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Rational analogs of projective planes

ZHIXU SU

In this paper, we study the existence of high-dimensional, closed, smooth manifolds
whose rational homotopy type resembles that of a projective plane. Applying rational
surgery, the problem can be reduced to finding possible Pontryagin numbers satisfying
the Hirzebruch signature formula and a set of congruence relations, which turns out
to be equivalent to finding solutions to a system of Diophantine equations.

57R20; 57R65, 57R67

1 Introduction

There are four kinds of projective planes, the well-known real, complex, quaternionic
and octonionic projective planes. There does not exist any higher-dimensional closed
manifold having the topological structure of a projective plane. More precisely, for
n > &, there does not exist any simply-connected 2n—dimensional closed manifold M
such that
H*(M:7) = {Z * = 0,7,211,
0 otherwise.

This fact is a consequence of the well-known Hopf invariant 1 theorem. If there were
such a manifold M 2" for n > 8, then there would have to exist a Morse function with
minimal number of critical points, giving a CW complex X = e® U " Ug e that is
homotopy equivalent to M . This would require the existence of a Hopf invariant 1
attaching map ¢: S?"~! — S”. But the only such maps are homotopic to the Hopf
fibrations S2k—1 — Sk for k =1,2,4,8.

Ignoring torsion, we ask if any rational analogs of projective planes exist in higher

dimension. This paper proves the following result.

Theorem 1.1 After dimension 4, 8, and 16, which are the dimensions of CPP2, HP?2
and QP? respectively, the next smallest dimension where a rational analog of projective
plane exists is 32, ie, there exist 32—dimensional, simply-connected, closed, smooth
manifolds M such that

Q *=0,16,32,
H*(M;Q) = {0 .
otherwise,

and there are infinitely many homeomorphism types of such manifolds.
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From the desired intersection form, it is immediate that such a manifold exists only in
dimension 4% . We will first show that for k # 1, there is no such manifold in dimension
4k, where k is odd. Then, as we study the candidate dimensions, 24 also turns out to
give a negative answer. In dimension 32, we can find infinitely many homeomorphism
types of rational projective planes in terms of their Pontryagin numbers.

The main tool to prove the results is the rational surgery realization theorem, which
was first introduced by Barge [2, Theorem 1] and Sullivan [10]; equivalent statements
can be found in Taylor and Williams [11]. The theorem gives a constructive answer to
the existence question by finding pairings of 4i —dimensional cohomology classes and
a choice of fundamental class that act like Pontryagin numbers. In Section 2, we state
the rational surgery realization theorem, which will be phrased in a form that is ready
for application to our problem. To make the theorem more accessible, a variant of the
proof will be given. In Section 3, we will prove Theorem 1.1.
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2 Rational surgery

Given a rational homotopy type, a natural question is whether there exists a closed
manifold realizing the rational homotopy data. Compared to its integral version, the
existence question in rational setting has a more explicit solution. Philosophically, this is
due to the much simpler rational homotopy groups of spheres. Initiated by Barge [2] and
Sullivan [10], rational surgery constructs closed manifolds, that are rational homotopy
equivalent to a proposed Q-local space X", which is a CW complex whose homotopy
groups are (Q—vector spaces. To get any positive answer, it is clearly necessary to
start with a local space X that satisfies Poincaré duality in rational coefficients. The
ingredients for constructing a realizing manifold include choices of cohomology classes
in H* (X;Q), which play the role of Pontryagin classes, and correspondingly, a
suitable choice of fundamental class in H,(X;Q) = H,(X;Z) = Q.

Theorem 2.1 (Barge [2], Sullivan [10]) Let X be an n = 4k—dimensional simply-
connected, Q—local, Q—Poincaré complex, where k # 1. There exists a simply-
connected 4k—dimensional, closed, smooth manifold M and a Q —homotopy equiva-
lence f: M — X if and only if there exist cohomology classes p; € H*' (X ; Q) for
i=1,...,k,and a fundamental class u € Hy, (X; Q) = Q such that:
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Rational analogs of projective planes 423

(i) The pairing of the k™ L —polynomial of p; and 1 is equal to the signature of
X, ie (Lg(p1.-... pi) ) = 0(X).

