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Steinberg groups as amalgams
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For any root system and any commutative ring, we give a relatively simple
presentation of a group related to its Steinberg group Gt. This includes the case
of infinite root systems used in Kac—Moody theory, for which the Steinberg group
was defined by Tits and Morita—Rehmann. In most cases, our group equals &t,
giving a presentation with many advantages over the usual presentation of Gt.
This equality holds for all spherical root systems, all irreducible affine root
systems of rank > 2, and all 3-spherical root systems. When the coefficient ring
satisfies a minor condition, the last condition can be relaxed to 2-sphericity.

Our presentation is defined in terms of the Dynkin diagram rather than the
full root system. It is concrete, with no implicit coefficients or signs. It makes
manifest the exceptional diagram automorphisms in characteristics 2 and 3,
and their generalizations to Kac—Moody groups. And it is a Curtis—Tits style
presentation: it is the direct limit of the groups coming from 1- and 2-node
subdiagrams of the Dynkin diagram. Over nonfields this description as a direct
limit is new and surprising. Our main application is that many Steinberg and
Kac—Moody groups over finitely generated rings are finitely presented.
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1792 Daniel Allcock

1. Introduction

In this paper we give a presentation for a Steinberg-like group, over any commutative
ring, for any root system, finite or not. For many root systems, including all finite
ones, it is the same as the Steinberg group Gt. This is the case of interest, for then
it gives a new presentation of Gt and associated Chevalley and Kac-Moody groups.
Our presentation

() is defined in terms of the Dynkin diagram rather than the set of all (real) roots
(Sections 2 and 7);

(i1) is concrete, with no coefficients or signs left implicit;

(iii) generalizes the Curtis—Tits presentation of Chevalley groups to rings other
than fields (Corollary 1.3);

(iv) is rewritable as a finite presentation when R is finitely generated as an abelian
group (Theorem 1.4);

(v) is often rewritable as a finite presentation when R is merely finitely generated
as a ring (Theorem 1.4);

(vi) allows one to prove that many Kac—Moody groups are finitely presented
(Theorem 1.5); and

(vii) makes manifest the exceptional diagram automorphisms that lead to the Suzuki
and Ree groups, and allows one to construct similar automorphisms of Kac—
Moody groups in characteristic 2 or 3 (Section 3).

More precisely, given any generalized Cartan matrix A, in Section 7 we give two
definitions of a new group functor. We call it the pre-Steinberg group P&t because
it has a natural map to Gt4. This will be obvious from the first definition, which
mimics Tits’ definition [1987] of the Steinberg group Gt4, as refined by Morita
and Rehmann [1990]. The difference is that we leave out most of the relations.
If the root system is finite then both BG&t, and &ty coincide with Steinberg’s
original group functor, so they coincide with each other too. Our perspective is
that PGSt (R) is interesting if and only if PE&St, (R) — St4(R) is an isomorphism,
when our second definition of &t provides a new and useful presentation of Gty.
We will discuss this second definition after listing some cases in which

PSt,(R) = Sta(R).

Theorem 1.1 (coincidence of Steinberg and pre-Steinberg groups). Suppose R is
a commutative ring and A is a generalized Cartan matrix. Then the natural map
PBSt, (R) — Gta(R) is an isomorphism in any of the following cases:

(1) if A is spherical; or

(1) if A is irreducible affine of rank > 2; or
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(ii1) if A is 3-spherical; or

(iv) if A is 2-spherical and (if A has a multiple bond) R has no quotient F, and
(if A has a triple bond) R has no quotient .

Language. We pass between Cartan matrices and Dynkin diagrams whenever
convenient. The rank rk A of A means the number of nodes of the Dynkin diagram.
A is called spherical if its Weyl group is finite; this is equivalent to every component
of the Dynkin diagram being one of the classical ABCDEFG diagrams. A is called
k-spherical if every subdiagram with < k nodes is spherical.

As mentioned above, case (i) in Theorem 1.1 is obvious once PGSt is defined.
Cases (iii)—(iv) are proven in Section 11. By considering the list of affine Dynkin
diagrams, one sees that these cases imply case (ii) except in rank 3 when R has a
forbidden [, or 3 quotient. Proving (ii) requires removing this restriction on R,
for which we refer to [Allcock 2016]. An early version of the present paper was
used in [Allcock and Carbone 2016] to establish Theorem 1.1 for certain hyperbolic
Dynkin diagrams. Those diagrams are now covered by case (iv).

Our second “definition” of BG&t, (R) is the following theorem, giving a presenta-
tion for it. It is a restatement of Theorem 7.12, whose proof occupies Sections 7-9.
The proof relies on an understanding of root stabilizers under a certain extension of
the Weyl group, which appears to be a new ingredient in Lie theory. To give the
flavor of the result, the full presentation appears in Table 1.1 if A is simply laced
without A; components. In this case we have LTSty (R) = Gt4(R) by the previous
theorem, so it is a new presentation for Gt4(R).

Theorem 1.2 (presentation of pre-Steinberg groups). For any commutative ring R
and any generalized Cartan matrix A, PGSty (R) has a presentation with generators
S; and X; (1), where i varies over the simple roots and t varies over R, and relators

(7-1)—(7-26).

Table 1.1 shows that the presentation is less intimidating than a list of 26 relations
would suggest. See Section 2 for the B, and G, cases. Each relator (7-1)—(7-26)
involves at most two distinct subscripts. This proves the following.

Corollary 1.3 (Curtis—Tits presentation for pre-Steinberg groups). Let A be a gen-
eralized Cartan matrix and R a commutative ring. Consider the groups PGStz (R)
and the obvious maps between them, as B varies over the 1 X 1 and 2 x 2 submatrices
of A coming from singletons and pairs of nodes of the Dynkin diagram. The direct
limit of this family of groups equals *BSt, (R). (]

In any of the cases in Theorem 1.1, we may replace B&St, by Gty everywhere in
Corollary 1.3, yielding a Curtis—Tits style presentation for &t4. This is the source
of our title Steinberg groups as amalgams. We learned after writing this paper
that Dennis and Stein [1974, Theorem B] announced Corollary 1.3 for finite root
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Xi ()X () = X;(t +u)
all i [S2, X ()] =1
Si=X; (DS X (HS; X (1)

SiSj = S;Si
all (i, j) with i # j unjoined [Si, X;(H)]=1
[X;(®), Xjw)]=1
SiS;S;i = S8;SiS;
578872 =5;"

X;(1)S;Si =S;S5:i X;(t)
SEX; ()87 = X; (1)
[X: (), $; X;(w) S 1=1
[X: (), X; ()] = S X; (tu) ;!

all (i, j) with i # j joined

Table 1.1. Our defining relations for the Steinberg group Gt (R),
when A is any simply laced generalized Cartan matrix, without A
components, and R is any commutative ring. The generators are
X;(t) and S;, where i varies over the nodes of the Dynkin diagram
and ¢ over R.

systems. They did not publish a proof, and from their announcement it appears that
their approach was not via our Theorem 1.2.

In the Ay, A2, B, and G, cases, we write out our presentation of St (R) =
Gt4(R) explicitly in Section 2. We do this to make our results as accessible
as possible, and to show in Section 3 that our presentation makes manifest the
exceptional diagram automorphisms in characteristics 2 and 3. Namely, the arrow-
reversing diagram automorphism of the B> or G, Dynkin diagram yields a self-
homomorphism of the corresponding Steinberg group if the coefficient ring R has
characteristic 2 or 3, respectively. If R is a perfect field then this self-homomorphism
is the famous outer automorphism that leads to the Suzuki and (small) Ree groups.

Because of the direct limit property (Corollary 1.3), one obtains the corresponding
self-homomorphisms of Fy in characteristic 2 with no more work. That is, the
defining relations for Gtp, are those for Gtp,, two copies of Gty, and three copies of

6’(14% = GfAl X 6’(,41.

The diagram automorphism transforms the B; relations as in the previous paragraph
and sends the other relations into each other. The same argument applies to many
Kac-Moody groups. By work of Hée, this leads to Kac—Moody-like analogues of
the Suzuki and Ree groups, discussed briefly in Section 3.
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An application of the theory we have described is that Steinberg groups and
Kac—Moody groups are finitely presented under quite weak hypotheses on their
Dynkin diagrams and coefficient rings. We state the Steinberg group result in terms
of SPG&St, (R), keeping in mind that the interesting case is when PSt, (R) coincides
with Gty (R). See Section 12 for the proof.

