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THE TOTAL PATH LENGTH OF SPLIT TREES

BY NICOLAS BROUTIN AND CECILIA HOLMGREN

Inria, and Inria and Cambridge University

We consider the model of random trees introduced by Devroye [SIAM
J. Comput. 28 (1999) 409–432]. The model encompasses many important
randomized algorithms and data structures. The pieces of data (items) are
stored in a randomized fashion in the nodes of a tree. The total path length
(sum of depths of the items) is a natural measure of the efficiency of the
algorithm/data structure. Using renewal theory, we prove convergence in dis-
tribution of the total path length toward a distribution characterized uniquely
by a fixed point equation. Our result covers, using a unified approach, many
data structures such as binary search trees, m-ary search trees, quad trees,
median-of-(2k + 1) trees, and simplex trees.

1. Introduction. In this paper we investigate the total path length, that is, sum
of all depths, of random split trees defined by Devroye [13] (we will be more pre-
cise shortly). Split trees model a large class of efficient data structures or sorting al-
gorithms. Some important examples of split trees are binary search trees (which are
also the representation of Quicksort) [24], m-ary search trees [47], quad trees [19],
median-of-(2k + 1) trees [4], simplex trees; all these are covered by the results in
this document. The case of tries [21] and digital search trees [12] is also important
in practice [54]; however, their treatment necessitates different tools, and we leave
this case for later studies.

The magnitude of the depths in tree data structures naturally influences their
efficiency; in the case where the tree represents the branching choices made by an
algorithm, the depths are related to the running time of the algorithm. In this sense,
the sum of the depths is a natural and important measure of the efficiency of tree
data structures or sorting algorithms.

The path length of tree data structures has been studied by many authors, but
in most cases the analyses and proofs are very much tied to a specific case. The
main result of this study is to prove that for a large class of split trees, the total path
length converges in distribution to a random variable characterized by some fixed
point equation. In that sense our result extends the earlier studies of Rösler [50, 52]
and Neininger and Rüschendorf [45] who used the so-called contraction method to
show convergence in distribution of the total path length for the specific examples
of the binary search trees, the median-of-(2k+1) trees and quad trees. Our method
actually relies on previous work of Neininger and Rüschendorf [45] who gave a
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limit theorem for the path length of general split trees, under the assumption that
the mean satisfies some precise asymptotic form, which we prove.

PLAN OF THE PAPER. In Section 2, we introduce the model of split trees of
Devroye [13]. We also discuss previous work on the path length and similar topics.
This is also the place where we state our main result, Theorem 2.1.

In Section 3, we explain our general approach, which relies heavily on previous
work by Neininger and Rüschendorf [45]. These authors stated a general condition
for convergence in distribution of the path length, and our contribution is to prove
that it indeed holds for a large class of split trees. So Section 3 is included so that
the reader has a general view of the argument.

Once we have stated the precise condition in Section 3, we will move on to
explaining our approach to proving it in Section 4. Finally, in Section 5 we discuss
extensions of our results.

2. Split trees and path length: Notation and background. We introduce the
split tree model of Devroye [13]. Consider an infinite rooted b-ary tree (every node
has b children). The nodes are identified with the set of finite words on an alphabet
with b letters, U = ⋃

n≥0{1, . . . , b}n. The root is represented by the empty word ∅.
We write u � v to denote that u is an ancestor of v (as words, u is a prefix of v).
In particular, for the empty word ∅, we have ∅ � v for any v ∈ U .

A split tree T n of cardinality n is constructed by distributing n items (pieces of
data) to the nodes u ∈ U . To describe the tree, it suffices to define the number of
items nu in the subtree rooted at any node u ∈ U . The tree T n is then defined as
the smallest relevant tree, that is, the subset of nodes u such that nu > 0 (which is
indeed a tree).

In the model, internal nodes all contain s0 ≥ 0 items, and external nodes can
contain up to s items. The construction then resembles a divide-and-conquer pro-
cedure, where the partitioning pattern depends on a random vector of proportions.
Let V = (V1, . . . , Vb) satisfy Vi ≥ 0 and

∑
i Vi = 1; each node u ∈ U receives an

independent copy Vu of the random vector V . In the following, we always as-
sume that P(∃i :Vi = 1) < 1. We can now describe (nu,u ∈ U ). The tree contains
n items, and we naturally have n∅. The split procedure is then carried on from
parent to children as long as nv > s. Given the cardinality nv and the split vector
Vv = (V1,V2, . . . , Vb) of v, the cardinalities (nv1, nv2, . . . , nvb

) of the b subtrees
rooted at v1, v2, . . . , vb are distributed as

Mult(nv − s0 − bs1,V1,V2, . . . , Vb) + (s1, s1, . . . , s1),(1)

where 0 ≤ s and 0 ≤ bs1 ≤ s + 1 − s0.
Depending on the choice of parameters s0, s1, s and the distribution of V =

(V1, . . . , Vb), many important data structures may be modeled, such as binary
search trees, m-ary search trees, median-of-(2k + 1) trees, quad trees, simplex
trees (see [13]). To make sure that the model is clear and to give a hint of the
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wide applicability of the model, we illustrate the construction with two canonical
examples.

EXAMPLE 1 (Binary search tree). The binary search tree is one of the most
common data structures for sorted data. Here we assume that the data set is
{1, . . . , n}. A first (uniformly) random key is drawn σ1, and stored at the root of
a binary tree. The remaining keys are then divided into two subgroups, depend-
ing on whether they are smaller or larger than σ1. The left and right subtrees are
then binary search trees built from the two subgroups {i : i < σ1} and {i : i > σ1},
respectively. The sizes of the two subtrees of the root are σ1 − 1 and n − σ1. One
easily verifies that, since σ1 is uniform in {1,2, . . . , n}, one has

(σ1 − 1, n − σ1)
d= Mult(n − 1;U,1 − U),

where U is a uniform U(0,1) random variable. Thus, a binary search tree can be
described as a split tree with parameters b = 2, s0 = 1, s = 1, s1 = 0 and V is
distributed as (U,1 − U) for U a random variable uniform on [0,1].

EXAMPLE 2 (Digital trees or tries). We are given n (infinite) strings X1, . . . ,

Xn on the alphabet {1, . . . , b}. The strings are drawn independently, and the sym-
bols of every string are also independent with distribution on {1, . . . , b} given by
p1, . . . , pb. Each string naturally corresponds to an infinite path in the infinite com-
plete b-ary tree, where the sequence of symbols indicates the sequence of direc-
tions to take as one walks away from the root. The trie is then defined as the
smallest tree so that all the paths corresponding to the infinite strings are eventu-
ally distinguished; that is, for every string Xi , there exists a node u in the tree such
that Xi is the only string with u � Xi . The internal nodes store no data; each leaf
stores a unique string. In this case, nv is the number of strings that have prefix v,
and one clearly has for the children of the root

(n1, . . . , nb)
d= Mult(n;p1, . . . , pb).

The trie is thus a random split tree with parameters s = 1, s0 = s1 = 0 and V =
(p1,p2, . . . , pb) almost surely.

AN ALGORITHMIC POINT OF VIEW. Rather than using the divide-and-
conquer description above, the random trees may be equivalently defined using
incremental insertion of data items into an initially empty data structure. The items
are labeled using {1,2, . . . , n} in the order of insertion. Initially, nu = 0 for every
u ∈ U . We first sample the i.i.d. copies of V that are assigned to the nodes u ∈ U .

• Upon insertion, an item first trickles down along a random path from the root
until it finds a leaf (i.e., a node u such that all its children u1, . . . , ub satisfy
nui

= 0). If the path currently corresponds to a word v ∈ U , and v is not a
leaf, then it is extended to vi , the ith child of v with probability Vi , where
(V1, . . . , Vb) is the copy of V associated with v.
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• When the first phase is finished, the item is stored in a leaf, say v. The leaves
can contain up to s items. So if nv < s (before the insertion), then the item is
stored at v, and all the nu for u � v are updated.

• If nv = s, there is no space for the new item at v. With the new item, we for-
mally have nv = s + 1. In this case, s0 of these s + 1 items are randomly chosen
to remain at v while the other s + 1 − s0 are distributed among the children
v1, . . . , vb of v. Each child receives s1 items chosen at random. The remaining
s + 1 − s0 − bs1 each choose (independently) a child vi at random with proba-
bility Vi , where (V1, . . . , Vb) is the copy of V at node v. If s1 = s0 = 0, it may
happen that all s + 1 items now lie at one child vi , in which case the scheme is
repeated until a stable position is found. [This happens with probability 1, since
P(∃i :Vi = 1) < 1.] This last step is the reason why an item may move down
when a further item is inserted.