(ii) The intersection form A: H*k(X: Q) x H**(X; Q) — Q defined as (-U-, j1)
is isomorphic to a direct sum of copies of (1) and (—1).

(iii) The pairings (pr, 1) = (pi, - - pi,, 1) over all the partitions I = (iy, ... i)
of k form a set of Pontryagin numbers of a genuine closed smooth manifold, ie
there exists a 4k—dimensional closed smooth manifold N such that

(pr(zn).[NT) = (pr1. 1)

for all partitions I of k.

If the choice of p; and p satisfies all the conditions above, surgery theory will construct
a Q —homotopy equivalence f: M — X such that f«[M]= p and f*(p;) = pi(tm),
where p;(tar) is the i Pontryagin class of the tangent bundle of M . As a consequence,
the Pontryagin numbers py[M] = (py, u) for all partitions I of k.

Remark 2.2 For the dimensions # % 0 (mod 4), the answer to the existence question
in Theorem 2.1 is always yes. Any choice of cohomology classes p; will construct a
rational nonzero degree normal map f: M — X such that f*(p;) = pi(zar). Since
L, (Q) = 0 in such dimensions, the surgery obstruction always vanishes, and therefore
a rational homotopy equivalence can be obtained.

Proof We will claim that Condition (iii) guarantees a degree-1 normal map from a
candidate manifold M to X so that the fundamental class of A is sent to the chosen
class . Conditions (i) and (ii) ensure the vanishing surgery obstruction.

Consider any choice of cohomology classes

p: x L2 TT (@, 4i) ~ BSOY).

For m > n, let ™ denote the universal plane bundle over BSO(m), define the map

— (pl(ym)ﬂ"'api(yr”)a"'a)
p(y™): BSO(m)

[1x@ 4,

where the total class p(y™) =14 p (y™)+-- -+ pi (y™)+--- €[ H* (BSO(m); Q) is
the unique class such that p(y™)p(y™) = 1. Let PB be the homotopy pull-back space
of p and p(y™), and £™ the pullback bundle of 3™ over PB. We have constructed the
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two right-hand columns of the following diagram. Note that p(y"™) and the projection
map pr; are localization maps by construction.

1Y 3 y™
J\L il PLB e Bsg(m)

\ l”’l jp(y'")
p

X ——J] K(@Q,4i)

For any homotopy class o € 7,4+ (TE™), the corresponding map g: S™+" — TE™
yields a candidate manifold M = o~ !(PB) by Thom—Pontryagin construction. More-
over, g|pr: M — PB is covered by a bundle map from the normal bundle of M to &.
Chasing through the diagram, one can check that the input classes p; are pulled back to
the Pontryagin classes p;(zps) through the composition map f :=pryog: M — X.

To construct a degree-1 normal map so that f«[M] = u, we need a particular class
a € Tp4m(TE™) that maps to p under the composition of the Hurewicz map, the Thom
isomorphism, and the projection pr,: H,(PB;Z) — H,(X;Z), which is shown the
following diagram:

Tpr *
@ € Tpim(TE™) = Tntm(Ty™) 3 B

\ /

H,(PB) — 2% H,(BSO(m))

Tpris lprl* ll’()’m)* T p(y™).

i€ Hy(X) 2 H,(BSO(m)(0))

12
IR

~ Ty,
cx € Tntm(TVvx) ! 7Tn+m(TV(rg))

In the lower right-hand corner of the diagram, T )/('(’)’) is the Thom space associated to
the rational spherical fibration

S("g)_1 — S¥(o) = BSO(m) o).

which is the localization of the sphere bundle S™~! — Sy™ — BSO(m). The
Hurewicz—Thom map

7Tn+m(TV(r(r)l)) - Hn—i—m(TV('g); 7) — Hn(BSO(W‘)(O)§ Z)
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is an isomorphism since both the Thom space and the base space are QQ—local, and
the Hurewicz map is a rational isomorphism for m >> n; Milnor and Stasheff [6,
Theorem 18.3]. In the lower left corner, the rational spherical fibration Vy = p*(S y(’(’)’))
and the associated Thom space TVy are Q-local, and the Hurewicz—Thom map
Tntm(TVx) — Hy(X:Z) is also an isomorphism. Thus, for any fundamental class
W, there is a class ¢y € my4+m(TVyx) mapping to . Moreover, it can be shown
that the outer square of Thom spaces is a homotopy cartesian square (see Taylor
and Williams [11, Lemma 6.1] or Su [9, Lemma 3.2.3] for more details). All these
observations together imply that if there exists a class 8 € w4, (T y™) in the upper
right corner mapping to pxu € H,(BSO(m)(p)), then B and cx would guarantee the
existence of a desired class « that maps to x.

