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A generating set for the palindromic Torelli group

NEIL J FULLARTON

A palindrome in a free group Fn is a word on some fixed free basis of Fn that
reads the same backwards as forwards. The palindromic automorphism group …An

of the free group Fn consists of automorphisms that take each member of some
fixed free basis of Fn to a palindrome; the group …An has close connections with
hyperelliptic mapping class groups, braid groups, congruence subgroups of GL.n;Z/ ,
and symmetric automorphisms of free groups. We obtain a generating set for the
subgroup of …An consisting of those elements that act trivially on the abelianisation
of Fn , the palindromic Torelli group PIn . The group PIn is a free group analogue
of the hyperelliptic Torelli subgroup of the mapping class group of an oriented surface.
We obtain our generating set by constructing a simplicial complex on which PIn

acts in a nice manner, adapting a proof of Day and Putman. The generating set leads
to a finite presentation of the principal level 2 congruence subgroup of GL.n;Z/ .

20F65, 57M07, 57MXX

1 Introduction

Let Fn be the free group of rank n on some fixed free basis X . The palindromic
automorphism group of Fn , denoted …An , consists of automorphisms of Fn that take
each member of X to some palindrome, that is, a word on X that reads the same
backwards as forwards. Collins [8] introduced the group …An and proved that it is
finitely presented, giving an explicit presentation. Glover and Jensen [15] obtained
further results about …An , utilising a contractible subspace of the auter space of Fn

on which …An acts cocompactly, with finite stabilisers. For instance, they calculate
that the virtual cohomological dimension of …An is n� 1. The group …An is a free
group analogue of the hyperelliptic mapping class group of an oriented surface; we
develop this analogy later in this introduction.

In this paper, we are primarily concerned with the intersection of …An with the Torelli
subgroup of Fn , that is, the subgroup of automorphisms of …An that act trivially on
the abelianisation of Fn . We denote this intersection by PIn , and refer to it as the
palindromic Torelli group of Fn . Little appears to be known about the group PIn :
Collins [8] first observed that it is non-trivial, and Jensen, McCammond and Meier
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[17, Corollary 6.3] showed that PIn is not of finite homological type for n � 3.
In Section 2, we introduce non-trivial members of PIn (n � 3) known as doubled
commutator transvections and separating �–twists. The main theorem of this paper
establishes that these generate PIn .

Theorem A The group PIn (n�3) is generated by doubled commutator transvections
and separating �–twists.

In order to prove Theorem A, we establish finite generating sets for the subgroups of
…An consisting of automorphisms that fix each member of some specified subset of
the free basis X . These generating sets, which are given precisely in the statement of
Proposition 2.2, are obtained by utilising Stallings’ graph folding algorithm.

Let �nŒ2� denote the principal level 2 congruence subgroup of GL.n;Z/, that is, the
kernel of the surjection GL.n;Z/!GL.n;Z=2/ that reduces matrix entries mod 2. In
Section 2, we discuss a short exact sequence with kernel the palindromic Torelli group
and quotient �nŒ2�. For 1 � i ¤ j � n, let Sij 2 �nŒ2� be the matrix that has 1s on
the diagonal and 2 in the .i; j / position, with 0s elsewhere, and let Oi 2 �nŒ2� differ
from the identity only in having �1 in the .i; i/ position. The following corollary of
Theorem A provides a finite presentation of �nŒ2� for n� 4.

Corollary 1.1 The principal level 2 congruence group �nŒ2� (n� 4) is generated by

fSij ;Oi j 1� i ¤ j � ng;

subject to the defining relators

(1) Oi
2 ,

(2) ŒOi ;Oj �,

(3) .OiSij /
2 ,

(4) .Oj Sij /
2 ,

(5) ŒOi ;Sjk �,

(6) ŒSki ;Skj �,

(7) ŒSij ;Skl �,

(8) ŒSji ;Ski �,

(9) ŒSkj ;Sji �Ski
�2 ,

(10) .Sij Sik
�1SkiSjiSjkSkj

�1/2 ,

where 1� i; j ; k; l � n are pairwise different.

We note that in the proof of Theorem A it becomes apparent that not every relator
of type 10 is needed. In fact, for each choice of three indices i , j and k , we need
only select one such word (and disregard the others, for which the indices have been
permuted).

We also derive the following similar presentation for �nŒ2� when nD 2 or 3; however,
these are acquired independently of Theorem A. Indeed, the presentation of �3Œ2� is
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used to obtain a generating set for PI3 , which forms the base case of an inductive
proof of Theorem A.

Proposition 1.2 The principal level 2 congruence group �nŒ2� .nD2;3/ is generated by

fSij ;Oi j 1� i ¤ j � ng;

subject to the defining relators in the statement of Corollary 1.1 of types

� (1)–(4) for nD 2,

� (1)–(6), (8)–(10) for nD 3.

A key tool in the proof of Proposition 1.2 is an “even” version of the division algorithm
for the integers. This is the observation that under certain circumstances, the quotient
q 2 Z given when dividing a 2 Z by b 2 Z may be chosen to be even, if we sacrifice
control of the sign of the remainder r 2 Z. More details of this procedure are given in
the proofs of Lemma 2.4 and Theorem 5.1.

A similar presentation for �nŒ2� was recently found independently by Kobayashi [18],
and was also known to Margalit and Putman. As Margalit and Putman pointed out, this
is a natural presentation for �nŒ2�, as relators of types (6)–(9) bear a strong resemblance
to the Steinberg relations that hold between the transvections generating SL.n;Z/; see
Milnor [22, Section 5].

