
The Annals of Applied Statistics
2010, Vol. 4, No. 3, 1430–1450
DOI: 10.1214/09-AOAS324
© Institute of Mathematical Statistics, 2010

OPTIMAL DESIGNS FOR RANDOM EFFECT MODELS WITH
CORRELATED ERRORS WITH APPLICATIONS

IN POPULATION PHARMACOKINETICS1

BY HOLGER DETTE2, ANDREY PEPELYSHEV AND TIM HOLLAND-LETZ

Ruhr University at Bochum, St. Petersburg State University and
Ruhr University at Bochum

We consider the problem of constructing optimal designs for population
pharmacokinetics which use random effect models. It is common practice in
the design of experiments in such studies to assume uncorrelated errors for
each subject. In the present paper a new approach is introduced to determine
efficient designs for nonlinear least squares estimation which addresses the
problem of correlation between observations corresponding to the same sub-
ject. We use asymptotic arguments to derive optimal design densities, and the
designs for finite sample sizes are constructed from the quantiles of the cor-
responding optimal distribution function. It is demonstrated that compared
to the optimal exact designs, whose determination is a hard numerical prob-
lem, these designs are very efficient. Alternatively, the designs derived from
asymptotic theory could be used as starting designs for the numerical com-
putation of exact optimal designs. Several examples of linear and nonlinear
models are presented in order to illustrate the methodology. In particular, it
is demonstrated that naively chosen equally spaced designs may lead to less
accurate estimation.

1. Introduction. The work presented in this paper is motivated by some prob-
lems encountered in the design of experiments in a clinical trial to establish the
pharmacokinetics of Uzara®, a digitoxin related herbal diarrhea medication [based
on Thürmann, Neff and Fleisch (2004)]. These kinds of trials pose methodological
design challenges because they require the estimation of global population pa-
rameters in the presence of correlated measurement errors. The trial in question
included a number of patients each given an oral application of Uzara® as well as,
after a washout period, an intravenous application of digoxin (Lanicor®), where in
both cases the resulting serum concentration of digitoxin was measured repeatedly
during the next 36 hours.

The relation between the time and the concentration in the analysis of the
Uzara® trial can be described using the theory of one-compartment models with
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oral and, respectively, intravenous applications [Atkinson et al. (1993), Shargel
(1993)]. In the intravenous case, the medication reaches the maximum concen-
tration in the blood almost immediately, and, after that, it is gradually eliminated
from the body over time. Thus, the digitoxin concentration is modeled using the
exponential elimination model

η(t, b) = b1e
−b2t .(1.1)

In the case of the oral application, there is a gradual build up of the concentration
in the blood as the medication is absorbed through the digestive tract, while there
is a simultaneous elimination process of the medication in the blood. Therefore,
the concentration function is the solution of the differential equation of these two
parallel processes. The resulting function

η(t, b) = b3(e
−b1t − e−b2t )(1.2)

is known as the (3 parameter) Bateman function [Garrett (1994)]. In both models,
the function η(t, b) denotes the concentration function, t is the time (in hours),
b = (b1, b2) and, respectively, b = (b1, b2, b3) are the vectors of parameters.
The parameters are assumed to vary between patients and the aim of the experi-
ment is to estimate their global means (and sometimes variances) over all patients.

Measurements within the same patient are usually correlated, and we assume
this correlation to be proportional to the time lag between measurements, which
is plausible as the random errors are usually caused by temporary changes in the
patients physical condition. Measurements for different patients are assumed to
be independent. In the trial at question Thuermann considered n = 15 (oral), re-
spectively, n = 14 (intravenous) measurements each on K = 18 patients. After a
preliminary discussion with experts the measurements were taken at nonoptimized
time points. An approximation of the covariance of a single patient can then be
expressed as

�pop = ∂η(t, b)

∂b

T

Vp

∂η(t, b)

∂b
+ Vε,(1.3)

where η(t, b) = (η(t1, b), . . . , η(tn, b))T denotes the vector of expected responses
at t1, . . . , tn and Vε is the covariance matrix corresponding to this data. This ex-
pression includes two sources of variation, the usual variation Vε caused by ran-
dom errors as well as the additional variation Vp due to the random effect.

Situations of this kind are rather common in the evaluation of the pharmacoki-
netics and the pharmacodynamics of drugs [see Buelga et al. (2005), Colombo
et al. (2006), among others]. The corresponding processes are usually modeled by
linear or nonlinear random effects models, which try to estimate the population
parameters, that is, the mean and the inter-individual variability of the parameters.
Under the additional assumption of a normal distribution, the population charac-
teristics are usually estimated by maximum likelihood methods. In many cases, the
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likelihood cannot be evaluated explicitly and approximations are used to calculate
the estimate. Efficient algorithms for estimation are available for this purpose [see
Aarons (1999)]. Loosely speaking, under a Gaussian assumption this approach
corresponds to weighted nonlinear least squares estimation. It was pointed out
by several authors that the application of an appropriate design in these studies
can substantially increase the accuracy of estimation of the population parameters.
Usually, the construction of a good design is based on the Fisher information ma-
trix which cannot be derived explicitly in pharmacokinetic models with random
effects. For this reason, many authors propose an approximation of the likelihood
[see, e.g., Mentré, Mallet and Baccar (1997), Retout, Mentré and Bruno (2002),
Retout and Mentré (2003), Schmelter (2007a, 2007b), among others], which is
used to derive an approximation for the Fisher information matrix. This matrix is
considered in various optimality criteria, which have been proposed for the con-
struction of optimal designs for random effect regression models.

