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Abstract. In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get sto-
chastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations
and parabolic variational inequalities with Neumann boundary conditions.

Résumé. Dans cet article, nous explicitons la dérivée du flot d’un processus de diffusion réfléchi. Nous obtenons des représenta-
tions stochastiques des dérivées des solutions de viscosité d’équations aux dérivées partielles paraboliques semi-linéaires. Nous en
déduisons des représentations stochastiques des dérivées des solutions de viscosité d’inégalités variationnelles paraboliques avec
conditions au bord de Neumann.
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1. Introduction

Consider the parabolic variational inequality in the whole Euclidean space⎧⎪⎨⎪⎩
min

{
V (t, x) − L(t, x);− ∂V

∂t
(t, x) − AV (t, x)

− f
(
t, x,V (t, x), (∇V σ)(t, x)

)} = 0, (t, x) ∈ [0, T ) × R
d,

V (T , x) = g(x), x ∈ R
d ,

(1)

where A is the infinitesimal generator of a diffusion process. The numerical resolution of such a problem requires to
introduce a boundary and artificial boundary conditions in order to allow the discretization of a PDE problem posed
in a bounded domain. We thus localize the preceding variational inequality. If nonhomogeneous Neumann boundary
conditions are chosen, one then has to solve⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
{
v(t, x) − L(t, x);− ∂v

∂t
(t, x) − Av(t, x)

− f
(
t, x, v(t, x), (∇vσ)(t, x)

)} = 0, (t, x) ∈ [0, T ) × O,

v(T , x) = g(x), x ∈ O,(∇v(t, x) + h(t, x);η(x)
) = 0, (t, x) ∈ [0, T ) × ∂O,

(2)
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where, for all x in ∂O, η(x) denotes the inward unit normal vector at point x. From a numerical analysis point
of view, one needs to estimate |V (t, x) − v(t, x)|. Berthelot, Bossy and Talay [3] have tackled this issue by using
a stochastic approach based on Backward Stochastic Differential Equations (BSDE). Given the reflected forward
Stochastic Differential Equation (SDE){

X
t,x
s = x + ∫ s

t
b
(
X

t,x
θ

)
dθ + ∫ s

t
σ
(
X

t,x
θ

)
dWθ + K

t,x
s , 0 ≤ t ≤ s ≤ T ,

K
t,x
s = ∫ s

t
η
(
X

t,x
θ

)
d|K|t,xθ with |K|t,xs = ∫ s

t
I{Xt,x

θ ∈∂O} d|K|t,xθ ,
(3)

they have proven the following estimate: under smoothness conditions on the coefficients and on ∂O, there exists
C > 0 such that, for all 0 ≤ t ≤ T and x ∈ O,∣∣V (t, x) − v(t, x)

∣∣ ≤ C
{
E sup

t≤s≤T

∣∣(∇V
(
s,Xt,x

s

) + h
(
s,Xt,x

s

);η(
Xt,x

s

))∣∣4
I{Xt,x

s ∈∂O}
}1/4

.

Motivated by applications in Finance, where the space derivative of v(t, x) allows one to construct hedging strate-
gies of American options, we aim in this paper to estimate |∂xV (t, x)−∂xv(t, x)|, where the derivatives are understood
in the sense of the distributions. We thus have to check that the probabilistic interpretations, in terms of BSDEs, of
V (t, x) and of v(t, x), are differentiable in the sense of the distributions, and to exhibit formulae which are suitable to
estimate |∂xV (t, x)− ∂xv(t, x)|. Unfortunately, so far we are able to deal with one-dimensional problems only. which
means that O is reduced to a bounded interval (d, d ′). Two main reasons explain the limitation to one-dimensional
problems: first, we need to prove an explicit representation of the derivative ∂xX

t,x
t , where Xt,x is as in (3); this

representation appears to be simple and of exponential type; exhibiting such an explicit formula seems difficult for
general multi-dimensional flows1 (Malliavin derivatives were also explicited by Lépingle, Nualart and Sanz [10] in
the one-dimensional case only); second, in order to get stochastic representations for ∂xv(t, x) when h �= 0, that is, in
the case of nonhomogeneous Neumann boundary conditions, we use an integration by parts technique which seems
limited to the one-dimensional case (see Lemma 3.7).

We aim to provide a stochastic representation for ∂xv(t, x) in terms of the derivative of the solution (Y t,x, Z t,x,

Rt,x) of the reflected BSDE with the reflected forward diffusion Xt,x⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y t,x
s

= g
(
X

t,x
T

) + ∫ T

s
f

(
r,X

t,x
r , Y t,x

r
, Z t,x

r

)
dr + ∫ T

s
h
(
r,X

t,x
r

)
dK

t,x
r

+ Rt,x
T − Rt,x

s − ∫ T

s
Z t,x

r dWr,

Y t,x
s

≥ L
(
s,X

t,x
s

)
for all 0 ≤ t ≤ s ≤ T ,(

Rt,x
s ,0 ≤ t ≤ s ≤ T

)
is a continuous increasing process such that∫ T

t

(
Y t,x

r
− L

(
s,X

t,x
r

))
dRt,x

r = 0.

As we suppose that the coefficients b and σ are only Lipschitz (and not necessarily differentiable), we need to extend
various approaches developed to solve problems without or with reflexion: Bouleau and Hirsch [6] have explicited the
derivatives w.r.t. the initial data of the solutions of nonreflected forward SDEs with Lipschitz coefficients; Lépingle
et al. [10] have explicited the Malliavin derivatives of the solutions of one-dimensional reflected forwards SDEs.
Pardoux and Zhang [19] have established stochastic representations, in terms of BSDEs driven by forward reflected
SDEs, for viscosity solutions of semilinear partial differential equations with Neumann boundary conditions. In [12]
and [13] Ma and Zhang have represented, without differentiating the coefficients g and f , derivatives of solutions of
BSDEs and reflected BSDEs driven by nonreflected forward SDEs with differentiable coefficients. N’Zi, Ouknine and
Sulem [16] have extended Ma and Zhang’s results for nonreflected BSDEs to the case where the coefficients of the
nonreflected forward SDEs are supposed Lipschitz only.

The paper is organized as follows. In Section 2 we explicit the derivative of the flow of the reflected flow (Xt,x)

defined in (3). In Section 3 we get two stochastic representations for derivatives of solutions of semilinear parabolic
partial differential equations (which corresponds to the case where L(t, x) ≡ −∞ and R ≡ 0): the first representation
involves the gradient of f , the second one does not involve it. We distinguish the homogeneous Neumann boundary

1The differentiability, in the sense of the distributions, seems easy to get by localization procedures when the boundary of the domain is smooth.
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condition case, that is, the case where h(t, x) ≡ 0, and the inhomogeneous case. In Section 4 we get stochastic repre-
sentations for derivatives of parabolic variational inequalities. We conclude by using our representations to estimate
|∂xV (t, x) − ∂xv(T , x)|.
Notation. In all the paper we denote by C, C1, C2 positive constants which may vary from line to line but only depend
on d , d ′, T , the L∞-norms and the Lipschitz constants of the functions b, σ , g, f and h, and the strong ellipticity
constant α∗ which appears in the inequality (6) below.

2. Derivative of the flow of the reflected diffusion X

2.1. Main result and examples

From now on we consider a one-dimensional stochastic differential equation in the interval [d, d ′], with reflection at
points d and d ′:{

X
t,x
s = x + ∫ s

t
b
(
X

t,x
r

)
dr + ∫ s

t
σ
(
X

t,x
r

)
dWr + K

t,x
s ,

K
t,x
s = ∫ s

t
η
(
Xt

r

)
d|K|t,xr with |K|t,xs = ∫ s

t
I{Xt,x

r ∈{d,d ′}} d|K|t,xr ,
(4)

where η(d) = 1 and η(d ′) = −1. Our objective in this section is to explicit the derivative w.r.t. x of the stochastic
flow Xt,x .

We start with introducing some notation coming from [6]. We equip the space Ω̃ := (d, d ′) × Ω with its natural
σ -field and the measure dP̃ := dx ⊗ dP. Let D̃1 be the space of functions γ (x,ω) satisfying: there exists a measur-
able function γ̃ : Ω̃ → R such that γ = γ̃ , P̃-a.s, and, for all (x,ω), the map y → γ̃ (x + y,ω) is locally absolutely
continuous.

For γ ∈ D̃1, set

∂xγ (x,ω) := lim inf
y→0

γ̃ (x + y,ω) − γ̃ (x,ω)

y
.

Bouleau and Hirsch [5] have shown that this definition is proper in the sense that, P̃-a.s., ∂xγ (x,ω) is well defined
and does not depend on the choice of γ̃ . Finally, set

D̃ := {
γ ∈ L

2(̃P) ∩ D̃1; ∂xγ ∈ L
2(̃P)

}
and

‖γ ‖D̃ =
(∫

(d,d ′)×Ω

γ 2 dP̃ +
∫

(d,d ′)×Ω

(∂xγ )2 dP̃

)1/2

.

As in Lépingle et al. [10] we introduce the random set

E t,x
s :=

{
ω ∈ Ω: d < inf

r∈[t,s]X
t,x
r (ω) ≤ sup

r∈[t,s]
Xt,x

r (ω) < d ′}. (5)

Our main result in this section is the following statement.

Theorem 2.1. Suppose that b and σ are bounded Lipschitz functions, and that

∃α∗ > 0,∀x ∈ [
d, d ′] σ(x) > α∗. (6)

Denote by b′ and σ ′ versions of the a.e. derivatives of b and σ . Then the flow Xt,x belongs to D̃ and 2

∂xX
t,x
s = J t,x

s IE t,x
s

, P̃-a.s., (7)

2We recall that dP̃ := dx ⊗ dP.



398 M. Bossy, M. Cissé and D. Talay

where

J t,x
s = exp

{∫ s

t

σ ′(Xt,x
r

)
dWr +

∫ t

s

(
b′(Xt,x

r

) − 1

2
σ ′2(Xt,x

r

))
dr

}
. (8)

Before proceeding to the proof of this theorem we illustrate it with two examples.

Example 2.2. Brownian motion reflected at 0. Let x > 0. The resolution of the Skorokhod problem (see, e.g., Karatzas
and Shreve [8]), shows that the adapted increasing process

kx
s (ω) := sup

{
0,−x + sup

0≤r≤s

Wr(ω)
}

(9)

is such that the process Xx
s := x − Ws + kx

s is positive and satisfies∫ T

0
I(0,∞)

(
Xx

s

)
dkx

s = 0.

We obviously have

∂xX
x
s = 1 + ∂

∂x
kx
s = Iinf0≤r≤s Xx

r >0.

Example 2.3. Brownian motion reflected at points d and d ′. Let x ∈ (d, d ′). Kruk et al. [9] have solved explicitly the
Skorokhod problem corresponding to a two-sided reflection. To simplify the notation we suppose here that d = 0. We
therefore consider the process Xx

s := x − Ws + k̃x
s , where we define the increasing process k̃s

s by

−k̃x
s :=

[
0 ∧ inf

0≤r≤s
(x − Wr)

]
∨ sup

0≤r≤s

[(
x − Wr − d ′) ∧ inf

r≤θ≤s
(x − Wθ)

]
.

Notice that, on the event E 0,x
s the process (k̃x

r , r ≤ s) is null and thus ∂
∂x

Xx
s = 1, whereas on Ω − E 0,x

s one has

−k̃x
s = x + Gs for some random variable Gs independent of x, and thus ∂

∂x
Xx

s = 0.

We start the proof of Theorem 2.1 with checking that the right-hand side of equality (7), that we will denote
by Φt,x(s), is properly defined.

Proposition 2.4. The process (Φt,x(s), t ≤ s ≤ T ) is well defined in the sense that it does not depend on the Borel
versions of the a.e. derivatives of b and σ .