A comparison with mapping class groups While …An is defined entirely alge-
braically, it may viewed as a free group analogue of a subgroup of the mapping class
group of an oriented surface. Let Sg and S1

g denote the compact, connected, oriented
surfaces of genus g with 0 and 1 boundary components, respectively. We shall use S

to denote such a surface, with or without boundary. Recall that the mapping class
group of the surface S , denoted Mod.S/, consists of isotopy classes of orientation-
preserving self-homeomorphisms of S , where isotopies are required to fix any boundary
component pointwise at all times. For a self-homeomorphism f of S , we denote its
isotopy class by Œf �.

A hyperelliptic involution of the surface S is an order-2 homeomorphism of the surface
that acts as �I on H1.S;Z/; see Brendle and Margalit [4, Sections 2 & 4]. Let s

denote the homeomorphism of S1
g seen in Figure 1. By capping the boundary with a

disk, the map s induces a homeomorphism of Sg , which we also denote s , by an abuse
of notation. The map s is an example of a hyperelliptic involution of S1

g (and Sg ).
We note that the mapping class of any hyperelliptic involution in Mod.Sg/ (g � 1) is
conjugate to Œs�; see Farb and Margalit [12, Proposition 7.15].
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: : :x1

x2

x2g�1

x2g

s

A

Figure 1: The involution s rotates the surface by � radians. Under the
Nielsen embedding, we may view the braid group B2g � SMod.S1

g / as a
subgroup of …A2g � Aut.F2g/ .

: : :

c1 c2 c2g

Figure 2: The standard symmetric chain in S1
g . The Dehn twists about

c1; : : : ; c2g generate SMod.S1
g /Š B2gC1 .

The hyperelliptic mapping class group of the surface Sg , denoted SMod.Sg/, is the
centraliser of Œs� in Mod.Sg/. Although Œs� 62Mod.S1

g/, as s does not fix the boundary
of S1

g , we define the hyperelliptic mapping class group of S1
g , denoted SMod.S1

g/, to
be the group of isotopy classes of the centraliser of s in HomeoC.S1

g/ [12, Chapter 9].

An obvious analogue of a hyperelliptic involution in Aut.Fn/ is an order-2 member
of Aut.Fn/ that acts as �I on H1.Fn;Z/D Zn . An example of such an involution
in Aut.Fn/ is the automorphism � that inverts each member of the free basis X . An
analogy between s and � is strengthened by two observations. Firstly, Glover and
Jensen [15, Proposition 2.4] showed that any hyperelliptic involution in Aut.Fn/ is
conjugate to �. Secondly, the action of s on �1.S

1
g/D F2g , with free basis as seen in

Figure 1, is to invert each member of the free basis, as � does. It is easily verified that
…An is the centraliser of � in Aut.Fn/ [15, Section 2], so we may think of …An as
being a free group analogue of the hyperelliptic mapping class groups SMod.Sg/ and
SMod.S1

g/.

The comparison between …An and SMod.S1
g/ is made more precise using the classical

Nielsen embedding Mod.S1
g/ ,! Aut.F2g/. Take the 2g oriented loops seen in

Figure 1 as a free basis for �1.S
1
g/. Observe that s acts on these loops by switching
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x1

x2

x3

C

Figure 3: The Dehn twist about the symmetric, separating curve C maps to a
separating �–twist in PI2g under the Nielsen embedding. Note that we only
depict a genus-one subsurface of S1

g , and that x2 has a different orientation
than in Figure 1.

their orientations. In order to use Nielsen’s embedding into Aut.F2g/, we must take
these loops to be based on the boundary; we surger using the arc A to achieve this.
The group SMod.S1

g/ is isomorphic to the braid group B2gC1 by the Birman–Hilden
theorem [3], and is generated by Dehn twists about the curves in the standard, symmetric
chain on S1

g , seen in Figure 2. The Dehn twists about the 2g� 1 curves c2; : : : ; c2g

generate the braid group B2g . Taking the loops seen in Figure 1 as our free basis X , a
straightforward calculation shows that the images of these 2g� 1 twists in Aut.F2g/

lie in …A2g . Specifically, the twist about ciC1 is taken to the automorphism Qi of
the form

xi 7! xiC1; xiC1 7! xiC1xi
�1xiC1; xj 7! xj

for 1 � i < 2g and j ¤ i; i C 1. This shows that …An contains the braid group Bn

as a subgroup, when n is even. This embedding of Bn is a restriction of one studied
by Perron and Vannier [24] and Crisp and Paris [9]. When n is odd, we also have
Bn ,!…An , since discarding Q1 gives a generating set for B2g�1 inside …A2g�1 �

Aut.F2g/.

Palindromic and hyperelliptic Torelli groups The main focus of our study in this
paper is the palindromic Torelli group PIn . This group arises as a natural analogue of
a subgroup of SMod.S1

g/. The Torelli subgroup of Mod.S1
g/, denoted I1

g , consists
of mapping classes that act trivially on H1.S

1
g ;Z/. There is non-trivial intersection

between I1
g and SMod.S1

g/; we define SI1
g WD SMod.S1

g/\I1
g to be the hyperelliptic

Torelli group. Brendle, Margalit and Putman [5] recently proved a conjecture of
Hain [16], also stated by Morifuji [23], showing that SI1

g is generated by Dehn twists
about separating simple closed curves of genus one and two that are fixed by s .
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Our generating set for PIn compares favourably with Brendle, Margalit and Putman’s
for SI1

g , in the following way. We shall see in Section 2 that any Dehn twist about
a symmetric separating curve of genus one that lies in the pre-image of the Nielsen
embedding discussed above, maps to a separating �–twist in PI2g . In fact, up to
conjugation by …A2g , this is the definition of a separating �–twist. The Dehn twist
about the curve C shown in Figure 3 is an example of such a mapping class. Note that
the Dehn twist about C is one of the generators of Brendle, Margalit and Putman. We
shall see in Proposition 3.7 that doubled commutator transvections do not suffice to
generate PIn , so we observe that our generating set involves Brendle, Margalit and
Putman’s generators in a significant way. Thus, the similarity between SI1

g and PIn

is not just a superficial comparison of definitions: the Nielsen embedding gives rise to
a deeper connection between these two groups.

