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An algebraic model for commutative HZ–algebras

BIRGIT RICHTER

BROOKE SHIPLEY

We show that the homotopy category of commutative algebra spectra over the
Eilenberg–Mac Lane spectrum of an arbitrary commutative ring R is equivalent
to the homotopy category of E1–monoids in unbounded chain complexes over R .
We do this by establishing a chain of Quillen equivalences between the corresponding
model categories. We also provide a Quillen equivalence to commutative monoids in
the category of functors from the category of finite sets and injections to unbounded
chain complexes.
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1 Introduction

Let R be an arbitrary commutative ring. In Shipley [29] it was shown that the model
category of algebra spectra over the Eilenberg–Mac Lane spectrum, HR, is connected to
the model category of differential graded R–algebras via a chain of Quillen equivalences.
In this paper we extend this result to the case of commutative HR–algebra spectra.
As a guiding example we consider the function spectrum F.X;HR/ from a space X

to the Eilenberg–Mac Lane spectrum of a commutative ring R. As R is commutative,
F.X;HR/ is a commutative HR–algebra spectrum whose homotopy groups are the
cohomology groups of the space X with coefficients in R:

��nF.X;HR/ŠH n.X IR/:

The singular cochains on X with coefficients in R, denoted by S�.X IR/, give a
chain model of the cohomology of X by regrading. We set

C��.X IR/ WD S�.X IR/:

Note that for RD Fp the Steenrod operations on H�.X IR/ can be constructed from
the [i –products. These are chain homotopies that measure the failure of the cup-
product to produce a strictly graded commutative product of cochains. Thus, in general,
one cannot expect to find a model of the singular cochains of a space that is a differential
graded commutative R–algebra. Instead, one must work with E1–algebra structures.
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See also Cenkl [3, Theorem 2]. A notable exception are rational cochains of a space
with the Sullivan cochains as a strictly differential graded commutative model.

We establish a chain of Quillen equivalences between commutative HR–algebra spectra,
C.HR–mod/, and differential graded E1–R–algebras, E1ChR :

C.HR–mod/
Z
//
C.Sp†.smodR//

U
oo

ˆ�N

// C.Sp†.chR//
LN
oo

i
//
C.Sp†.ChR//

C0

oo

R"
��

E1ChR

F0
//
E1.Sp

†.ChR//
Ev0

oo

L"

OO

Here, our intermediary categories include symmetric spectra (Sp† ) over the cate-
gories of simplicial R–modules (smodR ), nonnegatively graded chain complexes
over R (chR ), and unbounded chain complexes over R (ChR ). The functors will be
introduced in the sections below.

The fact that there is such an equivalence should not be surprising, but to our knowledge,
no explicit chain of Quillen equivalences can be found in the literature.

In the context of infinite loop space theory, E1–ring spectra, and their units, the theory
of I–spaces is important; see Sagave and Schlichtkrull [22]. Here I is the category of
finite sets and injections and I–spaces are functors from I to simplicial sets. More
generally, functor categories from I to categories of modules feature as FI–modules in
the work of Church, Ellenberg and Farb [6] and others. We relate symmetric spectra in
unbounded chain complexes over R via a chain of Quillen equivalences to the category
of unbounded I–chain complexes and prove that commutative monoids in this category,
C.ChIR/, provide an alternative model for commutative HR–algebra spectra. In fact,
there is a chain of Quillen equivalences between C.HR–mod/ and E1.Ch

I
R/, the E1–

monoids in unbounded I–chain complexes over R, that passes via E1.Sp
†.ChR//

and E1ChR . The rigidification result of Pavlov and Scholbach [20, Theorem 3.4.4]
for symmetric spectra implies that the model category E1.Ch

I
R/ is Quillen equivalent

to the one of commutative monoids in ChIR , that is, C.ChIR/. Taking these results
together we obtain a chain of Quillen equivalences between commutative HR–algebra
spectra and commutative monoids in I–chain complexes over R. See Theorem 9.5.
We expect that our comparison result makes it possible to find explicit commutative
I–chain models for certain commutative HR–algebras and there is ongoing work
on this by Richter, Sagave and Schulz with applications to logarithmic structures on
commutative ring spectra in mind.

If RDQ is the field of rational numbers we can extend our chain of Quillen equiva-
lences and obtain a comparison (Corollary 8.4) between commutative HQ–algebra
spectra and differential graded commutative Q–algebras.
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Mike Mandell showed in [16, Theorem 7.11] that for every commutative ring R the
homotopy categories of E1–HR–algebra spectra and of E1–monoids in the category
of unbounded R–chain complexes are equivalent. He also claims in loc. cit. that he
can improve this equivalence of homotopy categories to an actual chain of Quillen
equivalences. He suggests using the methods of Schwede and Shipley [27], but only
associative monoids are treated there.

Our approach is different from Mandell’s because we work in the setting of symmetric
spectra. The idea to integrate the symmetric groups into the monoidal structure to
construct a symmetric monoidal category of spectra is due to Jeff Smith. Our arguments
heavily rely on combinatorial and monoidal features of the category of symmetric
spectra in the categories of simplicial sets, simplicial R–modules, nonnegatively graded
chain complexes (chR ) and unbounded chain complexes (ChR ).

The structure of the paper is as follows: We recall some basic facts and some model
categorical features of symmetric spectra in Section 2. In Section 3 we recall results
from Pavlov and Scholbach [19; 20] that establish model structures on commutative ring
spectra in the cases that arise as intermediate steps in our chain of Quillen equivalences
and we also recall their rigidification result. We sketch how to use methods from
Chadwick and Mandell [4] for an alternative proof. The Quillen equivalence between
commutative HR–algebra spectra and commutative symmetric ring spectra in simplicial
R–modules can be found in Section 4 as Theorem 4.1. The Quillen equivalence between
the latter model category and commutative symmetric ring spectra in nonnegatively
graded chain complexes is based on the Dold–Kan correspondence and is stated as
Theorem 6.6 in Section 6. There is a natural inclusion functor i W ch! Ch and the
Quillen equivalence between commutative symmetric ring spectra in ch and in Ch (see
Corollary 7.3) is based on this functor. In Section 8 we establish a Quillen equivalence
between E1–monoids in symmetric spectra in unbounded chain complexes and E1–
monoids in unbounded chain complexes. The link with E1–monoids and commutative
monoids in the diagram category of chain complexes indexed by the category of finite
sets and injections is worked out in Section 9.
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at the Mathematical Sciences Research Institute in Berkeley, California, during the
spring 2014 program on algebraic topology. Shipley was also supported during this
project by the NSF under Grants No. 1104396 and 1406468. We are grateful to Dmitri
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2 Background

In the following we will consider model category structures that are transferred by an
adjunction. Given an adjunction

C
L
// D

R
oo

where C is a model category and D is a bicomplete category, we call a model structure
on D right-induced if the weak equivalences and fibrations in D are determined by the
right adjoint functor R.