Proof. Observe that Φt,x(s) = 0 on the event Ω − E t,x
s . To prove the desired result on the event E t,x

s , consider two
Borel versions b′

1 and b′
2 (respectively, σ ′

1 and σ ′
2) of the a.e. derivative of b (respectively, σ ). For i = 1,2 set

Φ̃i(s) := exp

{∫ s

t

σ ′
i

(
Xt,x

r

)
dWr +

∫ s

t

(
b′
i

(
Xt,x

r

) − 1

2

(
σ ′

i

)2(
Xt,x

r

))
dr

}
,

and Φi(s) = Φ̃i(s)IE t,x
s

, so that

E sup
t≤s≤T

∣∣Φ1(s) − Φ2(s)
∣∣2

≤ E sup
t≤s≤T

∣∣Φ̃1(s) − Φ̃2(s)
∣∣2

≤ C

{
E

∫ T

t

∣∣b′
1

(
Xt,x

r

) − b′
2

(
Xt,x

r

) − ((
σ ′

1

)2(
Xt,x

r

) − (
σ ′

2

)2(
Xt,x

r

))∣∣4 dr

}1/2

+ C

{
E

∫ T

t

∣∣σ ′
1

(
Xt,x

r

) − σ ′
2

(
Xt,x

r

)∣∣4 dr

}1/2

.
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The hypotheses made in Theorem 2.1 allow us to apply the Proposition 4.1 in Lépingle et al. [10]: for all s > t and x,
the probability distribution of X

t,x
r has a density pt,x(r, ·) w.r.t. Lebesgue’s measure. To conclude, it then remains to

use b′
1 ≡ b′

2 and σ ′
1 ≡ σ ′

2 a.e. �

2.2. On approximations by penalization

The proof of Theorem 2.1 essentially consists in approximating X by the solution of a penalized stochastic differential
equation. We use the following proposition which precises the convergence rate of E supt≤s≤T |Xt,x

s − X
t,x,n
s |p for

p > 2 and is easily derived from the inequality (3.23) in Menaldi [14]:

Proposition 2.5 ([14]). For n ≥ 1 define the function βn by

βn(y) :=
⎧⎨⎩

−n
(
y − d ′) if y ≥ d ′,

0 if d ≤ y ≤ d ′,
n(d − y) if y ≤ d .

Then the solution Xt,x,n to

Xt,x,n
s = x +

∫ s

t

b
(
Xt,x,n

r

)
dr +

∫ s

t

σ
(
Xt,x,n

r

)
dWr +

∫ s

t

βn

(
Xt,x,n

r

)
dr (10)

satisfies, for all p ≥ 1,

∀t ≤ T lim
n→∞ sup

x∈(d,d ′)
E sup

t≤s≤T

∣∣Xt,x
s − Xt,x,n

s

∣∣p = 0. (11)

In order to explicit the limit of ∂xX
x,n
s we use the following convergence criterion used in Bouleau and Hirsch [6],

p. 49.

Proposition 2.6. Let (H
x,n
s , s ∈ [0, T ], n ≥ 1) be a sequence of random fields which are time continuous from [0, T ]

to D̃. Suppose that

sup
n≥1

sup
s∈[0,T ]

[∫ d ′

d

E
∣∣Hx,n

s

∣∣2 dx +
∫ d ′

d

E
∣∣∂xH

x,n
s

∣∣2 dx

]
< +∞. (12)

Suppose that there exists a stochastic flow Hx
s continuous in (s, x) such that∫ d ′

d

E sup
s∈[0,T ]

∣∣Hx,n
s − Hx

s

∣∣2 dx −−−→
n→+∞ 0. (13)

Then, for all s ∈ [0, T ], ∂xH
x
s is well defined P̃-a.s., Hx

s is in D̃ and∫ d ′

d

E
∣∣Hx

s

∣∣2 dx +
∫ d ′

d

E
∣∣∂xH

x
s

∣∣2 dx < +∞. (14)

In addition, H
x,n
s converges weakly to Hx

s in the following sense: for all stochastic flow Ux
s such that ∂xU

x
s is well

defined P̃-a.s. and∫ d ′

d

E
∣∣Ux

s

∣∣2 dx +
∫ d ′

d

E
(
∂xU

x
s

)2 dx < +∞,

then ∫ d ′

d

E
[
Ux

s

(
Hx,n

s − Hx
s

) + ∂xU
x
s

(
∂xH

x,n
s − ∂xH

x
s

)]
dx −−−→

n→+∞ 0.
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The next lemma states that the process Xt,x,n satisfies (12).

Lemma 2.7. For all p ≥ 1 we have

sup
n≥1

sup
x∈(d,d ′)

[
E sup

s∈[t,T ]
∣∣Xt,x,n

s

∣∣p + E sup
s∈[t,T ]

∣∣∂xX
t,x,n
s

∣∣p]
< +∞.

Proof. In view of (11) we only need to estimate E sups∈[t,T ] |∂xX
t,x,n
s |p . Set bn := b + βn. From the Theorem 1 and

the discussion in [6], p. 56, we deduce that, P-a.s., the derivative ∂sX
t,x,n
s in the sense of the distributions is well

defined and satisfies

∂xX
t,x,n
s = exp

{∫ s

t

σ ′(Xt,x,n
r

)
dWr +

∫ s

t

(
b′
n

(
Xt,x,n

r

) − 1

2
σ ′(Xt,x,n

r

)2
)

dr

}
.

It then suffices to use the one-side bound from above b′
n(y) ≤ ‖b′‖∞ for all integer n and all y ∈ R to get

sup
n≥1

sup
x∈(d,d ′)

E sup
s∈[t,T ]

∣∣∂xX
t,x,n
s

∣∣p < +∞. (15)

�

Our next step consists in identifying the process ∂xX
t,x
s .

2.3. Proof of Theorem 2.1: The one-sided reflection case

We are now in a position to explicit the derivative of X
t,x
s . We start with the case of the reflection at the sole point d .

Proposition 2.8. Let x ∈ (d, d ′) and X̂t,x be the solution to

X̂t,x
s = x +

∫ s

t

b
(
X̂t,x

r

)
dr +

∫ s

t

σ
(
X̂t,x

r

)
dWr + Λd

s

(
X̂t,x

)
,

where Λd(X̂t,x) is the local time at point d of the semi-martingale X̂t,x . The flow X̂t,x belongs to D̃ and, setting

Ê t,x
s :=

{
ω ∈ Ω, inf

t≤r≤s
X̂t,x

r (ω) > d
}
,

we have: for all t ≤ s ≤ T , P̃-a.s.,

∂xX̂
t,x
s = exp

{∫ s

t

σ ′(X̂t,x
r

)
dWr +

∫ s

t

(
b′(X̂t,x

r (ω)
) − 1

2
σ ′2(X̂t,x

r

))
dr

}
IÊ t,x

s
. (16)

Proof. For all n ≥ 1 consider the solutions (X̂t,x,n) to

X̂t,x,n
s = x +

∫ s

t

b
(
X̂t,x,n

r

)
dr +

∫ s

t

σ
(
X̂t,x,n

r

)
dWr +

∫ s

t

n
(
d − X̂t,x,n

r

)+ dr.

In view of Theorem 1 in [6], the stochastic flow X̂t,x,n is differentiable in the sense of the distributions, and its
derivative, denoted by ∂xX̂

t,x,n
s , satisfies P̃-a.s.,

∂xX̂
t,x,n
s = exp

{∫ s

t

σ ′(X̂t,x,n
r

)
dWr +

∫ s

t

(
b′(X̂t,x,n

r

) − 1

2
σ ′2(X̂t,x,n

r

))
dr

}
× exp

{
−n

∫ s

t

IX̂
t,x,n
r <d dr

}
.
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We can easily get a result similar to Lemma 2.7, that is,

sup
n≥1

sup
x∈(d,d ′)

[
E sup

s∈[t,T ]
∣∣X̂t,x,n

s

∣∣2 + E sup
s∈[t,T ]

∣∣∂xX̂
t,x,n
s

∣∣2
]

< +∞, (17)

which establishes (12) with H
x,n
s ≡ X̂

t,x,n
s . To obtain (13) we observe that we may substitute X̂ to X into (11): indeed,

in [14] the diffusion process is reflected at the boundary of a bounded domain whereas, here, the domain is the infinite
interval (d,+∞); however, it is easy to see that Menaldi’s proof of inequality (3.23) also applies in this latter case.3

Therefore, in view of Proposition 2.6, for all t ≤ s ≤ T , P̃-a.s., ∂xX̂
t,x,n
s converges weakly into some process that we

denote by ∂xX̂
t,x
s and X̂

t,x
s ∈ D̃. Suppose now that we have proven, for all x in (d, d ′):

At,x,n
s := exp

{
−n

∫ s

t

IX̂
t,x,n
r (ω)<d

}
IÊ t,x

s
−−−→
n→+∞ IÊ t,x

s
, P-a.s., (18)

and

EBt,x,n
s −−−→

n→+∞ 0, (19)

where

Bt,x,n
s := exp

{
−n

∫ s

t

IX̂
t,x,n
r (ω)<d

}
IΩ−Ê t,x

s
.

Let us check that we then could deduce (16). Indeed, denoting by Ĝ
t,x
s the r.h.s. of (16), it suffices to prove that, for

all stochastic field Ux
s as in Proposition 2.6,

E

∫ d ′

d

Ux
s

(
X̂t,x,n

s − X̂t,x
s

)
dx + E

∫ d ′

d

∂xU
x
s

(
∂xX̂

t,x,n
s − Ĝt,x

s

)
IÊ t,x

s
dx

+ E

∫ d ′

d

∂xU
x
s ∂xX̂

t,x,n
s IΩ−Ê t,x

s
dx

tends to 0 as n tends to infinity. Now, it is easy to check that each one of the three terms in the right-hand side tends
to 0: for example, one has∣∣∣∣E∫ d ′

d

∂xU
x
s ∂xX̂

t,x,n
s IΩ−Ê t,x

s
dx

∣∣∣∣2

≤ C

∫ d ′

d

E
(
∂xU

x
s

)2 dx

∫ d ′

d

E
(
Bt,x,n

s

)2 dx,

and the right-hand side tends to 0 in view of (19).
Therefore it now remains to prove (18) and (19).
We start with (18). It suffices to prove that, on the event {inft≤r≤s X̂

t,x
r > d}, for all n large enough, P̃-a.s.,

inft≤r≤s X̂
t,x,n
r > d . A sufficient condition is

sup
t≤r≤s

∣∣X̂t,x,n
r − X̂t,x

r

∣∣ ≤ 1

2

(
inf

t≤r≤s
X̂t,x

r − d
)
.

In view of Menaldi [14], Remark 3.1, p. 742, for all 2 < 2q < p there exists C > 0 such that, for all n,

E sup
t≤s≤T

∣∣X̂t,x,n
s − X̂t,x

s

∣∣p ≤ C

nq
.

Thus Borel–Cantelli’s lemma implies that supt≤s≤T |X̂t,x,n
s − X̂

t,x
s | tends to 0 almost surely. We thus have proven (18).

3The properties (3.1) and (3.2) of the penalization function in [14] are clearly satisfied by βn.
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Let us now prove that EB
t,x,n
s converges to 0. The comparison theorem for stochastic differential equations shows

that, for all m < n and t < r < T , X̂
t,x,m
r ≤ X̂

t,x,n
r ; therefore, for all n and t < r < T , X̂

t,x,n
r ≤ X̂

t,x
r . Thus

EBt,x,n
s ≤ E

[
exp

{
−n

∫ s

t

IX̂
t,x,n
r <d dr

}
Iinft≤r≤s X̂

t,x,n
r ≤d

]
.

Let ϕ be the increasing one-to-one map ϕ(z) := ∫ z

0
1

σ(y)
dy. Set X̄

t,x,n
s := ϕ(X̂

t,x,n
s ). We have:

X̄t,x,n
s = ϕ(x) +

∫ s

t

[
b(ϕ−1(X̄

t,x,n
r )) + n(d − ϕ−1(X̄

t,x,n
r ))+

σ(ϕ−1(X̄
t,x,n
r ))

− 1

2
σ ′(ϕ−1(X̄t,x,n

r

))]
dr

+ Ws − Wt.