In the present paper the investigation is motivated by the following issues. First,
the estimation of the population mean and the construction of corresponding op-
timal designs for population pharmacokinetics strongly depends on the Gaussian
assumption, which is usually made for computational convenience. Moreover, the
maximum likelihood estimates may be inconsistent if the basic distributional as-
sumption is violated. As a consequence, the derived optimal designs might be inef-
ficient. Second, most authors derive the approximation for the Fisher information
matrix under the additional assumption that the random errors corresponding to the
measurements of each individual are uncorrelated [see, e.g., Retout, Duffull and
Mentre (2001), Retout, Mentré and Bruno (2002) and Retout and Mentré (2003),
among many others]. However, this assumption is not realistic in many applica-
tions of population pharmacokinetics. Thus, a general concept for constructing
optimal designs in the presence of correlated observations is still missing. Third,
even if the Gaussian assumption and the assumption of uncorrelated errors for
each subject can be justified, the numerical construction of the estimate and the
corresponding optimal design is extremely hard.

In the present paper we address these issues. To derive a good design, we con-
sider nonlinear least squares estimation in random effect regression models. Note
that this estimation does not require a specification of the underlying distributions.
For this estimation, we introduce a methodology which can be used to derive effi-
cient or optimal designs in very general situations. More precisely, we embed the
discrete optimal design problem in a continuous optimal design problem, where a
nonlinear functional of the design density has to be minimized or maximized. This
approach takes into account the correlation dependence and yields an asymptotic
optimal design density, which has to be determined numerically in all cases of
practical interest. For finding the optimal density, we propose an algorithm based
on polynomial approximation. For a fixed sample size and for each individual,
an exact design can be obtained from the quantiles of the corresponding optimal
distribution function. It is demonstrated by examples that these designs are very
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efficient. Moreover, the designs, derived from the asymptotic optimal design den-
sity, are very good starting designs for any procedure of local optimization for
finding the exact optimal designs. To our knowledge, the proposed method is the
first systematic approach to determine optimal designs for linear and nonlinear
mixed effect models with correlated errors.

The remaining part of this paper is organized as follows. In Section 2 we con-
sider the case of a linear random effect model and explain the basic design con-
cepts. In Section 3 we introduce the approach for deriving the asymptotic optimal
designs for linear regression models with correlated observations by employing
results of Bickel and Herzberg (1979). In Section 4 we present results for nonlin-
ear regression models with correlated random errors and derive D-optimal designs
and optimal designs for estimating the area under the curve in the compartmental
model. Finally, the Uzara® and Lanicor® trials are re-analyzed and optimal de-
signs for the model (1.2) are determined. In particular, we show that the design
proposed by the experts is rather efficient, while a naively chosen equidistant de-
sign can yield substantially less accurate estimates.

2. Statement of the problem. Consider the common random effect linear re-
gression model

Yij = bT
i g(tij ) + εij , i = 1, . . . ,K; j = 1, . . . , ni,(2.1)

where Yij denotes the j th observation of the ith subject at the experimen-
tal condition tij , ε11, . . . , εK,nK

are centered random variables with variances
depending on t , Var(εij ) = σ 2h2(tij ) for some positive function h(t), g(t) =
(g1(t), . . . , gp(t))T is a given vector of linearly independent regression functions,
and bi is a p-dimensional random vector representing the individual parameters of
the ith subject, i = 1, . . . ,K . The explanatory variables tij can be chosen by the
experimenter from a compact interval T . We assume that errors εi = (εi1, . . . , εini

)

for different subjects are independent, but the errors for the same subject are cor-
related, that is,

Cov(εij , εis) = σ 2h(tij )h(tis)
(
γ r(tij − tis) + (1 − γ )δj,s

)
,(2.2)

where γ ∈ [0,1] is a constant, r(t) is a given correlation function such that
r(0) = 1, and δj,s denotes Kronecker’s symbol. Let Vε be the corresponding co-
variance matrix. Assume that the individual parameters bi are drawn from a pop-
ulation distribution with mean β and covariance matrix Vp , and they are inde-
pendent of the random variables εi . This means that the covariance between two
observations at the time tij and the time tis (j �= s) is

Cov(Yij , Yis) = gT (tij )Vpg(tis) + σ 2h(tij )h(tis)γ r(tij − tis),

while the variance of Yij is given by gT (tij )Vpg(tij ) + σ 2h2(tij ). It was shown
by Schmelter (2007b) that an optimal design necessarily advises the experimenter
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to perform observations of all subjects at the same experimental settings, that is,
tij = tj (i = 1, . . . ,K , j = 1, . . . , n). Consequently, we define an exact design
ξ = {t1, . . . , tn} as an n-dimensional vector which describes the experimental con-
ditions for each subject. Without loss of generality, we assume that the design
points are ordered, t1 < · · · < tn.

