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Anick spaces and Kac–Moody groups

STEPHEN THERIAULT

JIE WU

For primes p � 5 we prove an approximation to Cohen, Moore and Neisendorfer’s
conjecture that the loops on an Anick space retracts off the double loops on a mod-p
Moore space. The approximation is then used to answer a question posed by Kitchloo
regarding the topology of Kac–Moody groups. We show that, for certain rank-2
Kac–Moody groups K , the based loops on K is p–locally homotopy equivalent to
the product of the loops on a 3–sphere and the loops on an Anick space.

55P35; 55P15, 57T20

1 Introduction

This paper has two purposes. The first is to address an important conjecture in homotopy
theory regarding the homotopy type of the double loops on an odd primary Moore
space. The second is to establish a connection between rank-2 Kac–Moody groups
and Anick spaces.

Let p be an odd prime and r � 1. Take homology with mod-p coefficients. For m� 1
the Moore space PmC1.pr/ is the cofibre of the degree pr map on Sm. Its homotopy
theory was investigated in depth by Cohen, Moore and Neisendorfer [4; 3; 5] and
additional properties were proved by Neisendorfer [13; 14]. In the case of an odd-
dimensional Moore space P 2nC1.pr/, a related space was constructed by Anick [2]
for p� 5, and reconstructed in a much simpler way by Gray and Theriault [9] for p� 3.
For each n; r � 1 there is a space T 2nC1.pr/ which fits in a homotopy fibration

S2n�1! T 2nC1.pr/!�S2nC1

and has the property that there is a coalgebra isomorphism

H�.T
2nC1.pr//Šƒ.u2n�1/˝Z=pZŒv2n�

with ˇr.v2n/Du2n�1 , where ˇr is the r th Bockstein. Cohen, Moore and Neisendorfer
conjectured that �T 2nC1.pr/ retracts off �2P 2nC1.pr/. Neisendorfer [14] proved
this for p � 3 and r � 2, but the critical case of r D 1 remains open.
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Our first result is to prove an approximation to this remaining open case, although we
state the result for all r � 1. Define C 2nC1.pr/ by the homotopy cofibration

P 4n.pr/
Œ�;��
���!P 2nC1.pr/! C 2nC1.pr/;

where Œ�; �� is the mod-pr Whitehead product of the identity map � on P 2nC1.pr/
and the Bockstein map �.

Theorem 1.1 Let p � 5, r � 1 and n > 1. Then �T 2nC1.pr/ is a retract of
�2C 2nC1.pr/.

Philosophically, Theorem 1.1 says that if one gets rid of mod-pr Whitehead products
on P 2nC1.pr/ (by coning them out in C 2nC1.pr/) then all obstructions to a splitting
involving �T 2nC1.pr/ vanish. This may or may not be helpful in trying to show
that �T 2nC1.pr/ retracts off �2P 2nC1.pr/. However, it is interesting to note that
if T 2nC10 .pr/ is the bottom indecomposable factor of �P 2nC1.pr/, then Anick [1]
showed that T 2nC10 .pr/ retracts off �L, where L is the 4n–skeleton of C 2nC1.pr/.
So the obstruction to retracting �T 2nC1.pr/ off �2P 2nC1.pr/ is encoded in the
attaching map of the top-dimensional cell of C 2nC1.pr/.

Theorem 1.1 has practical applications, which leads to the second purpose of the paper.
Fix a prime p . Let k2fp; 2pg or let k be a divisor of p�1 or pC1. Kitchloo [10; 11]
showed that for each such k there is a nonempty set Vk of positive integers with the
property that if r 2 Vk then there is a rank-2 Kac–Moody group K such that

(1) H�.K/Šƒ.z3; y2k�1/˝Z=pZŒx2k�

and ˇr.x2k/D y2k�1 , where ˇr is the r th Bockstein. Further, K has an S3 subgroup
whose inclusion induces an isomorphism onto the subalgebra ƒ.z3/ in homology.
Taking classifying spaces, this results in a homotopy fibration sequence

S3!K ı
�!X ! BS3! BK;

where
H�.X/Šƒ.y2k�1/˝Z=pZŒx2k�

and ı� is the projection. Observe that X has the same homology as the Anick
space T 2kC1.pr/.

Kitchloo conjectured that there is a p–local homotopy fibration S2k�1!X!�S2kC1

that is equivalent to Anick’s fibration. A weaker conjecture is that there is a p–
local homotopy equivalence X ' T 2kC1.pr/. We prove that the weaker conjecture
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holds after looping if 1 < k < p � 1. Moreover, the method results in a homotopy
decomposition for �K .

Theorem 1.2 Let p � 5 and let K be a rank-2 Kac–Moody group satisfying (1).
If 1 < k < p� 1 and r 2 Vk then there are p–local homotopy equivalences

�X '�T 2kC1.pr/ and �K '�S3 ��T 2kC1.pr/:

The approach to proving Theorem 1.2 involves four steps. First, we lift the inclusion
of the bottom Moore space P 2k.pr/! X to K . Second, we show that its adjoint
P 2kC1.pr/ ! BK extends to a map C 2kC1.pr/ ! BK . Third, Theorem 1.1 is
applied to produce a map �T 2kC1.pr/!�K . Finally, an atomicity-style argument
is used to show that the composite �T 2kC1.pr/!�K!�X is a p–local homotopy
equivalence, from which Theorem 1.2 follows.

The decomposition of �K in Theorem 1.2 implies exponent information about K . The
p–primary homotopy exponent of a space Y is the least power of p that annihilates
the p–torsion in the homotopy groups of Y . If this power is r , write expp.Y /D p

r.
Selick [16] showed that expp.S

3/Dp for p� 3, and Gray [8, Corollary 7.28] showed
that expp.T

2nC1.pr//D pr for p � 5. Since looping simply shifts homotopy groups
down one dimension, Theorem 1.2 immediately implies the following.

Corollary 1.3 If K is a Kac–Moody group as in Theorem 1.2, then expp.K/Dp
r. �

In particular, if r D 1 then one obtains the remarkable outcome that expp.K/D p .

Acknowledgements The authors would like to thank the referee for pointing out an
error in an earlier version of the paper, and for several comments that have improved
the exposition.

Wu is partially supported by a Singapore Ministry of Education research grant (AcRF
Tier 1 WBS No. R-146-000-190-112) and a grant (No. 11329101) from the NSFC of
China.