Theorem 1.4 (finite presentation of pre-Steinberg groups). Let R be a commutative
ring and A a generalized Cartan matrix. Then 3&St, (R) is finitely presented in any
of the following cases:

(1) if R is finitely generated as an abelian group; or

(i1) if A is 2-spherical without A components, and R is finitely generated as a
module over a subring generated by finitely many units; or

(ii1) if R is finitely generated as a ring, and any two nodes of A lie in an irreducible
spherical diagram of rank > 3.

Many authors have studied the finite presentation of Steinberg groups and related
groups. Our Theorem 1.4 is inspired by work of Splitthoff [1986]. See [Kiralis
et al. 1996; Zhang 1991; Li 1989] for some additional results.

The Kac—Moody group version of Theorem 1.4 concerns the group functors &p
constructed by Tits [1987] (he wrote & p). They were his motivation for generalizing
the Steinberg groups beyond the case of spherical Dynkin diagrams. He defined the
“simply connected” Kac—Moody groups as certain quotients of Steinberg groups,
and arbitrary Kac—Moody groups are only slightly more general. Specifying a Kac—
Moody group requires specifying a root datum D, which is slightly more refined
information than D’s associated generalized Cartan matrix A. But the choice of D
doesn’t affect any of our results.

Our final theorem shows that a great many Kac—Moody groups over rings are
finitely presented. This is surprising because one thinks of Kac—-Moody groups
over (say) R as infinite-dimensional Lie groups, so the same groups over (say) Z
should be some sort of discrete subgroups. There is no obvious reason why a
discrete subgroup of an infinite-dimensional Lie group should be finitely presented.
See Section 12 for the definition of the Kac—Moody groups, and the proof of the
following theorem.

Theorem 1.5 (finite presentation of Kac—Moody groups). Suppose A is a general-
ized Cartan matrix and R is a commutative ring whose group of units R* is finitely
generated. Let D be any root datum with generalized Cartan matrix A. Then Tits’
Kac—Moody group &p(R) is finitely presented if Gts(R) is.

In particular, this holds if one of (1)—(v) from Theorem 1.1 holds and one of
(1)-(iii) from Theorem 1.4 holds.
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The paper is organized as follows. Sections 2 and 3 are expository and not
essential for later sections. Section 2 is really a continuation of the introduction,
writing down the essential cases of our presentation of ‘PGSt (R). These can be
understood independently of the rest of the paper. Section 3 treats the exceptional
diagram automorphisms: their existence is hardly even an exercise.

Sections 4-6 give necessary background. Section 4 gives a little background on
the Kac—-Moody algebra g4. Section 5 is mostly a review of results of Tits about
a certain extension W* C Aut(g4) of the Weyl group W. But we also use a more
recent result of Brink [1996] on Coxeter groups to describe generators for root
stabilizers in W*, and how they act on the corresponding root spaces (Theorem 5.7).
Section 6 reviews Tits’ definition of Gt,4 and its refinement by Morita and Rehmann.

Sections 7-9 are the technical heart of the paper, establishing Theorem 1.2. In
Section 7 we define 3G&t, and then establish a presentation for it. We do this by
defining a group functor &4 by a presentation and proving PSt, = G4. As the
notation suggests, this is the last in a chain of group functors &1, ..., &4 that give
successively better approximations to P&t . Lemma 7.4 and Theorems 7.5, 7.11
and 7.12 give “intrinsic” descriptions of &, &,, &3 and B4, the last one being the
same as Theorem 1.2 above. See Section 2 for a quick overview of the meanings of
these intermediate groups. The proof for & is trivial, the proofs for &, and &3
occupy Sections 8 and 9, and the proof for &, appears in Section 7.

Section 10 reviews work of Rémy [2002] on the adjoint representation of a
Kac—Moody group, regarded as a representation of the corresponding Steinberg
group. The definition of Gt is as the direct limit of a family of unipotent groups,
and we use the adjoint representation to show that the natural maps from these
groups to Gt are embeddings. This is necessary for the proof of Theorem 1.1 in
Section 11. Finally, in Section 12 we discuss finite presentability of pre-Steinberg
groups and Kac—Moody groups. In particular, we prove Theorems 1.4 and 1.5. The
result for pre-Steinberg groups relies heavily on work of Splitthoff.

2. Examples

In this section we give our presentation of PSt, (R) = Gt4(R) when R is a
commutative ring and A = Ay, Ay, By or G,. It is mostly a writing-out of the
general construction in Section 7. Because of the direct limit property of the
pre-Steinberg group (Corollary 1.3), understanding these cases, together with

P&ty =P6ty, x POy,

is enough to present PSt, whenever A is 2-spherical. As usual, we are mainly
interested in the presentation when P&t and &t coincide. This happens in any of
the cases of Theorem 1.1.
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For generators we take formal symbols S, S, X (¢) and X'(r), with ¢ varying
over R. The primed generators should be omitted in the A case. We divide the
relations into batches O through 4, with several intermediate groups having useful
descriptions. At the end of the section we give an overview of these descriptions.
For now we make only brief remarks. The batch O relations make the S’s generate
something like the Weyl group. The batch 1 relations make the X (¢)’s additive
in ¢. The batch 2 relations describe the interaction between the S’s and the X (¢)’s.
These are the essentially new component of our approach to Steinberg groups. The
batch 3 relations are Chevalley relations, describing commutators of conjugates of
the X (¢)’s by various words in the S’s. Finally, the batch 4 relations are Steinberg’s
Aj-specific relations, and relations identifying the S’s with the generators of the
“Weyl group” inside the Steinberg group.

In the presentations we write x = y to indicate that x and y commute. The
notation “(& primed)” next to a relation means to also impose the relation got from
it by the typographical substitution S <> S and X (t) < X' (¢).

Example 2.1 (A;). We take generators S and X (¢), with ¢ varying over R. There
are no batch O or batch 3 relations:

Batch 1: XOXw) =Xt +u) (2-1)
Batch 2: S2= X(1) (2-2)
Batch 4: S=5(1) (2-3)
h(r)-X @) -h(r)~' = X (%) (2-4)

h(r)-SX()S™ ' h(r) ' =85X02)s™! (2-5)

These relations hold for all #, u € R and all r in the unit group R* of R, where
S5(r):=X(r)-SX(1/r)S7 X (),
h(r) :=5()5(—1).

This is essentially Steinberg’s original presentation (the group G’ on page 78 of
[Steinberg 1968]), with a slightly different generating set.

Example 2.2 (A;). We take generators S, §’, X (t) and X'(¢), with ¢ varying over R:

Batch 0: SS'S=5'SS (2-6)
§2.8.852=g"! (& primed) (2-7)

Batch 1: XOHXw)=X{t+u) (& primed) (2-8)
Batch 2: 2= X(1) (& primed) (2-9)
S2.X'(1)- 72 =X'(—1) (& primed) (2-10)

S8'X () =X'(1)SS’ (& primed) (2-11)
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Batch 3: (X (1), X' ()] = SX'(tu)S~! (& primed) (2-12)
X)) = SX (u)S™! (& primed) (2-13)
Batch 4: S:X(l)SX(l)S_lX(l) (& primed) (2-14)

As before, these relations hold for all ¢, u € R. The diagram automorphism is given
by S <> S and X (r) < X'(¢).

Example 2.3 (B,). We take generators S, S', X (¢) and X'(¢), with 7 varying over R.
Unprimed letters correspond to the short simple root and primed letters to the
long one:

Batch 0: 58’88 = 8'SS'S (2-15)
= (2-16)

§?%.5.82=5"1 (2-17)

Batch 1: XOXw)y=X({t+u) (& primed) (2-18)
Batch 2: S22 X (1) (& primed) (2-19)
ST = X'(1) (2-20)

S2.X(1)- 8 =X(-1) (2-21)

SS'S = X'(1) (& primed) (2-22)

Batch 3: SX' S =X w)s' ™! (2-23)
X'(1) = 8SX' w)S™! (2-24)

(X (1), S'X(u)S "= SX'(=2tu)S~! (2-25)

[X(1), X' )] =S'X(—tu)S~" - SX'(12u)S™! (2-26)

Batch 4: S=XMSXM)S'X(1) (& primed) (2-27)

Example 2.4 (G,). We take generators S, S, X(¢) and X'(¢) as in the B, case:

Batch 0: $5'88'SS = 8'SS'SS'S (2-28)
§2.8.82=g"! (& primed) (2-29)

Batch 1: Xt)X(u)=X(t+u) (& primed) (2-30)
Batch 2: 2= X(1) (& primed) (2-31)
S2.X'(1)-S2=X'(—1) (& primed) (2-32)

