as distinct clusters.
The association between units across these clusters are thus nontrivial to interpret.
In addition, we found that, for some conditions, the enrichment states predicted
by MBASIC are quite different than those from the ENCODE peak profiles (e.g.,
Figure 5). This is because the ENCODE peaks are identified by whole genome-
wide analysis and may not reflect the differences between the ChIP and control
samples at the local promoter regions. MBASIC attains larger raw data fidelity
by directly modeling the counts at each unit rather than inheriting results from
existing analyses.

FIG. 5. (a), (b) Transformed ChIP versus control sample read counts from a Gm12878-Ctcf dataset.
Enrichment states are annotated by (a) ENCODE peak profiles and (b) MBASIC estimation. In
MBASIC, an observational unit is estimated to be enriched if its enrichment probability satisfies
P(θik = 2|Y ) > 0.5.
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4.2. Genome-wide identification of +9.5-like composite elements. Johnson et
al. (2012) and Gao et al. (2013) described the requirement of the intronic +9.5
site, an Ebox-GATA composite element located at chr6: 88143884–88157023
in the mouse genome (genome version mm9), to establish the hematopoietic
stem/progenitor cell (HSC) compartment in the fetal liver and for hematopoietic
stem cell genesis in the aorta–gonad–mesonephros (AGM), respectively. Further-
more, Johnson et al. (2012) and Hsu et al. (2013) showed that heterozygous +9.5
mutations cause a human immunodeficiency associated with myelodysplastic syn-
drome (MDS) and acute myeloid leukemia (AML). Because the +9.5 site is the
only known cis-element deletion which depletes fetal liver HSCs and is lethal
at E13-14 of embryogenesis, identifying additional loci that have similar func-
tionality is extremely important for establishing mechanisms that enable GATA
factor-bound regions with nonredundant activity and have the potential to reveal
novel targets for therapeutic modulation of hematopoiesis. In this application, we
identified 4803 genomic regions with the Ebox-GATA motif (CATCTG-N[7-9]-
AGATAA where N[7-9] denotes a variable size spacer of 7 and 9 nucleotides)
in the human genome (genome version hg19). We considered a 150 bps window
anchored at each of the 4803 composite elements as the observational unit. To an-
alyze the TF occupancy activities at these units and identify a group of composite
elements with occupancy profiles similar to that of the +9.5 composite element,
we downloaded all ChIP-seq data for the Huvec and K562 cells from Gerstein
et al. (2012). In total, the data set contained 224 replicates spanning K = 84 ex-
perimental conditions and 77 TFs.

We used negative binomial distributions with S = 2 states, where s = 1 denoted
the unenriched (unoccupied) state, in the MBASIC framework. We chose γikl1 =
1 + xik , where xik is the count for unit i from the matching control experiment for
condition k, to incorporate data from the accompanying control experiments of the
ChIP samples. For s = 2, we utilized the following mixture distribution to account
for the heavy tails observed in the raw data:

Yikl − 3|θik = 2
ind.∼ νikl NB(μkl2, σkl2) + (1 − νikl)NB(μkl3, σkl3),

νik
i.i.d.∼ Bernoulli(vkl).

Here, the constant 3 represents the minimum count threshold for enrichment
estimation. The use of mixture distributions to capture heavy-tailed count data was
previously considered by Zuo and Keleş (2014). We note that an alternative ap-
proach to capture heavy tailed counts would be to fit a model using S = 3 states,
with s = 2,3 representing two distinct enrichment components. Such an approach
would differ from the proposed approach in a subtle yet important way. In this
alternative approach, allocation of each unit to different enrichment components
would affect the clustering estimation, while, in our approach, clustering is only
determined by the enrichment status of the individual unit regardless of which en-
richment component it follows. The E-M algorithm for this setting requires a slight
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modification as discussed in Section 1.2 of the Supplementary Material [Zuo et al.
(2016)].

Following the two-phase model selection procedure using BIC, we selected the
model with 3 clusters, 2 of which were cell type-homogeneous. The ranges of the
estimated distribution parameters among replicates within the same condition are
displayed in Supplementary Figures 16–17. The three clusters (denoted by C1, C2,
and C3) included 332, 837, and 157 composite elements, respectively, and the re-
maining 3477 composite elements were identified as singletons. A heatmap for the
enrichment probability of each unit under each cell type-TF combination across
the three clusters is shown in Figure 6. The +9.5 element is a member of clus-
ter C3 which consists of a total of 157 +9.5-like composite elements. A detailed
genomic annotation of these elements are provided in Supplementary Table 10.
Notably, 46% of the C3 elements reside in intronic regions and 42% of these are
within the first intron. Only 15% of the cluster are located up to 10 Kb upstream
of transcription start sites.

A detailed analysis of Figure 6 reveals that cluster C3 is driven by several tran-
scription factors with known associations to GATA2. First, we note that a large
fraction of the C3 loci are bound by BRG1. The chromatin remodeler BRG1
is involved in GATA1-mediated chromatin looping [Kim, Bresnick and Bultman
(2009), Kim et al. (2009)] and co-localizes with GATA1 at some chromatin sites
[Hu et al. (2011)]. BRG1 has broad functions in many cell types; however, condi-
tional knockouts of BRG1 reveal its importance in specific cell and tissue contexts
[Holley et al. (2014)]. Another factor that clearly stands out as having a GATA2-
like profile in cluster C3 is ETS1. Our prior work identified the propensity of oc-
cupied GATA motifs to reside near Ets motifs [Linneman et al. (2011)] and Doré
et al. (2012) has highlighted GATA2-ETS co-localization.