Note that the Hurewicz—Thom map in the upper right-hand corner can be viewed as
Vi Tngm(Ty™) = Q50 — Hy(BSO; Q), where v(M) = vps4[M] and vy is the
classifying map of the normal bundle of a manifold M . Thus there is a 8 mapping to
psp if and only if p(ym)* (p*u) lies in the image of such map v.

If the input classes {p;} and u together satisfy Condition (iii), ie there exists a closed
smooth manifold N such that (p;(tx),[N]) = (pr, i), chasing through the diagram,
we have

(pr(n).IND) = (pr. i) = (pr(¥™). pxir) = {(p(y™)1. p(y”’)ll(p*u)l

Since p(zy)p(vy) = 1, and p(y’;l)p(ym) = 1, the identity abc above implies that

(prON).INT) = (pr (™). p(r™), (pw)). Equivalently, p(y™), " (psjs) is the
image of a manifold N under the homomorphism v: Q5° — H,(BSO; Q). This

implies that 7,4, (T y™) possesses the desired class § and thus ensures the existence
of o, which finishes the proof that Condition (iii) guarantees that there exists a degree-1
normal map such that fx[M]= pu.

Now surgery can be applied to alter the normal map to a rational homotopy equivalence
if and only if the map has a vanishing surgery obstruction, which lives in the L group

L, Q=ZaPZ, e P Zs:
(o,] o0
see Milnor—Husmoller [5]. The obstruction vanishes in its Z-summand if and only if

the signature 6 (M) = o (X), which is equivalent to Condition (i), since

(Li(prs--os pi)s ) = (Lie(p1s -5 pr)s Jx[M])
=(Lx(f"p1.--- [T i) [M])
= (Le(p1(p). - - P (). [M]) = o (M).
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Condition (ii) requires the rational intersection form of X to be a direct sum of (1)
and (—1), which guarantees the obstruction vanishes in the Z, and Z, summands of
L,(Q). This finishes the outline of the proof of Theorem 2.1. O

Remark 2.3 One can also ask about the existence of a closed topological or piecewise-
linear manifold realizing the rational homotopy type of projective planes. The realization
Theorem 2.1 still works for the PL or TOP category by changing the word “smooth” in
Condition (iii) to PL or topological.

3 Rational projective planes

In this section, we study the dimensions of rational projective planes. Recall that we
are seeking the smallest dimension 4%k (> 16) for which a simply-connected, closed,

smooth manifold M exists with
Q * =0,2k, 4k,
0 otherwise.

H*(M;Q)={

Equivalently, we determine the dimensions of simply-connected closed smooth mani-
folds that are rational homotopy equivalent to a 4k—dimensional Q-local, Q—Poincaré
complex X where

Q x = 0,2k, 4k,

0 otherwise.

HY(X:Q) = {

3.1 The target Q-local space

First we construct X from a Postnikov tower of rational principal fibrations. Let
X — K(Q, 2k) be the principal fibration with fiber K(Q, 6k —1) and k—invariant t;ki

K(Q, 6k —1) —= K(Q, 6k — 1)

| |

X *
K(@.26) — P~ K(Q. 6k)

Computing the spectral sequence, it is easy to check that X has the desired rational
cohomology ring H*(X; Q) = Q[x]/(x3) with |x| = 2k. Notice that the signature
0(X) = £1 by our construction.