The properties of the multinomial distribution ensure that the tree T n obtained
in this way has the correct distribution (see [13] for details).

In the present case we can assume without loss of generality that the components
of V are identically distributed; applying a random permutation to the components
would leave the path length unchanged. We now let V denote a uniformly ran-
dom component of V . So, for instance, E[V ] = 1/b and P(V = 1) < 1/b by our
assumption that P(∃i :Vi = 1) < 1.

BACKGROUND AND PREVIOUS WORK. The labeling of the items induced by
the algorithm above is interesting for the analysis. Let Di be the depth of the item
labeled i when all n items have been inserted. Then, the total path length is

�(T n) =
n∑

i=1

Di.

The analysis of the depth Dn of the last item n is thus tightly related to the analysis
of �(Tn), and yet is much simpler since it avoids the intricate dependence between
the Di . Devroye [13] proved a weak law of large numbers and a central limit
theorem for Dn in general split trees. Let � be a component of (V1, . . . , Vb) picked
with probability proportional to its size; that is, given (V1, . . . , Vb), let � = Vj with
probability Vj . We write

μ := E[− ln�] = bE[−V lnV ] and
(2)

σ 2 := Var(ln�) = bE[V ln2 V ] − μ2.

Note that μ ∈ (0,∞) and σ < ∞. Then Dn/ lnn converges in probability to μ−1,
and E[Dn]/ lnn → μ−1 (Devroye assumed that P(V = 1) = 0, but this assumption
can be relaxed as long as V satisfies P(V = 1) < 1/b; this is done using trees in
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which edges are weighted by geometric random variables (see, e.g., [6, 7])). If we
also have σ > 0, then

Dn − μ−1 lnn√
σ 2μ−3 lnn

→ N (0,1)

in distribution where N (0,1) denotes the standard Normal distribution. Note that
σ > 0 precisely when V is not monoatomic, that is, if bV 	= 1 with positive prob-
ability.

The total path length �(T n) itself has been extensively studied for specific cases
of split trees. The first moment follows from that of Dn since

E[�(T n)] =
n∑

i=1

E[Di].

For instance, in the binary search tree, we have [23]

E[�BST(T n)] = 2n lnn + n(2γ − 4) + 2 lnn + 2γ + 1 + O(n−1),(3)

where γ is Euler’s constant. For higher moments and the distribution of �(T n),
one needs to carefully take the dependence in the terms of the sum into account.
Most studies of this type concern the model of binary search tree, or equivalently
the cost of quicksort (e.g., [18, 49, 50, 55]). Let

Yn := �BST(T n) − E[�BST(T n)]
n

.(4)

Using martingale arguments, Régnier [49] showed that Yn converges in distribution
to a random variable Y . Rösler [50] showed that Y is satisfying the following
distributional equality:

Y
d= UY + (1 − U)Y ∗ + C(U),(5)

where C(u) := 2u lnu + 2(1 − u) ln(1 − u) + 1, U is uniform on [0,1], Y and

Y ∗ d= Y are independent. He also proved that the stochastic equality in (5) actually
characterizes the distribution of Y : there exists a unique solution Y of (5) such that
E[Y ] = 0 and Var(Y ) < ∞. The distribution of Y is usually called the quicksort
distribution. Properties of Y and the rate of convergence of Yn to Y are studied in
[17, 18, 50, 55].

The aim of the present study is to prove that the path length exhibits a similar
asymptotic behavior regardless of the precise model of split tree:

THEOREM 2.1. Let �(T n) be the total path length in a general split tree with
split vector V = (V1, . . . , Vb). Suppose that P(∃i :Vi = 1) < 1. Let

Xn := �(T n) − E[�(T n)]
n

and C(V) = 1 + 1

μ

b∑
i=1

Vi lnVi.
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If C(V) 	= 0 with positive probability, then Xn → X in distribution, where X is the
unique solution of the fixed point equation

X
d=

b∑
k=1

VkX
(k) + C(V),

satisfying E[X] = 0 and Var(X) < ∞. Furthermore, exponential moments of Xn

exist and converge E[eλXn] → E[eλX] for any λ ∈ R.

As mentioned in the Introduction, Neininger and Rüschendorf [45] proved a ver-
sion of Theorem 2.1 conditional on the type of asymptotic expansion for E�(T n);
our contribution is to prove that this expansion indeed holds (Theorem 3.1), which
implies the unconditional version stated in Theorem 2.1.

We have recently been informed that, based on a Markov chain representation
of Bruhn [9] and coupling arguments, Munsonius [44] has shown a result similar
to our Theorem 2.1 in the special case when the distribution of V has a density
with respect to Lebesgue measure.

DISCUSSION AND REMARKS ABOUT THE ASSUMPTIONS. (i) When the
split vector V is deterministic, that is, V is a permutation of some fixed vector
(p1, . . . , pb), the cost function C(V) = 0. Such a split tree is a digital tree [54]. In
some sense, part of Theorem 2.1 still holds, but the limit X is trivial since X = 0
almost surely. The renormalization is actually too strong, since the variance in this
case should be of order n logn, rather than n2 [and order n in the special case when
bV = (1, . . . ,1)]. The total path length for binary tries has been treated by Jacquet
and Régnier [30]. They showed that the variance of �(Tn) is of order O(n) if
p = q and of order O(n logn) if p 	= q and that the path length is asymptotically
normal. Schachinger [53] showed that, for tries with a general branch factor, the
variance of the total path length for general tries is O(n log2 n). See also [34, 35].

(ii) In general, in the case of digital trees [when C(V) = 0], it is expected that
under the correct rescaling the limit distribution should be normal. Neininger and
Rüschendorf [46] gave a general conditions under which limit distributions are
Gaussian. The case of the binary tries is one example when this theorem can be
applied as an alternative proof to the method in [30]. In general, to apply the result
in [46] one needs to have approximations for the first two moments of the path
length. This is the reason why we report the analysis of this case: a lot more work
is required to estimate the variance to the correct order.

(iii) It might seem at first that one should have C(V) = 0 when lnV is lat-
tice (trie case). However, one can easily construct examples with C(V) 	= 0 and
lnV lattice: for instance, take b = 5 and V a random permutation of either
(1/2,1/8,1/8,1/8,1/8) or (1/2,1/4,1/4,0,0), each with probability 1/2.

(iv) Note, although it might come as a surprise since our main tool is renewal
theory, Theorem 2.1 does not require any condition on arithmetic properties re-
lated to the vector (V1, . . . , Vb). In particular, it holds whether − lnV is lattice or
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not. However, the behavior of the average path length does depend on arithmetic
properties of lnV ; see Theorem 3.1 later for details.

(v) Note that the limit fixed equation only depends on V , so in particular, the
limit distribution X does not depend on the parameters s, s0 or s1. However, the
average E[�(T n)] should clearly depend on these parameters, although we do not
prove it formally.

(vi) For the sake of simplicity, we cover only trees with bounded degree, which
is usually the case for trees representing data structures. The path length of recur-
sive trees, which do not have bounded degree, has been studied by [14, 38].

3. The contraction method for path length. The condition stated by
Neininger and Rüschendorf [45] to ensure weak convergence of the path length
concerns the asymptotics of the average path length. More precisely, if one has,
for some constant ς ,

E[�(T n)] = μ−1n lnn + ςn + o(n)(6)

and P(C(V) 	= 0) > 0, then Theorem 5.1 of [45] ensures that Xn → X in distribu-
tion. The purpose of this section is to explain why these conditions are sufficient
to prove Theorem 2.1. In particular, we give the necessary background about the
contraction method, and we explain the general approach that has been devised
in [45]. This section is included only to put our result in context, and no new result
is proved with respect to the contraction method.

Note first that (6) holds in the case of binary search trees (3). Recall that Di

is the depth of the ith item in the construction where items are inserted one after
another. It is not difficult to deduce from the results on Di by Devroye [13] that

E[�(T n)] = μ−1n lnn + nq(n)

with q(n) = o(lnn) (see Theorem 2.3 of [26] for a formal proof). So proving (6)
reduces to proving that q(n) → ς as n → ∞. Our contribution is to prove that
this is indeed the case as soon as the random variable V is such that − lnV is
not lattice, that is, there is no a ∈ R such that − lnV ∈ aZ almost surely. In the
following, we let

d := sup{a ≥ 0 : P(lnV ∈ aZ) = 1},
so that d is the span of the lattice when d > 0 and lnV is nonlattice when d = 0.
More precisely, we prove:

THEOREM 3.1. The expected value of the total path length �(T n) exhibits
the following asymptotics, as n → ∞:

E[�(T n)] = μ−1n lnn + n�(lnn) + o(n),(7)

where μ is the constant in (2) and � is a continuous periodic function of period d .
In particular, if lnV is not lattice, then d = 0 and � is constant.
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If lnV is nonlattice, then Theorem 3.1 and Theorem 5.1 of [45] together prove
Theorem 2.1. If the random variable lnV is lattice with span d , then Theorem 3.1
implies that q(n) = �(lnn)+o(1) as n → ∞, where � is d-periodic. So it seems
that Theorem 3.1 does not permit to conclude along the arguments by Neininger
and Rüschendorf [45]. However, the techniques in [45] only require convergence
of the coefficients of a certain recursive equation; this fact was used in [46] to deal
with certain cases involving oscillations.