We use the general setting of symmetric spectra as in [11]. Let .C;˝; 1/ be a bicomplete
closed symmetric monoidal category and let K be an object of C . A symmetric sequence
in C is a family of objects X.n/ 2 C with n 2N0 such that the nth level X.n/ carries
an action of the symmetric group †n . Symmetric sequences form a category C† whose
morphisms are given by families of †n –equivariant morphisms f .n/, n > 0. For
every r > 0 there is a functor Gr W C! C† with

Gr .C /.n/D

�
†n �C for nD r;

¿ for n¤ r;

where ¿ denotes the initial object of C . Here †n�C D
F
†n

C carries the †n –action
that permutes the summands.

We consider the symmetric sequence Sym.K/ whose nth level is K˝n . Here we follow
the usual convention that K˝0 is the unit 1. The category C† inherits a symmetric
monoidal structure from C : for X , Y 2 C† we set

.X ˇY /.n/D
G

pCqDn

†n �†p�†q
X.p/˝Y .q/:

It is straightforward to show (see for instance [11, Section 7]) that Sym.K/ is a
commutative monoid in C† .

The category of symmetric spectra (in C with respect to K ), Sp†.C;K/, is the cate-
gory of right Sym.K/–modules in C† . Explicitly, a symmetric spectrum is a family
of †n –objects X.n/ 2 C together with †n –equivariant maps

X.n/˝K!X.nC 1/

for all n> 0 such that the composites

X.n/˝K˝p
!X.nC 1/˝K˝p�1

! � � � !X.nCp/

are †n�†p –equivariant for all n;p > 0. Morphisms in Sp†.C;K/ are morphisms of
symmetric sequences that are compatible with the right Sym.K/–module structure.
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There is an evaluation functor Evn that maps an X 2 Sp†.C;K/ to X.n/ 2 C . This
functor has a left adjoint

FnW C! Sp†.C;K/

such that Fn.C /.m/ is the initial object for m< n and

Fn.C /.m/Š†m �†m�n
C ˝K˝m�n if m> n:

Note that Fn.C /ŠGn.C /ˇ Sym.K/.

Symmetric spectra form a symmetric monoidal category .Sp†.C;K/;^; Sym.K// such
that for X;Y 2 Sp†.C;K/,

X ^Y DX ˇSym.K / Y:

Here X ˇSym.K / Y denotes the coequalizer of the diagram

X ˇ Sym.K/ˇY //
//
X ˇY

where we use the right action of Sym.K/ on X and we use the right action of Sym.K/
on Y after applying the twist-map in the symmetric monoidal structure on C† .

A crucial map is

(1) �W F1K! F01I

it is given as the adjoint to the identity map K! Ev1F01DK .

We recall the basics about model category structures on symmetric spectra from [11]:
If C is a closed symmetric monoidal model category which is left proper and cellular
and if K is a cofibrant object of C , then there is a projective model structure on the
category Sp†.C;K/ [11, Theorem 8.2], Sp†.C;K/proj , such that the fibrations and
weak equivalences are levelwise fibrations and weak equivalences in C and such that
the cofibrations are determined by the left lifting property with respect to the class of
acyclic fibrations.

This model structure has a Bousfield localization with respect to the set of maps

f�QC
n W FnC1.QC ˝K/! Fn.QC / j n> 0g;

where Q.�/ is a cofibrant replacement and C runs through the domains and codomains
of the generating cofibrations of C . The map �QC

n is adjoint to the inclusion map into
the component of Fn.QC /.nC 1/ corresponding to the identity permutation. We call
the Bousfield localization of Sp†.C;K/proj at this set of maps the stable model structure
on Sp†.C;K/ and denote it by Sp†.C;K/s .

As we are interested in commutative monoids in symmetric spectra, we use positive
variants of the above mentioned model structures: Let Sp†.C;K/Cproj be the model
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structure where fibrations are maps that are fibrations in each level n > 1 and weak
equivalences are levelwise weak equivalences for positive levels. The cofibrations are
again determined by their lifting property and they turn out to be isomorphisms in level
zero (compare [17, Section 14]). By adapting the localizing set and considering only
positive n, we get the positive stable model structure on Sp†.C;K/ and we denote it
by Sp†.C;K/s;C .

Remark 2.1 We consider several examples of categories C with different choices of
objects K 2 C . Despite the name, the stable model structure on Sp†.C;K/ does not
have to define a stable model category in the sense that the category is pointed with a
homotopy category that carries an invertible suspension functor. Proposition 9.1 for
instance makes this explicit in the case when K is the unit of the symmetric monoidal
structure on C .

3 Model structures on algebras over an operad over Sp†.C/

for C D ch, sAb, Ch

From now on we restrict to the case RDZ in order to ease notation. The proofs work
in general.

Establishing right-induced model structures for commutative monoids in model cat-
egories is hard. Sometimes it is not possible, for instance there is no right-induced
model structure on differential graded commutative rings, because the free functor
does not respect acyclicity. However, if the underlying model category is nice enough,
then such model structures can be established. In broader generality, one might ask
whether algebras over operads possess a right-induced model structure. In our setting
we will apply the results of Pavlov and Scholbach. They show in [19, Theorem 5.10]
and [20, Theorem 3.4.1] that for a tractable, pretty small, left proper, h–monoidal, flat
symmetric monoidal model category C the category of O–algebras in Sp†.C;K/s;C

has a right-induced model structure. Here O is an operad in C . See loc. cit. for an
explanation of the assumptions. These conditions are satisfied for the model categories
of simplicial abelian groups and both nonnegatively graded and unbounded chain
complexes. Hence, using their results, we obtain:

Theorem 3.1 The category of O–algebras in Sp†.C;K/s;C has a right-induced model
structure for C D sAb, ch, Ch, any K and any operad O in C .

We follow the convention that an E1–operad P in Ch (or ch, sAb) is a symmetric
unital operad whose augmentation induces a weak equivalence to the operad that
describes commutative monoids. For the sake of brevity we call algebras over an
E1–operad E1–monoids. Pavlov and Scholbach also prove a rigidification theorem
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[19, Theorem 7.5; 20, Theorem 3.4.4]. We apply this to the case of E1–monoids
and in this case it provides a Quillen equivalence between the model category of
E1–monoids in Sp†.C;K/s;C and commutative monoids in Sp†.C;K/s;C . Related
rectification results in the setting of spaces instead of chain complexes are due to [8]
and [22]. Berger and Moerdijk obtain general results about rectifications of homotopy
algebra structures in [2].

Other approaches to model structures for commutative monoids in symmetric spectra
and rigidification results can be found for instance in work by John Harper [9], David
White [31], and Steven Chadwick and Michael Mandell [4].