Algebraic & Geometric Topology, Volume 14 (2014)



Rational analogs of projective planes 427

3.2 Existence of rational projective planes

Since H*(X; Q) = Q[x]/(x?), the input classes p; € H*' (X ; Q) are zero for all i ex-
cept py /2 and py . Plugging the constructed local space X into realization Theorem 2.1,
the existence question of rational projective planes can then be answered as follows:

Theorem 3.1 For k > 4, let X be a 4k—dimensional simply-connected QQ—local,
Q—Poincaré complex such that H*(X;Q) = Q[x]/(x3). There exists a simply-
connected 4k—dimensional, closed, smooth manifold M with a QQ—homotopy equiva-
lence f: M — X if and only if there exists a choice of cohomology classes

pg e H¥(X:Q) and pe H¥*(X:Q)
together with a nonzero fundamental class @ € Hyp (X ; Z) = Q such that:

(ii) The intersection form on H?(X:Q) with respect to | is isomorphic to (1)
or (—1).

(iii) There exists a 4k—dimensional, closed, smooth manifold N such that
(pr(zn). [N]) = (p1. 1)

for all partitions I of k.

3.3 Signature formula

In Theorem 3.1, the signature Condition (i) means that

Sk2.k/28PR j2 W)+ 8k (P 1) = 1,

where s denotes the coefficient of py and si /5 x/2 denotes the coefficient of pi /2
in the k™ L—polynomial.

Coefficient s; can be calculated by the formula

22k (22k=1 _1)| By |
3.3.1 =
(3.3.1) Sk 25!

(Milnor and Stasheff [6, Problem 19-B]), where B,y is the 2k™ Bernoulli number.!
THere B denotes the even Bernoulli sequence By = L By =—L Bg = 45

6’ 30° 42 -
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As mentioned in Anderson [1, Lemma 1.5], coefficient s/, /2 can be calculated as

(3.3.2) Sk/2,k/2 = %(313/2 —5k)
(@ DB 22K@K ! 1) By
2 X! (2k)! '

From Conditions (i) and (iii), we can narrow down the candidate dimensions to 4k
with k even.

Lemma 3.2 For k # 1, there does not exist any rational projective plane in dimension
4k when k is odd.

Proof When k is odd, the input Pontryagin class p; is nonzero only when i = k.
Then Condition (i) requires that

(L(0,....,0, pr), u) = sg{pr- ) = £1.

On the other hand, Condition (iii) requires {py, i) to be a Pontryagin number of a closed
smooth manifold, which must be an integer. Let numer(sy)/denom (s;) denote the irre-
ducible form of sy, then sz ( pi, ) = (numer(sy )/ denom (si)){pr, ) = £1 requires
that the numerator numer(sz) = 1. But we will show that for k # 1, numer(sg) > 1.
We write

_ 22K@FTT D[ By| _ 2292 — 1) | numer(Bay)|

Sk = (2k)! =T (k)!|denom(Byy)|
where numer(B,;)/denom (B, ) is the irreducible form of B,;. It is a fact that
denom( B,y ) is given by the product of all primes p for which p—1 divides 2k . Also,
these denominators are square-free and divisible by 6; see Milnor and Stasheff [6,
page 284]. Therefore the 2—adic order v, (denom(B,j)) = 1, ie numer(B,y) is odd.
Since k is odd and k # 1, the base-2 expansion 2k = /., 2" has m > 1. Thus the
2-adic order v, ((2k)!) =2k —m <2k — 1, and so

Va(sg) = vy (22k) —v52((2k)!) — vy (denom(Byy)) = 2k — 2k —m)—1> 0,

which implies that numer(sy ) is divisible by 2, hence is greater than 1. a

3.4 Dimension 24

Lemma 3.2 indicates that n = 24 is the next candidate. It turns out that the signature
formula can never be satisfied in this dimension.

Lemma 3.3 There does not exist any rational projective plane in dimension 24.
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Proof Condition (i) requires existence of cohomology classes p3 € H'2(X;Q) = Q,
pe € H**(X;Q) = Q and a choice of fundamental class 1 € Ha4(X;Z) = Q such
that

53,3(P3. 1) + s6(pe, 1) = E1.