We now move on to the approach developed by Neininger and Rüschendorf
[45, 46]. Let n = (n1, . . . , nb) denote the vector of cardinalities of the children of
the root. Then we have, for n > s,

�(T n)
d=

b∑
i=1

�i(T
ni ) + n − s0,

where �i(T
ni ) are copies of �(T ni ) that are independent conditional on (n1, . . . ,

nb). Introducing the normalized total path length

Xn := �(T n) − E[�(T n)]
n

,(8)

we can rewrite the distributional identity above as

Xn :=
b∑

i=1

ni

n
Xni

+ Cn(n),

where

Cn(n) := 1 − s0

n
− E[�(T n)]

n
+

b∑
i=1

E[�(T ni )]
n

and Xni
, i ∈ {1, . . . , b}, are independent conditional on (n1, . . . , nb). By definition,

the vector of cardinalities n is Mult(n− s0 −bs1,V1,V2, . . . , Vb)+ (s1, s1, . . . , s1)

so that (
n1

n
,
n2

n
, . . . ,

nb

n

)
→ Vσ = (V1,V2, . . . , Vb),(9)

almost surely as n → ∞. This is where (6) comes into play: it ensures that the cost
Cn(n) (the “toll function”) in the recursive distributional equation does converge
(in distribution) as n → ∞. Indeed

Cn(n) = 1 + 1

n

b∑
i=1

E[�(T ni )] − E[�(T n)]
n

− s0

n

= 1 + 1

μ

b∑
i=1

ni

n
ln

ni

n
+ 1

μ

(
b∑

i=1

ni

n
�(lnni) − �(lnn)

)
+ o(1).
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Now, by (9) and the continuity of � , it follows that

Cn(n) = 1 + 1

μ

b∑
i=1

ni

n
ln

ni

n
+ 1

μ

(
b∑

i=1

ni

n
�(lnn + lnVi) − �(lnn)

)
+ o(1)

(10)

= 1 + 1

μ

b∑
i=1

Vi lnVi + o(1),

since � is d-periodic and lnVi ∈ dZ by assumption (if d = 0, ϕ is constant and the
claim also holds). Note that, apart from (9), only asymptotics for the first moments
are required for (10) to hold. Together (9) and (10) suggest that if Xn converges
in distribution to some limit X, then X should satisfy the following fixed point
equation:

X
d=

b∑
k=1

VkX
(k) + C(V) where C(V) = 1 + 1

μ

b∑
i=1

Vi lnVi,(11)

and X(k) are independent and identically distributed copies of X.
The point of the contraction method is to make the previous arguments rigorous,

that is, to show that if the coefficients Cn(n) do converge, then (11) has a unique
solution X and that Xn → X in distribution; this is precisely what was done in
[45, 46]. This is done by proving that the recursive map defined by (11) is a con-
traction in a suitable space of probability measures [48, 50, 51]. We now expose
the lines of the arguments to show the extent of the results that follow from the
mere convergence of the coefficients Cn(n). (We claim no novelty.)

Let M2 be the set of probability measures with a finite second moment. For
a random variable X, we write D(X) for its law. For φ ∈ M2 and X a random
variable with law D(X) = φ, define the L2-norm by ‖X‖2 = E[X2]1/2. We can
then define a metric d2 on M2 (the Mallow metric): for φ,ϕ ∈ M2, let

d2(φ,ϕ) := inf‖X − Y‖2,(12)

where the range of the infimum is the set of couples (X,Y ) with marginal distri-
butions D(X) = φ and D(Y ) = ϕ. For simplicity we write d2(X,Y ) = d2(φ,ϕ)

for random variables X and Y , but note that this only depends on the marginal
distributions φ and ϕ. Convergence of φn to φ in (M2, d2) is equivalent to weak
convergence with convergence of the second moment [48]:

φn
w→ φ and

∫
x2 dφn(x) →

∫
x2 dφ(x).(13)

Let M 0
2 be the subset of M2 containing distributions φ such that

∫
x dφ(x) = 0.

Define the operator T :M 0
2 → M 0

2 . For a distribution φ ∈ M 0
2 , let T (φ) be the

distribution of the random variable given by∑
1≤k≤b

VkZ
(k) + C(V),
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where Z(i) are i.i.d. random variables with distribution φ. Then, calculations sim-
ilar to that in the proof of Lemma 3.2 in [45] yield

d2(T (X),T (Y )) ≤ ∑
1≤i≤b

E[V 2
i ] · d2(X,Y )

= bE[V 2] · d2(X,Y ).

Since bE[V 2] < 1 the operator T is a contraction in (M 0
2 , d2). Thus the Banach

fixed point theorem implies that T has a unique fixed point. The random variable
X has this fixed point as distribution. The same line of thought actually implies that
d2(Xn,X) → 0. A formal proof can be found in [45]. As stated in (13), the con-
vergence in (M 0

2 , d2) is strong enough to imply convergence of second moments.
In particular,

Var(�(T n)) ∼ ζn2,

where ζ = Var(X). Computing E[X2] using the fixed point equation, one easily
obtains the following expression for ζ :

ζ = Var(X) = μ−2E[(∑b
i=1 Vi logVi)

2] − 1

1 − ∑b
i=1 E[V 2

i ] .(14)

This expression may also be obtained using estimates based on renewal theory in
the spirit of our proof of Theorem 3.1.

4. Precise asymptotics for the average path length.

4.1. Plan of the proof of Theorem 3.1. In the previous section, we have ex-
plained why precise asymptotics for E[�(T n)] imply convergence in distribution
of �(T n) (suitably rescaled). We now move on to the proof of Theorem 3.1.

Recall that Di denotes the depth of the ith inserted item. Write i ∈ Tu if the item
i is stored in the subtree rooted at u. Then rearranging the sum in the definition
of �(T n), we see that

�(T n) =
n∑

i=1

Di =
n∑

i=1

∑
u	=σ

1{i∈Tu} = ∑
u	=σ

nu.(15)

Recall the following fact, which we used already in Section 3:

1

n
Mult(n;V1, . . . , Vb) → (V1, . . . , Vb),

almost surely, as n → ∞. We actually have a similar behavior for any random vari-
able nv , when v is a fixed node (so in particular, its depth does not depend on n).
For a node u, the components V1,V2, . . . , Vb of Vu are naturally associated to the
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children u1, u2, . . . , ub of u, and we can define Vui
= Vi . For the root node ∅,

define V∅ = 1. Then let

Lu = ∏
v�u

Vv,(16)

where v � u if v is an ancestor of u. The random variables (Lu,u ∈ U ) define
a recursive partition of [0,1], where Lu is the length of the interval associated
with u. In general, for any fixed node u, we have

nv

n
→ Lv,

almost surely as n → ∞. So, as long as nv is large it should be well approximated
by nLv . This suggests that the sum in (15) be decomposed into the contributions
of the top and of the fringe of the tree. We define the separation in terms of a
parameter B measuring the size of the trees pending in the fringe. The lengths Lv

are decreasing on any path from the root. So let R be the collection of nodes such
that r ∈ R if r has nLr < B but for all its strict ancestors v we have nLv ≥ B . We
write Tr, r ∈ R, for the subtrees rooted at the nodes that belong to R.

Then

E[�(T n)] = E
[ ∑
v 	=∅

nv1{nLv≥B}
]

+ E
[∑
r∈R

�(T nr ) + nr

]
,(17)

since given nr , the total path length of Tr , r ∈ R, is distributed like T nr . [The term
nr needs to be added since the cardinality of the root of a tree T is not taken into
account from our definition of �(T ).] The following two propositions gather the
asymptotics for the two terms in (17) above that will enable us to prove Theo-
rem 3.1. In the following, we let

d = sup{a ≥ 0 : P(lnV ∈ aZ) = 1}.
Indeed, as we already mentioned (it will become clear soon), the arithmetic prop-
erties of lnV influence the asymptotics.