SS'SS'S = X'(1) (& primed) (2-33)

Batch 3: X'()=28SX (w)s~'s'! (2-34)

SS'X)S 'S =2 8SX (u)s~s ! (2-35)
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SX' (S ' = §'Xw)s' ! (2-36)
[X'(1), SX'w)S™" 1= 8'SX (tu)S~'§'~! (2-37)
[X(1), SS'X (u)S' 'S~ 1= SX'(Btu)S~! (2-38)
[(X(1), S'X(u)S =88X(—2tu)s' ' s~!
- SX'(=3t%u)S~!
- 8'SX'(=3tu?) s~ ! (2-39)

(X)), X' ()] =SS’ X (*u)S"~'s!
S’ X (—tu)S7 SX (PPu) ST
S'SX (—Pu) sl ! (2-40)
Batch 4: S=XMSXM)S'X) (& primed) (2-41)

Now we explain the meaning of the batches. The group with generators S and
modulo the batch O relations, is what we call W in Section 7. Tt is an extension of the
Weyl group W, slightly “more extended” than a better-known extension of W intro-
duced by Tits [1966a]. We write W* for Tits’ extension and discuss it in Section 5.
“More extended” means that W — W factors through W*, The kernel of W* — W
is an elementary abelian 2-group, while the kernel of W — W can be infinite and
nilpotent of class 2. These details are not needed for a general understanding.

The group with generators X (¢) and X'(z), modulo the batch 1 relations, is what
we call &;(R) in Section 7. It is just a free product of copies of the additive group
of R, one for each simple root.

The group generated by S, S" and the X (¢) and X'(r), modulo the relations
from batches 0 through 2, is what we call &,(R) in Section 7. It is isomorphic
to (skgeo R) X W by Theorem 7.5, where @ is the set of all roots. In fact, this
theorem applies to any generalized Cartan matrix A. This is the main technical
result of the paper, and the batch 2 relations are the main new ingredient in our
treatment of the Steinberg groups. Furthermore, Theorem 7.5 generalizes to groups
with a root group datum in the sense of [Tits 1992; Caprace and Rémy 2009]; see
Remark 7.6. This should lead to generalizations of our results with such groups in
place of Kac—Moody groups.

The batch 3 relations are a few of the Chevalley relations, written in a man-
ner due to Demazure; see Section 7 for discussion and references. No batch 3
relations are present in the A| case. In the A,, B, and G cases, adjoining them
yields Gt(R) x W, by Theorem 7.11. For any generalized Cartan matrix A, the
corresponding presentation is called &3(R) in Section 7, and Theorem 7.11 asserts
that it is isomorphic to PStTS(R) x W. Here PSt™™ is the “pre-” version of Tits’
version of the Steinberg group. See Section 7 for more details.
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Adjoining the batch 4 relations yields the group called $4(R) in Section 7. In
all four examples this coincides with Gt4(R). This result is really the concatena-
tion of Theorem 7.12, that &4 equals ‘BPSt, (for any A), with the isomorphism
PGt = Gty when A is spherical.

3. Diagram automorphisms

In this section we specialize our presentations of Gtp, (R) and Stg,(R) when the
ground ring R has characteristic 2 or 3, respectively. The exceptional diagram
automorphisms are then visible. These results are not needed later in the paper.

We begin with the B, case, so assume 2 =0 in R. Then X (#) = X (—¢) for all ¢.
In particular, the right side of (2-27) is its own inverse, so S and S’ have order 2.
The relations involving S? or §’? are therefore trivial and may be omitted. Also, the
right side of (2-25) is the identity, so that (2-25) is the primed version of (2-24). In
summary, the defining relations for Gt are now the following, with ¢ and u varying
over R:

SS'SS = 8'SS'S (3-1)
XX u) =Xt ~+u) (& primed) (3-2)
SS'S = X'(1) (& primed) (3-3)
SX'(S™'= §'Xw)s' ! (3-4)
X'(t)= SX (u)S™! (& primed) (3-5)

(X(), X' )] = SX(—tu)S'™" - SX'(1?u)S~! (3-6)
S=XMSXMHS ' x ) (& primed) (3-7)

Theorem 3.1. Suppose R is a ring of characteristic 2. Then the map S < S,
X'(t) = X(@) — X'(t2) extends to an endomorphism ¢ of Stp,(R). If R is a
perfect field then ¢ is an automorphism.

Proof. One must check that each relation (3-1)—(3-7) remains true after the substitu-
tion S < S, X'(t) — X (t) — X'(t?). It is easy to check that every relation maps
to its primed form (except that some ¢’s and u’s are replaced by their squares). The
relations (3-1), (3-4) and (3-6) are their own primed forms. Only (3-6) deserves
any comment: we must check the identity

[X'(12), X(w)] = SX' PuH) S~ S'X (1Pu) S~}

in Gt. The left side equals [X (1), X "tH]7L. The identity follows by expanding
the commutator using (3-6).

Now suppose R is a perfect field. By a similar argument, one can check that
there is an endomorphism v of Gt that fixes S and §’, and for each ¢ € R sends X ()
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to X (/1) and X'(¢) to X'(v/1). (Because R is a perfect field of characteristic 2,
square roots exist and are unique, and ¢ > +/7 is a field automorphism.) Since
Y o ¢ o ¢ sends each generator to itself, ¢ and iy must be isomorphisms. U

Now we consider the G, case, so suppose 3 =0in R. The main simplifications of
Section 2’s presentation of Gt are that the right side of (2-38) is the identity, so (2-38)
is the primed version of (2-34), and that the last two terms on the right of (2-39) are
trivial, so that (2-39) is the primed version of (2-37). So the relations simplify to:

SS'SS'SS = S'SS'SS'S (3-8)
§2.8.82=g"! (& primed) (3-9)
X)X W) =Xt +u) (& primed) (3-10)

2= X(@1) (& primed) (3-11)

S2-X'(1)- ST = X'(—1) (& primed) (3-12)
SS'SS'S = X'(1) (& primed) (3-13)

X'(1)= 8'SX' (w)s~ 5! (& primed) (3-14)
SS'X)S 'S = §'SX (u)s' s ! (3-15)
SX')S' = §'X (u)s'™! (3-16)

(X' (6), SX' u)S™ 1= 8'SX'(tu)S~' 5! (& primed) (3-17)

(X (1), X' ()] =SS'X (t*u)s'~'s™!
S'X (—tu)SHSX' (Pu)ST!
-S'SX' (—rPu) sl (3-18)
S=XMSX)S'x() (& primed) (3-19)
The following theorem is proven just like the previous one.

Theorem 3.2. Suppose R is a ring of characteristic 3. Then the map S < S/,
X'(t) = X(t) — X'(t3) extends to an endomorphism ¢ of Stg,(R). If R is a
perfect field then ¢ is an automorphism. [l

The exceptional diagram automorphisms lead to the famous Suzuki and Ree
groups. If R is the finite field F, where g = 2°4d then the Frobenius automorphism
of R (namely squaring) is the square of a field automorphism &. Writing & also for
the induced automorphism of Gtg, (R), the Suzuki group is defined as the subgroup
where & agrees with ¢. The same construction with Fj in place of B; yields the
large Ree groups, and in characteristic 3 with G, yields the small Ree groups. These
groups are “like” groups of Lie type in that they admit root group data in the sense
of [Tits 1992] or [Caprace and Rémy 2009], but they are not algebraic groups.
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Hée generalized this [2008]. He showed that when a group with a root group
datum admits two automorphisms that permute the simple roots’ root groups, and
satisfy some other natural conditions, then the subgroup where they coincide also
admits a root group datum. Furthermore, the Weyl group for the subgroup may
be computed in a simple way from the Weyl group for the containing group. For
example, over [, with g = 2044 the Kac—-Moody group

PS _—— - ° ° 5 ° Py —_—————e

contains a Kac—Moody-like analogue of the Suzuki groups. By Hée’s theorem, its
Weyl group is

----——e

Hée [1990] constructs diagram automorphisms in a different way than we do, and
discusses the case “G4” in some detail.