Let o be any nonzero class in H'2(X,Q) = Q. One can write

2 2.2 2
p3=aw, pj3=a-a°, pe=bhba

for some nonzero rational number a and b. Correspondingly, let [X] e Hy4(X,Z) =Q
be the fundamental class such that (¢ Ue, [X]) = 1.

In order to have a rational intersection form isomorphic to a direct sum of (1) and (—1),
we need to choose a fundamental class i such that u = £r2[X] for some nonzero
rational number r.

Condition (iii) requires the pairings ( p%, w) and (pg, 1) to be integers. We may let x
and y be the integers such that x> = a?r2, y = b r?, and so
(p3.1) = £x%  (pe.pu) =%y

Altogether, Conditions (i) and (ii), and the integrality part of Condition (iii) require the
existence of integers x and y such that

(3.4.1) 533X% + 56y = £1,

where the coefficients can be computed using formulas (3.3.1) and (3.3.2) giving

§ax = 40247 _ 2828954
3,3 7 T 638512875 6 — 638512875"

The Diophantine equation (3.4.1) is equivalent to the quadratic residue problem of
finding an integer x such that

(3.4.2) —40247x?% = 4638512875 (mod 2828954)
x2 = +(—40247)"1 - 638512875 (mod 2828954)
x2 = +(—296623) - 638512875 (mod 2828954)
x2 = +118951 (mod 2828954).

Consider the prime factorization 2828954 = 2-23-89-691 and the following two cases.

Case1 x2 = 118951 (mod2828954) The Jacobi symbol with modulus the prime
factor 691 can be calculated as follows.

(52 = () =—(%) =~ =~ =—(H) =1
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118951

28285054) = —1-

which implies that (

Case2 x2? = —118951 (mod 2828954) The Jacobi symbol with modulus the prime
factor 23 can be calculated as follows.

(FLL8SL) = (31)(182%0) = (-1)(L2) = (=1(B)(35) = (=D (D)D) = -1,

118951y — |

which implies that (Tgs5054

Therefore the congruence (3.4.2) has no solution. Hence Equation (3.4.1) turns out to
have no solution. a

In order to continue the analysis on the higher candidate dimensions, we need to give
Condition (iii) of the rational surgery realization Theorem 2.1 an explicit interpretation.

3.5 Congruence relations among Pontryagin numbers

Condition (iii) requires the set of pairings {(py, i) to be Pontryagin numbers of a
genuine closed smooth manifold. These integers form a sublattice in Z?™ which can
be classified by a set of congruence relations. The following Hattori—Stong Theorem
says that the Riemann—Roch Theorem and the integrality of Pontryagin numbers
completely determine all the relations among the Pontryagin numbers of closed smooth
manifolds.

Prior to restating the Hattori—Stong Theorem, we provide the definition of the KO—
theoretic Pontryagin character e;(y) of the universal bundle ¥y over BSO. The total
Pontryagin class of the universal vector bundle ¥ can be formally expressed as p(y) =
[T + xj?) by the splitting principle. The class e;(y) € H*(BSO;Q) is the i
elementary symmetric polynomial of the variables e*/ + e~ —2, ie

ei(y) =oi(e* +e 1 =2, ey 72 -2, ).

Note that each class ¢;(y) can be written as a polynomial in the Pontryagin classes
pi(y). This is because e; can be expanded as a symmetric polynomials of the vari-
ables sz, but any symmetric polynomial can be expressed in terms of the elementary
symmetric polynomials in the variables, which in our case are exactly the Pontryagin
classes p;(y), since the total class p(y) =[](1 + sz).

Theorem 3.4 (Smooth Hattori—Stong Theorem; Stong [7, page 207, Theorem (c)],
Madsen and Milgram [3, Theorem 11.19, 11.20, 11.21]) For closed smooth manifolds,
the stable tangent bundle t)y: N — BSO induces a homomorphism

7: 259 /tor — H,(BSO; Q).
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The image of the homomorphism t is a lattice consisting of exactly the elements
x € Hx(BSO; Q) such that

{ (Zle1(y), e2(y), .. .]- L(pi()), x) € Z[1],
(Z[p1(y), p2(¥)... ], x) €Z,

where L(p;(y)) is the total L —polynomial of the Pontryagin classes p;(y).