Using the Girsanov transformation removing the drift coefficient of (X̄
t,x,n
s ) and denoting by Et,ϕ(x) the conditional

expectation knowing that Wt = ϕ(x) we get

EBt,x,n
s ≤ Et,ϕ(x)

[
Mn

s exp

{
−n

∫ s

t

IWr<ϕ(d) dr

}
Iinft≤r≤sWr≤ϕ(d)

]
,

where

Mn
s = exp

{∫ s

t

[
b(ϕ−1(Wr)) + n(d − ϕ−1(Wr))

+

σ(ϕ−1(Wr))
− 1

2
σ ′(ϕ−1(Wr)

)]
dWr

}

× exp

{
−1

2

∫ s

t

[
b(ϕ−1(Wr)) + n(d − ϕ−1(Wr))

+

σ(ϕ−1(Wr))
− 1

2
σ ′(ϕ−1(Wr)

)]2

dr

}
.

Set Φσ (z) := ∫ ϕ(d)

z
(d−ϕ−1(y))+

σ(ϕ−1(y))
dy. Then

Φσ (Ws) = Φσ (Wt) −
∫ s

t

(d − ϕ−1(Wr))
+

σ(ϕ−1(Wr))
dWr + 1

2

∫ s

t

Iϕ−1(Wr )<d dr

+ 1

2

∫ s

t

σ ′(ϕ−1(Wr))

σ (ϕ−1(Wr))

(
d − ϕ−1(Wr)

)+
dr.

In addition, observe that, for all x ∈ (d, d ′), Φσ (ϕ(x)) = 0, and that Φσ (z) ≥ 0 for all z in R. Therefore, Pt,ϕ(x)-a.s.,

n

∫ s

t

(d − ϕ−1(Wr))
+

σ(ϕ−1(Wr))
dWr ≤ n

2

∫ s

t

IWr<ϕ(d) dr + n

2

∫ s

t

σ ′(ϕ−1(Wr))

σ (ϕ−1(Wr))

(
d − ϕ−1(Wr)

)+ dr

≤ n

2

∫ s

t

IWr<ϕ(d) dr + K
n

2α∗

∫ s

t

(
d − ϕ−1(Wr)

)+ dr, (20)

where K is the Lipschitz constant of σ , and α∗ is as in (6). We deduce that, for some positive constants C1 and C2
and bounded continuous functions ρ1 and ρ2, all of them independent of n, Pt,ϕ(x)-a.s.,

Mn
s ≤ exp

{
n

2

∫ s

t

IWr<ϕ(d) dr + C1n

∫ s

t

(
d − ϕ−1(Wr)

)+ dr

− C2n
2
∫ s

t

((
d − ϕ−1(Wr)

)+)2 dr +
∫ s

t

ρ1(Wr)dWr +
∫ s

t

ρ2(Wr)dr

}
. (21)

As there exists C0 > 0 such that C1nY − C2n
2Y 2 < C0 for all integer n and all Y ≥ 0, Cauchy–Schwartz inequality

implies

EBt,x,n
s ≤ C

√
Υ n, (22)
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where

Υ n := Et,ϕ(x)

(
exp

{
−n

∫ s

t

IWr<ϕ(d) dr

}
Iinft≤r≤sWr≤ϕ(d)

)
.

Now set x0 := ϕ(d) − ϕ(x) and let τx0 := inf{r ≥ 0,Wr = x0} be the first passage time of the Brownian motion W

at point x0. The strong Markov property and the definition of x0 imply that

Υ n ≤
∫ s−t

0
Ex0 exp

{
−n

∫ s−t−θ

0
IWr≤x0 dr

}
dP

W
τx0

(θ),

where (see, e.g., Borodin and Salminen [4], p. 198)

dP
W
τx0

(θ) = |x0|√
2πθ3

exp

(
−x2

0

2θ

)
dθ.

Using formula (1.5.3) in Borodin and Salminen [4], p. 160, we deduce

Υ n ≤
∫ s−t

0
I0

(
n(s − t − θ)

2

)
exp

(
−n

2
(s − t − θ)

) |x0|√
2πθ3

exp

(
−x2

0

2θ

)
dθ, (23)

where I0 is a Bessel function whose definition can be found in, e.g., Abramowitz and Stegun [1], p. 375. We split the
integral in the right-hand side of (23) into the two following terms:

Υ n
1 :=

∫ s−t−1/
√

n

0
I0

(
n(s − t − θ)

2

)
exp

(
−n

2
(s − t − θ)

) |x0|√
2πθ3

exp

(
−x2

0

2θ

)
dθ,

Υ n
2 :=

∫ s−t

s−t−1/
√

n

I0

(
n(s − t − θ)

2

)
exp

(
−n

2
(s − t − θ)

) |x0|√
2πθ3

exp

(
−x2

0

2θ

)
dθ.

For all θ in (0, s − t − 1√
n
) one has n(s−t−θ)

2 ≥
√

n
2 ; in addition (see, e.g., Borodin and Salminen [4], p. 638),

I0(y) ≈ ey

√
2πy

as y → +∞.

Therefore, there exists C > 0, uniformly bounded in x0 ∈ (ϕ(d) − ϕ(d ′),0) such that, for all n large enough,

Υ n
1 ≤ C

n1/4
.

Now, we use that I0(y)e−y ≤ 1 for all y ≥ 0 (see, e.g., Abramowitz and Stegun [1], p. 375) and deduce that

Υ n
2 ≤

∫ s−t

s−t−1/
√

n

|x0|√
2πθ3

exp

(
−x2

0

2θ

)
dθ ≤ C√

n
,

from which

Υ n ≤ C

n1/4
, (24)

where C is uniformly bounded in x ∈ (d, d ′). In view of (22) we thus have obtained

EBt,x,n
s ≤ C

n1/8
,

which ends the proof. �
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2.4. Proof of Theorem 2.1: The two-sided reflection case

We now consider the penalized system (10).
With the arguments used at the beginning of the proof of Proposition 2.8 one can deduce that, P-a.s., the map

x �→ X
t,x
s belongs to the Sobolev space

H 1(d, d ′) = {
f ∈ L

(
d, d ′);f ′ ∈ L

(
d, d ′)}.

We now aim to prove the representation formula (7). We first consider the event E t,x
s . On this event X

t,x,n
s satisfies

Xt,x,n
s = x +

∫ s

t

b
(
Xt,x,n

r

)
dr +

∫ s

t

σ
(
Xt,x,n

r

)
dWr.

Pathwise uniqueness holds for both the above stochastic differential equation and Eq. (4). Therefore (X
t,x,n
r , r ∈ [t, s])

and (X
t,x
r , r ∈ [t, s]) coincide on E t,x

s . We deduce the equality (7) on E t,x
s .

We next consider the event Ω − E t,x
s . We are inspired by Lépingle et al. [10] to reduce our study to the one-sided

reflection case. For all rational numbers c1 and s1 such that d < c1 < d ′ and t < s1 < s set

Ad,c1
s1

:=
{
ω ∈ Ω: d = inf

r∈[t,s1]
Xt,x

r , sup
r∈[t,s1]

Xt,x
r = c1

}
,

Ac1,d
′

s1
:=

{
ω ∈ Ω: inf

r∈[t,s1]
Xt,x

r = c1, sup
r∈[t,s1]

Xt,x
r = d ′}.

Set also

Ad := {
ω ∈ Ω: ∀r ∈ [t, s), d < Xt,x

r < d ′,Xt,x
s = d

}
,

Ad ′ := {
ω ∈ Ω: ∀r ∈ [t, s), d < Xt,x

r < d ′,Xt,x
s = d ′}.

We have

Ω − E t,x
s = Ad ∪ Ad ′ ⋃

d<c1<d ′
t<s1<s

(
Ad,c1

s1
∪ Ac1,d

′
s1

)
.

Let Xt,x,n be defined as in (10). As observed in the proof of Lemma 2.7, setting bn := b + βn we have, P̃-a.s.,

∂xX
t,x,n
s = exp

{∫ s

t

σ ′(Xt,x,n
r

)
dWr +

∫ s

t

(
b′
n

(
Xt,x,n

r

) − 1

2
σ ′(Xt,x,n

r

)2
)

dr

}
.

Let X̂t,x be the one-sided reflected diffusion process defined in Proposition 2.8, and, as in the proof of Proposi-
tion 2.8, let X̂t,x,n be the corresponding penalized process. On the event Ad,c1

s1 we have Xt,x = X̂t,x and, as already
noticed, we also have X̂t,x,n ≤ X̂t,x ; therefore, on Ad,c1

s1 the paths of X̂t,x,n do not hit the point d ′, which implies that
Xt,x,n = X̂t,x,n on this event, from which, by a classical local property of Brownian stochastic integrals,

∂xX
t,x,n
s1

IAd,c1
s1

= exp

{∫ s1

t

σ ′(X̂t,x,n
r

)
dWr +

∫ s1

t

(
b′
n

(
X̂t,x,n

r

) − 1

2
σ ′(X̂t,x,n

r

)2
)

dr

}
IAd,c1

s1
.

Moreover, the arguments used to prove (19) imply that

E

[
exp

{∫ s1

t

σ ′(X̂t,x,n
r

)
dWr +

∫ s1

t

(
b′
n

(
X̂t,x,n

r

) − 1

2
σ ′(X̂t,x,n

r

)2
)

dr

}
IAd,c1

s1

]
−−−→
n→+∞ 0.
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We deduce that

∂xX
t,x
s IAd,c1

s1
= 0, P̃-a.s.

We readily conclude that

∂xX
t,x
s IΩ−E t,x

s
= 0, P̃-a.s.

3. Stochastic representations of derivatives of solutions of semilinear parabolic PDEs

Consider the semilinear parabolic PDE in an interval with a Neumann boundary condition:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u

∂t
(t, x) + Au(t, x) + f

(
t, x, u(t, x), σ (x) ∂xu(t, x)

) = 0, (t, x) ∈ [0, T ) × (
d, d ′),

u(T , x) = g(x), x ∈ [
d, d ′],

∂u

∂x
(t, x) + h(t, x) = 0, (t, x) ∈ [0, T ) × {

d, d ′},

(25)

where h is such that h(T , ·) = −g′(·) and

A = 1

2
σ 2(x)

∂2

∂x2
+ b(x)

∂

∂x
.

We aim to prove that u(t, x) is in H 1(d, d ′) for all 0 ≤ t < T and to exhibit probabilistic representation formulae
for its derivative in the sense of the distributions, respectively when g is a bounded differentiable function and when g

is only supposed Lipschitz. We start with the case of an homogeneous Neumann boundary condition, that is, the case
where h ≡ 0.

3.1. Homogeneous Neumann boundary condition: A representation involving g′ and ∇f

Consider the BSDE driven by the diffusion process Xt,x reflected at points d and d ′:

Y t,x
s = g

(
X

t,x
T

) +
∫ T

t

f
(
r,Xt,x

r , Y t,x
r ,Zt,x

r

)
dr −

∫ T

t

Zt,x
r dWr. (26)

Pardoux and Zhang [19] have shown that, under the hypotheses made in this section, the BSDE (26) has a unique
progressively measurable solution such that

E sup
t≤s≤T

∣∣Y t,x
s

∣∣2 + E

∫ T

0

∣∣Zt,x
r

∣∣2 dr < ∞,

and the deterministic function u(t, x) := Y
t,x
t is a viscosity solution to (25). The uniqueness issue has been studied by

Barles [2], Theorem 2.1.
The aim of this subsection is to prove the following theorem which expresses the fact that, formally, the derivative

of a parabolic PDE with a Neumann boundary condition solves a new parabolic PDE, driven with a Dirichlet boundary
condition.