2 Background information on the homotopy theory of
Moore spaces

In this section we record some of the material from [4; 14] that will be needed later.
From here on it will be assumed that all spaces and maps have been localized at an
odd prime p .
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If A is a co-H–space, let pr W A! A be the map of degree pr. If B is an H–space,
let pr W B ! B be the pr–power map. For m � 1, the Moore space PmC1.pr/ is
defined by the homotopy cofibration

Sm
pr

�!Sm! PmC1.pr/:

The sphere S2nC1 is an H–space localized at an odd prime p and its pr–power map
is homotopic to the map of degree pr. Define the space S2nC1fprg by the homotopy
fibration

S2nC1fprg ! S2nC1
pr

�!S2nC1:

One key result in [4] is that there is a map

S2nC1fprg !�P 2nC2.pr/

which has a left homotopy inverse.

It will be necessary to relate Moore spaces of different torsion orders. For r; s � 1,
there is a homotopy pushout diagram

Sm
pr

// Sm //

ps

��

PmC1.pr/

!
rCs
r
��

Sm
prCs

// Sm //

��

PmC1.prCs/

�s
rCs

��

PmC1.ps/ Pm.ps/

that defines the maps !rCsr and �srCs . For fibres of degree maps there is an analogous
homotopy pullback diagram

S2nC1fprg
$

rCs
r
// S2nC1fprCsg

%s
rCs
//

��

S2nC1fpsg

��

S2nC1fprg // S2nC1
pr

//

prCs

��

S2nC1

ps

��

S2nC1 S2nC1

defining the maps $rCs
r and %srCs . As in [14, Diagram 1.10], the map S2nC1fprg!

�P 2nC2.pr/ with a left homotopy inverse may be chosen so that it is natural with
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respect to changes in torsion order. That is, there is a homotopy commutative diagram

(2)

S2nC1fprg
$

rCs
r

//

��

S2nC1fprCsg
%s

rCs
//

��

S2nC1fpsg

��

�P 2nC2.pr/
�!

rCs
r
// �P 2nC2.prCs/

��r
rCs
// �P 2nC2.ps/

For odd-dimensional Moore spaces, consider the homotopy fibration sequence

�S2nC1
@r
�!F 2nC1.pr/! P 2nC1.pr/

q
�!S2nC1;

where q is the pinch map to the top cell, and the fibration sequence defines the space
F 2nC1.pr/ and the map @r . In [4], it was shown that there is a homotopy equivalence

(3) �W S2n�1 �V 2nC1.prC1/��R2nC1.pr/!�F 2nC1.pr/:

There may be choices of the homotopy equivalence � , and in Lemma 3.3 a lift of �
will be produced that depends on making a specific choice. To this end, � will now be
described in more detail.

Let f W †P s.pr/! Pm.pr/ and gW †P t .pr/! Pm.pr/ be maps. Let

w.f; g/W †P s.pr/^P t .pr/! Pm.pr/

be the Whitehead product of f and g . By [12], as p is odd there is a homotopy
equivalence P s.pr/^P t .pr/' P sCt .pr/_P sCt�1.pr/. The mod-pr Whitehead
product of f and g is the composite

Œf; g�W P sCtC1.pr/,!P sCtC1.pr/_P sCt.pr/'†P s.pr/^P t.pr/
w.f;g/
����!Pm.pr/:

Mod-pr Whitehead products play an important role, and certain ones are distin-
guished. Let �W P 2nC1.pr/!P 2nC1.pr/ be the identity map and let �W P 2n.pr/!
P 2nC1.pr/ be the composite P 2n.pr/ q

�!S2n! P 2nC1.pr/, where the right map
is the inclusion of the bottom cell. Let ad1.�/.�/D Œ�; �� and, for k > 1, recursively
define adk.�/.�/ by adk.�; �/D Œ�; adk�1.�/.�/�. In [4] it was shown that there is
an extension

(4)

P 2np
j

.pr/
!

rC1
r
//

adpj�1.�/.�/
��

P 2np
j

.prC1/

ejww

P 2nC1.pr/

for some map ej .

Algebraic & Geometric Topology, Volume 18 (2018)



4310 Stephen Theriault and Jie Wu

We now describe the spaces and maps appearing in (3). First, there is the inclusion
i W S2n�1 ! �F 2nC1.pr/ of the bottom cell. Second, the space R2nC1.pr/ is a
wedge of mod-pr Moore spaces and there is a map R2nC1.pr/! P 2nC1.pr/ which
is a wedge sum of iterated mod-pr Whitehead products. Each mod-pr Whitehead
product composes trivially with the pinch map P 2nC1.pr/ q

�!S2nC1 because S2nC1

is an H–space and any Whitehead product on an H–space is null-homotopic. Thus
there is a lift  W R2nC1.pr/! F 2nC1.pr/. Looping gives a map �R2nC1.pr/ � �!
�F 2nC1.pr/. Third, as above, the mod-pr Whitehead product adp

j�1.�/.�/ lifts to
a map j̀ W P

2npj

.pr/!F 2nC1.pr/ and in [4] it is shown that the extension property
in (4) occurs at the lifted level as well. That is, there is a homotopy commutative diagram

(5)

P 2np
j

.pr/
!

rC1
r
//

`j

��

P 2np
j

.prC1/

e0
jww

F 2nC1.pr/

for some map e0j . Thus for each j � 1 there is a composite

S2np
j�1
fprC1g !�P 2np

j

.pr/
�e0j
���!�F 2nC1.pr/:

Letting V 2nC1.prC1/ D
Q1
jD1 S

2npj�1fprC1g and using the loop space structure
on �F 2nC1.pr/ to multiply we obtain the map �W V 2nC1.prC1/! �F 2nC1.pr/.
The map � in (3) is the result of multiplying together the maps i , � and � .

Remark 2.1 There may have been choices of the lifts  and j̀ . Any choice of  
and any choice of j̀ that satisfied (5) would do to produce a choice of the homotopy
equivalence � .