One way in which the analogy between PIn and SI1
g breaks down, however, is their

behaviour when …An and SMod.S1
g/ are abelianised, to .Z=2/3 and Z, respectively.

An immediate corollary of Theorem A is that PIn vanishes in the abelianisation
of …An . In contrast, the image of SI1

g in the abelianisation of SMod.S1
g/ is 4Z,

which may be shown by calculating the images of Brendle, Margalit and Putman’s
generators in the abelianisation of SMod.S1

g/.

Palindromes in right-angled Artin groups In forthcoming work with Anne Thomas
[14], we extend Collins’ definition of palindromic automorphisms to the right-angled
Artin group setting. We obtain generating sets for the analogously defined palin-
dromic automorphism group and palindromic Torelli group of an arbitrary right-angled
Artin group.

Approach of the paper To prove Theorem A, we employ a standard, geometric
technique: we find a sufficiently connected complex on which PIn acts with sufficiently
connected quotient, and use a theorem of Armstrong [1] to conclude that PIn is
generated by the action’s vertex stabilisers. This approach is modelled on a proof of
Day and Putman [11], which recovers Magnus’ finite generating set for the Torelli
subgroup of Aut.Fn/.

Conventions We apply functions from right to left. For g; h 2 G a group, we let
Œg; h�D ghg�1h�1 . In a graph, we denote an edge between vertices x and y by x�y .
In a group G , we will also conflate a relation P DQ with the relator PQ�1 when
this is unambiguous.

Outline of the paper In Section 2, the definitions of the palindromic automorphism
group and palindromic Torelli group of a free group are given, along with some
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elementary properties of these groups. In Section 3, we introduce the complex of partial
�–bases of Fn , and use it to obtain a generating set for PIn . In Section 4, we prove
key results about the connectivity of the complexes involved in the proof of Theorem A.
In Section 5, we obtain a finite presentation for �3Œ2� used in the base case of our
inductive proof of Theorem A.
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2 The palindromic automorphism group

Let Fn be the free group of rank n, on some fixed free basis X WD fx1; : : : ;xng.
For a word w D l1 � � � lk on X˙1 , let wrev denote the reverse of w ; that is, we have
wrev D lk � � � l1 . Such a word w is said to be a palindrome on X if wrev D w . For
example, x1 , x2

2 and x2x�1
1

x2 are all palindromes on X .

An automorphism ˛ 2Aut.Fn/ is said to be palindromic (with respect to the fixed free
basis X ) if for each xi 2 X the word ˛.xi/ may be written as a palindrome on X .
Such automorphisms form a subgroup of Aut.Fn/ which we call the palindromic
automorphism group of Fn and denote by …An . That …An is a group is easily shown
by verifying that …An is the centraliser in Aut.Fn/ of the automorphism � which
inverts each member of X . The following proposition gives us information about the
form of the palindromes ˛.xi/.

Proposition 2.1 Let ˛ 2…An and xi 2 X . Then ˛.xi/D w
rev�.xi/

�iw , where w
is a word on X˙1 , � is a permutation of X and �i 2 f˙1g.

Proof For a palindrome p D wrevx
�i

i w 2 Fn of odd length (w 2 Fn , xi 2 X ,
�i 2 f˙1g), let c.p/Dxi . The following argument is implicit in the work of Collins [8].

Let ˛ 2 …An . Since ˛.X / is a free basis, its image under the natural surjection
Fn ! .Z=2/n must suffice to generate .Z=2/n . If some ˛.xi/ is of even length,
it will have zero image, and so the image of ˛.X / could not generate .Z=2/n . If
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c.˛.xi//D c.˛.xj // for some i ¤ j , then ˛.xi/ and ˛.xj / will have the same image
in .Z=2/n , and so again ˛.X / could not generate ˛.Z=2/n .

Finite generation of …An Collins first studied the group …An , giving a finite pre-
sentation for it. For i ¤ j , let Pij 2…An map xi to xj xixj and fix xk with k ¤ i .
For each 1 � j � n, let �j 2…An map xj to x�1

j and fix xk with k ¤ j . We refer
to Pij as an elementary palindromic automorphism and to �j as an inversion. We let
�˙1.X / denote the group generated by the inversions and the permutations of X . The
group generated by all elementary palindromic automorphisms and inversions is called
the pure palindromic automorphism group of Fn , and is denoted P…An .

Collins showed that …An Š E…An Ì�˙1.X / for n� 2, where E…An D hPij i. The
group �˙1.X / acts on E…An in the natural way, and a defining set of relations for
E…An is given by

(1) ŒPik ;Pjk �D 1,

(2) ŒPij ;Pkl �D 1,

(3) Pij PjkPik D P�1
ik

PjkPij ,

where i; j ; k; l are pairwise different and the obviously undefined relators are omitted
in the nD 2 and nD 3 cases.