Suppose that n observations are taken according to the design ξ . Then the model
(2.1) for the ith subject can be written as

Yi = Xgbi + εi; i = 1, . . . ,K,(2.3)

where Yi = (Yi1, . . . , Yin)
T , the matrix Xg is given by Xg = (g(t1), . . . , g(tn))

T ,
and εi is now a centered random variable with variance σ 2h2(ti). This model is
a special case of the random-effect models discussed in Harville (1976), which
are called generalized MANOVA. According to Fedorov and Hackl (1997), the
(ordinary) least square estimate of β minimizes

K∑
i=1

n∑
j=1

h−2(tj )
(
Yij − f (tj )β

)2
.

Define f (t) = g(t)/h(t) and X = (f (t1), . . . , f (tn))
T . Then the covariance matrix

of the ordinary least squares estimate β̂OLS is given by

D(β̂OLS) = 1

K
(XT X)−1XT (Vε + XVpXT )X(XT X)−1

(2.4)

= 1

K

(
(XT X)−1XT VεX(XT X)−1 + Vp

)
.

Alternatively, if the covariance matrix Vε of the errors and the covariance matrix
of the random effects Vp were known (or can be well estimated), the (weighted)
least squares statistic

β̂WLS = 1

K

K∑
i=1

(
XT (Vε + XVpXT )−1X

)−1
XT (Vε + XVpXT )−1Yi,(2.5)

can be used to estimate the parameter β . The covariance matrix of the estimate
β̂WLS is given by

D(β̂WLS) = 1

K

(
XT (Vε + XVpXT )−1X

)−1
.(2.6)

Since the expression (2.4) is simpler than (2.6) (which requires two differ-
ent inversions), the design methodology developed in this paper is based on the
covariance matrix of the ordinary least squares estimate. Additionally, we will
demonstrate that the optimal designs obtained by minimizing functionals of the
covariance matrix of the ordinary least squares estimate are also very efficient for
weighted least squares estimation.
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We call a design optimal design if it minimizes an appropriate functional of
the covariance matrix of the least squares estimate. Since we consider optimality
criteria that are linear with respect to scalar multiplication of the covariance matrix,
we put K = 1 without loss of generality.

3. Asymptotic optimal designs. Although the theory of optimal design
has been discussed intensively for uncorrelated observations [see, e.g., Fedorov
(1972), Pázman (1986) and Atkinson and Donev (1992)], less results can be found
for dependent observations. For linear and nonlinear random effect models, opti-
mal designs under the assumption of uncorrelated errors have been investigated in
Schmelter (2007a, 2007b), Mentré, Mallet and Baccar (1997) and Retout and Men-
tré (2003), among others. For fixed effect regression models with the presence of
correlated errors, it was suggested to derive optimal designs by asymptotic consid-
erations. Sacks and Ylvisaker (1966, 1968) have considered a fixed design space,
where the number of design points in this set tends to infinity. As a result, the
asymptotic optimal designs depend only on the behavior of the correlation func-
tion in a neighborhood of the point 0. In the present paper we use the approach of
Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling (1981), who have
considered a design interval expanding proportionally to the number of observa-
tion points. This case is equivalent to the consideration of a fixed interval with the
correlation function depending on the sample size. To be precise, we assume that
the design space is given by an interval T and the design points of a sequence of
designs ξn = {t1n, . . . , tnn} are generated by a function a(·) in the form

tjn = a
(
(j − 1)/(n − 1)

)
, j = 1, . . . , n;(3.1)

and a : [0,1] → T denotes the inverse of a distribution function. Note that the
function a(·) is obtained from the density of the weak limit of the sequence ξn as
n → ∞. For example, if T = [−1,1], the function a(u) = (2u − 1) corresponds
to the equally-spaced designs with distribution function a−1(x) = x+1

2 and density
(a−1)′(x) = 1

2I[−1,1](x). Furthermore, we assume that the correlation function r(t)

of the errors εi in (2.2) depends on n in the form

rn(t) = ρ(nt),(3.2)

such that ρ(t) = o(t) as t → ∞. For the numerical construction of asymptotic
optimal designs, we derive an asymptotic representation for the covariance matrix
of the least squares estimate in the following lemma. For this purpose, we impose
the following regularity assumptions:

(C1) The functions f1(t), . . . , fp(t) are linearly independent, bounded on the in-
terval T and satisfy the first order Lipschitz condition:

|fi(t) − fi(s)| ≤ M|t − s| and

|fi(t)| ≤ M for all t, s ∈ T , i = 1, . . . , p.
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(C2) The function a(·) is twice differentiable and there exists a positive constant
M < ∞ such that for all u ∈ (0,1),

1

M
≤ a′(u) ≤ M, |a′′(u)| ≤ M.(3.3)

(C3) The correlation function ρ is differentiable with bounded derivative and sat-
isfies ρ′(t) ≤ 0 for sufficiently large t .

Assumption (C1) refers to the continuity of the response as a function of t and it is
satisfied for most of the commonly used regression models. Moreover, most of the
commonly used correlation structures satisfy assumption (C3) on a compact in-
terval. Finally, assumption (C2) refers to the characteristics of a design, requiring,
loosely speaking, that observations should not be clustered. This is quite reason-
able due to ethical aspects. The following result is obtained by similar arguments
as given in Bickel and Herzberg (1979) and, hence, its proof is omitted.