Theorem 3.1. Suppose that h ≡ 0, and that b and σ are bounded Lipschitz functions. Suppose that σ satisfies (6).
Suppose that the function f is in C 0,1,1,1([0, T ] × [d, d ′] × R × R) bounded with bounded derivatives. Suppose that
g is a continuously differentiable function satisfying g′(d) = g′(d ′) = 0. Let τ t,x be the first time that the process
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Xt,x hits the boundary {d, d ′}. Then the process Y t,x is in D̃ and the function u(t, x) := Y
t,x
t is in H 1(d, d ′) for all

0 ≤ t ≤ T . Moreover, for almost all x in (d, d ′),

∂xu(t, x) = E

{
g′(Xt,x

T

)
∂xX

t,x
T I{τ t,x>T } +

∫ T ∧τ t,x

t

[
∂xf

(
r,Θt,x

r

)
∂xX

t,x
r

+ ∂yf
(
r,Θt,x

r

)
Ψ t,x

r + ∂zf
(
r,Θt,x

r

)
Γ t,x

r

]
dr

}
, (27)

where Θt,x := (Xt,x, Y t,x,Zt,x) solves (4) and (26), and (Ψ
t,x
s ,Γ

t,x
s ) is the unique adapted process satisfying

E sup
t≤s≤T

∣∣Ψ t,x
s

∣∣2 + E

∫ T

0

∣∣Γ t,x
r

∣∣2 dr < ∞,

and solution of the following BSDE:

Ψ t,x
s = g′(Xt,x

T

)
∂xX

t,x
T +

∫ T

s

[
∂xf

(
r,Θt,x

r

)
∂xX

t,x
r + ∂yf

(
r,Θt,x

r

)
Ψ t,x

r

+ ∂zf
(
r,Θt,x

r

)
Γ t,x

r

]
dr −

∫ T

s

Γ t,x
r dWr. (28)

Remark 3.2. Existence and uniqueness of the solution of the linear BSDE (28) is a classical result: see Pardoux and
Peng [18]. Proceeding as in the proof of Proposition 2.4, we can easily prove that the process (Ψ

t,x
s ,Γ

t,x
s , t ≤ s ≤ T ) is

well defined in the sense that, up to indistinguishability, it does not depend on the Borel versions of the a.e. derivatives
of b and σ . In addition, notice that, in view of (7), the process ∂xX

t,x is null after τ t,x ; therefore, for all functions f

and g, the solution (Ψ t,x,Γ t,x) of (28) is also null for all s ≥ τ t,x if τ t,x ≤ T . We thus may rewrite (28) under the
following form which will be useful in the sequel:

Ψ t,x
s = g′(Xt,x

T

)
∂xX

t,x
T I{τ t,x>T } +

∫ T ∧τ t,x

s∧τ t,x

[
∂xf

(
r,Θt,x

r

)
∂xX

t,x
r + ∂yf

(
r,Θt,x

r

)
Ψ t,x

r

+ ∂zf
(
r,Θt,x

r

)
Γ t,x

r

]
dr −

∫ T ∧τ t,x

s∧τ t,x

Γ t,x
r dWr. (29)

Proof of Theorem 3.1. We only sketch the proof which closely follows the method developed by N’Zi et al. [16] to
prove the equalities (32), (33) below when Xt,x is valued in the whole space and, as in our context, b and σ are solely
supposed Lipschitz.4

To prove the a.e. differentiability w.r.t. x of Y t,x , we aim to use Proposition 2.6. To this end, consider Xt,x,n defined
as in (10) and the BSDE

Y t,x,n
s = g

(
X

t,x,n
T

) +
∫ T

s

f
(
r,Xt,x,n

r , Y t,x,n
r ,Zt,x,n

r

)
dr −

∫ T

s

Zt,x,n
r dWr. (30)

For all t ≤ s ≤ T and x in (d, d ′), we set Θt,x,n = (Xt,x,n, Y t,x,n,Zt,x,n), and

E
∣∣Y t,x,n

s − Y t,x
s

∣∣2 + E

∫ T

s

∣∣Zt,x,n
r − Zt,x

r

∣∣2 dr

≤ E
∣∣g(

X
t,x,n
T

) − g
(
X

t,x
T

)∣∣2 + 2E

∫ T

s

∣∣(Y t,x,n
r − Y t,x

r

)(
f

(
r,Θt,x,n

r

) − f
(
r,Θt,x

r

))∣∣dr

4We draw the reader’s attention to the fact that, in [16], the parameter n concerns smooth approximations of b and σ , whereas here it concerns the
approximation of the reflection by penalization.



Stochastic representations of derivatives of solutions of variational inequalities 407

≤ CE
∣∣Xt,x,n

T − X
t,x
T

∣∣2 + C

(
1 + 1

ε

)
E

∫ T

s

∣∣Y t,x,n
r − Y t,x

r

∣∣2 dr

+ CE

∫ T

s

∣∣Xt,x,n
r − Xt,x

r

∣∣2 dr + CεE

∫ T

s

∣∣Zt,x,n
r − Zt,x,n

r

∣∣2 dr.

We choose ε = 1/(2C) and apply Grönwall’s lemma. It comes

E sup
t≤s≤T

∣∣Y t,x,n
s − Y t,x

s

∣∣2 + E

∫ T

t

∣∣Zt,x,n
r − Zt,x

r

∣∣2 dr ≤ CE sup
t≤s≤T

∣∣Xt,x,n
s − Xt,x

s

∣∣2
.

In view of (11), we thus get by Lebesgue’s Dominated Convergence theorem

lim
n→+∞

∫ d ′

d

E

(
sup

t≤s≤T

∣∣Y t,x,n
s − Y t,x

s

∣∣2 +
∫ T

t

∣∣Zt,x,n
r − Zt,x

r

∣∣2 dr

)
dx = 0. (31)

Now, from N’Zi et al. [16], Theorem 3.2, P̃-a.s.,

∂xX
t,x,n
s = exp

{∫ s

t

σ ′(Xt,x,n
r

)
dWr +

∫ s

t

(
b′
n

(
Xt,x,n

r

) − 1

2

(
σ ′)2(

Xt,x,n
r

))
dr

}
, (32)

and the BSDE

Ψ t,x,n
s = g′(Xt,x,n

T

)
∂xX

t,x,n
T +

∫ T

s

[
∂xf

(
r,Θt,x,n

r

)
Φt,x,n

r + ∂yf
(
r,Θt,x,n

r

)
Ψ t,x,n

r

+ ∂zf
(
r,Θt,x,n

r

)
Γ t,x,n

r

]
dr −

∫ T

s

Γ t,x,n
r dWr (33)

has a unique solution; in addition, Ψ t,x,n = ∂xY
t,x,n. In view of Lemma 2.7, standard calculations lead to

sup
n≥1

∫ d ′

d

E

(
sup

t≤s≤T

∣∣Ψ t,x,n
s

∣∣2 +
∫ T

t

∣∣Γ t,x,n
r

∣∣2 dr

)
dx < +∞.

Thus all the hypotheses of Proposition 2.6 are satisfied by the sequence of random fields (Y t,x,n). To explicit the
derivative of Y

t,x
s we observe that∫ d ′

d

E

(
sup

t≤s≤T

∣∣Ψ t,x,n
s − Ψ t,x

s

∣∣2 +
∫ T

t

∣∣Γ t,x,n
r − Γ t,x

r

∣∣2 dr

)
dx

≤ C

∫ d ′

d

E

(∣∣ξ t,x,n
T

∣∣2 +
∫ T

t

∣∣δt,x,n
r

∣∣2 dr

)
dx, (34)

where

ξ
t,x,n
T := g′(Xt,x,n

T

)
∂xX

t,x,n
T − g′(Xt,x

T

)
∂xX

t,x
T ,

δt,x,n
r := (

∂xf
(
r,Θt,x,n

r

) − ∂xf
(
r,Θt,x

r

))
∂xX

t,x
r + (

∂yf
(
r,Θt,x,n

r

) − ∂yf
(
r,Θt,x

r

))
Ψ t,x

r

+ (
∂zf

(
r,Θt,x,n

r

) − ∂zf
(
r,Θt,x

r

))
Γ t,x

r .

In view of (31), (11) and Lemma 3.3 below we easily observe that the right-hand side of (34) tends to 0 when n tends
to infinity, which ends the proof. �

Lemma 3.3. The processes Xt,x and Xt,x,n being defined as in Proposition 2.5, we have: for all t ≤ s ≤ T ,

sup
x∈(d,d ′)

E
∣∣∂xX

t,x,n
s − ∂xX

t,x
s

∣∣2 −−−→
n→+∞ 0.
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Proof. For E t,x
s as in (5), we have

E
∣∣∂xX

t,x,n
s − ∂xX

t,x
s

∣∣2 ≤ E
[∣∣∂xX

t,x,n
s − ∂xX

t,x
s

∣∣2
IE t,x

s

] + E
[∣∣∂xX

t,x,n
s − ∂xX

t,x
s

∣∣2
IΩ−E t,x

s

]
. (35)

The first term of the right-hand side is null since the processes Xt,x,n and Xt,x are pathwise identical on the event E t,x
s .

Now, in view of Theorem 2.1 one has

E
[∣∣∂xX

t,x,n
s − ∂xX

t,x
s

∣∣2
IΩ−E t,x

s

] = E
[∣∣∂xX

t,x,n
s

∣∣2
IΩ−E t,x

s

] := A
t,x,n
s .

Define the stopping times τd and τd ′ as

τd := inf
{
r ≥ t,Xt,x

r = d
} ∧ T ,

τd ′ := inf
{
r ≥ t,Xt,x

r = d ′} ∧ T .

As noticed in Section 2.3, on the event {τd < τd ′ } ∩ (Ω − E t,x
s ), the sequence of processes (X

t,x,n
r , t ≤ r ≤ τd ′)

increases to (X
t,x
r , t ≤ r ≤ τd ′), and therefore this event is included in {inft≤r≤s X

t,x,n
r ≤ d}. Similarly, the event

{τd ′ < τd} ∩ (Ω − E t,x
s ) in included in {supt≤r≤s X

t,x,n
r ≥ d ′}. It comes:

A
t,x,n
s ≤ CE

[
exp

{
−2n

∫ s

t

(IXt,x,n
r <d + IX

t,x,n
r >d ′)dr

}
I{τd<τd′ }∩(Ω−E t,x

s )

]
+ CE

[
exp

{
−2n

∫ s

t

(IXt,x,n
r <d + IX

t,x,n
r >d ′)dr

}
I{τd′<τd }∩(Ω−E t,x

s )

]
≤ CE

[
exp

{
−2n

∫ s

t

(IXt,x,n
r <d + IX

t,x,n
r >d ′)dr

}
Iinft≤r≤s X

t,x,n
r ≤d

]
+ CE

[
exp

{
−2n

∫ s

t

(IXt,x,n
r <d + IX

t,x,n
r >d ′)dr

}
Isupt≤r≤s X

t,x,n
r ≥d ′

]
.

We now only sketch the calculations since we proceed as in the proof of Proposition 2.8: using again the Lamperti
transform ϕ and a Girsanov transformation

A
t,x,n
s ≤ CEt,ϕ(x)

[
M

n
s exp

{
−2n

∫ s

t

(IWr<ϕ(d) + IWr>ϕ(d ′))dr

}
Iinft≤r≤s Wr≤ϕ(d)

]
+ CEt,ϕ(x)

[
M

n
s exp

{
−2n

∫ s

t

(IWr<ϕ(d) + IWr>ϕ(d ′))dr

}
Isupt≤r≤s Wr≥ϕ(d ′)

]
,

where

M
n
s = exp

{∫ s

t

[
b(ϕ−1(Wr)) + n(d − ϕ−1(Wr))

+ − n(ϕ−1(Wr) − d ′)+

σ(ϕ−1(Wr))
− 1

2
σ ′(ϕ−1(Wr)

)]
dWr

− 1

2

∫ s

t

[
b(ϕ−1(Wr)) + n(d − ϕ−1(Wr))

+ − n(ϕ−1(Wr) − d ′)+

σ(ϕ−1(Wr))
− 1

2
σ ′(ϕ−1(Wr)

)]2

dr

}
.

The exponential martingale is bounded from above as in (21) by using (20) and the following analogous inequality:

−n

∫ s

t

(ϕ−1(Wr) − d ′)+

σ(ϕ(Wr))
dWr ≤ n

2

∫ s

t

IWr>ϕ(d ′) dr + K
n

2α∗

∫ s

t

(
ϕ−1(Wr) − d ′)+ dr.

It then remains to use (24). We omit the details. �
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3.2. Homogeneous Neumann boundary condition: A representation without g′ and ∇f

Inspired by the results in Ma and Zhang [13], we now aim to prove a formula of Elworthy’s type for ∂xu(t, x) which
does not suppose that the function f is everywhere differentiable.