We remark that, as noted by Collins [8], this presentation of E…An is very similar to
one given for the pure symmetric automorphism group of Fn , P†An , which consists
of automorphisms taking each x 2 X to a conjugate of itself. This similarity is not
entirely surprising, as we may think of a palindrome yxy as a conjugate yxy�1 ,
working “mod 2” (x;y 2 X ). The embedding Bn ,! …An discussed in Section 1
bears a striking resemblance to Artin’s faithful representation of Bn into †An , the full
symmetric automorphism group, whose members take each x 2X to some conjugate [2,
Corollary 1.8.3]; this similarity arises via the branched double cover map S1

g!D2gC1

[12, Figure 9.13].

Using graph folding techniques of Stallings, we obtain a new proof of finite generation
of …An , as well as finding generating sets for certain fixed-point subgroups of …An .
We first introduce the notation and terminology of Wade [26] regarding graph folding.

Let Rn denote the wedge of n copies of S1 at a point o. We canonically identify
�1.Rn; o/ with Fn by selecting an orientation of each S1 , and labelling the i th copy
of S1 by xi 2X . We shall let xxi denote the edge obtained by reversing the orientation
of xi .
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s

t

t 0

t

fi f 0i

Figure 4: The two types of folding that may occur for our graph morphism � .
Wade [26] refers to the top fold as a type 1 fold, and to the bottom as a type 2
fold. The edges are labelled suggestively: we will demand that s; t 2 T and
fi 62 T .

Now, let Y be a finite graph of rank n with basepoint b . We will view our graphs as
combinatorial objects, rather than topological ones. In particular, morphisms between
graphs must take edges to edges, rather than edge-paths. A free basis for the (free)
fundamental group �1.Y; b/ is obtained in the usual way, by selecting a maximal
tree T in Y , then choosing an orientation of the edges f1; : : : ; fn in Y but not T . To
be consistent with Wade, we canonically orient an edge e of T by declaring its initial
vertex i.e/ to be the one closer to the basepoint b under the edge-path metric on T .

Suppose � W Y !Rn is a morphism of graphs that induces an isomorphism of funda-
mental groups. The morphism � , together with the choice of basepoint b , maximal
tree T and an ordering L of the (oriented) edges of Y n T form a branding of the
graph Y . A graph Y together with a 4-tuple G D .b;T;L; �/ form a branded graph
with branding G .

Each branded graph Y with branding G D .b;T;L; �/ yields an automorphism BG 2

Aut.Fn/, as follows. For each xi in the free basis X of Fn , we have

BG.xi/D ��.yi/;

where fy1; : : : ;yng is the free basis of �1.Y; b/ arising from the choices of b , T

and L in the branding G , and ��W �1.Y; b/! �1.Rn; o/ is the map induced by � .

If the morphism � maps a pair of edges e1 and e2 with i.e1/ D i.e2/ to the same
edge l of Rn , then � factors through the quotient graph Y 0 of Y obtained by folding
e1 and e2 together: that is, the graph obtained by identifying e1 with e2 , and also
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their terminal vertices, t.e1/ and t.e2/, with each other. In particular, if qW Y ! Y 0

is the quotient map obtained by the folding, then there is a unique graph morphism
� 0W Y 0!Rn such that � D � 0 ı q . While Stallings considered more general foldings,
since we require � to induce an isomorphism of fundamental groups, only two types
of folding may arise for us, which are shown in Figure 4.

If we insist that the edges s and t seen in Figure 4 lie in T , and that the edge fi does
not, carrying out either type of fold induces a branding G0 of the folded graph Y 0 (it
is non-trivial to verify that the image of T in Y 0 is a maximal tree; we leave this to
Wade). It may also be the case that we wish to carry out a fold of type 1 or type 2, but
that s or t does not lie in T . Before folding, we must change the maximal tree so that
the relevant edges lie in the new tree. This defines a new branding G00 of Y . In either
case, it may be shown via a careful consideration of �1.Y; b/ (see [26, Propositions 3.2
and 3.3]) that BG D BG0 �W 0 and BG D BG00 �W 00 , where W 0 and W 00 are specified
Whitehead automorphisms of Fn . These are automorphisms which fix some x 2X and
send each xi 2X n fxg to one of xi , xix

�i , x�i xi or x�i xix
��i for some �i 2 f˙1g.

Stallings’ folding algorithm allows us to repeatedly fold the graph Y and its quotients,
beginning with the morphism � W Y !Rn , then continuing to fold via � 0W Y 0!Rn ,
and so on. This procedure eventually terminates when we exhaust the edges we are
able to fold; in this case, Stallings showed that the quotient graph is Rn , and so
the morphism  W Rn! Rn obtained by repeatedly folding via � simply permutes
and perhaps inverts the n loops in Rn . This folding procedure allows us to write
the automorphism BG we began with as a product of Whitehead automorphisms and
permutations and inversions of X .

With the details of folding established, we now put the algorithm to use to find generators
for …An .

Proposition 2.2 Fix 0 � k � n, and let …An.k/ consist of automorphisms which
fix x1; : : : ;xk . (Our convention is that …An.0/D…An ). A finite generating set for
…An.k/ is �

�˙1.X /\…An.k/
�
[fPij j i > kg:

Proof The idea behind this proof was inspired by a proof of Wade [26, Theorem 4.1].