Let br be the composite

br W �
2S2nC1

�@r
���!�F 2nC1.pr/

��1

�!S2n�1 �V 2nC1.prC1/��R2nC1.pr/:

Then there is a homotopy fibration sequence

�2S2nC1
br
�!S2n�1�V 2nC1.prC1/��R2nC1.pr/!�P 2nC1.pr/

�q
�!�S2nC1:

There is a factorization of br proved by Neisendorfer. Changes in torsion order will
play a role. For any t �1, let V 2nC1.pt /D

Q1
jD1 S

2npj�1fptg. Abusing notation, let

$rCs
r W V 2nC1.pr/! V 2nC1.prCs/ and %srCsW V

2nC1.prCs/! V 2nC1.ps/
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also denote, respectively, the products of the maps S2np
j�1fprg

$rCs
r
���!S2np

j�1fprCsg

and S2np
j�1fprCsg

$s
rCs
���!S2np

j�1fpsg. In [15], Neisendorfer proved the following.

Lemma 2.2 There is a homotopy commutative diagram

V 2nC1.prC1/ //

%r
rC1

��

�P 2nC1.pr/

�vv

V 2nC1.pr/

for some map � . �

From the homotopy fibration

S2nC1fprg
$rCs

r���!S2nC1fprCsg
%s

rCs���!S2nC1fpsg

we obtain a product homotopy fibration

V 2nC1.pr/
$rCs

r���!V 2nC1.prCs/
%s

rCs���!V 2nC1.ps/:

Therefore, Lemma 2.2 implies that there is a lift

S2n�1 �V 2nC1.p/��R2nC1.pr/

1�$
rC1
1 �1

��

�2S2nC1
br //

33

S2n�1 �V 2nC1.prC1/��R2nC1.pr/

In what follows, we only require a weaker lift. The map $rC1
1 factors as the composite

$rC1
r ı$r

1 . Therefore we obtain the following.

Lemma 2.3 There is a homotopy commutative diagram

S2n�1 �V 2nC1.pr/��R2nC1.pr/

1�$
rC1
r �1

��

�2S2nC1
br //

22

S2n�1 �V 2nC1.prC1/��R2nC1.pr/ �

3 A retraction of �T 2nC1.pr/ off �2C 2nC1.pr/

In this section we prove Theorem 1.1 by constructing maps aW �T 2nC1.pr/ !
�2C 2nC1.pr/ and bW �2C 2nC1.pr/!�T 2nC1.pr/ with the property that b ıa is
a homotopy equivalence. We begin with a description of the properties of Anick spaces
that will be needed.
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3.1 Properties of Anick spaces

As in the introduction, for each odd prime p and n; r � 1 there is a homotopy fibration

(6) S2n�1! T 2nC1.pr/!�S2nC1

and a coalgebra isomorphism

H�.T
2nC1.pr//Šƒ.u2n�1/˝Z=pZŒv2n�

with ˇr.v2n/D u2n�1 , where ˇr is the r th Bockstein.

A simply connected space X is atomic if any self-map f W X !X which induces an
isomorphism in the least nonvanishing degree in homology is a homotopy equivalence.
Atomicity is used to detect indecomposable spaces, those for which no nontrivial
product decompositions exist.

Theorem 3.1 The space T 2nC1.pr/ and the homotopy fibration (6) have the follow-
ing properties:

(a) There is a factorization

�P 2nC1.pr/
�q
//

t
��

�S2nC1

T 2nC1.pr/ // �S2nC1

for some map t .

(b) The fibration connecting map for (6) is homotopic to �2S2nC1 'r
�!S2n�1.

(c) If r � 2 then the map �2P 2nC1.pr/ �t�!�T 2nC1.pr/ has a right homotopy
inverse.

(d) If p � 5 then T 2nC1.pr/ is a homotopy associative, homotopy commutative
H–space and t is an H–map.

(e) �T 2nC1.pr/ is atomic.

Proof Part (a) is proved in [2] for p � 5 and in [9] for p � 3, and part (b) — also
established in both papers — is a consequence of part (a). Part (c) is proved in [14],
part (d) in [8], and part (e) in [17].

Algebraic & Geometric Topology, Volume 18 (2018)



Anick spaces and Kac–Moody groups 4313

3.2 Constructing a map �T 2nC1.pr/ ! �2C 2nC1.pr/

In general, if X is a path-connected space, let J2.†X/ be the second stage of the
James construction on †X. There is a homotopy cofibration

†X ^X
Œ1;1�
���!†X

j
�!J2.†X/;

where Œ1; 1� is the Whitehead product of the identity map on †X with itself and j
can be regarded as the inclusion of J1.†X/ D †X into J2.†X/. In our case take
X D P 2n.pr/. Let T W X ^X ! X ^X be the map that swaps factors. As we are
localized at an odd prime, the self-map

1
2
.1�T /W †P 2n.pr/^P 2n.pr/!†P 2n.pr/^P 2n.pr/

exists, and as in [6], it is an idempotent because P 2n.pr/ is a suspension since n� 1.
Moreover, as in [6], the Whitehead product †P 2n.pr/^P 2n.pr/ Œ1;1�

���!P 2nC1.pr/

factors through the telescope of 1
2
.1�T /, which is P 4n.pr/, giving a factorization

of Œ1; 1� as a composite †P 2n.pr/^P 2n.pr/ t
�!P 4n.pr/

Œ�;��
���!P 2nC1.pr/, where t

is the map to the telescope and has a right homotopy inverse. Consequently, there is a
homotopy pushout diagram

(7)

†P 2n.pr/^P 2n.pr/
t
// P 4n.pr/

�
//

Œ�;��
��

P 4nC2.pr/

��

†P 2n.pr/^P 2n.pr/
Œ1;1�

// P 2nC1.pr/
j
//

c
��

J2.P
2n.pr//

%

��

C 2nC1.pr/ C 2nC1.pr/

that defines the map %.

In general, if Y and Z are simply connected spaces, let ev1 and ev2 be the composites

ev1W †�Y
ev
�!Y i1�!Y _Z and ev2W †�Z

ev
�!Z i2�!Y _Z;

where i1 and i2 are the inclusions of the left and right wedge summands respectively.
By [7], there is a homotopy fibration

†�Y ^�Z
Œev1;ev2�
�����!Y _Z! Y �Z;

where the right map is the inclusion of the wedge into the product. When Y DZ there
is a fold map rW Y _Y ! Y . The universal Whitehead product on Y is the composite

‰W †�Y ^�Y
Œev1;ev2�
�����!Y _Y ! Y:
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It is universal because any Whitehead product on Y factors through ‰ . In [18] it was
shown that if Y D†X then the composite †�†X ^�†X ‰

�!†X
j
�!J2.†X/ is

null-homotopic. In our case, taking X D P 2n.pr/, the factorization of c through j
in (7) immediately implies the following.