(3.5.1)

Applying the smooth Hattori—Stong Theorem in our problem, we get the following
results.

Lemma 3.5 Condition (iii) in the rational surgery realization Theorem 2.1 is equivalent
to the following statement.

Given a local space X , there exist cohomology classes p; € H* (X ; Q) and a funda-
mental class L € Hyp(X; Q) =~ Q such that

{ (Z[elveZ’ .. ]L(pl)’ M) € Z[%]’

(3.5.2)
(ZIp1,p2....), n)€Z,

where each class e; € H*(X; Q) can be expressed as a polynomial of p; in the same
way that e; () is expressed in terms of p;(y) in the Hattori-Stong Theorem 3.4. Here
L(p;) denotes the total L —polynomial of the classes p; .

Proof In Theorem 3.4, since each ¢;(y) can be written as a polynomial in the Pon-
tryagin classes p;(y), both lines of the congruence relations in (3.5.1) are equivalent
to a set of integrality conditions on the Pontryagin numbers {py(y), x).

For any 4k—dimensional closed smooth manifold N € 922, let x = 74«[N]. Since

(pr(en).[NT) = (p1(¥). [N]) = (p1(¥). x).

the relations on (py(y), x) in (3.5.1) simultaneously determine a set of integrality
conditions on the Pontryagin numbers (py(tn),[N]). Therefore (3.5.1) characterizes
all the possible Pontryagin numbers of a closed smooth manifold.

Condition (iii) of Theorem 2.1 requires that the numbers (py, i) equal the Pontryagin
numbers {p;(tn),[N]) for a certain genuine 4k—dimensional closed smooth mani-
fold N. Hence the numbers (py, ;) must satisfy the same set of congruence relations
that the Pontryagin numbers of a closed smooth manifold should satisfy. These relations
are then expressed as (3.5.2). O
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In our case, since all the Pontryagin classes are zero except in dimensions 2k and 4k,
we may express the ¢; classes solely in terms of pg/, and py.

The following example in dimension 16 illustrates how such expressions can be calcu-
lated explicitly in high dimensions.

Example 3.6 Suppose we want to find the explicit congruence relations in dimen-
sion 16. The first thing we need to do is to express the 16—dimensional summand of
Zley, ez, ...]- L in terms of the Pontryagin classes p;. Since e; consists of classes of
dimension no less than 47, the 16—dimensional classes live in

(353) (Z®Zey®Zes ®ZLey ®ZLejes ®ZLey ®ZLes ® Leyes ® Zeg) - L.

As we assume that the classes p; = 0 for all i except p, and p4, the total L—class is

L=1+s3p2+52,2p5 +54pa =1+ 502 — 1417507 + 14175 P>

as each of the e; classes can be written as a linear combination of p,, p2 and py.
Taking e, for example, we first expand e/ + ¢~ —2 as a power series
4

12 360 20160
Then analyze the symmetric polynomial as follows:

x?).

exj+ex

ey =0y +e ™ =2, M2 472 -2, )
= (@9 eV (e ek —2)

4 X6 X8

’ X4 ¢
2 J J 9
ij (xf 12 ¥ 360 T 20160 T O ))

2+x’i+x’§+ o +0(x})
X —_— —_—
kT2 T 360 T 20160 T K

4.4 2,6 6,.2
ijk ijk ijk

:;(xfxi—l- 144 + 360 + 360 )+terms of degree other than 8 and 16
.]?

= pr+ ZZ 720 %pé/ — + terms of degree other than 8 and 16

The condition from the summand Ze, - L is then

7 19p2 381
(Zez'L,M)=Z<(P2+&+p4) (Hﬁ— Py 4 p4),u>

720 " 40 45 14175 " 14175
13

_g[1302  p n) ez,
720 " 40°
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Since we also require that pg, W), {pa, u) € Z, the condition is equivalent to the
congruence relation

113(p3, 1) + 18(p4, 1) = 0 (mod 45).

To find the complete set of congruence relations in dimension 16, one applies the same
process to each of the summands in (3.5.3).

Alternatively, one may use the approach that will be mentioned in Remark 3.9 to express
the explicit congruence relations (3.5.2) in terms of the Pontryagin classes. We will
continue using the Hattori—Stong Theorem and the method discussed in the example
above in dimension 32 in the following section.