We begin by introducing some terminology. Let �W S ! T be an isomorphism of
finite trees. For a vertex or edge r of S , denote by r 0 the image of r under � . Choose
a distinguished vertex v of S , of valence 1. An arch of S at v (see Figure 5) is the
graph formed by gluing S to T along v and v0 , then, for each vertex r 2 S , adding
some number of edges (possibly zero) between r and r 0 (we allow r D v ). We refer
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v

Figure 5: An example of an arch, with base point v . The dashed edges
indicate the bridges that have been added to the trees that were glued together
at the base point.

to these new edges as bridges. The image of v in the arch forms a natural base point,
and any edge with v as one of its endpoints is called a stem. By a wedge of arches we
mean a collection of arches glued together at their base points. Note that each of the
trees Si and Ti of each arch sit inside Y as subgraphs, and Y is the union of these
subgraphs, together with any bridges inside each arch.

Let � W Y !Rn be a graph morphism, with Y a wedge of arches. We call � symmetric
if for each edge si in each tree Si in each arch of Y we have �.s0i/D �.xsi/. We shall
define two new types of folding that we may carry out to any symmetric morphism
� W Y !Rn , with the resulting morphism � 0W Y 0!Rn on the folded graph Y 0 also
being symmetric.

Let ˛ 2 …An.k/. We may realise ˛ as a morphism of graphs � W Z ! Rn , where
Z is the result of subdividing each S1 of Rn into the appropriate number of edges,
and “spelling out” the word ˛.xi/ on the i th copy of S1 . Precisely, the j th edge
of the oriented, subdivided S1 corresponding to ˛.xi/ is mapped to the loop in Rn

corresponding to the j th letter of ˛.xi/, correctly oriented. Note that Z is a wedge of
arches, and � is symmetric by construction. We thus have ˛ D BG , where G is the
branding of Z arising from the maximal tree that excludes the (appropriately ordered)
middle subdivided edge of each copy of S1 . We now use graph folding to write ˛ as
a product of permutations, inversions and elementary palindromic automorphisms.

Let � W Y ! Rn be symmetric, for some wedge of arches Y , built out of trees Si ,
Ti (1� i � k ). Since � is symmetric, foldings of Y come together in natural pairs.
Consider folds of type 1. For instance, if we are able to fold together two edges hi 2Si

and hj 2 Sj since �.hi/D �.hj / (allowing i D j ), then we will also be able to fold
together h0i and h0j , as they will also both have the same image under � , namely
�. xhi/D �. xhj /. We call this pair of folds a type A 2–fold.
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s s

fj

fk

fl fl

fk

fj

Figure 6: The two adjacent solid edges are folded onto fj . The dashed edges
represent edges excluded from the graph’s chosen maximal tree. In order to
record what effect this type B 2–fold has on the branded graph’s associated
automorphism, we must swap fj into the maximal tree, in place of the stem s .

We may also have a sequence of edges .hj�1; hj ; hjC1/ mapped under � to the
sequence .xx;x; xx/ where x is an oriented edge of Rn , hj�1 2 Si , hjC1 D h0

j�1
and

hj is a bridge. We fold hj�1 and hjC1 onto hj , and call this pair of folds a type B
2–fold. Such a fold is seen in Figure 6.

Doing either of these 2–folds to Y yields another, different wedge of arches, Y 0 , say.
A type B 2–fold simply removes an edge of valence one from Si (and its corresponding
edge in Ti ) by folding it onto a bridge, producing new trees S 0i and T 0i which we use
to construct Y 0 as a wedge of arches. A type A 2–fold similarly alters the trees Si ,
Sj , Ti and Tj , producing new trees S 0i and T 0i in a description of Y 0 as a wedge of
arches. The morphism � 0W Y 0!Rn induced by the folding of Y is again symmetric:
any edges si and s0i that were not folded still satisfy � 0.s0i/D �

0.xsi/ by construction
of � 0 , but so do the images of any folded edges, given how we decompose Y 0 as a
wedge of arches using the new trees S 0i and T 0i .

In order to see what effect these 2–folds have on ˛ 2…An , we must keep track of a
preferred maximal tree T we define on each wedge of arches Y . The edges of Y not
in T are the bridges coming from each arch. In order to carry out a type B 2–fold we
must swap the bridge fj (seen in Figure 6) into the maximal tree. Let pi.fj / denote
the unique reduced path in T joining the base point to the initial vertex of fj . Apart
from one degenerate case, which we deal with separately, we may always swap fj into
the maximal tree T by excluding the stem appearing in pi.fj / . Using calculations of
Wade [26, Propositions 3.2 and 3.3], it is straightforward to verify that the effect of
swapping maximal trees in this way, doing a type B 2–fold, then swapping back to the
maximal tree where all bridges are excluded is to carry out an elementary palindromic
automorphism P

�k

ij to some members of X . Precisely, let � W Y1!Rn be a symmetric
morphism of graphs, where Y1 has branding G1 and let G2 be the induced branding of
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the graph Y2 obtained by carrying out the above series of tree swaps and folds. Then

�G1
D �G2

�P;

where �Gi
is the automorphism of Fn associated to Gi (i D 1; 2) and P is a product

of elementary palindromic automorphisms.

The only degenerate case of the above is when one (and hence both) of the edges we
want to fold onto a bridge is a stem. In this case, we do one of two things. If the bridge
is a loop at the base point v , we carry out two type 2 folds. Otherwise, we change
maximal trees as before then fold one of the stems onto the bridge with a type 1 fold.
This causes the other stem to become a loop, around which we fold the bridge using a
type 2 fold. As before, the automorphism of Fn associated to these sequences of steps
is a product of elementary palindromic automorphisms.

Carrying out a sequence of 2–folds of types A and B eventually produces a map
Rn ! Rn , and so we complete the folding algorithm by applying the appropriate
automorphism from �˙1.X /. Since ˛ 2…An.k/, the graph Z we constructed has
a single loop at the base point for each xi (1 � i � k ), as ˛.xi/ D xi , so the first
k ordered loops of Rn were not subdivided to form Z . Thus, while folding such a
graph Y , we only need Collins’ generators that fix the first k members of the free
basis X . The proposition is thus proved.