LEMMA. Assuming that conditions (C1), (C2) and (C3) are satisfied, then the
covariance matrix of the least squares estimate have the form

D(β̂OLS) = σ 2

n

(
W−1(a) + 2γW−1(a)R(a)W−1(a)

) + Vp + o

(
1

n

)
,(3.4)

where the matrices W(a) and R(a) are defined by

W(a) =
(∫ 1

0
fi(a(u))fj (a(u)) du

)p

i,j=1
,

R(a) =
(∫ 1

0
fi(a(u))fj (a(u))Q(a′(u)) du

)p

i,j=1

and the function Q(·) is given by Q(t) = ∑∞
j=1 ρ(j t).

Note that only the first term in (2.4) [and (3.4)] depends on a (asymptotic) de-
sign, and we propose to use this term for the construction of optimal designs. If
the function a(·) is the inverse of a continuous distribution with density, say, ϕ,
then a′(t) = 1/ϕ(t) and, for large n, the first term of the covariance matrix can be
approximated by the matrix V (ϕ)/n, where the p × p matrix V is given by

V (ϕ) := σ 2(
W−1(ϕ) + 2γW−1(ϕ)R(ϕ)W−1(ϕ)

)
.(3.5)

In (3.5) the matrices W(ϕ) and R(ϕ) have the form

W(ϕ) =
(∫

T
fi(t)fj (t)ϕ(t) dt

)p

i,j=1
,

R(ϕ) =
(∫

T
fi(t)fj (t)Q

(
1/ϕ(t)

)
ϕ(t) dt

)p

i,j=1
.
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A density will be called an asymptotic optimal density ϕ∗, if it minimizes an ap-
propriate functional of the matrix V (ϕ). Numerous criteria have been proposed in
[Silvey (1980), Atkinson and Donev (1992), Pukelsheim (1993)] and, exemplar-
ily, we consider the D- and c-optimality criteria which minimize −detV (ϕ) and
cT V (ϕ)c for a given vector c ∈ R

p , respectively. The application of the proposed
methodology to other optimality criteria is straightforward. The general procedure
for constructing an efficient design minimizing a given functional of the covariance
matrix of the least squares estimate is as follows:

(1) Specify the correlation function ρ(·) in (3.2) and compute Q(·).
(2) Compute the asymptotic optimal design density ϕ∗ that minimizes an appro-

priate functional of the matrix V (ϕ) in (3.5).
(3) Derive the exact design for a fixed sample size n by calculation of the quantiles

of the distribution function ∗ that corresponds to ϕ∗, namely,

ti,n = (∗)−1
(

i − 1

n − 1

)
; i = 1, . . . , n.(3.6)

The optimal density ϕ∗ in step (2) can be determined as follows. We consider the
parametric representation of a density by a polynomial in the form

ϕ(t) = (p0 + p1t + · · · + prt
r)+∫

T (p0 + p1t + · · · + prtr)+ dt

and apply the Nelder–Mead algorithm to find the optimal density that minimizes
the specified functional of the matrix V (ϕ) with respect to p0, . . . , pr . One can
run the algorithm for different degrees of the polynomial and different initial val-
ues and choose the density corresponding to the minimal value of the optimality
criterion. All integrals can be calculated by the Simpson quadrature formula. We
found that the minimal value of the criterion is negligibly decreasing for polyno-
mials of degree larger than r = 6. We also investigated the case where a density is
represented in terms of rational, exponential or spline functions. The results were
very similar and, on the basis of our numerical experiments, we can conclude that
the optimal density ϕ∗ can be very well approximated by 6-degree polynomials.

The derived designs from the asymptotic theory can be used to construct ef-
ficient designs for a given sample size as specified in step (3) of the algorithm.
Alternatively, exact optimal designs can be determined by employing the derived
designs as initial values in a (discrete) optimization procedure. More precisely, for
the determination of an exact optimal design, the above procedure can be extended
by the fourth step:

(4) Determine an exact optimal design, that minimizes a functional of the co-
variance matrix in (2.4), by using the Nelder–Mead algorithm with an initial
n-point design, which has been found in step (3).
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FIG. 1. Asymptotic D-optimal design densities for least squares estimation in a random effect
quadratic model for different choices of parameters in the covariance function (2.2) with r(t) defined
by (3.7). Right panel γ = 0.6; left panel λ = 0.2.

We illustrate this methodology for a quadratic regression model by the following
example. Also, in Section 4 we extend the approach for designing for nonlinear
models and investigate its performance for the compartmental model. In particular,
we demonstrate that the designs derived from the asymptotic consideration are
very efficient compared to exact optimal designs.