Lemma 3.2 The composite †�P 2nC1.pr/ ^ �P 2nC1.pr/ ‰
�! P 2nC1.pr/ c

�!

C 2nC1.pr/ is null-homotopic. �

Next, since S2nC1 is an H–space when localized at a prime p � 3, the composite
P 4n.pr/

Œ�;��
���!P 2nC1.pr/

q
�!S2nC1 is null-homotopic. Thus q extends to a map

q0W C 2nC1.pr/!S2nC1 . From this extension we obtain a homotopy fibration diagram

(8)

M 2nC1.pr/

��

M 2nC1.pr/

��

�S2nC1
@r
// F 2nC1.pr/ //

d
��

P 2nC1.pr/
q
//

c
��

S2nC1

�S2nC1
x@r
// D2nC1.pr/ // C 2nC1.pr/

q0
// S2nC1

that defines the spaces D2nC1.pr/ and M 2nC1.pr/ and the maps d and x@r .

Lemma 3.3 There is a choice of the homotopy equivalence

S2n�1 �V 2nC1.prC1/��R2nC1.pr/ �
�!�F 2nC1.pr/

with the property that there is a homotopy commutative diagram

V 2nC1.pr/��R2nC1.pr/
�

//

��$
rC1
r �1

��

�M 2nC1.pr/

��

S2n�1 �V 2nC1.prC1/��R2nC1.pr/
�
// �F 2nC1.pr/

for some map � .

Proof Start with the homotopy cofibration

P 4n.pr/
Œ�;��
���!P 2nC1.pr/

c
�!C 2nC1.pr/:

By definition, Œ�; �� D ad1, so c ı ad1 is null-homotopic. Since adk D Œ�; adk�1�
for k > 1, the naturality of the mod-pr Whitehead product implies that c ı adk is

Algebraic & Geometric Topology, Volume 18 (2018)



Anick spaces and Kac–Moody groups 4315

null-homotopic for all k � 1. Thus each adk lifts to the homotopy fibre M 2nC1.pr/

of c . Moreover, any iterated mod-pr Whitehead product in which Œ�; �� appears has
the property that it composes trivially with c and so lifts to M 2nC1.pr/.

Recall the construction of � in Section 2. The map R2nC1.pr/! P 2nC1.pr/ was
a wedge sum of mod-pr Whitehead products. Each such Whitehead product factors
through the universal Whitehead product on P 2nC1.pr/, so Lemma 3.2 implies that
the composite R2nC1.pr/! P 2nC1.pr/ c

�!C 2nC1.pr/ is null-homotopic. Thus
the map R2nC1.pr/! P 2nC1.pr/ lifts to M 2nC1.pr/, and the lift R2nC1.pr/  

�!

F 2nC1.pr/ used in forming � may be chosen to be the composite R2nC1.pr/!
M 2nC1.pr/! F 2nC1.pr/. Therefore we obtain a homotopy commutative diagram

(9)

�M 2nC1.pr/

��

�R2nC1.pr/
� 
//

66

�F 2nC1.pr/

Similarly, each adp
j�1 has Œ�; �� appearing in it and so can be chosen to lift to

F 2nC1.pr/ through M 2nC1.pr/. The extension through !rC1r may not exist as a
map to M 2nC1.pr/, but we do not require this. We obtain, for each j � 1, a homotopy
commutative diagram

P 2np
j

.pr/ //

!
rC1
r
��

M 2nC1.pr/

��

P 2np
j

.prC1/
e0

j
// F 2nC1.pr/

Looping to take products and using (2) we obtain a homotopy commutative diagram

(10)

V 2nC1.pr/ //

$
rC1
r

��

Q1
jD1�P

2npj

.pr/ //

Q1
jD1�!

rC1
r

��

�M 2nC1.pr/

��

V 2nC1.prC1/ //
Q1
jD1�P

2npj

.prC1/ // �F 2nC1.pr/

Let �W V 2nC1.prC1/!�F 2nC1.pr/ be the composition along the bottom row of (10).
By Remark 2.1, we may choose � to be the product of the inclusion i of the bottom
cell S2n�1 into �F 2nC1.pr/, the map � in (9), and the map � . Then � is a
homotopy equivalence and from (9) and (10) we obtain the homotopy commutative
diagram asserted in the statement of the lemma.
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Consider the map �S2nC1
x@r
�!D2nC1.pr/ appearing in (8). We give a factorization

of �x@r . Let 'r be the composite

'r W �
2S2nC1

br
�!S2n�1 �V 2nC1.prC1/��R2nC1.pr/

proj
���!S2n�1;

where the right map is the projection.

Proposition 3.4 There is a homotopy commutative diagram

�2S2nC1
'r

// S2n�1

��

�2S2nC1
�x@r
// �D2nC1.pr/

Proof Let �0 be the composite

�0W S2n�1 �V 2nC1.pr/��R2nC1.pr/
1�$

rC1
r �1

������!

S2n�1 �V 2nC1.prC1/��R2nC1.pr/ �!�F 2nC1.pr/:

Consider the homotopy fibration �M 2nC1.pr/! �F 2nC1.pr/ �d�!�D2nC1.pr/

from (8). Since �d is an H–map and � is defined by using the loop multiplication on
�F 2nC1.pr/ to multiply the factors together, the composite �d ı � is determined by
the restriction to each of the factors. The restriction to V 2nC1.pr/��R2nC1.pr/ is
null-homotopic by Lemma 3.3. Thus there is a homotopy commutative diagram

(11)

S2n�1 �V 2nC1.pr/��R2nC1.pr/
�0
//

�1

��

�F 2nC1.pr/

�d
��

S2n�1 // �D2nC1.pr/

where �1 is the projection onto the first factor.

Now consider the diagram

�2S2nC1 // S2n�1 �V 2nC1.pr/��R2nC1.pr/

�0

��

�1

**

�2S2nC1
�@r

// �F 2nC1.pr/

�d
��

S2n�1

�
tt

�2S2nC1
�x@r

// �D2nC1.pr/
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where � is the inclusion of the bottom cell. By Lemma 2.3 and the definition of �0, the
upper left square homotopy commutes. The lower left square homotopy commutes
by (8) and the right triangle homotopy commutes by (11). The diagram as a whole
therefore states that �x@r factors through S2n�1. It remains to identify the map
'0r W �

2S2nC1 ! S2n�1 along the upper direction of the diagram as 'r . But, by
definition, �0 is the identity on the S2n�1 factor so '0r can be identified as the composite
�2S2nC1

�x@r
���!�F 2nC1.pr/

proj
���!S2n�1 , which is the definition of 'r .