In the following we sketch an alternative proof of the existence of a positive stable
right-induced model structure for the category of symmetric spectra in the category of
unbounded chain complexes, Sp†.Ch;ZŒ1�/, where ZŒ1� denotes the chain complex
which is concentrated in chain degree one with chain group Z. This proof uses a
modification of the methods used by Chadwick and Mandell [4]. A similar proof works
for the categories of symmetric spectra in simplicial abelian groups, Sp†.sAb; zZ.S1//,
with K D zZ.S1/ the reduced free abelian simplicial group generated by the simplicial
1–sphere, and for symmetric spectra in the category of nonnegatively graded chain
complexes, Sp†.ch;ZŒ1�/.

A reader who is just interested in the application of these results is invited to resume
reading in Section 4.

Theorem 3.2 Let O be an operad in Ch. Then the category O.Sp†.Ch// of O–
algebras over Sp†.Ch/ is a model category with fibrations and weak equivalences
created in the positive stable model structure on Sp†.Ch/.

Theorem 3.3 Let �W O!O0 be a map of operads. The induced adjoint functors

O.Sp†.Ch//
L�
// O0.Sp†.Ch//

R�

oo

form a Quillen adjunction. This is a Quillen equivalence if �.n/W O.n/!O0.n/ is a
(nonequivariant) weak equivalence for each n.

In particular, if " is the augmentation from any E1–operad to the commutative operad,
then it induces a Quillen equivalence between the categories of E1–monoids and of
commutative monoids in Sp†.Ch/.

The proofs of both of these theorems use the following statement, which is a translation
of [17, Lemma 15.5] to Sp†.Ch/ with a slight generalization based on [4, Remark 8.3(i)].
As a model for E†n in the category Sp†.Ch/ we take F0 applied to the normalization
of the free simplicial abelian group generated by the nerve of the translation category
of the symmetric group †n .
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Proposition 3.4 Let X and Z be objects in Sp†.Ch/.

(1) Let K be a chain complex, assume X has a †i –action, and let n> 0. Then the
quotient map

qW E†iC ^†i
..FnK/^i

^X /! ..FnK/^i
^X /=†i

is a level homotopy equivalence.
(2) For any positive cofibrant object X and any †i –equivariant object Z ,

qW E†iC ^†i
.Z ^X^i/! .Z ^X^i/=†i

is a ��–isomorphism.

Proof First, the proof of [17, Lemma 15.5] easily translates to the setting of Sp†.Ch/

from Sp†.S/ considered there. The key point is that if q>ni , then E†i�†q!†q is
a .†i�†q�ni/–equivariant homotopy equivalence. As mentioned in [4, Remark 8.3(i)],
the proof of the first statement in [17, Lemma 15.5] still works when X has a †i –
action because the †i –action remains free on †q (or O.q/ in the explicit case there).
Similarly the second statement here follows by the same cellular filtration of X as in
[17, Lemma 15.5].

The proofs of both of the theorems above also require the following definition and
statement of properties.

Definition 3.5 A chain map i W A! B in Ch is an h–cofibration if each homomor-
phism inW An! Bn has a section (or splitting). These are the cofibrations in a model
structure on Ch; see [5, Example 3.4], [24, Proposition 4.6.2], or [18, Theorem 18.3.1].
We say a map i W X ! Y in Sp†.Ch/ is an h–cofibration if each level inW Xn! Yn is
an h–cofibration as a chain map.

Below we refer to †n –equivariant h–cofibrations. These are †n –equivariant maps for
which the underlying nonequivariant map is an h–cofibration. We use the following
properties of h–cofibrations below.

Proposition 3.6 (1) The generating cofibrations and acyclic cofibrations in Ch are
h–cofibrations.

(2) Sequential colimits and pushouts preserve h–cofibrations.
(3) If f and g are two h–cofibrations in Ch, then their pushout product f�g is

also an h–cofibration.
(4) If f is an h–cofibration in Ch, then Fif is an h–cofibration in Sp†.Ch/.
(5) For every †n –equivariant object Z , subgroup H of †n , †n –equivariant

h–cofibration f , and i > n, the map Z ^H Fi.f / is an h–cofibration.
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We write OI and OJ for the sets of maps in O.Sp†.Ch// obtained by applying
the free O–algebra functor to the generating cofibrations I and generating acyclic
cofibrations J from [29]. Since Sp†.Ch/ is a combinatorial model category and the
free functor O commutes with filtered direct limits, to prove Theorem 3.2 it is enough
to prove the following lemma by [26, Lemma 2.3].

Lemma 3.7 Every sequential composition of pushouts in O.Sp†.Ch// of maps in OJ

is a stable equivalence.

Proof of Lemma 3.7 This follows as in [4, 8.7–8.10]. Chadwick and Mandell consider
pushouts of algebras over an operad O for three different symmetric monoidal categories
of spectra simultaneously (including Sp†.S/); all of their arguments hold as well
for Sp†.Ch/ using the properties of h–cofibrations listed in Proposition 3.6 and the
generalization of [17, Lemma 15.5] given in Proposition 3.4(2).

Proof of Theorem 3.3 This follows as in [4, Theorem 8.2] again using Proposition 3.6
and Proposition 3.4 .

4 Commutative HZ–algebras and Sp†.sAb/

In this section we consider the Quillen equivalence between HZ–module spectra and
Sp†.sAb/ and show that it also induces an equivalence on the associated categories
of commutative monoids. Recall the functor Z from HZ–modules to Sp†.sAb/

from [29] which is given by Z.M /D zZ.M /^zZHZ HZ where zZ is the free abelian
group on the nonbasepoint simplices on each level. The right adjoint of Z is given
by recognizing that Sym.zZ.S1//, the unit in Sp†.sAb/, is isomorphic to zZ.S/ŠHZ.
The right adjoint is labeled U for underlying. In [29, Proposition 4.3], the pair .Z;U /
was shown to induce a Quillen equivalence on the standard model structures. Since
Z is strong symmetric monoidal, .Z;U / also induces an adjunction between the
commutative monoids. We use the right-induced model structure on commutative
monoids in Sp†.sAb/ and HZ–module spectra [20, Theorem 3.4.1].