EXAMPLE 1 (Quadratic regression). We illustrate the proposed approach for
constructing optimal designs for the classical quadratic regression model with ho-
moscedastic errors. For this model, we have p = 3, f1(t) = 1, f2(t) = t , f2(t) = t2

and T = [−1,1]. Let the correlation function in (3.2) be given by ρ(t) = e−λt and

rn(t) = e−λnt , λ > 0.(3.7)

The asymptotic D-optimal densities for different choices of the parameters λ and γ

are shown in Figure 1. Note that the numerically calculated optimal design densi-
ties are symmetrical, but we were not able to prove the symmetry of the asymptotic
optimal density. We observe that the D-optimal density converges to the density of
the uniform design, if γ → 1 or λ → 0. On the other hand, if γ → 0 or λ → ∞, it
can be seen that the asymptotic D-optimal design density is more concentrated at
the points −1, 0 and 1, which are the points of the exact D-optimal design for the
quadratic fixed effect model with uncorrelated observations [see Gaffke and Krafft
(1982)]. Such behavior is natural because the errors are less correlated as γ → 0
or λ → ∞.

Further, we investigate the efficiency of an exact design derived from the asymp-
totic theory for least squares estimation, where the parameters in the correlation
function (2.2) are given by

γ = 0.6, σ 2 = 0.5, Vp = diag(σ 2
β1

, σ 2
β2

) = diag(0.32,0.32).(3.8)
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FIG. 2. Left part: Various designs for ordinary and weighted least squares estimation in the ran-
dom effect quadratic regression model. Exact D-optimal designs derived from asymptotic theory:
ball; exact D-optimal for ordinary least squares estimation: diamond; exact D-optimal designs for
weighted least squares estimation: triangle. Right part: Efficiency of the designs ξa

n and equidistant
design ξu

n for ordinary and weighted least squares estimation. The parameters are given by (3.8),
where λ = 1.2.

Let ξu
n be an n-point equidistant design and ξa

n be an n-point design obtained by
the transformation (3.6) from the asymptotic optimal density. The points of the
design ξa

n and the exact optimal designs for least squares estimation for λ = 1.2
are displayed in the left part of Figure 2. In the right part of Figure 2, we present
the efficiencies for ordinary least squares estimation,

effOLS(ξ) =
(

det[(XT X)−1XT VεX(XT X)−1 + Vp]
det[(XT

OLSXOLS)−1XT
OLSVεXOLS(XT

OLSXOLS)−1 + Vp]
)1/p

,

and for weighted least squares estimation,

effWLS(ξ) =
(

det[XT (Vε + XVpXT )−1X]
det[XT

WLS(Vε + XWLSVpXT
WLS)−1XWLS]

)1/p

for two designs: the design ξa
n , derived from asymptotic theory, and the uniform

design ξu
n . Here X denotes the design matrix obtained for the design ξ under inves-

tigation, while XOLS and XWLS correspond to the optimal exact design for ordi-
nary and weighted least squares estimation respectively. We observe that the design
points concentrate in three regions containing the points of the exact D-optimal de-
sign for a quadratic regression with uncorrelated errors. It is also noteworthy that
the designs derived from the asymptotic theory are very efficient, in particular, for
weighted least squares estimation.

4. Nonlinear random effect models. In this section we extend the methodol-
ogy to the case of nonlinear random effect models, which have found considerable
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interest in the literature on pharmacokinetics. In this case, the results of experi-
ments are modeled by

Yij = η(tj , bi) + εij , i = 1, . . . ,K; j = 1, . . . , n.(4.1)

Since the model (4.1) is nonlinear with respect to the variables bi , there is no an-
alytical expression for the likelihood function and various approximations have
been considered in the literature [see Mentré, Mallet and Baccar (1997), Retout,
Mentré and Bruno (2002), Retout and Mentré (2003), among others]. These ap-
proximations are used for the calculation of the maximum likelihood estimate and
the corresponding Fisher information matrix. Alternatively, an estimate of the pop-
ulation mean β can be obtained as an average of the nonlinear least squares esti-
mates b̂i for the different individuals, but due to the nonlinearity of the model, an
explicit representation of the corresponding covariance matrix cannot be derived.
Following Retout and Mentré (2003), we employ a first-order Taylor expansion to
derive an approximation of this covariance matrix. To be precise, we obtain (under
suitable assumptions of differentiability of the regression function) the approxima-
tion

η(t, b) ≈ η(t, β) + g(t, β)(b − β)T ,(4.2)

where

g(t, b) = ∂η(t, b)

∂b

denotes the gradient of the regression function with respect to b. This means that
the nonlinear model (4.1) is approximated by the linear model (4.2). For the con-
struction of the optimal design, we assume that knowledge about the parameter
β is available from previous or similar experiments. This corresponds to the con-
cept of locally optimal designs, introduced by Chernoff (1953) in the context of
fixed effect nonlinear regression models. Usually, locally optimal designs serve as
benchmarks for commonly used designs and are the basis for the construction of
optimal designs with respect to more sophisticated optimality criteria including
the Bayesian and minimax approach [see Chaloner and Verdinelli (1995) or Dette
(1995)].

Following the discussion in Section 3, we define the function f (t, b) =
g(t, b)/h(t) to account for heteroscedasticity. Note that the covariance matrix of
the nonlinear least squares estimate in the model (4.1) is approximated by replac-
ing the matrix X in model (2.1) with f (t) = f (t, b)|b=β , and the methodology
described in Sections 2 and 3 can be applied to determine efficient designs. In the
context of dose finding studies, it has been shown by means of a simulation study
that the approximation (4.2) has sufficient accuracy for the construction of optimal
designs [see Section 5 in Dette et al. (2008) for more details].