By Theorem 3.1(b) there is a homotopy fibration �T 2nC1.pr/!�2S2nC1
'r
�!S2n�1.

Proposition 3.4 therefore implies that the map �T 2nC1.pr/!�2S2nC1 lifts to the
homotopy fibre of �2S2nC1 �x@r

���!�D2nC1.pr/, which by (8) is �2C 2nC1.pr/.
Hence we have shown the following, where we explicitly remember that everything
done so far holds for all odd primes.

Corollary 3.5 If p � 3 then there is a lift

�T 2nC1.pr/

��

�

vv

�2C 2nC1.pr/ // �2S2nC1

for some map �. �

3.3 Constructing a map �2C 2nC1.pr/ ! �T 2nC1.pr/

This will be done for p � 5, and the map will in fact be a loop map. Recall that there is
a homotopy cofibration P 4n.pr/ Œ�;��

���!P 2nC1.pr/
c
�!C 2nC1.pr/. As Œ�; �� factors

through the Whitehead product †P 2n.pr/^P 2n.pr/ Œ1;1�
���!P 2nC1.pr/, there is a

homotopy pushout diagram

(12)

P 4n.pr/ // †P 2n.pr/^P 2n.pr/ //

Œ1;1�
��

P 4nC1.pr/

��

P 4n.pr/
Œ�;��

// P 2nC1.pr/
c

//

j
��

C 2nC1.pr/

j 0

��

J2.P
2nC1.pr// J2.P

2nC1.pr//

that defines the map j 0.
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By Theorem 3.1(a), the loops on the pinch map �P 2nC1.pr/ �q�!�S2nC1 factors as
a composite �P 2nC1.pr/ t

�!T 2nC1.pr/!�S2nC1 for some map t .

Lemma 3.6 If p � 5 then there is a homotopy commutative diagram

�P 2nC1.pr/
t
//

�c
��

T 2nC1.pr/

�C 2nC1.pr/

zt

77

for some map zt .

Proof In [18, Lemma 2.6] it was shown that if Z is a homotopy associative and
homotopy commutative H–space and f W �P 2nC1.pr/!Z is an H–map then there
is a homotopy commutative diagram

�P 2nC1.pr/
f

//

�j
��

Z

�J2.P
2nC1.pr//

xf

88

for some map xf . By (12), the map �j factors as the composite �P 2nC1.pr/ �c�!
�C 2nC1.pr/

�j 0
�!�J2.P

2nC1.pr//. Thus if we take zf D xf ı�j 0 then there is a
homotopy commutative diagram

(13)

�P 2nC1.pr/
f
//

�c
��

Z

�C 2nC1.pr/

zf

99

By Theorem 3.1(d), if p � 5 then T 2nC1.pr/ is homotopy associative and homotopy
commutative, and the map t is an H–map. Thus the assertion of the lemma follows by
applying (13) to t .

3.4 The proof of Theorem 1.1 and an application

We first put the pieces together to obtain a retraction of �T 2nC1.pr/ off �2C 2nC1.pr/,
proving Theorem 1.1.

Proof of Theorem 1.1 We will show that if p � 5 and n > 1 then the composite
�T 2nC1.pr/ �

�!�2C 2nC1.pr/ �
zt
�!�T 2nC1.pr/ is a homotopy equivalence. The
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homotopy commutativity of the diagrams in Corollary 3.5 and Lemma 3.6 imply that
both � and �zt induce an isomorphism in mod-p homology in degree 2n� 2, the
least nonvanishing degree. Thus �zt ı� is a self-map of �T 2nC1.pr/ which induces
an isomorphism in the least nonvanishing degree in homology. By Theorem 3.1(e),
�T 2nC1.pr/ is atomic if p � 5 and n > 1, so �zt ı� is a homotopy equivalence.

Next, Theorem 1.1 is applied to produce maps from �T 2nC1.pr/ into certain spaces
by checking that minimal requirements hold.

Theorem 3.7 Let p � 5 and r � 1. Suppose there is a map f W P 2nC1.pr/!Z for
some space Z . If the composite P 4n.pr/ Œ�;��

���!P 2nC1.pr/
f
�!Z is null-homotopic

then there is a map �T 2nC1.pr/!�2Z whose restriction to the bottom Moore space
is the double adjoint of f .

Proof The hypothesis that f ı Œ�; �� is null-homotopic is equivalent to saying that
the map f extends to a map C 2nC1.pr/! Z . Theorem 1.1 therefore implies that
there is a composite �T 2nC1.pr/!�2C 2nC1.pr/!�2Z whose restriction to the
bottom Moore space is the double adjoint of f .

By Theorem 3.1(c), if r � 2 then �T 2nC1.pr/ retracts off �2P 2nC1.pr/, so in this
case, given a map P 2nC1.pr/ f�!Z , one automatically obtains a map �T 2nC1.pr/!
�2Z whose restriction to the bottom Moore space is the double adjoint of f . The
additional hypothesis in Theorem 3.7 regarding f ı Œ�; �� being null-homotopic is not
necessary.

However, the r D 1 case is often the vital one, and it is an open conjecture as to whether
�T 2nC1.p/ retracts off �2P 2nC1.p/. So Theorem 3.7 can be thought of as a way of
producing a consequence of the conjecture without having to prove it first. Moreover, it
is practical in the sense that one can hope to check that a given map P 2nC1.pr/ f

�!Z

has f ı Œ�; �� null-homotopic. In fact, this criterion will be used in the next section in
the context of Kac–Moody groups.