4. The Kac-Moody algebra

In this section we begin the technical part of the paper, by recalling the Kac—-Moody
algebra and some notation from [Tits 1987]. All group actions are on the left. We
will use the following general notation:

{,» abilinear pairing
{-» group generated by the elements enclosed
{-]-> agroup presentation
[x,y] xyx~'y~lif x and y are group elements

x free product of groups (possibly with amalgamation)

The Steinberg group is built from a generalized Cartan matrix A, for which we will
use the following notation:

I an index set (the nodes of the Dynkin diagram)
i, j will always indicate elements of /
A=(A;j) a generalized Cartan matrix: an integer matrix satisfying A;; = 2,
A,‘j <0ifi #j, andA,-.,- =0<:>Aj,' =0
m;; numerical edge labels of the Dynkin diagram: m;; =2, 3,4, 6 or 0o,
according to whether A;;A;; =0, 1,2, 3 or > 4, except that m;; =1
W the Coxeter group {s;cy | (s;s;)™ =1if m;; # 00)
7" the free abelian group with basis «;¢y, called the simple roots; W acts
on Z! by s; (@j) = aj — A;ja; (this action is faithful by the theory of
the Tits cone [Bourbaki 2002, Chapter V, §4.4])
@ the set of (real) roots: all wa; with w € W and i € 1
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The Kac—Moody algebra g = g4 associated to A means the complex Lie algebra

with generators e;c;, ficr, hic; and defining relations
[hi,ej1= Ajjej,  [hi, fil=—Aijfj, [hi,hj1=0, [ei, fil=—h,
and, fori # j,
lei, f;1=0. (adep)' ™Y (e) = (ad f)' " (f}) = 0.

(Note: (ad x)(y) means [x, y]. Also, Tits’ generators differ from Kac’s generators
[1990] by a sign on f;.) For any i the linear span of e;, f; and h; is isomorphic

to sl C, via
01 00 — 1 0

We equip g with a grading by Z/, with i; € go, ¢; € g4, and f; € g_q.. For o € 7/
we refer to g, as its root space, and abbreviate g, to g;. We follow [Tits 1987] in
saying “root” for “real root” (meaning an element of ®). Imaginary roots play no
role in this paper.

5. The extension W* C Aut g of the Weyl group

The Weyl group W does not necessarily act on g, but a certain extension of it
called W* does. In this section we review its basic properties. The results through
Theorem 5.5 are due to Tits. The last result is new: it describes the root stabilizers
in W* The proof relies on Brink’s study [1996] of reflection centralizers in Coxeter
groups, in the form given in [Allcock 2013].

It is standard [Kac 1990, Lemma 3.5] that ad ¢; and ad f; are locally nilpotent
on g, so their exponentials are automorphisms of g. Furthermore,

(expade;)(expad f;)(expade;) = (expad f;)(expade;)(expad f;). (5-1)

We write s for this element of Autg and W* for {s/_,> € Autg. One shows [Kac
1990, Lemma 3.8] that 5 (g4) = gy, (o) foralla € Z!. This defines a W*-action on Z/,
with s acting as s;. Since W acts faithfully on 7! this yields a homomorphism
W* — W. Using W*, the general theory [Kac 1990, Proposition 5.1] shows that g,
is 1-dimensional for any o € ®.

Let Z'V be the free abelian group with basis the formal symbols a7, and
define a bilinear pairing Z'¥ x Z! — Z by (o, ;> = A;;. We define an action
of W on Z'V by s; (ozjv) = ozjv — Ajia;’. One can check that this action satisfies
(wa, wB)y =<aV, B). There is a homomorphism Ad: Z!¥ — Aut g, with Ad(«")
acting on gg by (=1)<e"A where B € Z!. The proof of the next lemma is easy
and standard.
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Lemma 5.1. Ad: Z"V — Autg is W*-equivariant in the sense that
w* - Ad(@”) - w* ! = Ad(waY),
where a¥ € Z'"Y and w is the image in W of w* € W* O
Lemma 5.2. The following identities hold in Aut g:
(i) s = Ad()).
(i) 57 ()27~ = (s7)2(s7) 2
Proof sketch. (1) Identifying the span of e;, f;, h; with s,C as in (4-1) identifies

s;kz with (_(1) _?) € SL, C. One uses the representation theory of SL; C to see how
this acts on g’s weight spaces.

(ii) Use (i) to identify s*2 with Ad(av) then Lemma 5.1 to identify s Ad(ozv)s**1
with Ad(s, (oev)) then the formula deﬁnmg S (ozv) and finally (i) again to convert
back to s/ and s |

To understand the relations satisfied by the s it will be useful to have a char-
acterization of them in terms of the choice of ¢; (together with the grading on g).
This is part of Tits’ “trijection” [1966Db, §1.1]. In the notation of the next lemma,
s; s s (or equally well s

Lemma 5.3. If o € ® and e € gy — {0} then there exists a unique f € g_q such that
= (expade)(expad f)(expade)

exchanges §.+o. Furthermore, s} coincides with sy * and exchanges e and f. Finally, if
¢ € Autg permutes the ggeco then Ps;p = S¢(e) ([

Lemma 54. (i) Ifm;j =3 then sj’-ks;k(ej) =e.
k ko ok ok ok ok

(i) If mi; =2, 4 or 6 then e; is fixed by s}, sl.* P87 Or8;S7SISTS respectively.

Proof. Part (i) follows from direct calculation in s[3C. In the m;; = 2 case of (ii)
we have (ade;)(e;) = (ad f;)(e;) =0, and s/ (e;) = e; follows immediately. The
remaining cases involve careful tracking of signs. We will write (s[,C); for the
span of ¢;, fi, h;.

If mi; =4 then {A;;, Aj;} = {—1, =2} and «; and «; are simple roots for a B,
root system. Using Lemma 5.3,

Sl J* i (ej) =i S: sz* : *z(ef) - s;ki*(ej)((Adaiv)(eJ')) = (_1)Aijs;i*(ej)(€j)' (5-2)

Suppose first that A;; = —2. Then «; is the short simple root, «; the long one, and
s; () is a long root orthogonal to «;. We have

s;}(ej) = (expads; (¢j))(expads; (f;))(expads;(e;)) € expad(s] ((s,C)))).
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Now, 57 ((s[2C);) annihilates g; because its root string through «; has length 1. So
s ©) fixes e; and (5-2) becomes

sistsi(e) = (=DMej = (=177

On the other hand, if A;; = —1 then «; and s;(c;) are orthogonal short roots. Now
the root string through o; for s’ ((s[>C);) has length 3, so the s7((s[,C);)-module
generated by e; is a copy of the adjoint representation. In particular,

* ok k k—1
Sgr(e;) = 5i 8j i

acts on g; by the same scalar as on the Cartan subalgebra s*(Cfl ) of s7((s2C);).

This is the same scalar by which sJ’-" acts on Ch j» which is —1. So 57, “(e)) negates e;
and (5-2) reads

sistsiep) = (=)%Y (—e) = (=)' (—¢j) =¢;.
Now suppose m;; = 6, so that {A;;, A;;} = {—1, =3}, ; and «; are simple roots
for a G, root system, and s;s;(a;) L ;. Then
s;sisisisi(ep) = (s]'sjsy 57 s LerDsts s;isisi (ej)
)osi?(e))

*2 %— ZAJI )
_s* sten ©Sj Si os/ (ej)

*g *2 x—1
—S**(e)o(s

— S st (e Os*2s*4or8(ej)

s;*s]’-k (e;) (ej ) .

The root string through «; for sfs}‘((s[z@) i) has length 1, so arguing as in the B,
case shows that ss* (o) fixes e;. O

Theorem 5.5 [Tits 1966a, §4 6]. The sl?“ satisfy the Artin relations of M. That

is, if mjj # oo then sl.*s;‘ = *s¥ ..., where there are m;; factors on each side,

alternately s and s;.*.
Proof. For m;; =3 we start with e; =s; s* (e;) from Lemma 5.4(i). Using Lemma 5.3
yields

=1 _x—1 * ok ok x—1 _x—1

*
sj—s —s**(e) R T ICH

The other cases are the same. O

We will need to understand the W*-stabilizer of a simple root ¢; and how it acts
on g;. The first step is to quote from [Allcock 2013] a refinement of a theorem of
Brink [1996] on reflection centralizers in Coxeter groups. Then we will “lift” this
result to W* by keeping track of signs.
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Both theorems refer to the “odd Dynkin diagram” A°%¢, which means the graph
with vertex set I, where vertices i and j are joined just if m;; = 3. For y an edge
path in A°M with i, ..., i, the vertices along it, we define

Py = (S50, Siy o 8iu_) - - (8i1855,) (SigSiy)- (5-3)

(If  has length O then we set p, =1.) For i € I we write A?dd for its component
of A°4d,

Theorem 5.6 [Allcock 2013, Corollary 8]. Supposei € I, Z is a set of closed edge
paths based at i that generate 1) (A‘l?dd, i), and §; is an edge path in A‘l?dd from i
to j, for each vertex j of A‘;dd. For each such j and each k € I with mjy finite and
even, define
Sk
k= pyl ) skSise (- Py, (5-4)
SkSjSkSjSk

according to whether mj; =2, 4 or 6. Then the W-stabilizer of the simple root a; is
generated by the rji and the p,cy. ([

It is easy to see that the rj; and p, stabilize ;. In fact, this is the “image under
W* — W” of the corresponding part of the next theorem.