We further illustrate this concept by giving several examples for the case of
homoscedastic errors. First, we investigate D- and c-optimal designs for the ran-
dom effect model, which has recently been studied by Atkinson (2008). Next, we
re-analyze the Uzara® and Lanicor® trials introduced in Section 1.
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4.1. D-optimal design for a random effect compartmental model. We con-
sider the random effect compartmental model with first-order absorption,

η(t, b) = b1

b1 − b2
(e−b2t − e−b1t ).(4.3)

The model (4.3) is a special case of the Bateman function, defined in the intro-
duction [see Garrett (1994)], and has found considerable attention in chemical
sciences, toxicology and pharmacokinetics [see, e.g., Gibaldi and Perrier (1982)].
The optimal design problem in the compartmental fixed effect model has been
studied by numerous authors [see, e.g., Box and Lucas (1959), Atkinson et al.
(1993), Dette and O’Brien (1999), Biedermann, Dette and Pepelyshev (2004),
among others], but much fewer results are available under the assumption of ran-
dom effects. Recently optimal approximate designs for a random-effect compart-
mental model (4.3) have been determined by Atkinson (2008), but we did not find
results about exact designs for these models in the presence of correlated errors.
In the present paper we derive such designs from the asymptotic optimal design
density and compare these designs with the exact optimal designs.

Note that the gradient of the function η(t, b) with respect to b is given by

g(t, b) =
(

b2(e
−b1x − e−b2x) + (b1

2x − b1b2x)e−b1x

(b1 − b2)2 ,

(4.4)
b1(e

−b1x − e−b2x) + (b1
2x − b1b2x)e−b2x

(b1 − b2)2

)T

.

In order to illustrate the methodology, we consider the same scenario as in
Atkinson (2008) and assume that the parameters of the population and error distri-
butions are the following: β(0) = (1,0.5)T ,

γ = 0.6, σ 2 = 0.01, Vp = diag(σ 2
β1

, σ 2
β2

) = diag(0.12,0.052),(4.5)

and the design space is given by the interval T = [0,10]. We assume that the
function r(t) in (2.2) is given by (3.7). The asymptotic D-optimal design densities
for different values of the parameters are shown in Figure 3. We observe that, for
γ → 1 or λ → 0, the D-optimal design densities approximate the uniform design,
while, for larger values of λ or small values of γ , the asymptotic D-optimal designs
put more weight at two specific regions of the design space. This fact corresponds
to intuition, because the (approximate) D-optimal design for the model (4.3) with
uncorrelated observations is a two-point design [see, e.g., Box and Lucas (1959)].

Further, we investigate the performance of the uniform and an exact design de-
rived from asymptotic theory. For this purpose we define ξu

n as an n-point equidis-
tant design {10/n,20/n, . . . ,10} and ξa

n as the n-point design obtained by the
transformation

tj = (∗)−1(
j/(n + 1)

)
, j = 1, . . . , n,
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FIG. 3. Asymptotic D-optimal design densities for nonlinear least squares estimation in the com-
partmental model (4.3) for different choices of the parameters in the covariance function (2.2) with
r(t) defined by (3.7). Left part: λ = 0.2; right part: γ = 0.6.

where ∗ denotes the distribution function corresponding to the asymptotic
D-optimal design density. Note this transformation is slightly different from the
transformation (3.1) in order to exclude the point 0 from the design points. Obvi-
ously, it is not reasonable to take observations t = 0 in model (4.3), because it is
assumed that the drug is administered at time t = 0. The corresponding points of
the exact designs are depicted in the left part of Figure 4, while the right part of the
figure shows the D-efficiencies of the different designs. We observe that the de-
signs derived from the asymptotic theory have a substantially larger D-efficiency
compared to the uniform design. For example, for n = 6, the D-efficiency of the
uniform design is approximately 50% for ordinary and weighted nonlinear least
squares estimation, while the D-efficiency of the design ξa

n is close to 90%.

FIG. 4. Left part: Various designs for ordinary and weighted nonlinear least squares estimation in
the compartmental model (4.3). Exact D-optimal designs derived from asymptotic theory: ball; exact
D-optimal for ordinary least squares estimation: diamond; exact D-optimal designs for weighted
least squares estimation: triangle. Right part: Efficiency of the designs ξa

n and ξu
n for ordinary and

weighted least squares estimation. The parameters are given by (4.5), where λ = 0.2.
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FIG. 5. D-efficiencies of the designs ξa
4 = {1.04,2.01,3.16,4.33} (left part) and the design

ξa
6 = {0.83,1.47,2.32,3.30,4.20,5.20} (right part) (these designs are obtained from asymptotic

density) for nonlinear least squares estimation in the random effect compartmental model (4.3), if
the mean of the population distribution has been misspecified. The parameters of the population
distribution are given by (4.5) with λ = 0.2.