Theorem 4.1 The functors Z and U induce a Quillen equivalence between commu-
tative HZ–algebra spectra and commutative symmetric ring spectra over sAb:

ZW C.HZ–mod/ //
C.Sp†.sAb// WUoo

Proof It follows from [29, Proof of Proposition 4.3] that U preserves and detects all
weak equivalences and fibrations since weak equivalences and fibrations are determined
on the underlying category of symmetric spectra in pointed simplicial sets, Sp†.S�/.
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To show that .Z;U / is a Quillen equivalence, by [17, Lemma A.2(iii)] it is enough to
show that for all cofibrant commutative HZ algebras A, the map A!UZA is a stable
equivalence. If A were in fact cofibrant as an HZ module spectrum, this would follow
from the Quillen equivalence on the module level [29]. In the standard model structure
on commutative algebra spectra though, cofibrant objects are not necessarily cofibrant
as modules. The positive flat model (or R–model) structures from [28, Theorem 3.2]
were developed for just this reason. In Lemma 4.2 we show that for positive flat
cofibrant commutative HZ algebras B , the map B! UZB is a stable equivalence.
It follows from Lemma 4.2 that A! UZA is a stable equivalence for all standard
(positive) cofibrant commutative HZ algebras A, since such A are also positive flat
cofibrant by [28, Proposition 3.5]. See also [19, Theorem 8.10] for an alternative
approach to this theorem.

As discussed in the proof above, we next consider the flat model (or R–model) structures
from [28, Theorem 3.2]; see also [25, III, Sections 2 and 3].

Lemma 4.2 For positive flat cofibrant commutative HZ algebras B , the map B!

UZB is a stable equivalence.

Proof The crucial property for positive flat cofibrant (HZ–cofibrant) commutative
monoids is that they are also (absolute) flat cofibrant as underlying modules. Thus, if
B is a positive flat cofibrant commutative HZ–algebra, then it is also an (absolute) flat
cofibrant HZ–module by [28, Corollary 4.3]. (In fact B is also a positive flat cofibrant
HZ–module by [28, Corollary 4.1], but we do not use that here.) Since the Quillen
equivalence in [29, Proposition 4.3] is with respect to the standard model structures [29,
Proposition 2.9], we next translate to that setting. Consider a cofibrant replacement
pW cB! B in the standard model structure on HZ–modules; the map p is a trivial
fibration and hence a level equivalence. Consider the commuting diagram:

cB

��

p
// B

��

UZcB // UZB

The left map is a stable equivalence by [29, Proposition 4.3]. In Lemma 4.3 below we
show that Z takes level equivalences between flat cofibrant objects to level equivalences.
By [28, Proposition 2.8], cB is flat cofibrant, so it follows that the bottom map is also
a stable equivalence. Thus, the right map is a stable equivalence as well.

Lemma 4.3 The functor Z takes level equivalences between flat cofibrant objects to
level equivalences.
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Proof Here we will consider Z as a composite of two functors and we will always work
over symmetric spectra in pointed simplicial sets, Sp†.S�/, by forgetting from sAb

to S� wherever necessary. The first component is zZ from HZ–modules to zZHZ–
modules, and the second component is the extension of scalars functor �� associated to
the ring homomorphism �W zZHZ!HZ induced by recognizing HZ as isomorphic
to zZS and using the monad structure on zZ.

First, note that zZ is applied to each level and preserves level equivalences as a functor
from simplicial sets to simplicial abelian groups. The functor zZ also preserves flat
cofibrations, and hence flat cofibrant objects. The generating flat cofibrations (HZ–
cofibrations) are of the form HZ˝M where M is the class of monomorphisms of
symmetric sequences. Since zZ is strong symmetric monoidal, these maps are taken
to maps of the form zZ.HZ/˝ zZ.M /. Since zZ preserves monomorphisms, these are
contained in the generating flat ( zZHZ–) cofibrations, which are of the form zZHZ˝M .

Next, note that restriction of scalars, �� , preserves level equivalences and level fibra-
tions since they are determined as maps on the underlying flat (S –) model structure;
see the paragraph above [28, Theorem 2.6] and [28, Proposition 2.2]. It follows by
adjunction that �� preserves the flat cofibrations and level equivalences between flat
cofibrant objects.

Remark 4.4 In the proof of Theorem 4.1 we use a reduction argument that allows
us to establish the desired Quillen equivalence by checking that the unit map of the
adjunction is a weak equivalence on flat cofibrant objects in the flat model structure on
commutative HZ–algebras. This approach avoids a discussion of a flat model structure
on commutative symmetric ring spectra in simplicial abelian groups.

5 Dold–Kan correspondence for commutative monoids

The classical Dold–Kan correspondence is an equivalence of categories between the
category of simplicial abelian groups, sAb, and the category of nonnegatively graded
chain complexes of abelian groups, ch. In this section we establish a Quillen equivalence
between categories of commutative monoids in symmetric sequences of simplicial
abelian groups, C.sAb†/, and nonnegatively graded chain complexes, C.ch†/, carry-
ing positive model structures. In the special case of pointed commutative monoids in
symmetric sequences of simplicial modules and nonnegatively graded chain complexes,
such a Quillen equivalence is established in [21, Theorem 6.5].

In the next section we extend this equivalence from symmetric sequences to symmetric
spectra. We first define the relevant model structures on the categories of symmetric
sequences in simplicial abelian groups, sAb† , and chain complexes, ch† .
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Definition 5.1 � Let f W A! B be a morphism in ch† . Then f is a positive
weak equivalence, if H�.f /.`/ is an isomorphism for positive levels ` > 0. It
is a positive fibration, if f .`/ is a fibration in the projective model structure on
nonnegatively graded chain complexes for all ` > 0.

� A morphism gW C !D in sAb† is a positive fibration if g.`/ is a fibration of
simplicial abelian groups in positive levels and it is a positive weak equivalence
if g.`/ is a weak equivalence for all ` > 0.

In both cases, the positive cofibrations are determined by their left lifting property
with respect to positive acyclic fibrations. Positive cofibrations are cofibrations that are
isomorphisms in level zero. One can check directly that the above definitions give model
category structures or use Hirschhorn’s criterion [10, Theorem 11.6.1] and restrict to the
diagram category whose objects are natural numbers greater than or equal to one and
then use the trivial model structure in level zero with cofibrations being isomorphisms
and weak equivalences and fibrations being arbitrary. The generating cofibrations are
maps of the form Gr .i/ for r positive and such that i is a generating cofibration in
chain complexes (simplicial modules). The generating acyclic cofibrations are maps of
the form Gr .j / for r positive and where j is a generating acyclic cofibration in chain
complexes (simplicial modules).

We also get the corresponding right-induced model structures on commutative monoids:

Definition 5.2 An f in C.ch†/.A;B/ is a positive weak equivalence (fibration)
if the map on underlying symmetric sequences, U.f / in ch†.U.A/;U.B//, is a
positive weak equivalence (fibration). Similarly, g in C.sAb†/.C;D/ is a positive
weak equivalence (fibration) if the map on underlying symmetric sequences, U.g/ 2

sAb†.U.C /;U.D// is a positive weak equivalence (fibration).

In [21, Corollary 5.8, Definition 6.2] these model structures were established for pointed
commutative monoids in symmetric sequences of simplicial modules and nonnegatively
graded chain complexes. An object A in C.ch†/ or C.sAb†/ is called pointed, if its
zeroth level is the unit of the monoidal structure of the base category. We recall the
key points of the argument in the proof below. This also makes it clear that the results
of [21] can be adapted to the setting of Definition 5.1.