Theorem 5.7. Suppose i, Z and the §; are as in Theorem 5.6. Define p}, and r;}(
by attaching x to each s, p and r in (5-3) and (5-4). Then the p}_, and rj*k fix e;,
and together with the sl*ezl they generate the W*-stabilizer of o;. (By Lemma 5.2(i),

51*2 acts on e; by (—1)41).

Proof. The W*-stabilizer of «; is generated by ker(W* — W) and any set of
elements of W* whose projections to W generate the W-stabilizer of «;. Now,
the sl?"z normally generate the kernel because of the Artin relations. Lemma 5.2(ii)
shows that the subgroup they generate is normal, hence equal to this kernel. Since
the p*’s and r*’s project to the p’s and r’s of Theorem 5.6, our generation claim
follows from that theorem. To see that the p?’s fix e;, apply Lemma 5.4(i) repeatedly.
The same argument proves pgj (e;) = e;. Then using Lemma 5.4(ii) shows that e; is
fixed by s/, s,’(“sj’.“s;(k or s,’cksjfks,fs;‘s,’: according to whether mj is 2, 4 or 6. Applying
p;kj*l sends e; back to e;, proving rj*k (e;) = e;. O

6. The Steinberg group St

In this section we give an overview of the Steinberg group Gty, as defined by Tits
[1987] and refined by Morita and Rehmann [1990]. The purpose is to be able to
compare the pre-Steinberg group PGSt (see Section 7) with Gt,. For example,
Theorem 1.1 gives many cases in which the natural map P&t (R) — Gt4(R) is
an isomorphism.
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The Morita—Rehmann definition is got from Tits’ definition by imposing some
additional relations. These are also due to Tits, but he imposed them only later in
his construction, when defining Kac—Moody groups in terms of Gt,4. In the few
places where we need to distinguish between the definitions, we will write thfts for
Tits’ version and Gt for the Morita—Rehmann version. In the rest of this section
we will regard A as fixed and omit it from the subscripts.

2000 denotes the additive group, regarded as a group scheme over Z. That is, it
is the functor assigning to each commutative ring R its underlying abelian group.
The Lie algebra of 2[00 is canonically isomorphic to Z.

For each a € ®, g, N W*({e;cr}) consists of either one vector or two antipodal
vectors. This is [Tits 1987, (3.3.2)] and its following paragraph, which relies on
[Tits 1974, §13.31]. Alternately, it follows from our Theorem 5.7. We write g, 7 for
the Z-span in g, of this element or antipodal pair, and E,, for the set of its generators
(a set of size 2). The symbol e will always indicate an element of some E,. We
define 1, as the group scheme over Z which is isomorphic to 200 and has Lie
algebra g, 7. That is, {{, is the functor assigning to each commutative ring R the
abelian group g,,7 ® R = R. For i € I we abbreviate {4, to {ly;.

If « € ® and e € E, then we define ¢, as the isomorphism 2[00 — 4l,, whose
corresponding Lie algebra isomorphism identifies 1 € Z with e € g, 7. For fixed R
this amounts to

ge(t) =e®t Ega,Z®R:ua-

If R =R or C then one may think of z.(¢) as exp(te). For i € I we abbreviate g,
tor; and s, to ;.

Tits calls a set of roots W C @ prenilpotent if some chamber in the open Tits
cone lies on the positive side of all their mirrors and some other chamber lies on the
negative side of all of them. (Equivalently, some element of W sends W into the
set of positive roots and some other element of W sends W into the set of negative
roots.) It follows that W is finite. If W is also closed under addition then it is called
nilpotent. In this case gy := €D,y g« is a nilpotent Lie algebra [Tits 1987, p. 547].

Lemma 6.1 [Tits 1987, §3.4]. If ¥ C ® is a nilpotent set of roots, then there is a
unique unipotent group scheme ly over Z with these properties:
(1) Uy contains all the Uy cy.
(i1) Yy (C) has Lie algebra gy.
(iii) For any ordering on W, the product morphism [ |,cy Yo — Yy is an isomor-

phism of the underlying schemes. [l

Tits” version Gt of the Steinberg group functor is defined as follows. For each
prenilpotent pair «, S of roots, («, B) is defined as (N + NB) N & where N =
{0, 1,2, ...}. Consider the groups gy With {@, B} varying over all prenilpotent
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pairs. If y €6 (c, B) then there is a natural injection &, — Ly (4, gy, yielding a diagram
of inclusions of group functors. Gt is defined as the direct limit of this diagram.
Every automorphism of g that permutes the subgroups g, 7 induces an automorphism
of the diagram of inclusions of group functors, hence an automorphism of St
In particular, W* acts on GtT%,

As Tits points out, a helpful but less canonical way to think about StT"(R) is
to begin with the free product xqco Ly (R) and impose relations of the form

[fe, (), 2] =[] e, (Capyt™u™ (6-1)
y=ma+nf

for each prenilpotent pair «, 8 € ®. Here y = ma + nf runs over 6 (¢, ) — {«, B},
so in particular m and n are positive integers. Also, e, eg and the various e, lie in
Ey, Eg and the various E,,, and must be chosen before the relation can be written
down explicitly. The Cyp,, are integers that depend on the position of y relative to
a and B, the choices of e, eg and the e,,, and the ordering of the product; compare
(3) of [Tits 1987]. Usually (6-1) is called “the Chevalley relation of « and 8. It
is really a family of relations parametrized by ¢ and u, and (strictly speaking) not
defined without the various choices being fixed.

Unfortunately, Tits’ version of the Steinberg group is different from Steinberg’s
original group when the Dynkin diagram has A; components. Therefore, we follow
[Morita and Rehmann 1990] in defining the Steinberg group functor &t. That is,
we impose the additional relations (6-5), which correspond to the relations (B’)
in [Steinberg 1968] or [Morita and Rehmann 1990]. These relations make the
“maximal torus” and “Weyl group” act on the root groups 4, in the expected
manner. If A is 2-spherical without A; components then the Morita—Rehmann
relations already hold in GtT' and this part of the construction can be skipped, by
[Tits 1987, (as), p. 550].

The relators involve the following elements of Gt If @ € ® and e € E, then
recall from Lemma 5.3 that there is a distinguished f € E_,. As the notation
suggests, if e = ¢; then f = f;. For any r € R* we define

Se(r) ==t (N (1/r)re(r), (6-2)
he(r) :=5,(r)5.(—1). (6-3)
We abbreviate special cases in the usual way: fzii (r) for Ee,— (r) and fzfl. (r), s+ (r)
for 5, (r) and 5y, (r), s+; for s4,;(1), and 5, for s.(1). It is useful to note several

immediate consequences of the definitions: §,(—r) = 5.(r) ™, fze(l) =1, and

5o (M3 ()™ = he(r)h ()" (6-4)
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Conceptually, the relations we will impose on St 1o get Gt force the conjugation
maps of the various 5,(r) to be the same as certain automorphisms of Gt1'. So we
will describe these automorphisms and then state the relations.

Recall from Lemma 5.1 and its preceding remarks that Z'" is the free abelian
group generated by formal symbols o, ,. Also, the bilinear pairing 7V x7l -7
given by <al.v, ajy = A;; is W-invariant. We defined a map Ad : 7'V — Autg,
which we generalize to Ad : (R* ® Z'Y) — Aut(skqeo o) as follows. For any
oY eZ", re R* and B € ®, Ad(r ® @") acts on {g = R by multiplication by
r<@"-F> ¢ R* One recovers the original Ad by taking r = —1.

The Chevalley relations have a homogeneity property, namely that Ad(r @ a“)
permutes them. This is most visible when they are stated in the form (6-1). Therefore,
the action Ad of R* ® Z!V on sgcqe i, descends to an action on StTS(R).

It is standard that there is a W-equivariant bijection o — «" from the roots
® C 7' to their corresponding coroots in Z/V. As the notation suggests, the
coroots corresponding to the simple roots «; are our basis «;” for Z'. In view
of W-equivariance this determines the bijection uniquely. For « € ® and r € R*
we define hy (r) € Aut GtT(R) as Ad(r ® ). As usual, we abbreviate hy, (r)
to h;(r).