It is worthwhile to mention that, in nonlinear random effect models, the optimal
designs depend additionally on the mean β of the distribution of the population
parameters bi . Therefore, it is of interest to investigate the sensitivity of the designs
with respect to a misspecification of this parameter. For a study of the impact of
such a misspecification on the efficiency of the resulting designs, we consider the
case n = 4 and n = 6 and the corresponding designs ξa

4 = {1.04,2.01,3.16,4.33}
and ξa

6 = {0.83,1.47,2.32,3.30,4.20,5.20}, respectively. In Figure 5 we display
the efficiencies(

det[(XT X)−1XT VεX(XT X)−1 + Vp]
det[(XT

OLS,βXOLS,β)−1XT
OLS,βVεXOLS,β(XT

OLS,βXOLS,β)−1 + Vp]
)−1/p

(4.6)

for different values of β . Here X denotes the design matrix obtained from the
design ξa

n under the assumption that β(0) = (1,0,5)T , while the matrix XOLS,β

corresponds to the exact D-optimal design for nonlinear least squares estima-
tion for a specific β . The efficiencies are plotted in Figure 5 for the rectangle
[β(0)

i − 3σ
β

(0)
i

, β
(0)
i + 3σ

β
(0)
i

] = [0.7,1.3] × [0.35,0.65]. It can be seen that the ex-

act optimal design, derived from the asymptotic theory, has a high D-efficiency
with respect to misspecification of the population mean β over a broad range.

4.2. Optimal designs for estimating the AUC. In some bioavailability studies,
the aim of experiments is the estimation of the area under curve

AUC =
∫ ∞

0
η(t, β) dt.

For the compartmental model (4.3), we obtain AUC = 1/b2. It can be shown that
the locally AUC-optimal design for model (4.3) minimizes the variance of the non-
linear least squares estimate for the parameter β2. This variance is approximately
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FIG. 6. Asymptotic optimal densities for estimating the area under the curve in the compartmental
model (4.3) for different choices of the parameters in the covariance function (2.2) with r(t) defined
by (3.7). Left part: λ = 0.2, right part: γ = 0.6.

proportional to

(0,1)
(
(XT X)−1XT VεX(XT X)−1 + Vp

)
(0,1)T .

This expression corresponds to the c-optimality criterion, which has been dis-
cussed extensively in the literature for fixed effect models with uncorrelated ob-
servations [see, e.g., Ford, Torsney and Wu (1992), Fan and Chaloner (2003) and
Dette et al. (2008), among others]. The asymptotic optimal design densities for es-
timating the area under the curve are shown in Figure 6. We observe again that the
optimal density is close to the uniform design density if λ → 0 or γ → 1. On the
other hand, if λ is large or γ → 0, the AUC-optimal design density has a narrow
support. This fact reflects that the optimal design for estimating the area under the
curve in the fixed effect compartmental model with uncorrelated observations is
a one-point design. In Figure 7 we show the designs derived from the asymptotic
optimal design densities, and the exact optimal designs for estimating the area un-
der the curve in the compartmental model. We observe that the designs ξa

n , derived
from the asymptotic optimal design density, are very close to the exact optimal de-
signs for least squares estimation of the area under the curve. Moreover, the design
ξa
n yields a substantial improvement in efficiency compared to the uniform design.

Again we observe that the designs derived for ordinary least squares estimation
also have excellent efficiencies for weighted least squares estimation of the AUC
(see the right part of Figure 7).

4.3. Optimal designs for estimating the AUC in the Uzara® and Lanicor® trials.
In this section we consider the optimal design problem for estimating the AUC
in the two examples presented in the introduction. The medical background of
these examples was a small pilot trial of 4 patients [Thürmann, Neff and Fleisch
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FIG. 7. Left part: Various designs for estimating the area under the curve in the compartmental
model (4.3). Designs derived from asymptotic theory: ball; exact optimal designs for least squares
estimation of the area under the curve: diamond; exact optimal designs for weighted least squares
estimation: triangle. Right part: Efficiency of the designs ξa

n and ξu
n for ordinary and weighted least

squares estimation of the AUC. The parameters are given by (4.5), where λ = 1.2.

(2004)], where it was observed that patients taking the over-the-counter herbal
diarrhea medication Uzara® (in the form of drops, i.e., oral application) showed
high values in medical assays designed to measure the blood serum concentration
of digitoxin, a potent treatment against heart insufficiency. This is caused by the
chemical similarity of these two substances and can result in major complications
in establishing treatment programs for heart insufficiency. It was thus decided to
compare the pharmacokinetic properties of an oral application of Uzara® to the
properties of the usual intravenous application of a regular digitoxin medication
(Lanicor®) on a larger sample size of 18 patients, with 15 measurements each.
The main focus of the comparison was the area under the concentration curve as
a measure of the total effect of an application. A preliminary design was proposed
by experts in order to allow precise estimation of this property, and the study was
carried out according to this design. We will now investigate the efficiency of this
and a naively chosen equally spaced design compared to a design generated using
the methods presented in this paper.