Lemma 5.3 The structures defined in Definition 5.2 yield cofibrantly generated model
categories where the generating cofibrations are C.Gr .i// and the generating acyclic
cofibrations are C.Gr .j // with i , j as above and r positive.
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Proof Adjunction gives us that the maps with the right lifting property with respect to
all C.Gr .j //, r > 0, are precisely the positive fibrations and the ones with the RLP
with respect to all C.Gr .i//, r > 0, are the positive acyclic fibrations. Performing the
small object argument based on the C.Gr .j // for all positive r yields a factorization
of any map as a positive acyclic cofibration and a fibration whereas the small object
argument based on the C.Gr .i// for positive r gives the other factorization.

Let Z denote the constant simplicial abelian group with value Z. In the positive model
structures cofibrant objects are commutative monoids whose zeroth level is isomorphic
to Z in C.sAb†/ or to ZŒ0� in C.ch†/. In particular, such objects are pointed in the
sense of [21, Definition 5.1].

Let � denote the functor from nonnegatively graded chain complexes to simplicial
abelian groups that is the inverse of the normalization functor. We can extend �

to a functor from ch† to sAb† by applying � in every level. As the category of
symmetric sequences of abelian groups is an abelian category, the pair .N; �/ is still
an equivalence of categories.

In the following we extend the result [21, Theorem 6.5] in the pointed setting, to the
setting of positive model structures.

Theorem 5.4 Let C.sAb†/ and C.ch†/ carry the positive model structures. Then
the normalization functor N W C.sAb†/! C.ch†/ is the right adjoint in a Quillen
equivalence and its left adjoint is denoted LN .

Proof A left adjoint LN to N is constructed in [21, Lemma 6.4]. As positive fibrations
and weak equivalences are defined via the forgetful functors to sAb† and ch† , the
functor N is a right Quillen functor and N also detects weak equivalences. Every
object is fibrant, so we have to show that the unit of the adjunction

�W A!NLN .A/

is a weak equivalence for all cofibrant A 2 C.ch†/. But cofibrant objects are pointed
and for these it is shown in [21, Proof of Theorem 6.5] that the unit map is a weak
equivalence.

6 Extension to commutative ring spectra

We will show that the pair .LN ;N / gives rise to a Quillen equivalence .LN ; �
�N /

on the level of commutative symmetric ring spectra.
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Lemma 6.1 The Quillen pair .LN ;N / satisfies

LN .SymX�/Š Sym.�.X�//

for all nonnegatively graded chain complexes X� .

Proof We can identify Sym.C�/ with the free commutative monoid generated by
G1X� , C.G1X�/. Then, by definition of LN , we obtain

LN .C.G1X�//Š C.�.G1X�//Š C.G1�.X�//Š Sym.�.X�//:

Let C be a category and let A be an object of C . Then we denote by A# C the category
of objects under A.

Corollary 6.2 Let C.ch†/ and C.sAb†/ carry the positive model category structures
and consider the induced model structures on the categories under a specific object.
Then the model categories Sym.ZŒ0�/ # C.ch†/ and Sym.Z/ # C.sAb†/ are Quillen
equivalent.

Proof By Lemma 6.1 we know that

LN Sym.ZŒ0�/Š Sym.Z/:

A direct calculation shows that N.Sym.Z// is isomorphic to Sym.ZŒ0�/. Therefore the
Quillen equivalence .LN ;N / passes to a Quillen adjunction on the under categories. As
the classes of fibrations, weak equivalences and cofibrations in the under categories are
determined by the ones in the ambient category, this adjunction is a Quillen equivalence.

Note that there is an isomorphism of categories between the category of commutative
monoids in Sp†.sAb; zZ.S1// and the category Sym.zZ.S1//#C.sAb†/. A similar iso-
morphism of categories compares commutative monoids in Sp†.ch;ZŒ1�/ and objects
in Sym.ZŒ1�/ # C.ch†/. We can extend the Quillen equivalence from Corollary 6.2 to
these under categories. Recall from [29, page 358] that N is the symmetric sequence in
chain complexes with N.zZ.S`// in level `. We denote by 1 the unit of the symmetric
monoidal category ch† . This is the symmetric sequence with ZŒ0� in level zero and
zero in all positive levels.

Proposition 6.3 The functors .LN ; ˆ
�N / induce a Quillen equivalence on the model

categories Sym.ZŒ1�/ # C.ch†/ and Sym.zZ.S1// # C.sAb†/ where C.ch†/ and
C.sAb†/ carry the positive model structures. Here, ˆ� is a suitable change-of-rings
functor.
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Proof As �.ZŒ1�/ is isomorphic to zZ.S1/ we obtain with Lemma 6.1 that

LN .Sym.ZŒ1�//Š Sym.zZ.S1//:

Therefore, if A is an object in Sym.ZŒ1�/ # C.ch†/, then LN .A/ is an object of
Sym.zZ.S1// # C.sAb†/. We consider the functors

Sym.ZŒ1�/ # C.ch†/
LN

// Sym.zZ.S1// # C.sAb†/

Nuu

N # C.ch†/

ˆ�

hh

where ˆW Sym.ZŒ1�/!N is induced by the shuffle transformation (see [29, page 358])
and ˆ� is the associated change-of-rings map. Note that NLN SymZŒ1�ŠN . Both
functors N and ˆ� preserve and detect level and stable weak equivalences [29, Proof
of Proposition 4.4], therefore they preserve and detect positive weak equivalences and
hence it suffices to show that

A!ˆ�NLN A

is a weak equivalence in the model category Sym.ZŒ1�/ # C.ch†/ for all cofibrant
objects ˛W Sym.ZŒ1�/!A. There is a map of commutative monoids 
 W 1!Sym.ZŒ1�/
which is given by the identity in level zero and by the zero map in higher levels. Let 
 �

be the associated change-of-rings functor:

1


// Sym.ZŒ1�/

ˆ

��

˛
// A

�A

��

N
NLN˛

// NLN A

Note that �A ı ˛ ı 
 D NLN˛ ıˆ ı 
 . As A is cofibrant, we know that the map
˛.0/W ZŒ0�D Sym.ZŒ1�/.0/!A.0/ is an isomorphism. Therefore 
 �.A/ is positively
cofibrant as an object in C.ch†/. Hence the map


 �.A/! 
 �ˆ�NLN .A/

is a positive weak equivalence in C.ch†/, ie a level equivalence in all positive levels
(it is also a weak equivalence in level zero). As 
 � is the identity on objects and only
changes the module structure we get that