We define the Steinberg group functor Gt as follows. Informally, Gt(R) is the
quotient of GtTits(R) got by forcing every 5, (r) to act on every Ug(R) by hy (r) os),
where « is the root with e € E,. Formally, it is the quotient by the subgroup
normally generated by the elements

Se(ruse(r) ™" ((ha(r) o s;f)(u))_1 (6-5)

as «, B vary over ®, e over E, r over R* and u over {g(R). This set of relators
is visibly W*-invariant, so W* acts on Gt.

Remark 6.2. Because 5,.(r) = ﬁe(r)Ee, an equivalent way to impose the relations
(6-5) is by quotienting by the subgroup of Gt1*(R) normally generated by all

§eu§;1 -sj(u)fl (6-6)
he(ryuhe(r)™" - (he(r)(u)) ™" (6-7)

Remark 6.3. Our relations differ slightly from the relations (B") of [Morita and
Rehmann 1990], because we follow Tits’ convention for the presentation of g, while
they follow Kac’s convention (see Section 4). Our relations also differ from Tits’
relations [1987, §3.6] in the definition of his Kac—Moody group functor, even taking
into account that our fz,- (r) corresponds to his r’. This is because Rémy observed
[2002, §8.3.3] that Tits’ relator (6), namely 5;(r) ! -5, -rhi_is in error. Rémy fixed
it by replacing the first r by 1/r. Our repair, by exchanging the last two terms,
is equivalent.
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Theorem 6.4 (alternative defining relations for &t). The kernel of the natural map
ST (R) — GH(R) is the smallest normal subgroup containing the elements

hi (@O ()~ g rtin ™! (6-8)
hi (55505 R ()7 (S 05T (6-9)
R (7 (6-10)

foralli, jel, reR* teRandu e g, where B may be any root. Furthermore,
the identities

§ihj ()57 = hi P2 (), (6-11)
[hi(r), hj(r)] = hj(r2ir i r )~y () ™! (6-12)
hold in St(R), foralli, jel, r,r' € R*

Remark 6.5 (applicability to BG&St). The proof below does not use the relations
defining St1. So it shows that the subgroup of %gce o (R) normally generated
by the relators (6-5) is the same as the one normally generated by (6-8)—(6-10), and
that (6-11)—(6-12) hold in the quotient. This is useful because we will use the same
relations when defining the pre-Steinberg group 3Gt in the next section.

Proof. We begin by showing that (6-8)—(6-10) are trivial in Gt(R). First, (6-10) is
got from (6-5) by taking e = ¢; and r = 1. Next, recall the definition of fli(r) as
5;(r)s;(—1) in (6-3), and that the defining relations (6-5) for Gt(R) say how §;(r)
acts on every ig. So fzi(r) acts on every g as

hi(r)osf ohi(—=1)os} =hi(r)ohi(=1)o (s> =h;(r)ohi(=1) o hi(—1) = h;(r).

Taking B = «; gives (6-8). For (6-9), take B = —«; and use the fact that 5; swaps
iy, (since it acts as sjfk). This finishes the proof that (6-8)—(6-10) are trivial in
Gt(R).

Now we write N for the smallest normal subgroup of SIS (R) containing
(6-8)—(6-10) and = for equality modulo N. We will show that (6-11)—(6-12) hold
modulo N and that the relators (6-6)—(6-7) are trivial modulo N. We will use relator
(6-10) without explicit mention: modulo N, each s; acts on every g as s;*.

First we establish (6-11)—(6-12). Starting from the definition of §;(r"), we have

5"y =1 r—; (/e (') =5, (r) - 5jx; (1/r’)§j_] -1 ().
Now the relators (6-8)—(6-9) give

hi()3;(rhi(r) ! =54 r). (6-13)
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Taking r’ = 1, left-multiplying by hi(r)~!, right-multiplying by Ej_l, and then
inverting both sides and using (6-4), gives
Sihi (N5 =505 hi(r) = hi (e T (). (6-14)
Exchanging i and j establishes (6-11). Also, (6-13), (6-3) and (6-4) show that
hi(rYh; (XY (r) ™ = 5,25 r )™ = hy ek (et T

Right-multiplication by h NG )~! gives (6-12).
Now we will prove (6-7) for all ;. That is: modulo N, h;(r) acts on every g by
hi(r). To prove this, write E for ] peo Ep and consider for any e € E the condition

(e Ohi ) =14ty foralliel,r e R* and te R, (6-15)

where B is the root with e € Eg. The set of e € E satisfying this condition is closed
under negation, because r_.(f) = r.(—1t). This set contains e; € Eq; and f; € E_q,
for every j € I, by relations (6-8)—(6-9). The next paragraph shows that it is closed
under the action of W*, Therefore, all e € E satisfy (6-15), establishing (6-7) for
alle =¢;.

Here is the calculation that if e € E satisfies (6-15), and j is any element of /,
then s;‘ (e) also satisfies (6-15). We must establish it for all i, so fix some i € I.
We have

hi (Mgt (Ohi ()™
= i ()1 (1)) DR (1) by (s7)* =h;(—1)
= hi (M5 1 (=D P2 05 (r) !
=57 Ghi (5 e (=D 0 Gihi (07153
=571y ) T Ry ())ee (=D P2 1) (i ()~ (r4)3 by (6-14)
=5 k(=) p (D A e B g, by (6-15) for e
= by (=) Ol =
= xs;‘ohj(fl)(e)((_l)<ajy’ﬁ>r<aiv’ﬂ>r_Aij B py
= by (<P A B,

The right side of (6-15) for sj’.“ (e) has a similar form. Establishing equality amounts
to showing <e;” — A,jotjv, B> = <, s;(B)>. This follows from s;(8) = B —
<ozjv, B a;, finishing the proof of (6-15) for all e € E.
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For e equal to any %e;, we were given (6-6) and we have proven (6-7). The
same results for all e follow by W* symmetry. More precisely, we claim that, for
all j € I, if (6-6) and (6-7) hold for some e € E then they hold for sjfk (e) too. We
give the details for (6-7), and the argument is the same for (6-6). Suppose r € R*
and u € | Bed Hg. Then the left and right “sides” of the known relation (6-7) for e
lie in | pea g, S0 conjugating the left by 5; has the same result as applying s]’.k to
the right. That is,

T P | * *
SjSeus, sj =s; os, (u),
-1
(5863, )(s]us NG5 5 h=s sjos;osi " osi(u),

5s; ()57 () (55 *(e)) =5} (e)(s (u)).

As u varies over all of | ped g, so does s;‘(u). This verifies relation (6-7) for
s¥(e). O
J

7. The pre-Steinberg group P St

In this section we define the pre-Steinberg group functor 8Gt, in the same way as
Gt4, but omitting some of its Chevalley relations. So it has a natural map to Gt 4.
Then we will write down another group functor as a concrete presentation, and show
in Theorem 7.12 that it equals B&St,. Since PGSty — Sty is often an isomorphism
(Theorem 1.1), this often gives a new presentation for Gt4. As discussed in the
Introduction, it is simpler and more explicit than previous presentations, and special
cases of it appear in Table 1.1 and Section 2. In the rest of this section we suppress
the subscript A.

We call two roots «, § classically prenilpotent if (Qa 4+ Q@8) N @ is finite and
o + B # 0. Then they are prenilpotent, and lie in some A, A%, Ay, By or G, root
system. We define the pre-Steinberg group functor PGSt exactly as we did the
Steinberg functor &t (Section 6), except that when imposing the Chevalley relations
we only vary «, 8 over the classically prenilpotent pairs rather than all prenilpotent
pairs. We still impose the relations (6-5) of Morita—Rehmann, or equivalently
(6-6)—(6-7) or (6-8)—(6-10). (See Remark 6.5 for why Theorem 6.4 applies with
PGSt in place of Gt.) Just as for Gt, W* acts on PSt because it permutes the
defining relators.

There is an obvious natural map P&t — GSt, got by imposing the remaining
Chevalley relations, coming from prenilpotent pairs that are not classically pre-
nilpotent. If ® is finite then every prenilpotent pair is classically prenilpotent, so
PGSt — St is an isomorphism.