PROPOSITION 4.1. There exists a constant K such that, for all n large
enough, and all B , we have∣∣∣∣E[ ∑

v 	=∅

nv1{nLv≥B}
]

− 1

μ
n ln

(
n

B

)
− nφ1

(
ln

n

B

)∣∣∣∣ ≤ K
n

B
,

where μ is the constant in (2) and φ1 is a continuous d-periodic function; in par-
ticular, φ1 is constant when d = 0.

PROPOSITION 4.2. There exists a constant K such that, for all n large
enough, all ε > 0 small enough and B = ε−8, we have∣∣∣∣E[∑

r∈R

�(T nr ) + nr

]
− nϕB

(
ln

n

B

)∣∣∣∣ ≤ Kεn(18)
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for some ϕB , a d-periodic function that depends on B . Furthermore, there exists a
constant K ′ (independent of B) such that, for ε > 0 small enough,

sup
|q−q ′|≤ε3

|ϕB(q) − ϕB(q ′)| ≤ K ′ε ln(1/ε).(19)

The proofs of Propositions 4.1 and 4.2 both rely on renewal theory: first, the
sum Sn,B is easily approximated by a function of sums of i.i.d. random variables;
second, the sizes nr in the second contribution can be estimated using overshoot ar-
guments. The necessary technical lemmas are introduced in the following section.
Then, we prove Propositions 4.1 and 4.2 in Sections 4.3 and 4.4, respectively.

Before we proceed to the proofs of Propositions 4.1 and 4.2, we prove that
they indeed imply Theorem 3.1. The nonlattice case should be rather clear, but the
lattice case requires a little care.

PROOF OF THEOREM 3.1. We have been precise in the statements of Propo-
sitions 4.1 and 4.2; we now take the liberty to use O(·) notation to simplify the
discussion. It is understood that the hidden constants do not depend on n, ε or B .

(i) First assume that lnV is nonlattice (d = 0). Let n, n̂ be integers such that
n ≤ n̂. Fix ε > 0, and choose B = ε−20. Then by the triangle inequality and Propo-
sitions 4.1 and 4.2,∣∣∣∣(E[�(T n)]

n
− μ−1 lnn

)
−

(
E[�(T n̂)]

n̂
− μ−1 ln n̂

)∣∣∣∣ = O(ε)

as n → ∞. Thus, the sequence (n−1E[�(T n)]−μ−1 lnn,n ≥ 0) is Cauchy, hence
the result.

(ii) If lnV is lattice, the situation is different since we cannot directly in-
voke similar arguments. In particular, we need to prove the existence and con-
tinuity of the function � . Fix β ∈ [0, d) and consider �β = {n ≥ 1 :∃k ∈
N, |lnn − kd + β| ≤ n−1}, the set of integers such that lnn mod d is close to β .
Then, by the triangle inequality and Propositions 4.1 and 4.2, we have∣∣∣∣(E[�(T n)]

n
− μ−1 lnn

)
−

(
E[�(T n̂)]

n̂
− μ−1 ln n̂

)∣∣∣∣
≤

∣∣∣∣φ1

(
ln

n

B

)
− φ1

(
ln

n̂

B

)∣∣∣∣ + ∣∣∣∣ϕB

(
ln

n

B

)
− ϕB

(
ln

n̂

B

)∣∣∣∣
+ O(ε) + O(1/B)

= |φ1(lnn) − φ1(ln n̂)| + |ϕB(lnn) − ϕB(ln n̂)| + O(ε),

if we choose ε in such a way that B = ε−20 = β mod d . Now, φ1 is continuous
and d-periodic so that there exists n0 (independent of β) such that |φ1(lnn) −
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φ1(ln n̂)| ≤ ε when n, n̂ ≥ n0 inside �β . On the other hand, for n, n̂ ∈ �β such
that n, n̂ ≥ 2ε−3, we have

|ϕB(lnn) − ϕB(ln n̂)| ≤ K ′ε ln(1/ε).

Note that the bounds obtained are all uniform in β . It follows that for every ε > 0,
there exists n1 = max{n0, ε

−3} such that for n, n̂ ∈ �β satisfying n, n̂ ≥ n1, we
have∣∣∣∣(E[�(T n)]

n
− μ−1 lnn

)
−

(
E[�(T n̂)]

n̂
− μ−1 ln n̂

)∣∣∣∣ ≤ O(ε) + K ′ε ln(1/ε).

Therefore, the subsequences (n−1E[�(T n)] − μ−1 lnn,n ∈ �β), β ∈ [0, d), are
uniformly Cauchy (in β). It follows that there exists a fixed function � defined on
[0, d) such that, for every β and n ∈ �β ,

E[�(T n)] = 1

μ
n lnn + n�(β) + o(n).

Furthermore, the function � is continuous. This is easily seen using the same
arguments with n ∈ �β , n̂ ∈ �β ′ and |β − β| < ε. Once the definition of � is
extended by periodicity, the continuity ensures that we can write the asymptotics
for E[�(T n)] in the form claimed in (7). This completes the proof in the lattice
case. �

4.2. The renewal structure of split trees. Renewal theory has already been
used for studying random trees in [26, 28, 32, 42, 43]. The present paper is another
example of its wide applicability. We start by quantifying the deviation between
nv and nLv for fixed nodes v ∈ U .

LEMMA 4.1. For any node v, we have for all x large enough

P
(|nv − nLv| > (nLv)

2/3 | nLv > x
) ≤ x−1/4.

PROOF. First note that by the triangle inequality

P
(|nv − nLv| > (nLv)

2/3 | nLv > s
)

≤ P
(
2|nv − Bin(n,Lv)| > (nLv)

2/3 | nLv > x
)

+ P
(
2|Bin(n,Lv) − nLv| > (nLv)

2/3 | nLv > x
)
.

Suppose that |v| = d and let Gd be the σ -field generated by the random variables
Vu for |u| ≤ d . Conditioning on Gd , the recursive splits of the cardinalities nv

defined in (1) give in a stochastic sense the following bound for nv :

|nv − Bin(n,Lv)| ≤st

∑
u�v

Bin(s,Lv/Lu).(20)
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Now, by (20), Chebyshev’s inequality and Chernoff’s bound for binomials (see,
e.g., [11, 25, 33]) we obtain

P
(|nv − nLv| > (nLv)

2/3 | nLv > x
)

≤ 2x−2/3E
[∑
u�v

Bin(s,Lv/Lu)

]

+ E
[
exp

( −(nLv)
4/3

8(nLv + (nLv)2/3/6)

) ∣∣∣ nLv > x

]
≤ 2sx−2/3

∑
k≥0

b−k + e−x1/4 ≤ x−1/4

for all x large enough. �

When the cardinalities nv are close to the product nLv , renewal theory allows us
to get approximations suitable to prove Propositions 4.1 and 4.2. It is convenient
to introduce the additive form Sv = − lnLv . For |v| = k,

Sv
d= Sk =

|v|∑
i=1

− lnVi,

where Vi , i ≥ 1, are i.i.d. copies of V . We define the exponential renewal function

U(t) :=
∞∑

k=1

bkP(Sk ≤ t),(21)

which satisfies the following renewal equation with ν(t) = bP(− lnV ≤ t):

U(t) = ν(t) + (U ∗ dν)(t) where (U ∗ dν)(t) =
∫ t

0
U(t − z) dν(z).(22)

The measure dν(t) is not a probability measure. To work with more convenient
renewal equations, involving probability measures, we introduce the tilted measure
dω(t) = e−t dν(t). It is easily seen that dω(t) is a probability measure, and defines
a random variable X by P(X ∈ dt) = dω(t). In fact ω is the distribution function of
− ln�, where � is the size-biased random variable in (2): writing I for a random
variable that is i with probability Vi given (V1, . . . , Vb), we have

P(− ln� ≤ x) = EE
[
1{− lnVI ≤x} | (V1, . . . , Vb)

]
= E

[
b∑

i=1

1{− lnVi≤x}Vi

]

= bE
[
1{− lnV ≤x}e− lnV ] = ω(x).

Then, from (2), X obviously satisfies

E[X] = E[− ln�] = μ and E[X2] = σ 2 + μ2.
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The renewal equation (22) can then be rewritten as

Û (t) = ν̂(t) + (Û ∗ dω)(t),(23)

where Û (t) := e−tU(t) and ν̂(t) := e−t ν(t). The first-order asymptotics for U(t)

as t → ∞ follows from the standard renewal theorem applied to Û (t) (see also
Theorem 7.1, Chapter V of [1] or Lemma 3.1 of [26] for a formal proof):

U(t) = Û (t)et = μ−1et + o(et ), t → ∞.(24)

We will need some information about the second-order behavior of U(t). The
following lemma will be sufficient for us.