In order to compute the design densities, it is necessary to estimate the parame-
ters for both of the models. To do so, we used the full 18 patient data set, however,
this could have been done as well using only the 4 patients of the pilot study. We es-
timated parameters using a combination of maximum likelihood and least squares
techniques [see Pinheiro and Bates (1995)]. For the intravenous part corresponding
to model (1.1), we have received the estimates β̂ = (30,0.75)T ,

V̂p =
(

9 0.189
0.189 0.0049

)

for the population parameters, while the estimates of the parameters in the covari-
ance matrix (1.3) are given by γ̂ = 0.8, λ̂ = 0.05, σ̂ 2 = 0.6.
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For the oral application corresponding to model (1.2), the estimates of the para-
meters are given by β̂ = (0.2,0.135,28)T ,

V̂p =
⎛
⎝

0.0025 0.0019 0
0.0019 0.0016 0

0 0 144

⎞
⎠

and γ̂ = 0.8, λ̂ = 0.01, σ̂ 2 = 0.2. Note that the entries in the positions (1,3),
(2,3), (3,1) and (3,2) are not identical 0, but smaller than 10−5. Based on a
preliminary discussion with experts, the physicians decided to take measurements
for both experiments at nearly identical (nonoptimized) time points

0,0.5,1,1.5,2,3,4,5,6,8,10,12,15,24,36

and

0.25,0.75,1.25,2,3,4,5,6,8,10,12,15,24,36,

respectively. Note that in the second design an additional measurement was taken
at t = −0.25, that is, before the intravenous injection. Since this point is out of
the scope of the exponential evasion model, the observation at this time has been
excluded from further considerations. Thus, the Lanicor® trial has n = 14 obser-
vations.

For the estimated parameters, we have derived the asymptotic optimal design
densities, which are depicted in the left and right part of Figure 8 for the Uzara®

and Lanicor® trials, respectively, where the design interval is given by T = [0,36].
The resulting designs from these densities are given by

2.09,4.55,7.49,10.8,13.9,16.8,19.2,21.5,23.6,25.7,27.7,29.8,31.9,34.0,36

for the Uzara® trial and

0.432,0.85,1.25,1.66,2.06,2.46,2.87,3.28,3.7,4.12,4.55,5.01,5.54,36

FIG. 8. Asymptotic optimal density for estimating the area under the curve in the 3-parameter
Bateman (left part) and exponential evasion model (right part).
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for the Lanicor® trial. This means that the asymptotic optimal design for the oral
application is close to an equally spaced design, while the optimal design for the in-
travenous application is much more focused on measurements at early time points.
This result is plausible in an exponential elimination model. Calculating the effi-
ciencies for ordinary least squares estimation of these asymptotic optimal designs
compared to the exact optimal design, we obtain efficiencies 0.99 and 0.95, re-
spectively, indicating that these designs are quite good.

Upon numerical studies, we can further conclude that the constructed designs
are robust to misspecification of the initial guess of parameters. For example, vari-
ations of λ (or any of the other parameters) by up to 50% yield a drop of efficiency
by less than 0.02.

Note that in the examples presented in Sections 3, 4.1 and 4.2, the efficiencies
of the derived designs for weighted least squares estimation are very similar to
the efficiencies for ordinary least squares estimation, and a similar observation has
been made for the two trials under investigation. The efficiencies for weighted
least squares estimation of the designs based on the asymptotic density are 99%
(Uzara®) and 97% (Lanicor®), even better than the efficiencies for ordinary least
squares estimation.

We now investigate the performance of the designs which were actually used
in the clinical trial. We found that these designs have efficiency 0.96 and 0.92 for
estimating the AUC through OLS estimation in the Uzara® and Lanicor® trials,
respectively. Thus, the preliminary designs, recommended by experts, are rather
efficient in both trials.

Let us now investigate the performance of naively chosen equidistant designs:
the design

0,2.6,5.1,7.7,10.3,12.8,15.4,18.0,20.6,23.1,25.7,28.3,30.8,33.4,36

for the Uzara® trial, and the design

0,2.8,5.5,8.3,11.1,13.9,16.6,19.4,22.2,24.9,27.7,30.5,33.2,36

for the Lanicor® trial. Comparing these designs to the optimal designs, we obtain
efficiencies of 0.97 and 0.41 for ordinary least squares estimation of the AUC in
the Uzara® and Lanicor® trials, respectively.

It was pointed out by a referee that it is of some interest to investigate the per-
formance of the optimal designs proposed in this paper for the estimation of the
variance of the random effects (i.e., the parameters of the matrix Vp). These para-
meters are usually estimated by maximum likelihood techniques [see Retout and
Mentré (2003), among others] and the corresponding information matrix of these
estimates is of a fundamentally different structure compared to the variance matrix
of the least squares estimate. For the two optimal designs we have calculated the
D-efficiencies for estimating the diagonal elements of the matrix Vp , which are
96% and 79% in the Uzara® and Lanicor® trial, respectively. The designs actually
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used in the trial have efficiency 98% and 85%, while the corresponding efficiencies
of the uniform designs are 98% and 63%, respectively. Thus, the proposed optimal
designs for AUC-estimation also have reasonable efficiency for estimation of the
covariance matrix of the population distribution.

Summarizing the discussion in this example, we conclude that the equally
spaced design in the Uzara® trial is very close to the optimal design determined
by the proposed methodology, and it is for this reason very efficient. However, the
equally-spaced designs do not always have high efficiency. In the Lanicor® trial,
the use of naively chosen designs yields considerably less accurate estimates. For
this reason, the application of experimental design techniques in the context of
pharmacokinetics trials is strictly recommended.
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