4 Kac–Moody groups

As in [10; 11], Kac–Moody groups of rank 2 correspond to generalized Cartan matrices
of the form

AD

�
2 �a

�b 2

�
:
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Given such a matrix A, the Kac–Moody group K is the semisimple factor inside
the corresponding unitary form. If ab < 4 then K is a compact Lie group. We are
interested in the case when ab � 4. Define integers ci and di recursively by

c0 D d0 D 1; c1 D d1 D 1; cjC1 D adj � cj�1; djC1 D bcj � dj�1:

Let gi D .ci ; di / be the greatest common divisor of ci and di . Fix an odd prime p
and take homology with mod-p coefficients. Let k be the smallest positive integer
such that p divides gk . Then there is an isomorphism of Hopf algebras

(14) H�.K/Šƒ.z3; y2k�1/˝Z=pZŒx2k�;

where the generators are primitive, and if r is the exponent of p in gk , then ˇr.x2k/D
y2k�1 . Further, it is known that if k exists then it is either p , 2p or a nontrivial divisor
of pC1 or p�1, and in each case there are choices of a and b which produce such a k .

Given such a k , let Vk be the collection of all possible integers r that arise as the
exponent of p in gk for some choice of integers a and b . In general it is known that Vk
is nonempty but no precise description is known. However, to give some examples, we
show that if p � 5 and k 2 f2; 3; 4g then Vk DN . Note that each of 2, 3 and 4 is a
proper divisor of either pC 1 or p� 1, and so is a valid value of k . Observe that

c2 D a; d2 D b; c3 D d3 D ab� 1; c4 D a.ab� 2/; d4 D b.ab� 2/:

If k D 2 then taking a D b D pr gives g2 D .c2; d2/ D pr. If k D 3 then taking
aD 1 and bD prC1 gives g2D .c2; d2/D 1 and g3D .c3; d3/D pr. If kD 4 then
taking aD 1 and b D pr C 2 gives g2 D .c2; d2/D 1, g3 D .c3; d3/D pr C 1, and
g4 D .c4; d4/D p

r. Thus, in all cases, any r � 1 will do, so Vk DN .

Recall from the introduction that K has an S3 subgroup whose inclusion induces an
isomorphism onto the sub-Hopf-algebra ƒ.z3/ in homology, resulting in a homotopy
fibration sequence

(15) S3!K ı
�!X ! BS3! BK;

where
H�.X/Šƒ.y2k�1/˝Z=pZŒx2k�

and ı� is the projection. In particular, this is an isomorphism of coalgebras (as X may
not be an H–space).

Now localize all spaces and maps at p . We aim to show that for p�5 and 1<k<p�1
there is a p–local homotopy equivalence �X '�T 2nC1.pr/. Any approach to the
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problem is limited by the fact that almost nothing is known about the homotopy theory,
or homotopy groups, of K . The method is to first produce a map P 2kC1.pr/! BK

whose adjoint induces an isomorphism in homology onto the generators x2k and y2k�1 ,
and then to extend it to a map C 2kC1.pr/! BK . At both stages certain values of k
have to be eliminated in order to ensure that potential obstructions vanish. This will
require some information about the homotopy groups of spheres proved by Toda [19].

Remark 4.1 It is worth pointing out beforehand that the only properties of Kac–Moody
groups used in showing �T 2nC1.pr/'�X are the existence of the homotopy fibration
sequence (15) and the description of H�.X/. The rest of the argument is based on the
homotopy theory of spheres, Moore spaces and Anick spaces.

Lemma 4.2 Let p� 5. If 3<m� 4p then �m.S3/Š 0 unless m2 f2p; 4p�2g. �

Lemma 4.3 Let p � 5. If k � p and r 2 Vk then there is a map P 2kC1.pr/! BK

whose adjoint induces an isomorphism onto the generators x2k and y2k�1 in H�.K/.

Proof Let P 2k.pr/! X be the inclusion of the bottom Moore space. We aim to
show that there is a lift

P 2k.pr/

��{{

K // X // BS3

The adjoint of this lift is the map asserted in the lemma. The lift will certainly exist
when ŒP 2k.pr/; BS3�Š 0.

The homotopy cofibration S2k�1 ! P 2k.pr/ ! S2k induces an exact sequence
ŒS2k; BS3�! ŒP 2k.pr/; BS3�! ŒS2k�1; BS3�. By Lemma 4.2, the first nontrivial
torsion homotopy group of BS3 occurs in dimension 2pC 1. So if k � p then the
homotopy groups �2k.BS3/ and �2k�1.BS3/ are trivial. Therefore, by exactness,
ŒP 2kC1.pr/; BS3�Š 0, and the asserted lift exists. (Note that when k D pC 1 the
map ˛1 generating �2k�1.BS3/ is a potential obstruction to a lift, and when k D 2p
the map ˛2 generating �2k�1.BS3/ is a potential obstruction.)

Lemma 4.4 Let p � 5. Suppose that k is a proper divisor of p � 1 or pC 1, but
k ¤ 1

2
.pC 1/. If r 2 Vk then the composite P 4k.pr/ Œ�;��

���!P 2kC1.pr/! BK is
null-homotopic.
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Proof Let �W P 2kC1.pr/ ! BK be the map in Lemma 4.3. Consider the map
�P 2kC1.pr/

��
�! K . Since P 2nC1.pr/ is a suspension, the Bott–Samelson the-

orem implies that H�.�P 2kC1.pr// Š T .u2k�1; v2k/, where ˇr.v2k/ D u2k�1 .
The homology statement in Lemma 4.3 implies that .��/� sends u2k�1 and v2k
to y2k�1 and x2k respectively in H�.K/ Š ƒ.z3; y2k�1/ ˝ Z=pZŒx2k�. Since
.��/� is an algebra map, this implies that the image of .��/� is the subalgebra
of H�.K/ generated by y2k�1 and x2k . Recall that the map K ı

�!X in (15) induces
a projection in homology onto H�.X/ Š ƒ.y2k�1/˝ Z=pZŒx2k�. Therefore the
composite � W �P 2nC1.pr/ ���!K ı

�!X has the property that �� is the abelianization
of the tensor algebra.