A!ˆ�NLN .A/

is a level equivalence in Sym.ZŒ1�/ # C.ch†/.
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Remark 6.4 With the positive model structure, C.ch†/ is not left proper. Consider
for instance the map CGr .0/D1!CGr .ZŒ0�/. This map is a cofibration for positive r

in the positive model structure. On the other hand, take the projection map from Z
to Z=2Z. This yields a map � in C.ch†/ from the initial object 1 to 1=21 (where
the latter object is concentrated in level zero with value Z=2ZŒ0�). As we work in the
positive model structure, this map is actually a weak equivalence. If we push out �
along the cofibration 1! CGr .ZŒ0�/ we get

gW CGr .ZŒ0�/! CGr .ZŒ0�/ˇ 1=21:

In level r this is the chain map

g.r/W Gr .ZŒ0�/.r/Š ZŒ†r �˝ZŒ0�Š ZŒ†r �Œ0�

! ZŒ†r �˝ZŒ0�˝Z=2ZŒ0�Š Z=2ZŒ†r �Œ0�:

Therefore we do not get an isomorphism for positive r and the pushout of the weak
equivalence � is not a weak equivalence.

We want to transfer our results to a comparison of commutative monoids in symmetric
spectra of simplicial abelian groups and nonnegatively graded chain complexes where
we consider the positive stable model structure.

Lemma 6.5 Cofibrant objects in C.Sp†.ch;ZŒ1�// in the positive stable model struc-
ture are cofibrant in C.ch†/.

Proof We can express the map 1! Sym.ZŒ1�/ as

1Š C.G1.0//! C.G1.ZŒ1�//D Sym.ZŒ1�/:

Therefore the unit of Sym.ZŒ1�/ is C.G1.i// with i W 0 ! ZŒ1� and hence it is a
cofibration and therefore the initial object Sym.ZŒ1�/ of C.Sp†.ch;ZŒ1�// is cofibrant
in C.ch†/.

As usual, let Sn denote the chain complex whose only nontrivial chain group is Z in
degree n and let Dn denote the chain complex with Dn

n DDn
n�1
DZ and Dn

i D 0 for
all i ¤ n, n� 1 whose only nontrivial boundary map is the identity. The cofibrant
generators of the positive stable model structure are the maps

(2) Sym.ZŒ1�/ˇGm.Sn�1/
Sym.ZŒ1�/ˇGm.in/

// Sym.ZŒ1�/ˇGm.Dn/;

where in is the cofibration of chain complexes inW Sn�1! Dn and m > 1. The ˇ–
product is the coproduct in the category C.ch†/ and thus the map Sym.ZŒ1�/ˇGm.in/
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is the coproduct of the identity map on Sym.ZŒ1�/ and the map Gm.in/ and hence a
cofibration in C.ch†/.

Coproducts of generators as in (2) are cofibrations in C.ch†/ as well, because the
coproduct in C.Sp†.ch;ZŒ1�// is given by the ˇSym.ZŒ1�/–product.

Every cofibrant object is a retract of a cell-object and these are sequential colimits of
pushout diagrams of the form

X

f

��

// A.n/

��

Y // A.nC1/

where f is a coproduct of maps like in (2) and A.n/ is inductively constructed such
that A.0/ is Sym.ZŒ1�//. We can inductively assume that X , Y and A.n/ are cofibrant
in C.ch†/. The pushout in C.Sp†.ch;ZŒ1�// is the pushout in C.ch†/ and hence the
pushout A.nC1/ is cofibrant in C.ch†/ as well. Sequential colimits and retracts of
cofibrant objects are cofibrant.

Theorem 6.6 The Quillen pair .LN ; ˆ
�N / induces a Quillen equivalence between

C.Sp†.ch;ZŒ1�// and C.Sp†.sAb; zZ.S1/// with the model structures that are right-
induced from the positive stable model structures on the underlying categories of
symmetric spectra.

Proof We have to show that the unit of the adjunction

A!ˆ�NLN A

is a stable equivalence for all cofibrant A 2 C.Sp†.ch;ZŒ1�//. Lemma 6.5 ensures
that A is cofibrant as an object in C.ch†/. Both A and ˆ�NLN A receive a unit map
from Sym.ZŒ1�/. As in the proof of Proposition 6.3 we get that


 �A!NLN 

�A

is a level equivalence in C.ch†/ and therefore the map A! ˆ�NLN A is a level
equivalence in C.Sp†.ch;ZŒ1�// and hence a stable equivalence.

7 Comparison of spectra in bounded and unbounded
chain complexes

Recall that ch denotes the category of nonnegatively graded chain complexes and Ch is
the category of unbounded chain complexes of abelian groups. There is a canonical in-
clusion functor i W ch!Ch and a good truncation functor C0W Ch! ch which assigns to
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an unbounded chain complex X� the nonnegatively graded chain complex C0.X�/ with

C0.X�/m D

�
Xm for m> 0;

cycles.X0/ for mD 0:

We denote the induced functors on the corresponding categories of symmetric spectra
again by i and C0 . In this section we consider the Quillen equivalence

i W Sp†.ch/ // Sp†.Ch/ WC0oo

and show that it extends to a Quillen equivalence of categories of commutative monoids.
The original Quillen equivalence is established in [29, Proposition 4.9] for the usual
stable model structures. Here we consider instead the positive stable model structures
from [17, Section 14] and then consider the right-induced model structures on com-
mutative monoids where f is a weak equivalence or fibration if it is an underlying
positive weak equivalence or fibration. Note that the weak equivalences of the stable
model structure agree with the weak equivalences of the positive stable model structure
in Sp†.ch;ZŒ1�/ and Sp†.Ch;ZŒ1�/. For this reason the positive and stable model
structures are Quillen equivalent; see also [17, Proposition 14.6]. It follows that the
Quillen equivalence induced by i and C0 on the usual stable model structures also
induces a Quillen equivalence on the positive stable model structures.

Proposition 7.1 The adjoint functors i and C0 form a Quillen equivalence between
the positive stable model structures on Sp†.ch;ZŒ1�/ and Sp†.Ch;ZŒ1�/.

Corollary 7.2 Let f be a positive stably fibrant replacement functor in Sp†.Ch/ and
let �W X !C0 iX be the unit of the adjunction. The composite X !C0 iX !C0f iX

is a stable equivalence for all objects X in Sp†.ch;ZŒ1�/.

Proof It follows from the proof of Proposition 7.1 that the derived unit of the adjunction
is a weak equivalence whenever X is positive cofibrant. Since positive trivial fibrations
are positive levelwise weak equivalences and a positive cofibrant replacement cX !X

is a positive trivial fibration, we only need to show that C0f i preserves positive
levelwise equivalences. The inclusion i preserves positive levelwise equivalences
and f preserves stable equivalences. Any stable equivalence between positive stably
fibrant objects is a positive levelwise equivalence, so f i preserves positive levelwise
equivalences. Since C0 preserves positive levelwise equivalences between positive
stably fibrant objects, the corollary follows.