Theorem 3.4. Suppose that h ≡ 0. Suppose that b and σ are bounded Lipschitz functions. Suppose that σ satisfies (6).
Suppose that the function f is in C([0, T ] × [d, d ′] × R × R), bounded and uniformly Lipschitz w.r.t. the space
variables. Suppose that g is a continuously differentiable function satisfying g′(d) = g′(d ′) = 0. Then the function
u(t, x) := Y

t,x
t is in H 1(d, d ′) for all 0 ≤ t ≤ T . Moreover, for almost all x in (d, d ′),

∂xu(t, x) = E

(
g
(
X

t,x
T

)
N

t,x
T +

∫ T

t

f
(
r,Xt,x

r , Y t,x
r ,Zt,x

r

)
Nt,x

r dr

)
, (36)

where, for all 0 ≤ t < s ≤ T ,

Nt,x
s := 1

s − t

∫ s

t

σ−1(Xt,x
r

)
∂xX

t,x
r dWr. (37)

Proof. Set un(t, x) := Y
t,x,n
t where Y t,x,n is as in (30). In view of N’zi et al. [16], Theorem 4.1, we have

∂xu
n(t, x) = E

(
g
(
X

t,x,n
T

)
N

t,x,n
T +

∫ T

t

f
(
r,Xt,x,n

r , Y t,x,n
r ,Zt,x,n

r

)
Nt,x,n

r dr

)
, (38)

where, for all 0 ≤ t < s ≤ T ,

Nt,x,n
s := 1

s − t

∫ s

t

σ−1(Xt,x,n
r

)
∂xX

t,x,n
r dWr. (39)

We first need to show that the deterministic version of Proposition 2.6 is satisfied by un(t, x), that is,

sup
n≥1

[∫ d ′

d

∣∣un(t, x)
∣∣2 dx +

∫ d ′

d

∣∣∂xu
n(t, x)

∣∣2 dx

]
< +∞ (40)

and ∫ d ′

d

∣∣un(t, x) − u(t, x)
∣∣2 dx −−−→

n→+∞ 0. (41)

In view of (6), (7) and Lemma 2.7, one observes that, for all t < r < T and p ≥ 1,

sup
x∈(d,d)′

E
(∣∣Nt,x,n

r

∣∣2p + ∣∣Nt,x
r

∣∣2p) ≤ C

(r − t)p
, (42)

from which we deduce (40). Now, we observe that, to obtain (31), we only used that f is a Lipschitz function;
therefore (41) holds true, and u(t, x) is in H 1(d, d ′). It thus remains to identify ∂xu(t, x) by letting n go to infinity
in (38).

From Lemma 3.3 and (11), we easily get that, for all 0 ≤ t < s ≤ T ,

sup
x∈(d,d ′)

E
∣∣Nt,x,n

s − Nt,x
s

∣∣2 −−−→
n→+∞ 0. (43)

Therefore
∫ d ′
d

|E(g(Xn
T )N

t,x,n
T − g(XT )N

t,x
T )|2 dx tends to 0 and∫ d ′

d

∣∣∣∣E∫ T

t

f
(
r,Xt,x

r , Y t,x
r ,Zt,x

r

)(
Nt,x,n

r − Nt,x
r

)
dr

∣∣∣∣2

dx ≤ C

∫ d ′

d

∣∣∣∣ ∫ T

t

√
E

∣∣Nt,x,n
r − Nt

r

∣∣2 dr

∣∣∣∣2

dx



410 M. Bossy, M. Cissé and D. Talay

tends also to 0 by Lebesgue’s Dominated Convergence theorem. In view of (31), we are in a position to conclude that
the right-hand side of (38) converges to the right-hand side of (36). �

3.3. Extension to nonhomogeneous Neumann boundary conditions

Consider the BSDE

Y t,x
s = g

(
X

t,x
T

) +
∫ T

s

h
(
r,Xt,x

r

)
dKt,x

r +
∫ T

s

f
(
r,Xt,x

r , Y t,x
r ,Zt,x

r

)
dr −

∫ T

s

Zt,x
r dWr. (44)

Under the hypotheses made in this subsection, Pardoux and Zhang [19] have shown that there exists a unique adapted
solution (Y t,x,Zt,x) to (44) such that

E

(
sup

0≤t≤T

∣∣Y t,x
t

∣∣2 +
∫ T

0

∣∣Y t,x
r

∣∣2 dKt,x
r +

∫ T

0

∣∣Zt,x
r

∣∣2 dr

)
< +∞,

and, in addition, the function u(t, x) := Y
t,x
t is a viscosity solution to the parabolic PDE with nonhomogeneous

Neumann boundary condition⎧⎪⎨⎪⎩
∂u
∂t

(t, x) + Au(t, x) + f
(
t, x, u(t, x), ∂xu(t, x)σ (x)

) = 0, (t, x) ∈ [0, T ) × (
d, d ′),

u(T , x) = g(x), x ∈ [
d, d ′],

∂u
∂x

(t, x) + h(t, x) = 0, (t, x) ∈ [0, T ) × {
d, d ′}.

(45)

For uniqueness results for this PDE, we again refer to Barles [2], Theorem 2.1. We easily extend the representation
formula in Theorem 3.1.

Theorem 3.5. Let the assumptions of Theorem 3.1 hold true. In addition, suppose that the function h is continuous
on [0, T ] × [d, d ′]. Suppose also that g′(x) = −h(T , x) for x = d or x = d ′. Then the function u(t, x) := Y

t,x
t is in

H 1(d, d ′) for all 0 ≤ t ≤ T , and, for almost all x in (d, d ′),

∂xu(t, x) = E

{
g′(Xt,x

T

)
∂xX

t,x
T I{τ t,x>T } − h

(
τ t,x,X

t,x
τ t,x

)
J

t,x
τ t,x I{τ t,x≤T }

+
∫ T ∧τ t,x

t

[
∂xf

(
r,Θt,x

r

)
∂xX

t,x
r + ∂yf

(
r,Θt,x

r

)
Ψ t,x

r + ∂zf
(
r,Θt,x

r

)
Γ t,x

r

]
dr

}
, (46)

where Θt,x
s := (X

t,x
s , Y t,x

s ,Zt,x
s ) solves (4) and (44), J

t,x
r is as in Theorem 2.1, and (Ψ

t,x
s ,Γ

t,x
s ) is the unique adapted

process satisfying

E sup
t≤s≤T

∣∣Ψ t,x
s

∣∣2 + E

∫ T

0

∣∣Γ t,x
r

∣∣2 dr < ∞,

and, for all 0 ≤ s ≤ T ,

Ψ t,x
s = g′(Xt,x

T

)
∂xX

t,x
T I{τ t,x>T } − h

(
τ t,x,X

t,x
τ t,x

)
J

t,x
τ t,x I{τ t,x≤T }

+
∫ T ∧τ t,x

s∧τ t,x

[
∂xf

(
r,Θt,x

r

)
∂xX

t,x
r + ∂yf

(
r,Θt,x

r

)
Ψ t,x

r + ∂zf
(
r,Θt,x

r

)
Γ t,x

r

]
dr

−
∫ T ∧τ t,x

s∧τ t,x

Γ t,x
r dWr. (47)

Proof. Without loss of generality, we can suppose that h(t, d) and h(t, d ′) are continuously differentiable on [0, T ].
If not, we approximate them by a sequence of continuously differentiable functions (that converges uniformly on
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[0, T ]) and apply Proposition 1.2 in Pardoux and Zhang [19] in order to satisfy the requirements of Proposition 2.6.
Interpolate the functions h(t, d) and h(t, d ′) by a function h of class C 1,2([0, T ] × [d, d ′]) and Lipschitz w.r.t. x with
a Lipschitz constant which is uniform in time, and set

H(r, x) :=
∫ x

d

h(r, ξ)dξ,

and

LrH(r, x) := ∂H

∂r
(r, x) + b(x)h(r, x) + 1

2
σ 2(x)

∂h

∂x
(r, x).

For all t ≤ s ≤ T one has∫ T

s

h
(
r,Xt,x

r

)
dKt,x

r = H
(
T ,X

t,x
T

) − H
(
s,Xt,x

s

) −
∫ T

s

h
(
r,Xt,x

r

)
σ
(
Xt,x

r

)
dWr −

∫ T

s

LrH
(
r,Xt,x

r

)
dr,

from which

Y t,x
s = g

(
X

t,x
T

) + H
(
T ,X

t,x
T

) − H
(
s,Xt,x

s

) +
∫ T

s

f
(
r,Θt,x

r

)
dr −

∫ T

s

LrH
(
r,Xt,x

r

)
dr

−
∫ T

s

Zt,x
r dWr −

∫ T

s

h
(
r,Xt,x

r

)
σ
(
Xt,x

r

)
dWr. (48)

Notice that all the terms in the right-hand side of (48) are a.e. differentiable w.r.t. x. Moreover, the process{
Ŷ

t,x
s := Y t,x

s + H
(
s,X

t,x
s

)
,

Ẑ
t,x
s := Zt,x

s + h
(
s,X

t,x
s

)
σ
(
X

t,x
s

) (49)

is the unique solution of a BSDE of the type (26) with the new coefficients{
ĝ(x) := g(x) + H(T ,x),

f̂ (t, x, y, z) := f
(
t, x, y − H(t, x), z − h(t, x)σ (x)

) − LrH(t, x).
(50)

Set Θ̂t,x := (Xt,x, Ŷ t,x, Ẑt,x). We denote by (Ψ̂ t,x, Γ̂ t,x) the solution of the following BSDE analogous to (29)
rewritten under the form (28):

Ψ̂ t,x
s = ĝ ′(Xt,x

T

)
∂xX

t,x
T +

∫ T ∧τ t,x

s∧τ t,x

[
∂xf̂

(
r, Θ̂t,x

r

)
∂xX

t,x
r + ∂yf̂

(
r, Θ̂t,x

r

)
Ψ̂ t,x

r

+ ∂zf̂
(
r, Θ̂t,x

r

)
Γ̂ t,x

r

]
dr −

∫ T ∧τ t,x

s∧τ t,x

Γ̂ t,x
r dWr. (51)

Now, as K
t,x
s = 0 for all t ≤ s ≤ τ t,x , for all t ≤ s ≤ T ∧ τ t,x we have

h
(
T ∧ τ t,x,X

t,x
T ∧τ t,x

)
J

t,x
T ∧τ t,x − h

(
s ∧ τ t,x,X

t,x
s∧τ t,x

)
J

t,x
s∧τ t,x

=
∫ T ∧τ t,x

s∧τ t,x

∂x(LrH)
(
r,Xt,x

r

)
J t,x

r dr

+
∫ T ∧τ t,x

s∧τ t,x

(
∂xh

(
r,Xt,x

r

)
σ
(
Xt,x

r

) + h
(
r,Xt,x

r

)
σ ′(Xt,x

r

))
J t,x

r dWr, (52)
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where J
t,x
r is as in Theorem 2.1 and is used here because the process ∂xX

t,x is discontinuous. Therefore, as in addition
ĝ ′(x) = g′(x) + h(T , x), the pair of processes{

Ψ
t,x
s := Ψ̂

t,x
s − h

(
s ∧ τ t,x,X

t,x
s∧τ t,x

)
J

t,x
s∧τ t,x ,

Γ
t,x
s := Γ̂

t,x
s − ∂x(hσ)

(
s,X

t,x
s

)
J

t,x
s

solves (47). It is the unique solution satisfying the conditions listed in the statement of the theorem; see Pardoux [17].
We are now in a position to get (46). Notice that Theorem 3.1 implies that Ψ̂

t,x
t = ∂xŶ

t,x
t , and consequently,

Ψ
t,x
t = ∂xY

t,x
t . Moreover, as noticed in Remark 3.2, (∂xX

t,x,Ψ t,x,Γ t,x) is null after τ t,x if τ t,x ≤ T . In view of the
definition of Ψ t,x in (47), we finally obtain

∂xY
t,x
t = E

{
g′(Xt,x

T

)
∂xX

t,x
T I{τ t,x>T } − h

(
τ t,x,X

t,x
τ t,x

)
J

t,x
τ t,x I{τ t,x≤T }

+
∫ T ∧τ t,x

t

[
∂xf

(
r,Θt,x

r

)
∂xX

t,x
r + ∂yf

(
r,Θt,x

r

)
Ψ t,x

r + ∂zf
(
r,Θt,x

r

)
Γ t,x

r

]
dr

}
,

which ends the proof. �

The next theorem explicits the derivative in the sense of the distributions of u(t, x) without derivatives of f and g.