Corollary 2.3 The group P…An.k/ of pure palindromic automorphisms that fix
x1; : : : ;xk .0� k � n/ is generated by the set fPij , �i j i > kg.

The principal level 2 congruence subgroup of GL.n;Z/ Recall that �nŒ2� denotes
the principal level 2 congruence subgroup of GL.n;Z/, that is, the kernel of the map
GL.n;Z/ ! GL.n;Z=2/ given by reducing matrix entries mod 2. Let Sij be the
matrix with 1s on the diagonal, 2 in the .i; j / position and 0s elsewhere, and let Oi

be the matrix which differs from the identity matrix only in having a �1 in the .i; i/
position. The following lemma verifies a well-known generating set for �nŒ2� (see,
for example, McCarthy and Pinkall [21, Corollary 2.3]). We include a proof here to
introduce the idea of an “even division algorithm”, which we utilise in the proof of
Theorem 5.1.

Lemma 2.4 The set fOi ;Sij j 1� i ¤ j � ng generates �nŒ2�.

Proof Observe that we may think of the matrices Sij as corresponding to carrying out
“even” row operations, that is, adding an even multiple of one matrix row to another.
Let u be the first column of some matrix in �nŒ2�, and denote by u.i/ the i th row of u.
Let v1 be the standard column vector with a 1 in the first entry and 0s elsewhere.
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Claim The column u can be reduced to ˙v1 using even row operations.

We use induction on ju.1/j. For ju.1/j D 1, the claim is obvious. Now suppose
ju.1/j> 1. As in the proof of Proposition 2.1, we deduce that there must be some u.j/

which is not a multiple of u.1/ . By the division algorithm, there exist q; r 2 Z such
that u.j/ D qju.1/j C r , with 0 � r < ju.1/j. If q is not even, we instead write
u.j/D .qC1/ju.1/jC .r �ju.1/j/. Note that if q is odd, then r ¤ 0, since u.1/ is odd
and u.j/ is even, and so �ju.1/j < r � ju.1/j. Depending on the parity of q , we do
the appropriate number of even row operations to replace u.j/ with r or r � ju.1/j.
In both cases, we have replaced u.j/ with an integer of absolute value smaller than
ju.1/j. It is clear that now we may reduce the absolute value of u.1/ by either adding
or subtracting twice the (new) j th row from the first row, and so by induction we have
proved the claim.

We now induct on n to prove the lemma. It is clear that �1Œ2�D hO1i. Using the above
claim, we may assume that we have reduced M 2 �nŒ2� to the form�

˙1 �

0 N

�
;

where N 2�n�1Œ2�. Our aim is to further reduce M to the identity matrix using the set
of matrices in the statement of the lemma. By induction, we may assume that N can
be reduced to the identity matrix using the appropriate members of fSij ;Oi j i; j > 1g.
Then we simply use even row operations to fix the top row, and finish by applying O1

if necessary.

By Lemma 2.4, the restriction of the canonical map Aut.Fn/! GL.n;Z/ gives the
short exact sequence

1 �! PIn �! P…An �! �nŒ2� �! 1;

since Pij maps to Sji and �i maps to Oi .

The rest of the paper is concerned with finding a generating set for the palindromic
Torelli group PIn . In order to describe our generating set, we introduce some termi-
nology.

Let Y be the image of the free basis X under some automorphism ˛ 2…An . The set
Y is also a free basis for Fn , whose members are palindromes on X ; thus, we refer to
Y as a �–basis. An automorphism � 2 PIn is a doubled commutator transvection
if, for some y1 , y2 , y3 in some �–basis Y , � maps y1 to Œy2;y3�

revy1Œy2;y3�,
and fixes the other members of Y . Observe that � 2 PIn is a doubled commutator
transvection if and only if � is conjugate in …An to the commutator �1 WD ŒP12;P13�.
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An automorphism � 2 PIn is a separating �–twist if, for some y1 , y2 , y3 in some
�–basis Y , � is given by

�.yi/D

8̂̂̂<̂
ˆ̂:

d revy1d if i D 1;

d�1y2.d
rev/�1 if i D 2;

d revy3d if i D 3;

yi otherwise;

where d D y1
�1y2

�1y3
�1y1y2y3 2Fn . It is a straightforward, if lengthy, calculation

to verify that � 2 PIn is a separating �–twist if and only if � is conjugate in …An to
the automorphism

�2 WD .P23P13
�1P31P32P12P21

�1/2 2 PIn:

The definition of a separating �–twist may seem unwieldy; however, it belies a hidden
geometry. The automorphism �2 is the image in PIn under the Nielsen embedding
of the Dehn twist about the curve C seen in Figure 3. We call such automorphisms
separating �–twists to reflect this geometric interpretation.

Theorem A states that doubled commutator transvections and separating �–twists
suffice to generate PIn . To prove this, we construct a new complex on which PIn

acts in a suitable way. We then apply a theorem of Armstrong [1] to conclude that PIn

is generated by the action’s vertex stabilisers. In the following section, we define the
complex and use it to prove Theorem A.

3 The complex of partial �–bases

Day and Putman [11] use the complex of partial bases of Fn , denoted Bn , to derive
a generating set for IAn . We build a complex modelled after Bn , and follow their
approach to find a generating set for PIn .