The rest of this section is devoted to writing down a presentation for St. We
start by defining an analogue W of the Weyl group. It is the quotient of the free
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group on formal symbols S;c; by the subgroup normally generated by the words

(SiSj---) - (88 --)7" if mi; # 0o, (7-1)
S78;8;2- 8! if A;j is even, (7-2)
S2S;872-S; if Aj; is odd, (7-3)

where i, j vary over I, and (7-1) has m;; terms inside each pair of parentheses,
alternating between §; and §;. These are called the Artin relators, for example,
SiSjS,' . (SjS,'Sj)_l ifm,-j =3.

Remark 7.1. We chose these defining relations so that W would have four proper-
ties. First, it maps naturally to W*, so that it acts on g and %4 Uy. Second, the
kernel of W — W is generated (not just normally) by the Sl.z. This plays a key role
in the proof of Theorem 7.5 below. Third, each relation involves just two subscripts,
which is needed for the Curtis—Tits property of ‘P&t (Corollary 1.3). And fourth,
the §; € &t, defined in (7-27), satisfy the same relations. (Formally: S; — §; extends
to a homomorphism W — Gt.) The first two properties are established in the next
lemma, the third is obvious, and the fourth is part of Theorem 7.12.

Lemma 7.2 (basic properties of W). (i) S; > s defines a surjection W — W*
(i) S; Sl.sz_l = Sl.2 (resp. S].zSiz) if Ajj is even (resp. odd).
(iii) The Sl.2 generate the kernel of the composition W W*— W.

Proof. We saw in Theorem 5.5 that the s satisfy the Artin relations. Rewriting
Lemma 5.2(ii)’s relation in W* with i and j reversed gives

2 %=1 _ 20 k=24
s]fk(s;" s;.k = (s]) (s}k) i,
Multiplying on the left by s;."_l and on the right by (sl.*)_z, then inverting, gives
(59257 (sH) 72 = (5] (s7) s = ()P4

In the second step we used the fact that sl?"2 and s}"z commute. Using s;.“‘ =1,
the right side is s;‘ if A;; is even and sJ’.“*1 if A;; is odd. This shows that §; — s
sends the relators (7-2)—(7-3) to the trivial element of W*, proving (i).

One can manipulate (7-2)—(7-3) in a similar way, yielding (ii). It follows im-
mediately that the subgroup generated by the Sl.2 is normal. Because of the Artin
relations, this is the kernel of W — W. So we have proven (iii). ]

Remark 7.3. Though we don’t need them, the following relations in W show that
W is “not much larger” than W*, First (7-2)—(7-3) imply the centrality of every S;‘ .
Second, if some A;; is odd then (7-3) shows that S jﬂ' are conjugate; since both are
central they must be equal, so Sl8 = 1. Third, the relation obtained at the end of
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the proof implies [S?, Sl.z] =1or S/‘.‘, according to whether A;; is even or odd. In
particular, these commutators are central. Finally, we can use this twice:
{ 1 if A;j is even 1 if Ay is even}

) ) =182 §21=78% 217! =
st 1fA,-jlsodd} 155 Si1=157. 5j1 S7* if Aj; is odd

In particular, if both A;; and A;; are odd then S;‘ and S;‘ are equal. If A;; is even
while Aj; is odd then we get S;‘ =1.

Now we begin our presentation in earnest. Ultimately, 3&t(R) will have gen-
erators S; and X;(¢), with i varying over / and ¢ varying over R, and relators
(7-1)—(7-26).

We first define a group functor &; by declaring that &;(R) is the quotient of the
free group on the formal symbols X;(#), by the subgroup normally generated by
the relators

Xi (1) Xi () Xi(t + )~ (7-4)

foralli € I and ¢, u € R. The following description of &; is obvious.
Lemma 7.4. & = x;c; U;, via the correspondence X;(t) <> x;(t). O

Next we define a group functor &, as a certain quotient of the free product
&1 W. Namely, &,(R) is the quotient of &{(R) *x W by the subgroup normally
generated by the following relators, with i and j varying over / and ¢ over R:

SPX; (087 - (Xi((=DYn) ™! (7-5)

[Si, Xj(1)] if mij =2, (7-6)

88X () - (Xi(1)S; )~ if m;j =3, (7-7)

[S:S;S:, X;(1)] if myj =4, (7-8)
[S:S;S:S;Si, X; ()] if myj = 6. (7-9)

The next theorem is the key step in our development; see Section 8 for the proof.
Although it is not at all obvious, we have presented (kyecop Ly) X w. Therefore, we
“have” the root groups l, for all o, not just simple «. This sets us up for imposing
the Chevalley relations in the next step.

Theorem 7.5. &, is the semidirect product of *yco U by W, where W acts on the
free product via its homomorphism to W* and W*’s action on skgyce Uy is induced
by its action on | J < 90,2

Remark 7.6 (groups with a root group datum). A Kac-Moody group over a field
is an example of a group G with a “root group datum”. This means: a generating
set of subgroups l, parametrized by the roots « of a root system, permuted by
(some extension W of) the Weyl group W of that root system, and satisfying some
additional hypotheses. See [Tits 1992] or [Caprace and Rémy 2009] for details.



Steinberg groups as amalgams 1815

Examples include the Suzuki and Ree groups and isotropic forms of algebraic
groups (or Kac—Moody groups) over fields. In many of these cases, some of the
root groups are noncommutative. The heart of the proof of Theorem 7.5 is our
understanding of root stabilizers in W* (Theorem 5.7), which would still apply
in this more general setting. So there should be an analogous presentation of
(kgeo Uy) X W. The main change would be to replace (7-4) by defining relations
for 1;, and interpret the parameter ¢ of X;(¢) as varying over some fixed copy of 4l;,
rather than over R. Since G is a quotient of (skgeq Lly) X W, analogues of the rest
of this section presumably yield a presentation of G.

Next we adjoin Chevalley relations corresponding to finite edges in the Dynkin
diagram. That is, we define &3(R) as the quotient of &,(R) by the subgroup
normally generated by the relators (7-10)—(7-23) below, for all ¢, u € R. These
are particular cases of the standard Chevalley relators, written in a form due to
Demazure (see Remark 7.8 below).

When i, j € I withm;; =2,
[X; (1), X (u)] (7-10)
When i, j € I with m;; =3,
[X; (1), SiX;(w)S; '] (7-11)
[X; (1), X; ()] - S; Xj(—tu)S;! (7-12)

When s, € I, mg; =4 and s is the shorter root of the B»,

[S:Xi(1)S7", S X (u)S; '] (7-13)
[X;(), Sy X1 (u)S; '] (7-14)
[Xs(t), S Xs(u)S; '] S X1 (2tu) S (7-15)

[Xs (1), X;)]- S Xi (—1*u) S, - § X (tw) S (7-16)

When s, € I, myg = 6 and s is the shorter root of the G»,

[X;(1), SiSs X1 (u)S; 8,71 (7-17)

[S:8 Xs(1)S 'S, 818, X (u) S, s (7-18)
[S, X1 (1)S7", 8 X (u)S; '] (7-19)

[X;(t), Sy X1 (u)S;'T- S Ss X (—tu) S S, (7-20)

[X (1), Ss8i X5 (u)S; 'S - Sy Xy (—3tu) S, ! (7-21)
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[Xs (1), SiXs()S; ']~ 88 X, Btu?) ;1S - S, X1 (31%u) S, !
-85 S Xs 2tu) S, S (7-22)

[Xs (1), X;)]- S Ss X, (u?) S S - S X (—Pu) S, !
S X (tu)S; - Sy 8 X (—12u) S S ! (7-23)

Remark 7.7 (asymmetry in the A, relators). The relators (7-11)—(7-12) are not
symmetric in i and j. Since m;; = 3 whenever m;; = 3, we are using both these
relators and the ones got from them by exchanging i and j.

Remark 7.8 (Demazure’s form of the Chevalley relations). Our relators are written
in a form due to Demazure (Propositions 3.2.1, 3.3.1 and 3.4.1 in [SGA 3, 1970,
Exposé XXIII]). They appear more complicated than the more usual one (for
example, [Carter 1972, Theorem 5.2.2]), but have two important advantages. First,
there are no implicit signs to worry about, and second, the presentation refers only
to the Dynkin diagram, rather than the full root system.

One can convert (7-10)—(7-23) to a more standard form by working out which
root groups contain the terms on the “right-hand sides” of the relators. For example,
the term S; X (tu)Sl_1 of (7-23) lies in S;i; Sz_l = My, +o, because reflection in o;
sends o to oy + o7 Applying the same reasoning to the other terms, (7-23) equals
[Xs(2), X;(u)] times a particular element of 34 420, - Yoo, +a; - Yoy tar * Yoo+ -
The advantages of Demazure’s form of the relators come from the fact that no
identifications of these root groups with R is required. We simply use the already-
fixed identifications of the simple root groups with R, and transfer them to these
other root groups by conjugation by S and S;.