Theorem 3.6. Let the assumptions of Theorem 3.5 hold true. For all 0 ≤ t < T , for almost all x in (d, d ′), it holds
that

∂xu(t, x) = E

[
g
(
X

t,x
T

)
N

t,x
T − h

(
τ t,x,X

t,x
τ t,x

)
J

t,x
τ t,x Iτ t,x≤T +

∫ T

t

f
(
r,Xt,x

r , Y t,x
r ,Zt,x

r

)
Nt,x

r dr

]
.

Proof. Apply Theorem 3.4 after having substituted ĝ and f̂ , defined as in (50) to g and f , respectively, and Ŷ t,x ,
defined as in (49), to Y t,x . Then

∂xŶ
t,x
t = ∂xu(t, x) + h(t, x)

= E

[
ĝ
(
X

t,x
T

)
N

t,x
T +

∫ T

t

f
(
r,Θt,x

r

)
Nt,x

r dr −
∫ T

t

LrH
(
r,Xt,x

r

)
Nt,x

r dr

]
.

It then remains to show:

E
[−h

(
τ t,x,X

t,x
τ t,x

)
J

t,x
τ t,x Iτ t,x≤T

] = E

[
H

(
T ,X

t,x
T

)
N

t,x
T −

∫ T

t

LrH
(
r,Xt,x

r

)
Nt,x

r dr − h(t, x)

]
.

Now, apply the Lemma 3.7 below; it comes

−E

∫ T

t

LrH
(
r,Xt,x

r

)
Nt,x

r dr − h(t, x) = −E

∫ T ∧τ t,x

t

∂x(LrH)
(
r,Xt,x

r

)
∂Xt,x

r dr − h(t, x).

Next, use the equality (52) at time s = t :

−E

∫ T

t

LrH
(
r,Xt,x

r

)
Nt,x

r dr − h(t, x) = −E
[
h
(
T ∧ τ t,x,X

t,x
T ∧τ t,x

)
J

t,x
T ∧τ t,x

]
.

Finally, observe that, H(T ,x) = −g(x) + g(d) and thus, using again the Lemma 3.7

E
(
H

(
T ,X

t,x
T

)
N

t,x
T

) = −E
(
g
(
X

t,x
T

)
N

t,x
T

) = E
(
h
(
T ,X

t,x
T

)
J

t,x
T IT <τ t,x

)
,

which ends the proof. �
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Lemma 3.7. For all differentiable function φ with bounded derivative and all t ≤ r ≤ T ,

E
[
φ′(Xt,x

r

)
∂xX

t,x
r Ir<τ t,x

] = E
[
φ
(
Xt,x

r

)
Nt,x

r

]
.

Proof. Consider the following event:

E t,x
θ,r :=

{
ω ∈ Ω: d < inf

θ≤s≤r
Xt,x

s ≤ sup
θ≤s≤r

Xt,x
s < d ′}.

Lépingle et al. [10] have shown that the Malliavin derivative of X
t,x
r satisfies:

∀t ≤ θ < r DθX
t,x
r = σ

(
X

t,x
θ

)J
t,x
r

J
t,x
θ

IE t,x
θ,r

.

Therefore,

1

σ(X
t,x
θ )

Dθφ
(
Xt,x

r

)
J

t,x
θ = φ′(Xt,x

r

)
J t,x

r IE t,x
θ,r

.

We now slightly modify the proof of Elworthy’s formula (see, e.g., Nualart [15]) by integrating the previous equality
w.r.t. θ between times t and r ∧ τ t,x . Notice that

Ir≥τ t,x

∫ τ t,x

t

IE t,x
θ,r

dθ = 0

and

Ir<τ t,x

∫ τ t,x

t

IE t,x
θ,r

dθ = (r − t)Iτ t,x>r .

It comes:

1

r − t

∫ r∧τ t,x

t

1

σ(X
t,x
θ )

Dθφ
(
Xt,x

r

)
J

t,x
θ dθ = φ′(Xt,x

r

)
J t,x

r Ir<τ t,x .

It now remains to use the duality relation between the Malliavin derivative and the Skorokhod integral to get

1

r − t
E

[
φ
(
Xt,x

r

)∫ r

t

Iθ≤r∧τ t,x
1

σ(X
t,x
θ )

J
t,x
θ dWθ

]
= E

[
φ′(Xt,x

r

)
J t,x

r Iτ t,x>r

]
.

We again use that ∂xX
t,x
θ = 0 when θ ≥ τ t,x and ∂xX

t,x
θ = J

t,x
θ when θ < τ t,x , and finally obtain

1

r − t
E

[
φ
(
Xt,x

r

)∫ r

t

1

σ(X
t,x
θ )

∂xX
t,x
θ dWθ

]
= E

[
φ′(Xt,x

r

)
∂xX

t,x
r Iτ t,x>r

]
. �

4. Stochastic representations of derivatives of solutions of variational parabolic inequalities

In this section we aim to establish stochastic representations for the derivative ∂xv(t, x) in the sense of the distribution
of the solution of variational inequality (2). We successively examine the case of an homogeneous Neumann boundary
condition (h ≡ 0), and the case of a nonhomogeneous Neumann boundary condition.
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4.1. The case of homogeneous Neumann boundary conditions

Consider the reflected BSDE⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X
t,x
s = x + ∫ s

t
b
(
X

t,x
r

)
dr + ∫ s

t
σ
(
X

t,x
r

)
dWr + K

t,x
s ,

Y t,x
s = g

(
X

t,x
T

) + ∫ T

s
f

(
r,X

t,x
r , Y t,x

r , Z t,x
r

)
dr − ∫ T

s
Z t,x

r dWr + Rt,x
T − Rt,x

s ,

Y t,x
s ≥ L

(
s,X

t,x
s

)
for all 0 ≤ t ≤ s ≤ T ,(

Rt,x
s ,0 ≤ t ≤ s ≤ T

)
is a continuous increasing process such that∫ T

t

(
Y t,x

s − L
(
s,X

t,x
s

))
dRt,x

s = 0.

(53)

In all this section, in addition to the assumptions made in Theorem 3.4 we suppose that the function L is in
C 1,2([0, T ]×R;R), bounded with bounded derivatives. Adapting a technique due to Cvitanić and Ma [11], Berthelot et
al. [3] have shown existence and uniqueness of an adapted solution (Y t,x, Z t,x, Rt,x), and that the function v : [0, T ]×
[d, d ′] → R defined by

v(t, x) = Y t,x
t

is the unique continuous viscosity solution of (2). We will need the following estimates.

Proposition 4.1. There exist 0 < β < 1 and C > 0 such that, for all x in (d, d ′),

for all t ≤ r ≤ T sup
x∈(d,d ′)

E
(|K|t,xr

)2 ≤ C(r − t), (54)

E

(
sup

t≤s≤T

∣∣Y t,x
s

∣∣2 +
∫ T

t

∣∣Z t,x
r

∣∣2 dr + (|K|t,xT

)2 + ∣∣Rt,x
T

∣∣2
)

≤ C (55)

and

E

∣∣∣∣ ∫ T

t

Nt,x
r d|K|t,xr

∣∣∣∣ ≤ C

[(x − d) ∧ (d ′ − x)]14/11
(T − t)β . (56)

Proof. We start with proving (54). Consider ψ(x) = 1
2(d−d ′) ((x −d ′)2 + (x −d)2), so that ψ ′(x) = η(x) for x = d, d ′

and

|K|t,xr = ψ
(
Xt,x

r

) − ψ(x) −
∫ r

t

Aψ
(
Xt,x

s

)
ds −

∫ r

t

ψ ′(Xt,x
s

)
σ
(
Xt,x

s

)
dWs.

Then E(|K|t,xs )2 ≤ CE|Xt,x
r − x|2 + C(r − t). Moreover, as (y − x)η(y) ≤ 0 for y = d, d ′,

E
(
Xt,x

r − x
)2 = E

∫ r

t

{
2
(
Xt,x

s − x
)
b
(
Xt,x

s

) + σ 2(Xt,x
s

)}
ds + 2E

∫ r

t

(
Xt,x

s − x
)
η
(
Xt,x

s

)
d|K|t,xs

≤ C(r − t).

We now prove (55). Proceeding as in the proof of Proposition 3.5 in El Karoui et al. [7] there exists C > 0 such that,
for all x in (d, d ′),

E

(
sup

t≤s≤T

∣∣Y t,x
s

∣∣2 +
∫ T

t

∣∣Z t,x
r

∣∣2 dr + ∣∣Rt,x
T

∣∣2
)

≤ CEg2(Xt,x
T

) + C

∫ T

t

f 2(r,0,0,0)dr + CE sup
t≤s≤T

L2(s,Xt,x
s

)
.

To obtain the desired result, it then suffices to apply (54).
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We now prove (56). Set

Mt,x
s :=

∫ s

t

σ−1(Xt,x
r

)
∂xX

t,x
r dWr,

A :=
∫ T

t

Nt,x
r d|K|t,xr =

∫ T

t

M
t,x
r

(r − t)
d|K|t,xr .

As M
t,x
t = 0 we have, for all 0 < α < 1,

|A| ≤ sup
t≤θ1≤θ2≤T

|Mt,x
θ1

− M
t,x
θ2

|
|θ1 − θ2|α

∫ T

t

1

(r − t)(1−α)
d|K|t,xr .

Here, we have used an Hölder version of the stochastic integral (M
t,x
θ ) and used a trick from Ma and Zhang [13],

p. 1406.
We choose α := 2

9 and set γ := 14
3 . As

E
∣∣Mt,x

θ1
− M

t,x
θ2

∣∣γ ≤ C|θ1 − θ2|γ /2

and α <
γ/2−1

γ
, we may apply the Theorem 2.1 in [20], Chapter 1. We get

E|A| ≤ (
M∗)1/γ

{
E

(∫ T

t

1

(r − t)(1−α)
d|K|t,xr

)γ /(γ−1)}(γ−1)/γ

,

where

M∗ := E sup
t≤θ1<θ2≤T

( |Mt,x
θ1

− M
t,x
θ2

|
(θ2 − θ1)α

)γ

< ∞.

Now set

B := E

(∫ T

t

1

(r − t)(1−α)
d|K|t,xr

)γ /(γ−1)

.

From Slominski [21] we know that, for all x in (d, d ′) and integer p ≥ 1 there exists C > 0 such that, for all t < s < T ,

E
(|K|t,xs

)p ≤ C
(s − t)p

(x − d)p ∧ (d ′ − x)p
. (57)

Therefore, the Kolmogorov–Centsov criterion implies that, almost surely,

lim
s→t

( |K|t,xs

(s − t)(1−α)

)γ /(γ−1)

= 0.

By integration by parts, we thus get

B = E

{[ |K|t,xs

(s − t)(1−α)

]s=T

s=t

+ (1 − α)

∫ T

t

|K|t,xs

(s − t)(2−α)
ds

}γ /(γ−1)

≤ CE

( |K|t,xT

(T − t)(1−α)

)γ /(γ−1)

+ CE

∫ T

t

(|K|t,xs )γ /(γ−1)

(s − t)γ (2−α)/(γ−1)
ds

=: B1 + B2.
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From (57), it comes: B1 ≤ C(T − t)αγ /(γ−1)[(x − d) ∧ (d ′ − x)]−γ /(γ−1). We finally observe that

B2 ≤ C
[
(x − d) ∧ (

d ′ − x
)]−γ /(γ−1)

∫ T

t

(s − t)γ /(γ−1)

(s − t)γ (2−α)/(γ−1)
ds

≤ C
[
(x − d) ∧ (

d ′ − x
)]−γ /(γ−1)

(T − t)1/99. �

To get a probabilistic representation of the derivative ∂xv(t, x) in the sense of the distributions we need a precise
information on the Stieljes measure dRt,x

r . For the Stieljes measure dRt,x
r we have:

Lemma 4.2. Let Θt,x := (Xt,x, Y t,x, Z t,x). For all t ≤ r ≤ T ,

dRt,x
r ≤ IY t,x

r =L(r,X
t,x
r )

[
∂L

∂r

(
r,Xt,x

r

) + ∂L

∂x

(
r,Xt,x

r

)
b
(
Xt,x

r

)
+ 1

2

∂2L

∂x2

(
r,Xt,x

r

)
σ 2(Xt,x

r

) + f
(
r,Θt,x

r

)]−
dr

+ IY t,x
r =L(r,X

t,x
r )

[(
∂L

∂x

(
r,Xt,x

r

))
η
(
Xt,x

r

)]−
d|K|t,xr . (58)

Proof. We adapt a trick from El Karoui et al. [7]. Let Λ
t,x
s be the local time at 0 of the semimartingale (Y t,x

s −
L(s,X

t,x
s )). Itô–Tanaka’s formula leads to

d
(

Y t,x
r − L

(
r,Xt,x

r

))+ = −IY t,x
r >L(r,X

t,x
r )

[
∂L

∂r

(
r,Xt,x

r

) + ∂L

∂x

(
r,Xt,x

r

)
b
(
Xt,x

r

)
+ 1

2

∂2L

∂x2

(
r,Xt,x

r

)
σ 2(Xt,x

r

) + f
(
r,Θt,x

r

)]
dr

− IY t,x
r >L(r,X

t,x
r )

∂L

∂x

(
r,Xt,x

r

)
η
(
Xt,x

r

)
d|K|t,xr

+ IY t,x
r >L(r,X

t,x
r )

(
Z t,x

r − ∂L

∂x

(
r,Xt,x

r

)
σ
(
Xt,x

r

))
dWr + 1

2
dΛt,x

r .