We next performed an alternative naive analysis by utilizing the list of peaks
provided by the ENCODE project. As in the case of the Transcription Factor
Enrichment Network example of Section 4.1, these peaks, provided by the EN-
CODE consortium, were identified by analyzing each dataset individually with
ENCODE’s uniform ChIP-seq processing pipeline. Supplementary Figure 18 dis-
plays the ENCODE peak profiles for our cell type-TF conditions. For each of the
4803 composite elements, we constructed a peak profile, which is a binary vec-
tor indicating whether the element overlaps with the ENCODE peaks for each
cell type-TF combination. We then computed the peak profile-based similarity
between the +9.5 site and each the of the composite elements using the R func-
tion dist.binary with the “Jaccard index” option. For comparison, we com-
puted pseudo-binary similarities between each element and the +9.5 site using
the MBASIC estimated enrichment probabilities across all conditions.3 We then

3The pseudo-binary similarity between two units i1 and i2 is calculated as

s(i1, i2) =
∑

k P {θi1k = 1|Y }P {θi2k = 1|Y }∑
k P {θi1k = 1|Y } + P {θi2k = 1|Y } − P {θi1k = 1|Y }P {θi2k = 1|Y } .
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FIG. 6. Posterior enrichment probability [i.e., P(θik = 2|Y )] for all units in the three clusters. The
rightmost column of the C3 cluster corresponds to the +9.5 element.
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FIG. 7. Proportion of overlap between the top ranked +9.5-like composite elements identified by
MBASIC and ENCODE peak profiles. The overlap proportion is calculated by considering the same
number of top ranked units (x-axis) in both the ENCODE-based and MBASIC-based similarities to
the +9.5 site. The dashed lines mark that 78.3% of the C3 units are ranked in the top 157 based on
the ENCODE peak profiles.

ranked the composite elements based on both ENCODE and MBASIC estimated
similarities. Figure 7 provides a comparison of the two lists as a function of top
ranking composite elements. Overall, we observe that the rankings based on MBA-
SIC estimation are consistent with the rankings based on the ENCODE peak pro-
files.

Although the rankings of the composite elements with respect to their +9.5 sim-
ilarity using both the ENCODE peak profiles and MBASIC estimation were quite
similar, the two approaches resulted in different enrichment estimation at the indi-
vidual TF-cell combination level. Figure 8(a) compares the estimated cluster-level
enrichment probabilities of each cell type-TF combination for cluster C3 against
their average ENCODE peak profiles and highlights the difference between the
two procedures. To further investigate these differences, we plotted the raw data
for individual replicates and compared the composite elements that were estimated
to be enriched by the two methods. An example using data from K562-Chd2 is dis-
played in Figure 8(b) and (c). Although many elements have significantly higher
counts in the ChIP sample compared to the control sample, they are not identified
as occupied by Chd2 in K562 according to ENCODE peak annotation. Another
example using a replicate from K562-Yy1 is shown in Supplementary Figure 19,
where several elements with zero ChIP count are overlapped by ENCODE peaks.
These results indicate that MBASIC provides a grouping of the Ebox-GATA com-
posite elements that is more consistent with the raw data compared to grouping
based on ENCODE peak annotation.

5. Conclusions and discussion. Clustering analysis based on an underlying
state-space is a common problem for many genomic and epigenomic studies where
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FIG. 8. (a) Top half: Enrichment probabilities for the C3 units across all experimental conditions
estimated by MBASIC. Bottom half: Proportion of C3 units that are overlapped by the ENCODE
peaks for each condition. (b), (c) ChIP sample read counts against normalized control sample read
counts for one replicate of the K562-Chd2 dataset. Enrichment status is annotated by (a) the EN-
CODE peak profiles and (c) MBASIC prediction.

multiple datasets over many observational units are integrated. In this paper, we
developed a unified statistical framework, called MBASIC, for addressing this
class of problems. MBASIC simultaneously projects the observations onto a hid-
den state-space and infers clustered units in this space. The hierarchical structure
of MBASIC enables the information of the state-space clusters to be fed back
into the projection of the raw data, thus it reinforces the accuracy of predicting
the state-space states of individual units. The MBASIC framework offers flexibil-
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ity in a number of aspects of experimental design, such as different numbers of
replicates under individual experimental conditions and missing values. Addition-
ally, it is applicable to many parametric distributions. Our computational studies
highlighted good operating characteristics of MBASIC and the two genomic ap-
plications illustrated how large numbers of ChIP-seq datasets can be integrated for
addressing specific problems. In both of the applications, the MBASIC algorithm
converged within 20 minutes for a fixed model on a 64 bit machine with an Intel
Xeon 3.0 GHz processor and 64 GB of RAM. For model selection, we utilized the
R package snow to implement the 2-phase procedure with parallel fitting of dif-
ferent candidate models using an 8-core 64 bit, 64 GB RAM machine with 8 Intel
Xeon 3.0 GHz processors. These runs were completed under 2 hours. The compu-
tational efficiency of our model depends on the simple, closed-form updates in our
E-M algorithm. Such a mathematical form is due, at least in part, to our modeling
assumption that the rows of our state-space matrix are clustered. We have argued
that this assumption, as compared to the PCA-type model structures, offers eas-
ier interpretation and is well suited for many genomic applications. MBASIC is
available as an R package mbasic at https://github.com/chandlerzuo/mbasic.

SUPPLEMENTARY MATERIAL

Supplement to “A hierarchical framework for state-space matrix inference
and clustering” (DOI: 10.1214/16-AOAS938SUPP; .pdf). Supplementary meth-
ods, simulation studies, tables, and figures.
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