Corollary 7.3 The adjoint functors i and C0 induce a Quillen equivalence between
the commutative monoids in Sp†.ch;ZŒ1�/ and Sp†.Ch;ZŒ1�/.
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Proof Since the weak equivalences and fibrations are determined on the underlying
positive stable model structures, C0 still preserves fibrations and weak equivalences
between positive stably fibrant objects. By [12, Lemma 4.1.7] it is then enough to
check the derived composite C0 i is a stable equivalence for all cofibrant commutative
monoids. This is shown for all objects in Corollary 7.2. The fibrant replacement functor
for commutative monoids will be different, but the properties used in the proof of that
corollary still hold, so we conclude.

8 Quillen equivalence between E1–monoids
in Ch and Sp†.Ch/

We fix a cofibrant E1–operad O in Ch (in the model structure on operads as in [30,
Section 2, Remark 2]) and we consider the operad F0O in symmetric spectra in chain
complexes.

Let Ch carry the projective model structure and let E1Ch denote the category of O–
algebras in Ch with its right-induced model structure [30, Section 4, Theorem 4]. This
model structure exists because Ch is a cofibrantly generated monoidal model category,
it satisfies the monoid axiom [29, Corollary 3.4] and O is cofibrant. Alternatively, we
could work with Mandell’s model structure on E1–monoids in Ch using the operad
of the chains on the linear isometries operad [15]. See also [1] for general existence
results of model structures for categories of algebras over operads.

Similarly, Sp†.Ch;ZŒ1�/ with the stable model structure is a cofibrantly generated
monoidal model category satisfying the monoid axiom [29, Corollary 3.4], and as
the set of generating acyclic cofibrations for the positive stable model structure on
Sp†.Ch;ZŒ1�/ is a subset of the ones for the stable structure, the positive stable model
category also satisfies the monoid axiom. We consider two model structures for
E1 Sp†.Ch;ZŒ1�/, the E1–monoids in Sp†.Ch;ZŒ1�/:

� We denote by E1 Sp†.Ch;ZŒ1�/s;C the model structure in which the forget-
ful functor to the positive stable model category structure on Sp†.Ch;ZŒ1�/
determines the fibrations and weak equivalences.

� Let E1 Sp†.Ch;ZŒ1�/s denote the model category whose fibrations and weak
equivalences are determined by the forgetful functor to the stable model structure
on Sp†.Ch;ZŒ1�/.

Proposition 8.1 The model structure E1 Sp†.Ch;ZŒ1�/s;C is Quillen equivalent to
the model structure E1 Sp†.Ch;ZŒ1�/s .
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Proof We consider the adjunction

.E1 Sp†.Ch;ZŒ1�/s/
R
// .E1 Sp†.Ch;ZŒ1�/s;C/;

L
oo

where R and L are both the identity functor. If p is a fibration in the a positive
stable fibration in E1 Sp†.Ch;ZŒ1�/. Therefore R preserves fibrations. As the weak
equivalences in both model structures agree, R is a right Quillen functor and it preserves
and reflects weak equivalences. Hence the unit of the adjunction is a weak equivalence.

In the following we use Hovey’s comparison result [11, Theorem 9.1]: Tensoring with
ZŒ1� induces a Quillen autoequivalence on the category of unbounded chain complexes,
so we get that the pair .F0;Ev0/ induces a Quillen equivalence

Ch
F0
// Sp†.Ch;ZŒ1�/s:

Ev0

oo

We can then transfer this Quillen equivalence to the corresponding categories of E1–
monoids: Both F0 and Ev0 are strong symmetric monoidal functors. Fix a cofibrant
E1–operad O in Ch as above. As Ev0 ıF0 is the identity, Ev0 maps F0O–algebras
in E1 Sp†.Ch;ZŒ1�/ to O–algebras in unbounded chain complexes.

Theorem 8.2 The functors .F0;Ev0/ induce a Quillen equivalence

F0W E1Ch //
E1 Sp†.Ch;ZŒ1�/s WEv0:oo

Proof The proof follows Hovey’s proof of [11, Theorem 5.1]. It is easy to see that
Ev0 reflects weak equivalences between stably fibrant objects: If f W X ! Y is such a
map and f .0/ is a weak equivalence, then f .`/ is a weak equivalence for all `> 0,
because X and Y are fibrant and .�/˝ZŒ1� is a Quillen equivalence.

In our case .�/ ˝ ZŒ1� is an equivalence of categories with inverse the functor
Hom.ZŒ1�;�/, where Hom.�;�/ is the internal homomorphism bifunctor.

Therefore, for any X in E1Ch, we have that F0X is stably fibrant because

.F0X /n DX ˝ZŒn�Š Hom.ZŒ1�;X ˝ZŒnC 1�/

and as every object in Ch is fibrant, F0X is always fibrant in the projective model
structure on E1 Sp†.Ch;ZŒ1�/.

Let A be a cofibrant object in E1Ch. We have to show that

�W A! Ev0W .F0A/

is a weak equivalence, for W .�/ the fibrant replacement in E1 Sp†.Ch;ZŒ1�/. But
we saw that F0A is fibrant and A! Ev0F0A D A is the identity map, thus � is a
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weak equivalence. See also [19, Theorem 8.10] for an alternative approach to this
theorem.

Observe that all of the Quillen equivalences that we have established so far did not use
any particular properties of Z. We can therefore generalize our results as follows.

Corollary 8.3 Let R be a commutative ring with unit. There is a chain of Quillen
equivalences between the model category of commutative HR–algebra spectra and
E1–monoids in the category of unbounded R–chain complexes.

For RDQ we can strengthen the result:

Corollary 8.4 There is a chain of Quillen equivalences between the model category of
commutative HQ–algebra spectra and differential graded commutative Q–algebras.

Proof It is well known that the category of differential graded commutative algebras
and E1–monoids in Ch.Q/ possess a right-induced model category structure and that
there is a Quillen equivalence between them. For a proof of these facts see for instance
[14, Section 7.1.4].

Remark 8.5 Note that the proof of Theorem 8.2 applies in broader generality: If
O is an arbitrary operad in the category of chain complexes such that right-induced
model structures on O–algebras in Ch and on F0.O/–algebras in Sp†.Ch;ZŒ1�/s exist,
then the pair .F0;Ev0/ yields a Quillen equivalence between the model category of
O–algebras in Ch and the model category of F0.O/–algebras in Sp†.Ch;ZŒ1�/s .

9 Symmetric spectra and I–chain complexes

Let I denote the skeleton of the category of finite sets and injective maps with objects
the sets nDf1; : : : ; ng for n> 0 with the convention that 0D¿. The set of morphisms
I.p;n/ consists of all injective maps from p to n. In particular, this set is empty if n

is smaller than p . The category I is a symmetric monoidal category under disjoint
union of sets.