LEMMA 4.2. Let d = sup{a ≥ 0 : P(lnV ∈ aZ) = 1}, so that d = 0 if lnV is
nonlattice. Then, as x → ∞∫ x

0
e−t (U(t) − μ−1et )dt

(25)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ 2 − μ2

2μ2 − μ−1 + o(1), if d = 0,

σ 2 − μ2

2μ2 − μ−1 + φ(x) + o(1), if d > 0,

where φ(x) is a bounded continuous periodic function with period d .

PROOF. Let Xk be i.i.d. copies of a random variable X defined by P(X ∈
dt) = e−t dν(t). Define the (standard) renewal function

F(t) := ∑
n≥0

P

(
n∑

k=1

Xk ≤ t

)
.(26)

Then the renewal theorem (Theorem V.2.4 of [1]) applied to (23) yields

e−tU(t) = Û (t) =
∫ t

0
ν̂(t − u)dF (u) =

∫ ∞
0

ν̂(u) dF (t − u).(27)

[Note that dF(t) includes a term dP(0 ≤ t) = δ0(t).] By Fubini’s theorem we
obtain ∫ x

0
e−t (U(t) − μ−1et )dt =

∫ ∞
0

ν̂(u)

∫ x

0
dF(t − u)du − x

μ
(28)

=
∫ ∞

0
ν̂(u)F (x − u)du − x

μ
.

Recall that ν̂(x) = ν(x)e−x . Integration by parts gives∫ ∞
0

ν̂(x) dx = b[−e−tP(− lnV ≤ t)]∞0 +
∫ ∞

0
e−t dν(t) = bE[e− lnV ] = 1.(29)
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Rewriting (28) as a single integral, it follows that∫ x

0
e−t (U(t) − μ−1et )dt

=
∫ ∞

0
ν̂(u)

(
F(x − u) − x

μ

)
du

(30)

= − 1

μ

∫ x

0
ν̂(u)udu − 1

μ

∫ ∞
x

ν̂(u)x du

+
∫ x

0
ν̂(u)

(
F(x − u) − x − u

μ

)
du.

We start with the first two terms in (30). Using again integration by parts and
applying (29) yields∫ ∞

0
ν̂(u)udu =

∫ ∞
0

e−uν(u)udu

=
∫ ∞

0
ν̂(u) du +

∫ ∞
0

ue−u dν(u)(31)

= 1 + bE[−V lnV ] = 1 + μ,

where the last equality follows from the definition of μ in (2). Finally, note that for
all x, ∫ ∞

x
ν̂(u)x du ≤

∫ ∞
x

ν̂(u)udu → 0(32)

as x → ∞ since
∫ ∞

0 |̂ν(u)u|du < ∞.
So it only remains to estimate the third term in (30). This is related to the asymp-

totics for the renewal function F(t), which are different depending on whether
lnV is lattice or not. Write {x} for the fractional part of a real number x, that is,
{x} = x − �x�. Then, by Theorem 5.1 in [22] we have, as t → ∞,

F(t)− t

μ
= σ 2 + μ2

2μ2 +o(1) and F(t)− t

μ
= σ 2 + μ2

2μ2 + d

μ

(
1

2
−

{
t

d

})
+o(1)

in the nonlattice and the d-lattice case, respectively. Furthermore, by Lorden’s
inequality ([37], Theorem 1),

0 ≤ F(t) − t

μ
≤ σ 2 + μ2

μ2 .

(i) We now first assume that lnV is nonlattice. The dominated convergence
theorem applied to the last integral in (30), and (29), yield

lim
x→∞

∫ ∞
0

ν̂(u)

(
F(x − u) − x − u

μ

)
1{u≤x} du =

∫ ∞
0

ν̂(u)
σ 2 + μ2

2μ2 du

(33)

= σ 2 + μ2

2μ2 .
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Putting (33) together with (30), (31) and (32) we obtain, as x → ∞,∫ x

0
e−t (U(t) − μ−1et )dt = − 1

μ
− 1 + σ 2 + μ2

2μ2 + o(1),

which proves the claim in (25) in the nonlattice case.
(ii) Similarly in the lattice case with span d , from the dominated convergence

theorem we obtain∫ x

0
ν̂(u)

(
F(x − u) − x − u

μ

)
du

= σ 2 + μ2

2μ2 + d

μ

∫ x

0

(
1

2
−

{
x − u

d

})
ν̂(u) du + o(1)(34)

= σ 2 + μ2

2μ2 + d

μ

∫ ∞
0

(
1

2
−

{
x − u

d

})
ν̂(u) du + o(1)

by (32). The function φ defined for x ≥ 0 by

φ(x) = d

μ

∫ ∞
0

(
1

2
−

{
x − u

d

})
ν̂(u) du

is clearly d-periodic. Furthermore, the function φ(·) is continuous. Indeed, for any
x, y such that |x − y| < ε we have

φ(y) = d

μ

∫ ∞
0

(
1

2
−

{
y − u

d

})
ν̂(u) du

= d

μ

∫ ∞
0

(
1

2
−

{
y − u

d

})
1{y−u mod d∈[ε,1−ε]}ν̂(u) du

+ d

μ

∫ ∞
0

(
1

2
−

{
y − u

d

})
1{y−u mod d /∈[ε,1−ε]}ν̂(u) du.

It follows that

|φ(y) − φ(x)| ≤ 2

μ
ε + 2 sup

z∈{x,y}
d

μ

∫ ∞
0

∣∣∣∣1

2
−

{
z − u

d

}∣∣∣∣1{z−u mod d /∈[ε,1−ε]}ν̂(u) du

≤ 2

μ
ε + 2 sup

z∈{x,y}
d

μ

∫ ∞
0

1{z−u mod d /∈[ε,1−ε]}ν̂(u) du.

Since |̂ν(u)| = e−ubP(− lnV ≤ t) ≤ b, the dominated convergence theorem im-
plies that |φ(y) − φ(x)| → 0 as ε → 0.

Finally, putting (34) together with (30), (31) and (32) as before proves the lattice
case in (25). �
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4.3. Contribution of the top of the tree. In this section, we prove Proposi-
tion 4.1. For the top of the tree, the sizes nv are well approximated by Bin(n,Lv).
This suggests that the main contribution of the top of the tree should be

E
[ ∑
v 	=∅

nv1{nLv≥B}
]

= E
[ ∑
v 	=∅

Bin(n,Lv)1{nLv≥B}
]

+ Rn,B(35)

for a remainder Rn,B that should be small. We first estimate the main contribution;
we will then quantify Rn,B using (20).

LEMMA 4.3. Let d = sup{a : P(lnV ∈ aZ) = 1}, so that d = 0 if lnV is non-
lattice. Then, as n/B → ∞,

E
[ ∑
v 	=∅

Bin(n,Lv)1{nLv≥B}
]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

μ
n ln

(
n

B

)
+ n

σ 2 − μ2

2μ2 + o(n), if d = 0,

1

μ
n ln

(
n

B

)
+ n

σ 2 − μ2

2μ2 + nφ

(
ln

n

B

)
+ o(n), if d > 0,

where μ and σ are the constants in (2) and φ(·) is a bounded continuous d-
periodic function.

PROOF. Let Vi , i ≥ 1 be i.i.d. copies of V , and define Lk = ∏k
i=1 Vi and Sk =

− lnLk . Then, we have

E
[ ∑
v 	=∅

Bin(n,Lv)1{nLv≥B}
]

= nE
[∑
k≥1

bkLk1{nLk≥B}
]

= nE
[∑
k≥1

bde−Sk 1{Sk≤lnn−lnB}
]

= n

∫ ln(n/B)

0

∑
k≥1

bke−t dP(Sk ≤ t)

= n

∫ ln(n/B)

0
e−t dU(t),

where U(t) is the renewal function defined in (21). Using integration by parts we
obtain, if − lnV is nonlattice,∫ ln(n/B)

0
e−t dU(t)

= [e−tU(t)]ln(n/B)
0 +

∫ ln(n/B)

0
e−tU(t) dt
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= B

n
U

(
ln(n/B)

) +
∫ ln(n/B)

0
e−t (U(t) − μ−1et )dt

+ μ−1 ln(n/B)

= μ−1 + o(1) + σ 2 − μ2

2μ2 − μ−1

+ μ−1 ln(n/B) + o(1)

by Lemma 4.2 and (24). Similarly if − lnV is lattice with span d , Lemma 4.2 and
(24) yield∫ ln(n/B)

0
e−t dU(t) = μ−1 + o(1) + σ 2 − μ2

2μ2 − μ−1 + μ−1 ln(n/B)

+ φ
(
ln(n/B)

) + o(1),

where φ(t) is a continuous periodic function with period d . �

We now deal with the remainder Rn,B introduced in (35). The difference be-
tween nv and the binomial is bounded in (20) and we have

|Rn,B | ≤ E
[ ∑
v 	=∅

1{nLv≥B}
∑
u�v

Bin(s,Lv/Lu)

]
.