3.6 Dimension 32

In this dimension, we ask about the existence of a simply-connected, closed, smooth
manifold that is rational homotopy equivalent to a Q—local space X where

Q *=0,16, 32,

0 otherwise.

HY(X: Q) = {

Applying the realization Theorem 2.1, we look for cohomology classes p4 and pg
in H*(X;Q), together with a choice of fundamental class u € H3,(X;Z), such that
Conditions (i), (i) and (iii) are satisfied. We can convert the problem to solving a
system of diophantine equations.

Theorem 3.7 There exist rational projective planes in dimension 32.

Proof The signature Condition (i) says

(3.6.1) Sa,4P4 T 58Py = %1,
where the coefficients can be computed by the formulas (3.3.1) and (3.3.2) giving
_ 444721 _ 118518239
S4,4 = T162820783125° S8 = 162820783125"

Similar to the analysis on dimension 24, Condition (ii) and the integrality of Pontryagin
numbers ensure that we may let

(pF. 1) ==£x%, (ps.p) =%y,

where x and y are integers. The signature condition requires the existence of integers
x and y such that

(3.6.2) —444721x2 4 118518239y = £162820783125.
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To get the congruence relations in Condition (iii)
(3.6.3) (Zley.ez....]- L, p) € Z3].

we expand each basis class of Z[eq, e;,...] as a power series in p4 and pg, since we
care only about the cohomology classes in dimension 32, higher-degree classes in the
representations having been discarded. The e; classes are calculated as follows:

€r= —50140p4 + 261534214736000174% - 130767411368000p8

€2 = %ZM + 43583}31260001”2 + 217945(5‘%80001’8’ €11 = mpf

ey =—3pa+t 399}28001”2 ~ Jsizo0 Pse €162 = _ZOIIWP‘%’ e =0

e = P4+ 1205600 P4 + 504s00 P8¢ e1e3 = 1513013 €202 = 1400 /4

es = —%Ps, ere7 =0, ejeq = —ﬁpi, eye3 = %Pi

66:%1’8’ e2e4=%pi, €3€3=%p§, eres =0

e7 = —%ps, e3eq = —%Pi, eres =0, e1eq =0

eg = ps, eseq = py, ezes =0, ere6 =0
Multiplying the nonzero basis class on e; with the total L class

L=1+Ly+Lg=1+ 1317504~ Tez820783725 P4 T 162830783175 Ps-

we obtain a basis for Z[ey, 3, ...]- L consisting of linear combinations of pi and pg
in dimension 32.

1L =— 162;33%;125 pi + 161218825017882331925p8
ej-L= _3731692912254281000 PZ - 130767411368000 Ps
er-L = 432598299104357620700 P+ 2179451‘5‘%8000 Ps; erer- L= 25401Wp£
e3+L = —3331e500 P4 — 7531300 I8+ ere2- L =~ 1650 14
ea- L = 1353600 P + 0400 V8- eres- L= 1517504
es+ L =—533:ps. eres L =—<gs i ezes- L =—135p;
e+ L = {551 eaeq L =355, eses-L=gp;
er-L=—3ps, eses- L =—3pj, e2¢2+ L = 1455 P4
eg- L = ps, eqeq- L = p;
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Thus the integrality condition (3.6.3) holds true if and only if each basis class satisfies
the relation

(3.6.4) (— n) € Z[3].

We have set up integers x and y so that (pi, ) =+x2 and (pg, ) = £y. As we
simplify the coefficients and throw away the redundant relations, (3.6.4) is equivalent
to the following set of congruence relations on integers x and y.

162820783125 | —444721x2 + 118518239y
638512875 | 13947647x% + 2y
212837625 | 292903727x% 4+ 10922y

(3.6.5) 155925 | 357613x2% + 434y

4725 |32513x2 + 914y

99225 | x?2

315 y

The last six congruence relations in (3.6.5) are equivalent to

(3.6.6)

x% =0 (mod 3*-52.72),
y = 312282614 x? (mod 638512875).