Fix X WD fx1; : : : ;xng as a free basis of Fn . A �–basis, as discussed above, is a
set of palindromes on X which also forms a free basis of Fn . A partial �–basis
is a set of palindromes on X which may be extended to a �–basis. The complex of
partial �–bases of Fn , denoted B�

n , is defined to be the simplicial complex whose
.k � 1/–simplices correspond to partial �–bases fw1; : : : ; wkg. We postpone until
Section 4 the proof of the following theorem on the connectedness of B�

n .

Theorem 3.1 For n� 3, the complex B�
n is simply connected.

Our complex B�
n is not a subcomplex of Bn , as the vertices of Bn are taken to be

conjugacy classes, rather than genuine members of Fn . We remove this technicality, as
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it can be shown that two odd-length palindromes are conjugate if and only if they are
equal. Given this, it is clear, however, that B�

n is isomorphic to a subcomplex of Bn .

There is an obvious simplicial action of …An on B�
n . This action is, by definition,

transitive on the set of k–simplices, for each 0 � k < n. Further, PIn acts without
rotations, that is, if � 2 PIn stabilises a simplex s of B�

n , then it fixes s pointwise.
Following work of Charney [7] on related complexes, we obtain that the quotient of B�

n

by PIn is highly connected.

Theorem 3.2 For n� 3, the quotient B�
n =PIn is .n� 3/–connected.

The proof of this theorem is discussed in Section 4.

Theorems 3.1 and 3.2 allow us to apply the following theorem of Armstrong [1] to the
action of PIn on B�

n , for n � 4. The statement of the theorem is as given by Day
and Putman [11].

Theorem 3.3 Let G act simplicially on a simply connected simplicial complex X ,
without rotations. Then G is generated by the vertex stabilisers of the action if and
only if X=G is simply connected.

We analyse the vertex stabilisers of PIn using an inductive argument. It is known that
PI1 D 1 and PI2 D 1; the latter equality follows from the fact that IA2 D Inn.F2/

and Inn.Fn/\…AnD 1 for n� 1. We treat the nD 3 case differently, as the quotient
B�

3
=PI3 is not simply connected, and so does not allow us to apply Armstrong’s

theorem directly. This treatment is postponed until Section 5.

A Birman exact sequence We require a version of the free group analogue of the
Birman exact sequence, as developed by Day and Putman [10]. Recall that P…An.k/

consists of the pure palindromic automorphisms fixing x1; : : : ;xk .

Proposition 3.4 For 0� k � n, there exists the split short exact sequence

1 �! Jn.k/ �! P…An.k/ �! P…An�k �! 1;

where Jn.k/ is the normal closure in P…An.k/ of the set fPij j i > k; j � kg.

Proof A map ��W P…An.k/ ! P…An�k is induced by the map � W Fn ! Fn�k

that trivialises each x1; : : : ;xk . Let fykC1; : : : ;yng be a free basis for Fn�k , where
�.xi/ D yi for k C 1 � i � n. Denote by Qij and �i the elementary palindromic
automorphism sending yi to yj yiyj and the inversion sending yi to yi

�1 , respectively
(kC 1� i ¤ j � n).
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By Corollary 2.3, we know that P…An.k/ is generated by the set

S WD fPij ; �i j i > k; 1� j � ng:

If j � k , then ��.Pij / is trivial. If i; j � kC1, then ��.Pij /DQij and ��.�i/D �i ,
so we have that �� is surjective, by examining Collins’ generators for P…An�k . Indeed,
the map �� has a section, taking Qij to Pij and �i to �i , which we know is well-
defined by Collins’ finite presentation for P…An�k . Thus, we obtain a split short exact
sequence via the epimorphism �� .

All that is left to establish is the kernel of �� . Notice that we have a presentation
for P…An�k in terms of the generating set ��.S/: explicitly, we add the relations
��.Pij /D 1 for j � k to Collins’ relations on the set fQij ; �ig. It is a standard fact
(see, for example, Magnus, Karrass and Solitar [20, proof of Theorem 2.1]) that the
kernel of �� is the normal closure in P…An.k/ of the obvious lifts of the defining
relators on ��.S/. The only defining relators with non-trivial lifts in P…An.k/ are
the relators ��.Pij / with j � k , thus the kernel is Jn.k/ as in the statement of the
proposition.

Our “Birman kernel” Jn.k/ is rather worse behaved than the analogous Birman kernel
of Day and Putman. Their kernel, denoted Kn;k;l , is finitely generated, whereas it may
be shown by adapting the proof of their Theorem E that Jn.k/ is not. This difference is
due in part to the fact that their version of P…An.k/ need only fix each of x1; : : : ;xk

up to conjugacy. The lack of finite generation of Jn.k/ is, however, not an obstacle to
the goal of the current paper; we only require that Jn.k/ is normally generated by a
finite set.

Our Birman exact sequence projects into GL.n;Z/ in an obvious way, made precise
in the following lemma. Let vi denote the image of xi 2 Fn under the abelianisation
map. We denote by �nŒ2�.k/ the members of �nŒ2� which fix v1; : : : ; vk 2Zn , and by
Hn.k/ the group Hom.Zn�k ; .2Z/k/.