LEMMA 4.4. The following estimate holds: there exist a constant and n0 such
that, for every fixed B and n ≥ n0, we have

E
[ ∑
v 	=∅

1{nLv≥B}
∑
u�v

Bin(s,Lv/Lu)

]
= O

(
n

B

)
.

PROOF. In the following, |v| = d , |u| = k ≤ d , and we write � = d − k. Then
Lv is distributed as Ld = Lk · L�, where the two factors are products of k and �

copies of V , respectively; all of them are independent. Swapping the sums over u

and v, we obtain

E
[ ∑
v 	=∅

1{nLv≥B}
∑
u�v

Bin(s,Lv/Lu)

]

= E
[∑

u

∑
v : u�v,v 	=∅

s
Lv

Lu

1{nLv≥B}
]

≤ sE
[∑
k≥0

bk
∑
�≥0

b�L�1{nLkL�≥B}
]

(36)

= sE
[∑
k≥0

bk
∑
�≥0

b�e−S�1{eSk+S�≤n/B}
]
.
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First conditioning on Sk in each term of the sum above, and recalling the renewal
function U(t) defined in (21), we see that

E
[∑
�≥0

b�e−S�1{eSk+S�≤n/B}
∣∣∣ Sk

]
=

∫ ln(n/B)−Sk

0
e−t dU(t) + b1{eSk ≤n/B}.

However, there exists a constant C such that, for any real number x,∫ x

0
e−t dU(t) ≤ Cx1{x≥0}.

Going back to (36) and choosing x = ln(n/B) − Sk , it follows that

E
[ ∑
v 	=∅

1{nLv≥B}
∑
u�v

Bin(s,Lv/Lu)

]

≤ CE
[∑
k≥0

bk(ln(n/B) − Sk + b
)
1{Sk≤ln(n/B)}

]

= C

∫ ln(n/B)

0

(
ln(n/B) − t + b

)
dU(t)

= C
[(

ln(n/B) − t
)
U(t)

]ln(n/B)
0

+ C′
∫ ln(n/B)

0
U(t) dt,

where the last line follows by integration by parts and we wrote C′ = C(1 + b).
The claim then follows from (24). �

4.4. Contribution of the fringe: Proof of Proposition 4.2. Finally, we prove
Proposition 4.2 that deals with the contribution of the fringe of the tree. Recall that
from (17), we have to estimate

E
[∑
r∈R

�̃(T nr )

]
:= E

[∑
r∈R

�(T nr ) + nr

]
,(37)

where, for convenience, we introduced �̃(T k) := �(T k) + k. The proofs here get
quite technical at times, and the reader should bear in mind that we will essentially
express the expected value in (37) as a mixture of the expected values of E[�̃(T k)],
for k lower than B .

For a node r , define the conditional expectation �r = E[�̃(T nr ) | nr ]. First, the
first asymptotic order of the expected total path length implies that

�r = O(nr lnnr).(38)

The next lemma is used to get an error bound for the sum of the expected total path
lengths of the subtrees Tr, r ∈ R, with cardinalities nr that differ from nLr by at
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least B2/3 items, so that we only have to bother about the subtrees Tr, r ∈ R, with
cardinalities nr that are close to nLr .

LEMMA 4.5. The following error bound holds:

E
[∑
r∈R

nr lnnr1{|nr−nLr |≥B2/3}
]

= O
(

n lnB

B1/4

)
.

We omit the proof; it follows by a simple modification of the proof of Lem-
ma 4.3 of [26]. By Lemma 4.5, we have

E
[∑
r∈R

�̃(T nr )

]
= E

[∑
r∈R

�r1{|nr−nLr |≤B2/3}
]

+ O

(
n lnB

B1/4

)
.

Define R′ ⊆ R to be the set of “good” nodes in R:

R′ := {r ∈ R : |nr − nLr | ≤ B2/3}(39)

and let R′′ ⊆ R′ be the subset of nodes r ∈ R′ that also satisfy nLr > ε2.
We will now explain that it is enough to consider the nodes r ∈ R′′. The ap-

proximation of U(t) in (24) implies that the expected number of nodes v such that
nLv ≥ B is O(n/B); thus, since each node has at most b children,

E[|R|] = O(n/B)(40)

as well. Hence, it follows from (39) that the expected number of nodes in the Tr ,
r ∈ R′, with nLr ≤ ε2B is bounded by O(ε2n). Using this fact yields

E
[∑
r∈R

�̃(T nr )

]
= E

[ ∑
r∈R′′

�r

]
+ O(ε2n lnB) + O

(
n lnB

B1/4

)
.(41)

Because of the concentration of nr around nLr , the cardinalities nr of the nodes
r ∈ R are naturally related to the behavior of the “overshoot” of the renewal pro-
cess (− lnLk, k ≥ 0), when it crosses the line ln(n/B). Estimating the empirical
distribution of the cardinalities of the nodes r ∈ R will allow us to approximate
the right-hand side above. So we further subdivide the nodes r ∈ R into smaller
classes according to the values of nLr , r ∈ R.

Let Z = {B,B −γB,B − 2γB, . . . , ε2B}, where we let γ = ε3. We write Rz ⊆
R,z ∈ Z, for the set of nodes r ∈ R, such that nLr ∈ [z − γB, z). Then (41) can
be rewritten as

E
[∑
r∈R

�̃(T nr )

]
= E

[∑
z∈Z

∑
r∈R′∩Rz

�r

]
+ O(ε2n lnB) + O

(
n lnB

B1/4

)
.(42)

Even in a fixed class Rz, not all the nodes have the same cardinality nr . So, in order
to estimate the expected value in (42) we need the following lemma that quantifies
the discrepancy of E[�(T n)] under small variations of n.
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LEMMA 4.6. There exists a constant C such that, for any natural numbers n

and K , we have

|E[�̃(T n+K)] − E[�̃(T n)]| ≤ CK ln(n + K).

PROOF. From the iterative construction, we clearly have E[�̃(T n+K)] ≥
E[�̃(T n)]; so it suffices to bound the increase in path length when adding K ex-
tra items to the tree T n. Thinking again of the iterative construction, every ball
trickles down until it finds a leaf. Then, either it sits there if there is room left,
or it triggers a growth of the tree. It is important to notice that only these s + 1
balls may move. Furthermore, the increase in depth of any of the s + 1 items (the
last one, plus the s that were already sitting at the leaf) is at most the height of
the final tree Hn+K . Hence, upon adding K items, the path length increases by
K(s + 1)Hn+K ≤ CK ln(n+ K), by the results of [13] on the height of split trees.

�

Write fx = E[�̃(T �x�)]. Then Lemma 4.6 ensures that, for any node r ∈ R′ ∩
Rz, we have �r = fz + O(γB lnB). By using (39) and Lemma 4.6, from (42) we
obtain

E
[∑
r∈R

�̃(T nr )

]
= ∑

z∈Z

E[|R′ ∩ Rz|](fz + O(γB lnB)
)

+ O(ε2n lnB) + O

(
n lnB

B1/4

)
(43)

= ∑
z∈Z

E[|R′ ∩ Rz|]fz + O(γn lnB)

+ O(ε2n lnB) + O

(
n lnB

B1/4

)
,

since E[|R|] = O(n/B) by (40).
So the contribution of the fringe is essentially a mixture of the fz, z ∈ Z. To

complete the proof of Proposition 4.2, it suffices to estimate the mixing measure
E[|R′ ∩ Rz|], z ∈ Z. We first focus on the asymptotics for E[|Rz|], z ∈ Z. The
following result is obtained by an application of the key renewal theorem.