For any category C we consider the diagram category CI of functors from I to C . If
.C;˝; e/ is symmetric monoidal, then CI inherits a symmetric monoidal structure: For
A;B 2 CI we set

.A�B/.n/D colimptq!n A.p/˝B.q/:

For details about I–diagrams see [22]. The following fact is folklore; it was pointed
out to Shipley by Jeff Smith in 2006 at the Mittag-Leffler Institute.
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Proposition 9.1 Let C be any closed symmetric monoidal category with unit e . Then
the category Sp†.C; e/ is isomorphic to the diagram category CI .

Proof Let X 2 Sp†.C; e/. Then X.n/ 2 C†n and we have †n –equivariant maps
X.n/ŠX.n/˝ e!X.nC 1/, such that the composite

�n;pW X.n/ŠX.n/˝ e˝p
!X.nC 1/˝ e˝p�1

! � � � !X.nCp/

is †n �†p –equivariant for all n;p > 0.

We send X to �.X / 2 CI with �.X /.n/DX.n/. If i D ip;n�p 2 I.p;n/ is the stan-
dard inclusion, then we let �.i/W �.X /.p/! �.X /.n/ be �p;n�p . Every morphism
f 2 I.p;n/ can be written as � ı i where i is the standard inclusion and � 2†n . For
such � , the map �.�/ is given by the †n –action on X.n/D �.X /.n/.

If f D � 0 ı i is another factorization of f into the standard inclusion followed by
a permutation, then � and � 0 differ by a permutation � 2 †n which maps all j

with 16 j 6 p identically, ie � is of the form � D idp ˚ �
0 with � 0 2 †n�p . As

the structure maps �p;n�p are †p �†n�p –equivariant, the induced map �.f / D
�.� 0/ ı�.i/ agrees with �.�/ ı�.i/.

The inverse of � , denoted by  , sends A, an I–diagram in C , to the symmetric
spectrum  .A/ whose nth level is  .A/.n/DA.n/. The †n –action on  .A/.n/ is
given by the corresponding morphisms †n � I.n;n/ and the structure maps of the
spectrum are defined as

 .A/.n/˝ e˝p DA.n/˝ e˝p Š
//A.n/

A.in;p/
//A.nCp/D  .A/.nCp/:

The functors � and  are well-defined and inverse to each other.

Lemma 9.2 The functors � and  are strong symmetric monoidal.

Proof Consider two free objects FsC� and FtD� in Sp†.C; e/ for two chain com-
plexes C� and D� . We know in general [11, Section 7] that

(3) FsC� ^FtD� Š FsCt .C�˝D�/:

Note that as an object in CI we have for n 2 I

�.FsC�/.n/D Z†n˝Z†n�s
C�

for n> s and zero otherwise. This coincides with the value of the free I–diagram on n,

FI
s .C�/.n/D ZI.s;n/˝C�;

and in fact this yields an isomorphism of functors. Similarly,  .FI
s .C�//Š FsC� .
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As the symmetric monoidal product in CI is given by left Kan extension along the
exterior product using the monoidal structure of C we get

(4) FI
s .C�/�FI

t .D�/Š FI
sCt .C�˝D�/:

From (3) we obtain that

 .FI
s .C�//^ .F

I
t .D�//Š  .F

I
sCt .C�˝D�//Š  .F

I
s .C�/�FI

t .D�//

and (4) yields

�.FsC�/��.FtD�/Š �.FsCt .C�˝D�//Š �.FsC� ^FtD�/:

The used isomorphisms are associative and compatible with the symmetry isomorphisms.
Every object in Sp†.C; e/ and CI can be written as a colimit of free objects and as
C is closed, the general case follows from the free case.

Remark 9.3 In [20, Proposition 3.3.9] Pavlov and Scholbach describe explicitly (for
a well-behaved symmetric monoidal model category C ) how the unstable and stable
model structures on Sp†.C; e/ transfer to CI under the above mentioned isomorphism
of categories. If C is Ch, their assumptions are satisfied.

Note that the weak equivalences in ChI have an explicit description: they are the
maps that become weak equivalences after applying a corrected homotopy colimit
[7, Definition 5.1]. This is the homotopy colimit of the diagram where every node is
functorially replaced by a cofibrant object first. To see this, consider Dugger’s Bousfield
localizations of diagram categories in [7, Section 5]. As the cofibrations and the fibrant
objects in his model structure in [7, Theorem 5.2] agree with ours, an argument due to
Joyal [13, Proposition E.1.10] ensures that we have the same class of weak equivalences
as well.

Taking a cofibrant E1–operad O in Ch then ensures that O–algebras in Sp†.Ch;ZŒ0�/s

and in ChI carry a model category structure such that the forgetful functor determines
fibrations and weak equivalences

Since tensoring with the unit ZŒ0� is isomorphic to the identity, we can repeat all of the
arguments in the previous section with ZŒ1� replaced by ZŒ0�. Thus we also obtain that
the model category E1 Sp†.Ch;ZŒ0�/s is Quillen equivalent to the model category of
E1–monoids in Ch. Summarizing:

Theorem 9.4 There is a chain of Quillen equivalences

E1 Sp†.Ch;ZŒ1�/s
Ev0

// E1Ch
F0
oo

F0
//
E1 Sp†.Ch;ZŒ0�/s

Ev0

oo

and the rightmost model category is isomorphic to E1ChI .
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Last but not least we can connect commutative HR–algebras to commutative I–chain
complexes. The positive stable model structure on Sp†.Ch.R/;RŒ0�/ satisfies the
assumptions of [19, Theorem 5.10] and hence commutative monoids and E1–monoids
in Sp†.Ch.R/;RŒ0�/s;C carry model category structures and there is a Quillen equiva-
lence between them [20, Theorem 3.4.1, Theorem 3.4.4]. This yields that the model
categories of commutative I–chain complexes, C.Ch.R/I;C/, and E1 I–chain
complexes, E1.Ch.R/

I;C/ are Quillen equivalent, if we take the model structure that
is right-induced from the positive model structure on Ch.R/I;C .

Theorem 9.5 There is a chain of Quillen equivalences between the model categories
of commutative HR–algebra spectra, C.HR–mod/, and commutative monoids in the
category Ch.R/I where the latter carries the right-induced model structure from the
positive model structure on Ch.R/I , Ch.R/I;C .

We close with an important example of a commutative I–chain complex. Consider
a chain complex C� together with a 0–cycle, ie with a map �W ZŒ0� ! C� . The
assignment n 7! C˝n

� defines a functor sym from I to the category of unbounded
chain complexes (namely Sym.C�/). Schlichtkrull shows in [23] that sym is the
algebraic analogue of the symmetric product in the category of spaces.
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