As (
Y t,x

r − L
(
r,Xt,x

r

))+ = Y t,x
r − L

(
r,Xt,x

r

)
,

Itô’s formula applied to L(r,X
t,x
r ) leads to

dRt,x
r + 1

2
dΛt,x

r = −IY t,x
r =L(r,X

t,x
r )

[
∂L

∂r

(
r,Xt,x

r

) + ∂L

∂x

(
r,Xt,x

r

)
b
(
Xt,x

r

)
+ 1

2

∂2L

∂x2

(
r,Xt,x

r

)
σ 2(Xt,x

r

) + f
(
r,Θt,x

r

)]
dr

− IY t,x
r =L(r,X

t,x
r )

(
∂L

∂x

(
r,Xt,x

r

))
η
(
Xt,x

r

)
d|K|t,xr

+ IY t,x
r =L(r,X

t,x
r )

(
Z t,x

r − ∂L

∂x

(
r,Xt,x

r

)
σ
(
Xt,x

r

))
dWr

and

Z t,x
r − ∂L

∂x

(
r,Xt,x

r

)
σ
(
Xt,x

r

) = IY t,x
r >L(r,X

t,x
r )

(
Z t,x

r − ∂L

∂x

(
r,Xt,x

r

)
σ
(
Xt,x

r

))
,
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from which we deduce

IY t,x
r =L(r,X

t,x
r )

(
Z t,x

r − ∂L

∂x

(
r,Xt,x

r

)
σ
(
Xt,x

r

)) = 0

and

dRt,x
r + 1

2
dΛt,x

r = −IY t,x
r =L(r,X

t,x
r )

[
∂L

∂x

(
r,Xt,x

r

)
b
(
Xt,x

r

) + 1

2

∂2L

∂x2

(
r,Xt,x

r

)
σ 2(Xt,x

r

)
+ ∂L

∂r

(
r,Xt,x

r

) + f
(
r,Θt,x

r

)]
dr

− IY t,x
r =L(r,X

t,x
r )

∂L

∂x

(
r,Xt,x

r

)
η
(
Xt,x

r

)
d|K|t,xr .

As local times are increasing we deduce (58). �

We now are in a position to prove the main result of this section.

Theorem 4.3. Suppose that the function L is in C 1,2([0, T ] × R;R), bounded with bounded derivatives. Under the
assumptions of Theorem 3.4, for all 0 ≤ t < T the function v(t, x) is in H 1(d, d ′) and, for almost all x in (d, d ′),

∂xv(t, x) = E

(
g
(
X

t,x
T

)
N

t,x
T +

∫ T

t

f
(
r,Xt,x

r , Y t,x
r , Z t,x

r

)
Nt,x

r dr +
∫ T

t

Nt,x
r dRt,x

r

)
, (59)

where Nt,x is as in (37).

Remark 4.4. E
∫ T

t
N

t,x
r dRt,x

r is well defined in view of (58) and (56).

Proof of Theorem 4.3. We follow the same guidelines as the proof of Theorem 3.4. In this proof all the constants C

are uniform w.r.t. x in (d, d ′).
Consider the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y t,x,n
s = g

(
X

t,x,n
T

) + ∫ T

s
f

(
r,X

t,x,n
r , Y t,x,n

r , Z t,x,n
r

)
dr

− ∫ T

s
Z t,x,n

r dWr + Rt,x,n
T − Rt,x,n

s , ∀t ≤ s ≤ T , Y t,x,n
s ≥ L

(
s,X

t,x,n
s

)
,{

Rt,x,n
s , t ≤ s ≤ T

}
is an increasing continuous process such that∫ T

t

(
Y t,x,n

s − L
(
s,X

t,x,n
s

))
dRt,x,n

s = 0,

where Xt,x,n is the solution to (10). Set vn(t, x) := Y t,x,n
t . Ma and Zhang [13] have shown that, for almost all x in

(d, d ′),

∂xv
n(t, x) = Z t,x,n

t σ−1(x)

= E

(
g
(
X

t,x,n
T

)
N

t,x,n
T +

∫ T

t

f
(
r,Xt,x,n

r , Y t,x,n
r , Z t,x,n

r

)
Nt,x,n

r dr +
∫ T

t

Nt,x,n
r dRt,x,n

r

)
.

Notice that, from El Karoui et al. [7]), we have: almost surely,

dRt,x,n
r ≤ IY t,x,n

r =L(r,X
t,x,n
r )

[
∂L

∂r

(
r,Xt,x,n

r

) + ∂L

∂x

(
r,Xt,x,n

r

)
bn

(
Xt,x,n

r

)
+ 1

2

∂2L

∂x2

(
r,Xt,x,n

r

)
σ 2(Xt,x,n

r

) + f
(
r,Θt,x,n

r

)]−
dr. (60)
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Here, Θt,x,n := (Xt,x,n, Y t,x,n, Z t,x,n). We aim to apply Proposition 2.6 (in its deterministic version) and to prove
that the right-hand side of the preceding equality tends to the right-hand side of (59).

We first show that

lim
n→∞

∫ d ′

d

∣∣vn(t, x) − v(t, x)
∣∣2 dx = 0. (61)

The following calculation is classical:

E
∣∣Y t,x,n

s − Y t,x
s

∣∣2 + E

∫ T

s

∣∣Z t,x,n
r − Z t,x

r

∣∣2 dr

≤ E
∣∣g(

X
t,x,n
T

) − g(XT )
∣∣2

+ 2E

∫ T

s

(
Y t,x,n

r − Y t,x
r

)(
f

(
r,Xt,x,n

r , Y t,x,n
r , Z t,x,n

r

) − f
(
r,Xt,x

r , Y t,x
r , Z t,x

r

))
dr

+ 2E

∫ T

s

(
Y t,x,n

r − Y t,x
r

)(
dRt,x,n

r − dRt,x
r

)
≤ CE

∣∣Xt,x,n
T − XT

∣∣2

+ CE

∫ T

s

∣∣Y t,x,n
r − Y t,x

r

∣∣(∣∣Xt,x,n
r − Xt,x

r

∣∣ + ∣∣Y t,x,n
r − Y t,x

r

∣∣ + ∣∣Z t,x,n
r − Z t,x

r

∣∣)dr

+ 2E

∫ T

s

(
L

(
r,Xt,x,n

r

) − L
(
r,Xt,x

r

))(
dRt,x,n

r − dRt,x
r

)
≤ CE

∣∣Xt,x,n
T − XT

∣∣2 + C

(
1 + 1

ε

)
E

∫ T

s

∣∣Y t,x,n
r − Y t,x

r

∣∣2 dr

+ CE

∫ T

s

∣∣Xt,x,n
r − Xt,x

r

∣∣2 dr + CεE

∫ T

s

∣∣Z t,x,n
r − Z t,x

r

∣∣2 dr

+ 2E

∫ T

s

(
L

(
r,Xt,x,n

r

) − L
(
r,Xt,x

r

))(
dRt,x,n

r − dRt,x
r

)
.

Therefore, choosing ε small enough, say, ε = 1
2C

, we get

E
∣∣Y t,x,n

s − Y t,x
s

∣∣2 + E

∫ T

s

∣∣Z t,x,n
r − Z t,x

r

∣∣2 dr

≤ CE
∣∣Xt,x,n

T − XT

∣∣2 + CE

∫ T

s

∣∣Xt,x,n
r − Xt,x

r

∣∣2 dr

+ CE

∫ T

s

∣∣Y t,x,n
r − Y t,x

r

∣∣2
dr

+ 2E

∫ T

s

(
L

(
r,Xt,x,n

r

) − L
(
r,Xt,x

r

))(
dRt,x,n

r − dRt,x
r

)
,

from which

sup
t≤s≤T

E
∣∣Y t,x,n

s − Y t,x
s

∣∣2 + E

∫ T

t

∣∣Z t,x,n
r − Z t,x

r

∣∣2 dr

≤ CE sup
t≤s≤T

∣∣Xt,x,n
s − Xt,x

s

∣∣2 + CE sup
t≤s≤T

∫ T

s

∣∣L(
r,Xt,x,n

r

) − L
(
r,Xt,x

r

)∣∣(dRt,x,n
r + dRt,x

r

)
.
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We now observe that the proof of the inequality (3.4) in Menaldi [14] leads to: for all p ≥ 1 there exists C > 0 such
that

sup
x∈(d,d ′)

E

∫ T

t

∣∣βn

(
Xt,x,n

r

)∣∣p dr ≤ C, (62)

where the function βn is defined as in Proposition 2.5. It then remains to use (11), (60) and (58) to conclude that

lim
n→∞ sup

x∈(d,d ′)

(
sup

t≤s≤T

E
∣∣Y t,x,n

s − Y t,x
s

∣∣2 + E

∫ T

t

∣∣Z t,x,n
r − Z t,x

r

∣∣2
dr

)
= 0, (63)

from which (61) follows.
We now aim to prove that

lim
n→∞

∫ d ′

d

∣∣∂xv
n(t, x) − ζ

t,x
t

∣∣2 dx = 0, (64)

where

ζ
t,x
t := E

(
g
(
X

t,x
T

)
N

t,x
T +

∫ T

t

f
(
r,Xt,x

r , Y t,x
r , Z t,x

r

)
Nt,x

r dr +
∫ T

t

Nt,x
r dRt,x

r

)
.

We have∣∣∂xv
n(t, x) − ζ

t,x
t

∣∣ ≤ ∣∣E(
g
(
X

t,x,n
T

)
N

t,x,n
T − g

(
X

t,x
T

)
N

t,x
T

)∣∣
+

∣∣∣∣E∫ T

t

(
f

(
r,Xt,x,n

r , Y t,x,n
r , Z t,x,n

r

)
Nt,x,n

r − f
(
r,Xt,x

r , Y t,x
r , Z t,x

r

)
Nt,x

r

)
dr

∣∣∣∣
+

∣∣∣∣E∫ T

t

Nt,x,n
r dRt,x,n

r − E

∫ T

t

Nt,x
r dRt,x

r

∣∣∣∣
=: I t,x,n

1 + I
t,x,n
2 + I

t,x,n
3 .

Combining the inequality (63) and the arguments used at the end at the proof of Theorem 3.4 we obtain

lim
n→∞

∫ d ′

d

((
I

t,x,n
1

)2 + (
I

t,x,n
2

)2)dx = 0.

We now examine I
t,x,n
3 :

I3 ≤ E

∫ T

t

∣∣Nt,x,n
r − Nt,x

r

∣∣dRt,x,n
r +

∣∣∣∣E∫ T

t

Nt,x
r

(
dRt,x,n

r − dRt,x
r

)∣∣∣∣
=: I t,x,n

31 + I
t,x,n
32 .