LEMMA 4.7. Fix ε > 0 and let S := {1,1 − γ,1 − 2γ, . . . , ε2}, where γ = ε3.
Let d = sup{a : P(lnV ∈ aZ) = 1}. If d > 0, we suppose that lnB ∈ dN. Then for
any α ∈ S we have, as n → ∞,

E[|RαB |]
n/B

=
{

cα + o(1), if lnV is nonlattice (d = 0),
ψα(lnn) + o(1), if lnV is d-lattice (d > 0),

(44)

for a constant cα (only depending on α and γ ), ψα(·) is the d-periodic function
given in (48) below.
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PROOF. Let Vj , j ≥ 1, be i.i.d. copies of V . For an integer k, write Sk =
−∑k

j=1 lnVj . Then, by definition, for α ∈ S, we have

E[|RαB |] = ∑
u∈U

P(u ∈ RαB)

=
∞∑

k=0

bk+1(
P

(
Sk − lnVk+1 > ln(n/B) − lnα and Sk ≤ ln(n/B)

)
− P

(
Sk − lnVk+1 > ln(n/B) − ln(α − γ )

and Sk ≤ ln(n/B)
))

=
∫ ln(n/B)

0
bP

(
ln(n/B) − t − lnα

< − lnVk+1 ≤ ln(n/B) − t − ln(α − γ )
)
dU0(t),

where U0(t) = U(t) + 1 is a simple modification of the renewal U(t) =∑
k≥1 bkP(Sk ≤ t) defined in (21). Thus, seeing E[|RαB |] as a function of ln(n/B)

and writing

H(q) :=
∫ q

0
bP

(
q − t − lnα < − lnVk+1 ≤ q − t − ln(α − γ )

)
dU0(t),(45)

we have E[|RαB |] = H(ln(n/B)). So we are after the asymptotics for H(q), as
q → ∞. It is convenient to use a change of measure to relate H(q) to a renewal
function associated to a probability measure. We have

Ĥ (q) := e−qH(q)

=
∫ q

0
e−(q−t)G(q − t)e−t dU0(t)(46)

=
∫ q

0
be−(q−t)P

(
q − t − lnα < − lnVk+1 ≤ q − t − ln(α − γ )

)
dF(t),

where F(t) is the standard renewal function already introduced in (26). The
asymptotics for the integral above are then easily obtained by using the key re-
newal theorem. In particular, they depend on whether lnV is lattice or not.

(i) If lnV is nonlattice, by the key renewal theorem ([22], Theorem II.4.3), we
obtain

lim
q→∞ Ĥ (q) = cα := b

μ

∫ ∞
0

e−tP
(
t − lnα < − lnV ≤ t − ln(α − γ )

)
dt.(47)

Note that the constant cα only depends on α (and γ ) and that
∑

α∈S cα ≤ b/μ.
Thus, since Ĥ (x) = e−xH(x) it follows immediately that E[|RαB |] = n

B
cα +o( n

B
)

which proves the nonlattice case in (44).
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(ii) Similarly, if lnV is lattice with span d , the key renewal theorem (see [22],
Theorem II.4.3, or [32], Theorem A.7) implies that

Ĥ (q) ∼ ψα(q)
(48)

:= bd

μ

∑
k : kd≤q

ekd−qP
(
q − kd − lnα < − lnV ≤ q − kd − ln(α − γ )

)
as q → ∞. Note that ψα is a (positive) d-periodic function. Observe also that
for fixed α, the function ψα(·) is not continuous since lnV ∈ dZ almost surely.
Since Ĥ (x) = e−xH(x), it follows from (48) that E[|RαB |] ∼ n

B
ψα(ln(n/B)).

This proves the lattice case in (44), and completes the proof. �

With Lemma 4.7 in hand, we can now deduce the asymptotics for E[|R′ ∩ Rz|],
z ∈ Z and use them in (43) to complete the proof of Proposition 4.2. Recall that
R′ = {r ∈ R : |nr − nLr | ≤ B2/3}. Clearly, E[|R′ ∩ RαB |] ≤ E[|RαB |]. Further-
more,

E[|R′ ∩ RαB |] = ∑
r∈R

P
(|nr − nLr | ≤ B2/3, (α − γ )B ≤ nLr < αB

)
= ∑

r∈R

P
(
(α − γ )B ≤ nLr < αB

)
× P

(|nr − nLr | ≤ B2/3 | (α − γ )B ≤ nLr < αB
)

≥ E[|RαB |](1 − O(B−1/4)
)

by Lemma 4.1. We now choose B = ε−20 so that B−1/4 = ε5.

(i) If lnV is nonlattice, it follows from Lemma 4.7 that for each choice of γ

there is a constant Kγ such that for all α ∈ S and some constant cα (that of Lem-
ma 4.7) we have∣∣∣∣E[|R′ ∩ RαB |]

n/B
− cα

∣∣∣∣ ≤ γ 2 + O(B−1/4) = γ 2 + O(ε5) = O(ε5),

whenever n/B ≥ Kγ . So for all n large enough, since fx = O(x lnx), we have

E
[∑
r∈R

�̃(T nr )

]
= ∑

α∈S

cα

n

B
fαB + n

B

∑
α∈S

O(fαBε5) + O(nγ lnB) + O(ε2n lnB)

= n
∑
α∈S

fαB

B
cα + O(εn).

This proves Proposition 4.2 when lnV is nonlattice.
(ii) Similarly, if lnV is d-lattice, for any choice of γ , there is a Kγ such that

for any α ∈ S and some continuous d-periodic function ψα(t) [that of Lemma 4.7
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defined in (48)], we have∣∣∣∣E[|R′ ∩ RαB |]
n/B

− ψα(lnn)

∣∣∣∣ ≤ γ 2 + O(B−1/4) = γ 2 + O(ε5),

whenever n/B ≥ Kγ . It follows that

E
[∑
r∈R

�̃(T nr )

]
= ∑

α∈S

ψα(lnn)
n

B
fαB + n

B

∑
α∈S

O(fαBε5)

+ O(nγ lnB) + O(ε2n lnB)(49)

= n
∑
α∈S

fαB

B
ψα(lnn) + O(εn).

This proves the claim in the lattice case with ϕB defined by

ϕB(q) := ∑
α∈S

fαB

B
ψα(q).(50)

It now only remains to prove that, although the functions ψα(·), α ∈ S, are not
continuous, the d-periodic function ϕB satisfies the bound in (19).

LEMMA 4.8. The function ϕB defined in (50) satisfies

sup
|q−q ′|≤ε3

|ϕB(q) − ϕB(q ′)| ≤ Kε ln(1/ε).

PROOF. From the expresssion for ψα in (48), we have

ϕB(q) = bd

μ

∑
α∈S

fαB

B

∑
k : kd≤q

ekd−qP
(
q − kd + lnV ∈ [

ln(α − γ ), lnα
))

= bd

μ

∑
k : kd≤q

ekd−q
∑
α∈S

fαB

B
P

(
q − kd + lnV ∈ [

ln(α − γ ), lnα
))

.

Note that, since γ = ε3 and α ≥ ε2,

|ln(α − γ ) − lnα| ∼ γ

α

as ε → 0. As a consequence, for all ε > 0 small enough, the intervals involved in
the definition of ψα satisfy, uniformly in α ∈ S,

ε3

2
< |ln(α − γ ) − lnα| ≤ ε.

In particular, since lnV ∈ dZ almost surely, there is at most one atom in the interval
as soon as ε < d . It follows that, if we choose δ = ε3/2, we have for any q, q ′ such
that |q − q ′| < δ

P
(
q ′ − kd + lnV ∈ [

ln(α − γ ), lnα
)) = P

(
q − kd + lnV ∈ [

ln(α′ − γ ), lnα′))
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for some α′ in {α + γ,α,α − γ }. We adopt the following point of view: for fixed k

and q , S induces a partition into the intervals [q −kd − ln(α), q −kd − ln(α−γ )),
α ∈ S. Each interval contains at most one atom of − lnV . Changing q into q ′ as
above modifies the partition, but each atom may only move to an adjacent interval.
All atoms of lnV appear in both sums, except if one is so far that it escapes the
range of the partition (recall that α ≥ ε2). So following the atoms of − lnV rather
than the intervals in one or the other partition yields

μ

bd
|ϕB(q) − ϕB(q ′)|

≤ max
x∈{q,q ′}

∑
k : kd≤x

ekd−x+δ
∑
α∈S

max
|α′−α|≤γ

∣∣∣∣fαB

B
− fα′B

B

∣∣∣∣
× P

(
x − kd + lnV ∈ [

ln(α − γ ), lnα
))

+ max
x∈{q,q ′}

∑
k : kd≤x

ekd−x fε2B

B
,

where the second term accounts for the escape of one atom. It follows that

μ

bd
|ϕB(q) − ϕB(q ′)|

≤ max
x∈{q,q ′}

∑
k : kd≤x

ekd−x+δ
∑
α∈S

Kγ lnB · P
(
x − kd + lnV ∈ [

ln(α − γ ), lnα
))

+ Kε2 lnB

for some constant K , by Lemma 4.6 and the asymptotics for fz. Swapping the
sums once again to recover the functions ψα(·), it follows that

|ϕB(q) − ϕB(q ′)| ≤ bd

μ
Kγ eδ lnB · sup

x

∑
α∈S

ψα(x).

However, since every summand is nonnegative, we have for any x

0 ≤ ∑
α∈S

ψα(x) = bd

μ

∑
k : kd≤x

ekd−x
∑
α∈S

P
(
x − kd + lnV ∈ [

ln(α − γ ), lnα
))

(51)

≤ bd

μ

∑
k : kd≤x

ekd−x ≤ bed

μ
.