Remark 7.9 (diagram automorphisms in characteristics 2 and 3). Some of the
relators can be written in simpler but less symmetric ways. For example, (7-13) is
the Chevalley relator for the roots ss(«;) and s;(ces) of By, which make angle 7 /4.
As we will see in the proof of Theorem 7.11, one could replace this pair of roots by
any other pair of roots in the span of o, o; that make this angle. So, for example,
one could replace (7-13) by the simpler relator [S;X;(¢)S; ' X,(u)]. We prefer
(7-13) because it maps to itself under the exceptional diagram automorphism in
characteristic 2; see Section 3 for details. Similar considerations informed our
choice of relators (7-18)—(7-19), and the ordering of the last four terms of (7-23).

Remark 7.10 (redundant relations). In practice, most of the relators coming from
absent and single bonds in the Dynkin diagram, i.e., (7-10)—(7-12), can be omitted.
Usually this reduces the size of the presentation greatly. See Propositions 9.1
and 9.2.

In Section 9 we prove the following more conceptual description of ®3. To be
able to state it we use the temporary notation 3GSt"'® for the group functor defined
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in the same way as St (see Section 6), but only using classically prenilpotent
pairs rather than all prenilpotent pairs. So PSt® is related to Gt in the same
way that PSt is related to Gt. W acts on LSt for the same reason it acts
on &1,

Theorem 7.11. The group functor PStT x W coincides with &3. More precisely,
under the identification By = (kgeop Uy) X W of Theorem 7.5, the kernels of
By — &3 and (kgep Hy) X W — PSS W coincide.

Finally, we define &4 as the quotient of &3 by the smallest normal subgroup
containing the relators

hi(r) X (Ohi(r) " X (rYi) ™! (7-24)
hi(r) S X (ST ()™t 8§ X0 Ay~ s ! (7-25)
Si-5()7! (7-26)

where r varies over R, t over R and i, j over 1. We are using the definitions
§i(r) = Xi (NS X;(1/r) S, X, (r), (7-27)
hi(r) =5 (r)5: (—1). (7-28)

Note that this definition of §;(r) is compatible with the one in Section 6, because
X;(r) € &3 corresponds to x,, (r) € ‘BGtTitS under the isomorphism of Lemma 7.4,
while SiXi(l/r)Sl._] corresponds to s7(x., (1/r)) =7 (1/r). As before, we will
abbreviate 5; (1) to §;.

The following theorem is the main result of this section and a restatement of
Theorem 1.2 from the Introduction.

Theorem 7.12 (presentation of the pre-Steinberg group BSt). The group functor
P&t coincides with &4. In particular, for any commutative ring R, ‘BSt(R) has
a presentation with generators S; and X;(t) fori € I and t € R, and relators
(7-1)—(7-26).

Proof. By definition, &, is the quotient of &3 by the relations (7-24)—(7-26).
Because S; acts on each g by s* (Theorem 7.5), imposing (7-26) forces §; to also
act this way. We consider the intermediate group &3 s, of fleeting interest, got
from &3 by imposing (7-24)—(7-25) and the relations that §; acts on every g as
s* does. In other words, we are imposing on PSS C PSS x W = &3 the
relations (6-8)—(6-10). Theorem 6.4 and Remark 6.5 show that this reduces &3 to
PStx W.

So &4 is the quotient of B35 =PSt X W by the relations S; = 5;. We use Tietze
transformations to eliminate the S; from the presentation, in favor of the s5;. So
&4 is the quotient of BSt by the subgroup normally generated by the words got
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by replacing S; by §; in each of the relators (7-1)—(7-25). All of these relators are
already trivial in PG&St, so &4 = POGt.

In more detail, (7-1) requires the §; to satisfy the Artin relations, which they do
in PGSt by [Tits 1987, (d) on p. 551]. The remaining relations (7-2)—(7-25) involve
the S; only by their conjugacy action. For example, (7-17) says that X;(¢) commutes
with the conjugate of X;(u) by a certain word in S; and §;. Since S; acts as s by
Theorem 7.5 and §; acts the same way by the definition of 3&t, these relations still
hold after replacing each S; by the corresponding §;. (When defining W, we were
careful not to impose any relations on the S; except those which are also satisfied
by the 5;.) O

Remark 7.13 (redundant relators). In most cases of interest, A is 2-spherical
without A; components. Then one can forget the relators (7-24)—(7-25) because
they follow from previous relations. More specifically, suppose m;; is 3, 4 or 6.
Then the relators (7-24)—(7-25) are already trivial in &3. The same holds if i = j
and there exists some k € I with m;; € {3, 4, 6}. See [Tits 1987, (as), p. 550] for
details.

Remark 7.14 (more redundant relators). One need only impose the relators (7-26)
for a single i in each component 2 of the “odd Dynkin diagram” A°% considered
in Section 5. This is because if m;; = 3 then §;§; conjugates §; to S; and X; () to
X;(t). This uses relators (7-1) and (7-7).

Remark 7.15 (precautions against typographical errors). We found explicit matrices
for our generators, in standard representations of the A2, A,, B, and G, Chevalley
groups over Z[r*!, ¢, u]. Then we checked on the computer that they satisfy the
defining relations (7-1)—(7-26).

8. The isomorphism &; = (e o) X W

In this section we will suppress the dependence of group functors on the base ring R,
always meaning the group of points over R. Our goal is to prove Theorem 7.5,
namely that the group &, with generators S; and X;(¢), i € I and ¢t € R, modulo the
subgroup normally generated by the relators (7-1)—(7-9), is (skgeo LUy) X W. The
genesis of the theorem is the following elementary principle. It seems unlikely to
be new, but I have not seen it before.

Lemma 8.1. Suppose G = (skqeco Uy) X H, where ® is some index set, the U, are
groups isomorphic to each other, and H is a group whose action on the free product
permutes the displayed factors transitively. Then G = (Uss X Hwo) *pu, H, where
o0 is some element of ® and Hy is its H-stabilizer.

Proof. The idea is that Uy, X Hoo > (Uso X Hoo) ¥, H 1s a sort of free-product
analogue of inducing a representation from H, to H. We suppress the subscript oo
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from Uy. Take a set Z of left coset representatives for Hy, in H, and for u € U and
z€ Z define u, :=zuz~' € G. The u. for fixed z form the free factor zUz ' = 2(00)
of (kqew Uy) € G. Assuming U # 1, every displayed free factor occurs exactly
once this way, since H’s action on @ is the same as on Hy,’s left cosets. So the
maps u, zuz~ ' € (U x Hy) xpg. H define a homomorphism (kqeqp Uy) —
(U ¥ Hy) * g H. This homomorphism is obviously H-equivariant, so it extends
to a homomorphism G — (U X Hy) *u, H. It is easy to see that this is inverse to
the obvious homomorphism (U % Hy) g H — G. O

Now we begin proving Theorem 7.5 by reducing it to Lemma 8.2 below, which
is an analogue of Theorem 7.5 for a single component of the “odd Dynkin diagram”
A introduced in Section 5. It is well-known that two generators s;, sj of W
(i, j € I) are conjugate in W if and only if i and j lie in the same component
of A% (If m; ; = 3 then s;s;5; = s;5;5; implies the conjugacy of s; and s;, while
distinct components of A°d correspond to different elements of the abelianization
of W.)

Let ©2 be one of these components, and write ®(2) € & for the roots whose
reflections are conjugate to some (hence any) s;cq. Because d(Q)isa W- 1nvar1ant
subset of ®, we may form the group (skyea (@) Lla) X WJust as we did (skgep HUy) X W.
We will write &, q for the group having generators S;, with i € 1, and X;(¢), with
i € Qand ¢t € R, modulo the subgroup normally generated by the relators (7-1)—(7-3),
and those relators (7-4)—(7-9) with i € 2. Note that (7-7) is relevant only if m;; = 3,
in which case i € Q if and only if j € €2, so the relator makes sense. Caution: the
subscripts on S vary over all of I, while those on X vary only over 2 C I.

Lemma 8.2. For any component Q of A°%,

62,0 = (kaco@) ta) X W.

Proof of Theorem 7.5, given Lemma 8.2. An examination of the presentation of &,
reveals that the X’s corresponding to different components of A°! don’t interact.
Precisely: &, is the amalgamated free pro