In order to estimate I
t,x,n
31 , we again use (39) and (11), and get

∣∣I t,x,n
31

∣∣ ≤ E

∫ T

t

∣∣Nt,x,n
r − Nt,x

r

∣∣(C + ∣∣bn

(
Xt,x,n

r

)∣∣)dr

≤ C

∫ T

t

√
E

∣∣Nt,x,n
r − N

t,x
r

∣∣2(1 +
√

E
∣∣bn

(
X

t,x,n
r

)∣∣2)dr

≤ C

∫ T

t

1√
r − t

({
E sup

t≤r≤T

∣∣Xt,x,n
r − Xt,x

r

∣∣4
}1/4 +

{
E sup

t≤r≤T

∣∣Xt,x,n
r − Xt,x

r

∣∣2
}1/2)

× (
1 +

√
E

∣∣bn

(
X

t,x,n
r

)∣∣2)dr.
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In view of (62) we deduce:

lim
n→∞

∫ d ′

d

∣∣I t,x,n
31

∣∣2 dx = 0.

We now turn to I
t,x,n
32 . Notice that (57)–(58) imply E((N

t,x
t+ε)

2p(Rt,x,n
t+ε − Rt,x

t+ε)
2p) = O(εp), p ≥ 1. Thus the

Kolmogorov–Centsov criterion implies that limε→0(Rt,x,n
t+ε − Rt,x

t+ε)N
t,x
t+ε = 0 a.s. Therefore we may integrate by

parts to get∣∣∣∣E∫ T

t

Nt,x
r d

(
Rt,x,n

r − Rt,x
r

)∣∣∣∣ ≤ E
∣∣(Rt,x,n

T − Rt,x
T

)
N

t,x
T

∣∣ +
∫ T

t

E

∣∣∣∣Nt,x
r

(Rt,x,n
r − Rt,x

r )

r − t

∣∣∣∣dr.

Now, a straightforward calculation leads to

E
(

Rt,x,n
s − Rt,x

s

)2 ≤ C sup
t≤r≤T

E
(

Y t,x,n
r − Y t,x

r

)2 + C

∫ s

t

E
(
Xt,x,n

r − Xt,x
r

)2 dr

+ C

∫ s

t

E
(

Z t,x,n
r − Z t,x

r

)2 dr,

which, in view of (63) and (11), implies that∫ d ′

d

E
∣∣(Rt,x,n

T − Rt,x
T

)
N

t,x
T

∣∣2 dx

tends to 0.
We finally consider

λt,n :=
∫ d ′

d

(∫ T

t

E

∣∣∣∣Nt,x
r

(Rt,x,n
r − Rt,x

r )

r − t

∣∣∣∣dr

)2

dx.

Notice that (60) implies that supx∈(d,d ′) E(Rt,x,n
s )2 ≤ C(s − t)2. Moreover,∫ T

t

1

(r − t)
E

∣∣Nt,x
r |K|t,xr

∣∣dr ≤
∫ T

t

C

(r − t)3/2

{
E

(|K|t,xr

)2}7/16{
E

(|K|t,xr

)2}1/16 dr

with a constant C uniform in x. Using (54) and (57), we get

{
E

(|K|t,xr

)2}7/16{
E

(|K|t,xr

)2}1/16 ≤ C
(r − t)9/16

[(x − d) ∧ (d ′ − x)]1/8

and by (58), E|Nt,x
r Rt,x

r | ≤ C((r − t)1/2 + (r − t)1/16[(x − d) ∧ (d ′ − x)]−1/8. Therefore, the Lebesgue Dominated
Convergence theorem allow us to deduce that λt,n tends to 0. That ends the proof. �

4.2. The case of nonhomogeneous Neumann boundary conditions

Consider the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y t,x
s

= g
(
X

t,x
T

) + ∫ T

s
f

(
r,X

t,x
r , Y t,x

r
, Z t,x

r

)
dr + ∫ T

s
h
(
r,X

t,x
r

)
dK

t,x
r

+ Rt,x
T − Rt,x

s − ∫ T

s
Z t,x

r dWr,

Y t,x
s

≥ L
(
s,X

t,x
s

)
for all 0 ≤ t ≤ s ≤ T ,(

Rt,x
s ,0 ≤ t ≤ s ≤ T

)
is a continuous increasing process such that∫ T

t

(
Y t,x

r
− L

(
r,X

t,x
r

))
dRt,x

r = 0.

(65)
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Berthelot et al. [3] have shown that the function v(t, x) := Y t,x
t

is the unique (in an appropriate space of functions)
viscosity solution of the following parabolic system with a nonhomogeneous Neumann boundary condition:⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
{
v(t, x) − L(t, x);− ∂v

∂t
(t, x) − Av(t, x)

− f
(
t, x, v(t, x), ∂xv(t, x)σ (x)

)} = 0, (t, x) ∈ [0, T ) × (
d, d ′),

v(T , x) = g(x), x ∈ [
d, d ′],

∂xv(t, x) + h(t, x) = 0, (t, x) ∈ [0, T ) × {
d, d ′}.

(66)

Proceeding as in Section 3.3, we readily deduce from Theorem 4.3 the following stochastic representation of
∂xv(t, x):

Theorem 4.5. Suppose that the function L is in C 1,2([0, T ] × R;R), bounded with bounded derivatives. Under the
assumptions of Theorem 3.6, it holds that, for all t in [0, T ] and almost all x in (d, d ′),

∂xv(t, x) = E

[
N

t,x
T g

(
X

t,x
T

) − h
(
τ t,x,X

t,x
τ t,x

)
J

t,x
τ t,x I{τ t,x≤T }

+
∫ T

t

f
(
r,Xt,x

r , Y t,x
r

, Z t,x
r

)
Nt,x

r dr +
∫ T

t

Nt,x
r dRt,x

r

]
.

5. Conclusion

Coming back to our original motivation described in the Introduction, we deduce from Theorem 4.5 a tractable es-
timate of the error induced by the artificial Neumann boundary condition h(t, x). In this section, we suppose that
∂xV (t, d) and ∂xV (t, d ′) are well defined for all times t ∈ [0, T ]. For example, if in addition of assumptions of Theo-
rem 4.5, we suppose that b and σ are differentiable with bounded derivatives, Ma and Zhang [13], Theorem 5.1, have
shown that ∂xV (·, ·) is a bounded continuous function on [0, T ] × R.

The following quantity represents the order of magnitude of the misspecification at the boundary {d, d ′}:
ε(h) := sup

t≤r≤T

(∣∣V (r, d) − v(r, d)
∣∣ + ∣∣V (

r, d ′) − v
(
r, d ′)∣∣)

+ sup
t≤r≤T

(∣∣∂xV (r, d) + h(r, d)
∣∣ + ∣∣∂xV

(
r, d ′) + h

(
r, d ′)∣∣).

We are in a position to prove the following estimate for the error induced by the artificial Neumann boundary
condition h(t, x).

Theorem 5.1. Suppose that ∂xV (r, d) and ∂xV (r, d ′) are well defined for all times r ∈ [t, T ]. Under the hypotheses
of Theorem 4.5, there exists C independent of h such that, for all ρ < 1

2 ,∫ d ′

d

∣∣∂xV (t, x) − ∂xv(t, x)
∣∣2 dx ≤ Cε(h)ρ ∧ ε(h).

Proof. The various constants C below are uniform w.r.t. x ∈ [d, d ′] and h(t, x).
As shown in [3], the viscosity solution of (1) is V (t, x) = Y̌ t,x

t , where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y̌ t,x
s = g

(
X

t,x
T

) + ∫ T

s
f

(
r,X

t,x
r , Y̌ t,x

r , Ž t,x
r

)
dr − ∫ T

s
∂xV

(
r,X

t,x
r

)
dK

t,x
r

+ Řt,x
T − Řt,x

s − ∫ T

s
Ž t,x

r dWr,

Y̌ t,x
s ≥ L

(
s,X

t,x
s

)
for all 0 ≤ t ≤ s ≤ T ,(

Řt,x
s ,0 ≤ t ≤ s ≤ T

)
is a continuous increasing process such that∫ T

t

(
Y̌ t,x

r − L
(
r,X

t,x
r

))
dŘt,x

r = 0.

(67)
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From Theorem 4.5 we get that

∂xV (t, x) − ∂xv(t, x) = E

[(
∂xV

(
τ t,x,X

t,x
τ t,x

) + h
(
τ t,x,X

t,x
τ t,x

))
J

t,x
τ t,x I{τ t,x≤T }

+
∫ T

t

Nt,x
r

(
f

(
r,Xt,x

r , Y̌ t,x
r , Ž t,x

r

) − f
(
r,Xt,x

r , Y t,x
r

, Z t,x
r

))
dr

+
∫ T

t

Nt,x
r

(
dŘt,x

r − dRt,x
r

)]
.

Since Y̌ t,x
r and Y t,x

r
are larger than L(r,X

t,x
r ), we have∫ T

t

(
Y̌ t,x

r − Y t,x
r

)
d
(

Řt,x
r − Rt,x

r

) ≤ 0,

from which, by standard computations,

sup
t≤s≤T

E
∣∣Y̌ t,x

s − Y t,x
s

∣∣2 +
∫ T

t

E
∣∣Ž t,x

r − Z t,x
r

∣∣2 dr

≤ CE

[∫ T

t

∣∣V (
r,Xt,x

r

) − v
(
r,Xt,x

r

)∣∣∣∣∂xV
(
r,Xt,x

r

) + h
(
r,Xt,x

r

)∣∣d|K|t,xr

]
≤ CE|K|t,xT ε(h)2. (68)

Therefore,

sup
t≤s≤T

E
(

Řt,x
s − Rt,x

s

)2 ≤ C sup
t≤s≤T

E
(

Y̌ t,x
s − Y t,x

s

)2 + C

∫ T

t

E
∣∣Ž t,x

r − Z t,x
r

∣∣2
dr

+ CE

(∫ T

t

|∂xV + h|(r,Xt,x
r

)
d|K|t,xr

)2

≤ CE
(|K|t,xT

)2
ε(h)2. (69)

Now, in view of (68),

E

∣∣∣∣ ∫ T

t

Nt,x
r

(
f

(
r,Xt,x

r , Y̌ t,x
r , Ž t,x

r

) − f
(
r,Xt,x

r , Y t,x
r

, Z t,x
r

))
dr

∣∣∣∣
≤

∫ T

t

C√
r − t

{(
E

(
Y̌ t,x

r − Y t,x
r

)2)1/2 + (
E

(
Ž t,x

r − Z t,x
r

)2)1/2}
dr

≤ C

√
E|K|t,xT ε(h).

Finally, we proceed as at the end of the proof of Theorem 4.3:∣∣∣∣E[∫ T

t

Nt,x
r

(
dŘt,x

r − dRt,x
r

)]∣∣∣∣
≤ E

[∣∣Nt,x
T

∣∣∣∣Řt,x
T − Rt,x

T

∣∣] + E

[∫ T

t

|Nt,x
r |

(r − t)

∣∣Řt,x
r − Rt,x

r

∣∣dr

]
≤ C

{
E

∣∣Řt,x
T − Rt,x

T

∣∣2}1/2 + C

∫ T

t

1

(r − t)3/2

{
E

∣∣Řt,x
r − Rt,x

r

∣∣2}1/2 dr.
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In view of (69) and (54) we have{
E

∣∣Řt,x
T − Rt,x

T

∣∣2}1/2 ≤ Cε(h).

In addition, using again (57) we get, for all γ < 1
4 ,∫ T

t

1

(r − t)3/2

{
E

∣∣Řt,x
r − Rt,x

r

∣∣2}1/2 dr ≤ Cε(h)2γ

∫ T

t

1

(r − t)3/2

{
E

∣∣Řt,x
r − Rt,x

r

∣∣2}1/2−γ dr

≤ C
ε(h)2γ

((x − d) ∧ (d ′ − x))1−2γ

∫ T

t

1

(r − t)1/2+2γ
dr.

That ends the proof. �

Remark 5.2. A better estimate for semilinear PDEs can be derived from Section 3, namely,∫ d ′

d

∣∣∂xV (t, x) − ∂xv(t, x)
∣∣2 dx ≤ Cε(h).

Two challenging questions, which are important issues for applications, need now to be treated for multi-
dimensional PDEs or variational inequalities: first, the extension of our work to the multi-dimensional case; second,
given a desired accuracy on the approximation of ∂xV (t, x) or of the hedging strategy of an American option, the
relevant choice of a function h(t, x) and of an artificial boundary.
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