The desired bound follows: for any q, q ′ such that |q − q ′| < ε3/2, we have

|ϕB(q) − ϕB(q ′)| ≤ K ′′ε ln(1/ε)

for some constant K ′′ independent of q, q ′ or ε. �
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5. Extensions and concluding remarks.

5.1. An alternative notion of path length. The notion of path length we have
considered so far is the sum of the depths of the items in the tree. This is most
natural when one thinks about performance measures for algorithms or sorted data
structures. However, for some applications, it is sometimes important to introduce
a related notion of path length ϒ(T ), that is the sum of the depths of nodes:

ϒ(T ) := ∑
u∈U

|u|1{u∈T } = ∑
u	=σ

Nu,

where Nu denotes the number of nodes in the subtree rooted at u. This notion
of path length appears, for instance, in the analysis of cutting-down processes.
Suppose that you are given a rooted tree T . Initially, the process starts with T .
At each time step, a uniformly random edge is cut, the portion of the tree that
is disconnected from the root is lost, and the process continues with the portion
containing the root. How many random cuts does it take to isolate the root? The
question originates in the seminal work of Meir and Moon [40, 41]. Recently, the
subject has regained interest, and new results have been proved about the weak
limit of the number of cuts when the initial tree is randomly picked according to
various distributions. See [16, 27–29, 31] for more references and details about the
precise models and results.

For instance, Holmgren [28] has proved that, when the initial tree is a split tree
satisfying two general conditions (one on E[ϒ(T n)] and one on the number of
nodes), the normalized number of cuttings converges in distribution to a weakly
1-stable law (Theorem 1.1 there). Our Theorem 3.1 allows us to prove that one
of the conditions assumed in [28] actually implies the other. More precisely, the
conditions assumed in [28] are that ϒ(T n) (the path length of nodes) satisfies

E[ϒ(T n)] = α

μ
n lnn + ζn + o(n),

and that the number of nodes N = |T n| verifies, for some constants α > 0 and
ε > 0,

E[N ] = αn + f (n) where f (n) = O

(
n

ln1+ε n

)
.(52)

We deduce from Theorem 3.1:

COROLLARY 5.1. Suppose that lnV is nonlattice, and assume that (52) holds
true; then, as n → ∞,

E[ϒ(T n)] = α

μ
n lnn + ζn + o(n).
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REMARKS. The assumption in (52) is just slightly stronger than the estimate
proved by Holmgren [26], that is, that for split tree with nonlattice lnV , we have
f (n) = o(n). Moreover, the assumption in (52) does make sense, since it is known
to hold, for instance, for m-ary search trees [2, 10, 36, 39]: for such random trees,
f (n) is o(

√
n) when m ≤ 26 and is O(n1−ε) when m ≥ 27. On the other hand, it is

also known that the condition in (52) does not always hold. For instance, Flajolet et
al. [20] proved that, in the case of binary tries generated by a memoryless source
with probabilities p1,p2 such that (logp1)/(logp2) is a Liouville number, then
the error term f (n) can come arbitrarily close to O(n) [but of course, stays o(n)].
See [20], page 249, and the monograph by Baker [3] for more information about
Liouville numbers.

SKETCH OF PROOF. Define q(n) and r(n) by

E[�(T n)] = 1

μ
n lnn + nq(n) and E[ϒ(T n)] = α

μ
n lnn + nr(n).

Let �n := αnq(n) − nr(n), and note that

�n = αE[�(T n)] − E[ϒ(T n)].(53)

Since, by Theorem 3.1, q(n) converges as n → ∞, it suffices to prove that �n/n

also converges to some constant. From (53) and the assumption in (52) we obtain

�n = αE
[∑
v 	=σ

nv

]
− E

[∑
v 	=σ

(
αnv + O

(
nv

ln1+ε nv

))]
(54)

= E
[∑

v

O

(
nv

log1+ε nv

)]
.

[The constants hidden in the O(·) above are the same for every term.]
Consider the subtrees Tr , r ∈ R, introduced in the course of the proof of Theo-

rem 3.1. Recall that a node r is in R if it is the first on its path from the root such
that nLr ≤ B , for some parameter B . In the following, we take B = δ−8, for δ > 0.
We now show that the main contribution to �n is accounted for by the nodes in
the subtrees Tr , r ∈ R; in other words �n = E[∑r∈R �nr ] + o(n), where

�nr = αE[�(Tr)|nr ] − E[ϒ(Tr)|nr ].
To see this, observe that we deduce from (54) and (52) that

�n − E
[∑
r∈R

�nr

]
= E

[ ∑
v /∈Tr ,r∈R,

v 	=σ

O

(
nv

log1+ε nv

)]

= E
[∑
k≥0

∑
v /∈Tr ,r∈R,

2k≤nv<2k+1

O

(
nv

log1+ε nv

)]
+ O

(
n

logn

)
.
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We split the sum in k above at some constant K to be chosen later. By Lemma 4.1
and since the expected number of nodes v ∈ T n with nLv ≥ B is O(n/B), we
obtain

�n − E
[∑
r∈R

�nr

]
= ∑

k>K

O

(
n

2k
· 2k

k1+ε

)
+ ∑

0≤k≤K

O

(
n

B
· 2k

k1+ε

)
+ o(n)

= O(nK−ε) + O(nK2K/B) + o(n).

We choose K = �a ln(1/δ)�, for some small constant a > 0. Since δ > 0 was arbi-
trary, the claim follows.

Now since �nr = O(nr lnnr), the proof of Proposition 4.2 (in the nonlattice
case) may be extended to show that E[∑r∈R �nr ] = nζ +o(n) for some constant ζ .
The details are omitted. �

5.2. Beyond split trees and multinomial partitions. To conclude, we indicate
the lines of the arguments to extend the applicability of our main theorem to a
greater family of random trees. The model of split trees [13] supposes that the
distribution of the subtree cardinalities n1, n2, . . . , nb of a node of cardinality n is
exactly of the form

(n1, n2, . . . , nb) = Mult(n − s0 − bs1,V1,V2, . . . , Vb) + (s1, s1, . . . , s1)(55)

for a random vector (V1, . . . , Vb); in particular, the vector (V1, . . . , Vb) cannot de-
pend on n. Although many important data structures satisfy this property, some
other more combinatorial examples do not; see, for instance, the case of increas-
ing trees [5].

Also, the reader might have noticed that our proof does not quite use the full
strength of the assumption in (55). Indeed, our proof mainly uses two facts: first,
that the sequence of subtree sizes along a branch is well approximated by the
product form nLu = n

∏
v�u Vv , which modulo some details about C(V), implies

that

X
d=

b∑
k=1

VkX
(k) + C(V);

and second, that the addition of some items to the tree only modifies moderately
E[�(T )] (see Lemma 4.6).

The two requirements are satisfied when the items are distributed in subtrees
according to (55). We now indicate why our result would still hold under the much
weaker condition that there exists a vector V = (V1, . . . , Vb) such that the cardi-
nalities n1, . . . , nb of the children of a node of cardinality n satisfy(

n1

n
,
n2

n
, . . . ,

nb

n

)
→ (V1,V2, . . . , Vb) in distribution(56)
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as n → ∞. Of course, the copies of the limit vectors V at distinct nodes should
be independent. The general shape of trees under this model has recently been
completed by work by Broutin et al. [8] (see also Drmota [15] who treats the
model of increasing trees by Bergeron et al. [5] more directly).

One should be easily convinced that the relaxed condition in (56) should be
sufficient for the result to hold:

• Proposition 4.1 may be extended using the coupling arguments already used
in [8], proving that the contribution of the top of the tree to the path length may
be estimated using renewal functions associated to the limit vector V .

• Similarly, the extension of Proposition 4.2 relies on the same coupling argument
(the overshoot there is still approximated by that of the limit vector). Here, it is
important to note that the proof of smoothness of the path length (Lemma 4.6)
requires the existence of a fixed function g such that the size |T n| of a “general-
ized” split tree of cardinality n satisfies |T n| ≤ g(n) with probability 1 (at least
our proof does). This was already necessary for the results on the shape of the
trees in [8] to hold. The constraint is not too strong, since it holds as soon as
s0 or s1 is nonzero, and any function would do, regardless of its growth. (This
is another reason why the case of digital trees should be treated separately: for
such trees, the size of a tree containing two items can be arbitrarily large.)

• As already noted in Section 3, the part of the proof relative to the contraction
method in [45, 46] will go through as long as the coefficients Cn(n) converge,
and the expansion for mean implies their convergence.
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