Let N be the homotopy fibre of � . Since �� is the abelianization of the tensor algebra,
the Serre exact sequence implies that in degrees � 4k�1, the homology group H�.N /
is the kernel of �� . Therefore, in this degree range, H�.N / consists of the brackets
hu2n�1; u2n�1i and hv2n; u2n�1i, which are connected by a Bockstein ˇr. Thus there
is an inclusion of a bottom Moore space into N which gives a composite

(16) 
 W P 4k�1.pr/!N !�P 2kC1.pr/:

Now we compare 
 to known elements in the group ŒP 4k�1.pr/;�P 2kC1.pr/�.
Consider the homotopy fibration

�F 2kC1.pr/!�P 2kC1.pr/
�q
�!�S2kC1:

Applying the functor ŒP 4k�1.pr/;�� to this fibration we obtain an exact sequence

(17) ŒP 4k�1.pr/;�F 2kC1.pr/�! ŒP 4k�1.pr/;�P 2kC1.pr/�

! ŒP 4k�1.pr/;�S2kC1�:

By Lemma 4.2, the hypothesis that k¤ p�1 implies that ŒP 4k�1.pr/;�S2kC1�Š 0.
On the other hand, by (3) there is a homotopy equivalence

�F 2kC1.pr/' S2k�1 ��R2kC1.pr/�

1Y
jD1

S2kp
j�1
fprC1g:

Recall that R2kC1.pr/ is a wedge of mod-pr Moore spaces mapping to P 2kC1.pr/
by a wedge sum of mod-pr Whitehead products. In particular, by [4], the least-
dimensional Moore space in R2kC1.pr/ is P 4k.pr/, which maps to P 2kC1.pr/

by Œ�; ��, and for p � 5 the second-least-dimensional Moore space in R2kC1.pr/
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is P 6k.pr/. This, together with the fact that each factor S2kp
j�1fprC1g is more than

.4k�1/–connected, implies that

ŒP 4k�1.pr/;�F 2kC1.pr/�Š ŒP 4k�1.pr/; S2k�1 ��P 4k.pr/�:

Lemma 4.2 and the hypothesis that k ¤ p ensure that ŒP 4k�1.pr/; S2k�1� Š 0.
Since the suspension map P 4k�1.pr/ E

�!�P 4k.pr/ is .8k�6/–connected, which
is greater than the dimension of P 4k�1.pr/, it induces an isomorphism between
ŒP 4k�1.pr/; P 4k�1.pr/� and ŒP 4k�1.pr/;�P 4k.pr/�. Therefore

ŒP 4k�1.pr/;�F 2kC1.pr/�Š ŒP 4k�1.pr/; P 4k�1.pr/�Š Z=prZ;

where the generator of the group ŒP 4k�1.pr/; P 4k�1.pr/� is the identity map. Thus
the exact sequence (17) simplifies to an exact sequence

(18) Z=prZŠ ŒP 4k�1.pr/; P 4k�1.pr/�! ŒP 4k�1.pr/;�P 2kC1.pr/�! 0:

By [3], the factor �R2kC1.pr/ of �F 2kC1.pr/ also retracts off �P 2kC1.pr/. There-
fore there is a retraction of ŒP 4k�1.pr/; P 4k�1.pr/� off ŒP 4k�1.pr/;�P 2kC1.pr/�,
implying that there is an isomorphism

ŒP 4k�1.pr/;�P 2kC1.pr/�Š ŒP 4k�1.pr/; P 4k�1.pr/�Š Z=prZ:

Hence if k … fp � 1; pg then ŒP 4k�1.pr/;�P 2kC1.pr/� is isomorphic to Z=prZ,
and is generated by the adjoint of the mod-pr Whitehead product Œ�; ��.

The adjoint of Œ�; �� is equivalently described as the mod-pr Samelson product hz�; z�i,
where z� and z� are the adjoints of � and � respectively. Thus hz�; z�i generates
ŒP 4k�1.pr/;�P 2kC1.pr/�ŠZ=prZ. In particular, the map 
 in (16) must be some
multiple of hz�; z�i. To see which multiple, we look at homology. In degree 4k � 1
in mod-p homology, the mod-pr Samelson product hz�; z�i has image hv2k; u2k�1i.
Recall that the composite 
 W P 4k�1.pr/!M !�P 2kC1.pr/ has the same image
in homology. Thus, as 
 is a multiple of hz�; z�i, we must have 
 ' u � hz�; z�i for some
unit u in Z=prZ.

Consequently, as 
 factors through the homotopy fibre of � , the map hz�; z�i also
factors through the homotopy fibre of � . Therefore the composite P 4k�1.pr/ hz�;z�i���!

�P 2kC1.pr/!K ı
�!X is null-homotopic. So ��ıhz�; z�i lifts to the homotopy fibre

of ı , which is S3. By Lemma 4.2, if k …
˚
1
2
.pC 1/; p

	
then ŒP 4k�1.pr/; S3�Š 0,

implying that �� ı hz�; z�i is null-homotopic. Taking adjoints, this is equivalent to
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saying that � ı Œ�; �� is null-homotopic. Summarizing, we have shown that if k …˚
1
2
.pC 1/; p� 1; p

	
then � ı Œ�; �� is null-homotopic, as asserted.

The case when k D 1
2
.pC 1/ can be recovered using a special argument.

Lemma 4.5 Let p�5. If kD 1
2
.pC1/ and r 2Vk then the compositeP 4k.pr/ Œ�;�����!

P 2kC1.pr/! BK is null-homotopic.

Proof The potential obstruction in the case when k D 1
2
.p C 1/ in the proof of

Lemma 4.4 arose from the composite P 2pC1.pr/ hz�;z�i���!�P 2kC1.pr/
��
�!K lifting

to a map P 2pC1.pr/ ! S3 which could be an extension of the homotopy class
˛1W S

2p ! S3 that generates �2p.S3/ Š Z=pZ. Assume that this occurs. Taking
adjoints, we obtain a homotopy commutative diagram

(19)

P 2pC2.pr/

Œ�;��
��

˛1

��

P 2kC1.pr/

�

��

BS3 // BK

where ˛1 is an extension of the adjoint of ˛1 . Observe that †Œ�; �� is null-homotopic
since the suspension of any mod-pr Whitehead product is null-homotopic. Therefore
if we restrict (19) to S2pC1 and suspend we obtain an extension