Letting A and B be integers, we may write
3.6.7) 4 2 o 2
y = (312282614)(3"-5°-77) A” + (638512875) B.

Plugging this in the signature condition (3.6.2), we have

—444721(3*527% A%) + 118518239[(312282614)(3*527% A%) + 638512875 B]
— +162820783125,

which simplifies to

(3.6.8) 575154397531542 + 118518239 B = £255,
A% = £(5751543975315)"1(255) (mod 118518239),
A% = £59181964 (mod 118518239).

The Jacobi symbol

( 59181964 ) =1
118518239/ —
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which is a necessary condition for the integer 59181964 to be a quadratic residue
modulo (mod 118518239). Checking the Jacobi symbol on each of the prime factors
of 118518239 =7-31-151-3617, we have

59181964\ _ (59181964) __ (59181964) _ (59181964 _
( 7 )—( 31 )—( 151 )= ( 3617 )—1'

This indicates that 59181964 is indeed a quadratic residue (mod 118518239). Therefore
(3.6.8) has a solution. So we have shown that the system of Diophantine equations
(3.6.2) and (3.6.5), which is equivalent to Conditions (i), (ii) and (iii), has infinitely
many integer solutions. For example, the solution with the smallest positive x value is

x = 493965360, y =915578185531275. O

Remark 3.8 Recall that in the rational surgery realization Theorem 2.1, as we construct
a Q-homotopy equivalence f: M — X, Pontryagin numbers of the resulting manifold
M are realized by the input pairings (pr, u) = (pr(zar),[M]). Therefore distinct
integer solutions x and y in dimension 32 correspond to distinct pairs of Pontryagin
numbers, which are homeomorphism invariants. So we have shown that there are
infinitely many homeomorphism types of closed smooth manifolds that are rational
analogs of projective planes. This ends the proof of our main Theorem 1.1.

Remark 3.9 There is another approach to computing the congruence relations among
Pontryagin numbers of closed smooth manifolds. The torsion-free part of the oriented
cobordism ring is a polynomial ring over Z, generated by a set of closed smooth
manifolds in dimension 4k, k > 2,

Q30 /tor = Z[M*, M8, .. ],

where the generator M 4k can be taken as any manifold satisfying the following
characteristic number property by Stong [8, page 207]:

+q if 2k + 1 is a power of the prime ¢,

e POIM AR =
Sk (1 Pl ] {:I:l if 2k + 1 is not a prime power.

Pontryagin numbers are oriented cobordism invariants. If we can find a set of basis
manifold of Qi(,z /tor and compute the Pontryagin numbers, the congruence relations
are then computable from the integer sublattice. Since s;[CP2¥] = 2k + 1, in many of
the 4k dimensions (when 2k 4 1 = ¢, with ¢ a prime), CP2% qualifies as a generator.
For example, in dimension 8,

Q30 = (CP? x CP?) @ (CP*).
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In particular, for any closed smooth 8—dimensional manifold N, the Pontryagin number
of N can be written as a linear combination

p11[N]=kp 1[CP? x CP?] + £p; 1[CP*] = 18k +25¢,
2N = kps[CP? x CP?] + £p,[CP4 = 9k + 10£,

with k,£ € 7Z. Thus, the congruence relations among Pontryagin numbers of any
8—dimensional closed smooth manifold N can be computed as:

51 p1,1[N]—=2ps[N]

912p1,1[N]=5p2[N]

P1,1[N]€Z, pr[N]€eZ
However, in dimensions such as 4k = 16 and 4k = 28, where 2k + 1 is not a prime,
CP2k does not satisfy the characteristic number property, thus fails to qualify as
a generator. We have to construct a generating manifold from a disjoint union of

CP?* and certain complex hypersurfaces (see Milnor [4, page 250]). For example, in
dimension 4k = 16, we have

54(p)[OCP® +H; 6] = -3
and in dimension 4k = 28
57(p)[—85CP™ — 16H3 12 +2Hs 10l = —1,

where H,,,, is the hypersurface of degree (1, 1) in CP” x CPP". Once we obtain the
generating manifolds, we still need to compute all the Pontryagin numbers py for a set
of basis manifolds, which is very tedious.
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