S2pC2
˛1

// S5 //

��

A

��

�

†BS3 // †BK

for some map � , where A is the homotopy cofibre of ˛1 . The class ˛1 is detected in
mod-p cohomology by the Steenrod operation P1, so the two-cell complex A has its
bottom cell attached to its top cell by P1. The homotopy commutativity of the square in
the preceding diagram implies that �� is an isomorphism in degree 5. Therefore, as P1

is nonzero on H 5.A/, it must also be nonzero on H 5.†BK/. By stability, this implies
that it is nontrivial in H 4.BK/. As the generator of H 4.BK/ is the transgression of
the generator in H 3.K/ in the cohomology Serre spectral sequence for the path-loop
fibration K!�! BK , and as Steenrod operations commute with the transgression,
we obtain that P1 is nontrivial on H 3.K/.
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On the other hand, as k D 1
2
.pC 1/, we have H�.K/Š ƒ.z3; yp/˝Z=pZŒxpC1�,

and as this coalgebra is primitively generated, we can dualize to obtain an algebra
isomorphism H�.K/ Š ƒ.xz3; xyp/ ˝ �ŒxxpC1�, where xz3 , xyp and xxpC1 are dual
to z3 , yp and xpC1 and �Œ�� is the divided power algebra. The only element in
degree 2p C 1 in this algebra is yp [ x2pC1 . The nontriviality of P1 on H 3.K/

therefore implies that P1.z3/ D u � .yp [ xpC1/ for some unit u 2 Z=pZ. But P1

sends primitives to primitives, giving a contradiction. Thus it cannot have been the
case that �� ı hz�; z�i lifted nontrivially to S3. Thus �� ı hz�; z�i is null-homotopic, as
required.

Let k < p� 1. Start with the map f W P 2kC1.pr/! BK in Lemma 4.3. By Lemmas
4.4 and 4.5, the hypotheses of Theorem 3.7 are satisfied. Therefore there is a map
�T 2kC1.pr/!�K whose restriction to the bottom Moore space is the double adjoint
of f . The composite

gW �T 2kC1.pr/!�K!�X

therefore induces an isomorphism in the least nonvanishing degree in homology. We
claim that this is enough to show that g induces an isomorphism in homology in all
degrees, and so is a homotopy equivalence. This is an atomicity-style argument, and
requires a preliminary lemma.

Lemma 4.6 There is an abstract isomorphism of vector spaces H�.�T 2kC1.pr//Š
H�.�X/.

Proof Since H�.T
2kC1.pr// Š H�.X/ as coalgebras, there is an induced iso-

morphism between cobar constructions. This implies that there is an isomorphism
between the outputs of the homology Eilenberg–Moore spectral sequences for the
path-loop fibrations �A!�! A and �B !�! B which converge to H�.�A/
and H�.�B/. That is, there are coalgebra isomorphisms between the associated graded
modules E0.H�.�T 2kC1.pr/// and E0.H�.�X//. As we are taking homology
with coefficients in a field, this implies that there is a vector space isomorphism
H�.�T

2kC1.pr//ŠH�.�X/. (A coalgebra isomorphism would require resolving
potential extension problems, which we do not address.)

Proposition 4.7 If k � 2 then the composite gW �T 2kC1.pr/! �K ! �X is a
homotopy equivalence.
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Proof In general, suppose that Y is a simply connected space and there is a self-map
eW Y ! Y . In [17, Lemma 2.2] it is shown that if x is an element of least nontrivial
degree in the kernel of e� then x is (i) primitive, (ii) annihilated by all dual Steenrod
operations and higher Bocksteins, and (iii) in the image of the Hurewicz homomorphism
or the mod-p Hurewicz homomorphism. Let HMH.Y / be the submodule of H�.Y /
that consists of elements satisfying (i), (ii) and (iii). The argument in [17, Lemma 2.2]
did not really require a self-map of spaces, but only a map e0W Y !Z , where H�.Y /
is known as a coalgebra over the Steenrod algebra, and H�.Z/ is abstractly isomor-
phic to H�.Y / as vector spaces (in order to show at the appropriate moment that an
injection Hm.Y /!Hm.Z/ is an isomorphism). This fits our case as we have a map
�T 2kC1.pr/

g
�!�X and, by Lemma 4.6, there is an abstract isomorphism of vector

spaces H�.�T 2kC1.pr//ŠH�.�X/.

Let k > 2. Instead of determining HMH.�T 2kC1.pr// directly, we follow [17] by
making use of the calculation

HMH.�2T 2kC1.pr//D fa2k�3g

for k > 2, where a2k�3 is a generator of H2k�3.�2T 2kC1.pr//Š Z=pZ, the least-
dimensional nontrivial homology group. Let x 2HMH.�T 2kC1.pr// and suppose
x is of degree m. As x is in the image of the Hurewicz homomorphism there is a
map hW Sm!�T 2kC1.pr/ such that h�.�m/D x , where �m 2Hm.Sm/ represents
a generator. Let zhW Sm�1 ! �2T 2kC1.pr/ be the adjoint of h. We claim that
zh.�m�1/ 2 HMH.�

2T 2kC1.pr//. By definition, zh�.�m�1/ is in the image of the
Hurewicz homomorphism (although we have not yet checked if it is nonzero), and
as it is a Hurewicz image, it is also primitive and is annihilated by all dual Steenrod
operations. It remains to show that zh.�m�1/ is nonzero. Consider the composite
Sm †zh
�!†�2T 2kC1.pr/ ev

�!�T 2kC1.pr/, where ev is the canonical evaluation map.
This composite is the adjoint of zh, which is the map h. Therefore, as h�.�m/ is nonzero
so is .†zh/�.�m/, and hence so is zh�.�m�1/. The calculation HMH.�2T 2kC1.pr//D
fa2k�3g therefore implies that HMH.�T 2kC1.pr//D fxa2k�2g, where xa2k�2 trans-
gresses to a2k�3 in the Serre spectral sequence for the path-loop fibration.

Thus, for the map �T 2kC1.pr/ g
�!�X , if x 2Ker .g�/ is a nontrivial element of least

degree it must be a multiple of xa2k�2 . But we have shown that g� is an isomorphism
in degree 2k�2. Therefore Ker .g�/D 0 and so g� is an injection. Since H�.�X/ is
isomorphic to H�.�T 2kC1.pr// as vector spaces, they have identical Euler–Poincaré
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series, so g� being an injection implies that it is an isomorphism. Hence g is a
homotopy equivalence by Whitehead’s theorem.

The k D 2 case is different in that HMH.�2T 5.pr// may not be just fa1g. This
was dealt with separately in [17, Proof of Theorem 1.1], where it was noted that
HMH.�T 5.pr// D fxa2g. The rest of the argument in the present proof now goes
through as before.

Finally, we prove the second main statement in the paper.

Proof of Theorem 1.2 The p–local homotopy equivalence for �X is given by
Proposition 4.7. The p–local homotopy decomposition for �K now follows since g
factors through �K �ı

�!�X .
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