Lemma 3.5 Fix 0� k � n. Then there exists the commutative diagram

1 // Jn.k/ //

����

P…An.k/ //

����

P…An�k

s

ii

//

����

1

1 // Hn.k/ // �nŒ2�.k/ // �n�k Œ2�

t

ii

// 1

of split short exact sequences, where s and t are the obvious splitting homomorphisms.
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Proof The top row is given by Proposition 3.4. A generating set for �nŒ2�.k/ follows
from the proof of Lemma 2.4; it is precisely the image in GL.n;Z/ of fPij ; �i j i > kg,
the generating set of P…An.k/ given by Corollary 2.3. The bottom row then follows by
an argument similar to the proof of Proposition 3.4, noting that the kernel is generated
by the images of Pij .i > k , j � k/. It is straightforward to verify that this kernel
is Hom.Zn�k ; .2Z/k/. Intuitively, ˛ 2Hom.Zn�k ; .2Z/k/ encodes how many (even)
multiples of vj .1� i � k/ are added to each vi .k < j � n/.

The only vertical map left to consider is the right-most one. Its existence and surjectivity
follow from Lemma 2.4. It is clear that all the arrows commute, and that the splitting
homomorphisms s and t are compatible with the commutative diagram, so the proof
is complete.

A generating set for Jn.1/\PIn By mapping P…An.k/ into �nŒ2�.k/ then con-
jugating the normal subgroup Hn.k/, we obtain a homomorphism ˛k W P…An.k/!

Aut.Hn.k//. Setting k D 1, we obtain the following lemma.

Lemma 3.6 The group Jn.1/\PIn is normally generated in Jn.1/ by the set˚
ŒPij ;Pi1�; ŒPij ;Pj1�P

2
i1 j 1< i ¤ j � n

	
:

Proof By Lemma 3.5, there is a short exact sequence

1 �! Jn.1/\PIn �! Jn.1/ �!Hn.1/ �! 1:

The set Y WD f�Pj1�
�1 j� 2P…An.1/; 1< j �ng generates Jn.1/ by Proposition 3.4.

Let aj denote the image of Pj1 in GL.n;Z/. A direct calculation verifies that the set
faj g is a free abelian basis for Hn.1/.

For � 2 P…An.1/, let x� denote the image of � in �nŒ2�.1/, and let xY denote the
image of Y . The set of relations˚

Œai ; aj �D 1; x�ai
x��1
D ˛1.�/.ai/ j 1< i ¤ j � n; � 2 P…An.1/

	
;

together with the generating set xY , forms a presentation for Hn.k/. It is clear that the
image of any member of Y in Hn.1/ is a word on the free abelian basis faig, and that
this word is determined by the homomorphism ˛1 .

The group Jn.1/\ PIn is normally generated in Jn.1/ by the obvious lifts of the
(infinitely many) relators in the given presentation for Hn.1/. The relators of the form
Œai ; aj � have trivial lift, and so are not required in the generating set. Let C be the
finite generating set for P…An.1/ given by Corollary 2.3. It can be shown that the
obvious lift of the finite set of relators

D WD f Ncaj Nc
�1˛1.c/.aj /

�1
j c 2 C˙1; 1< j � ng
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suffices to normally generate Jn.1/\PIn . This may be seen using a simple induction
argument on the length of a given expression of � 2 P…An.1/ on C˙1 .

All that remains is to verify that the obvious lift of D is the set given in the statement
of the lemma; this is a straightforward calculation.

We now prove Theorem A using the action of PIn on B�
n .

Proof of Theorem A Recall that the set of doubled commutator transvections in PIn

is precisely the conjugacy class of ŒP12;P13� in …An , and that the set of separating
�–twists in PIn is precisely the conjugacy class of

.P23P13
�1P31P32P12P21

�1/2

in …An .

The group PIn acts on B�
n simplicially and without rotations. Combining Theorems

3.1, 3.2 and 3.3, we conclude that, for n� 4, PIn is generated by the vertex stabilisers
of the action on B�

n .

Let PIn.1/ denote the stabiliser of the vertex x1 . Since …An acts transitively on the
vertices of B�

n , the stabiliser in PIn of any vertex is conjugate in …An to PIn.1/.
Lemma 3.5 gives us the split short exact sequence

1 �! Jn.1/\PIn �! PIn.1/ �! PIn�1 �! 1:

We induct on n. By the above split short exact sequence, to generate PIn.1/ it suffices
to combine a generating set of Jn.1/\PIn.1/ with a lift of one of PIn�1 .

We begin with the base case, nD 3. In Section 5, we verify that the presentation of
�3Œ2� given in Corollary 1.1 is correct when nD 3. Given the short exact sequence

1 �! PI3 �! P…A3 �! �3Œ2� �! 1;

we may take the obvious lifts of the relators in this presentation as a normal generating
set for PI3 in P…A3 . Relators 1–7 are trivial when lifted. Relator 8 lifts to ŒPij ;Pik �

and relator 9 lifts to ŒPjk ;Pij �Pik
�2 , which equals Pik ŒPij ;Pik �Pik

�1 . Thus the lifts
of relators 8 and 9 are conjugate to ŒP12;P13� in …A3 . Finally, relator 10 lifts to

.P23P13
�1P31P32P12P21

�1/2;

so the base case n D 3 is true, as each relator lifts to either a doubled commutator
transvection, a separating �–twist or the identity automorphism.

Now suppose n > 3. By induction, the group PIn�1 is generated by the purported
generating set. We lift this generating set to PIn.1/ in the obvious way.
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By Lemma 3.6, we need only add in Jn.1/–conjugates of the words ŒPij ;Pi1� and
ŒPij ;Pj1�P

2
i1

, for 1 < i ¤ j � n. The former are clearly conjugate in …An to the
doubled commutator transvection ŒP12;P13�. For the latter, observe that

ŒPij ;Pj1�P
2
i1 D ŒPij ;P

�1
i1 �;

which again is conjugate in …An to ŒP12;P13�, so we are done.

Theorem A allows us to conclude that PIn is normally generated in …An by the
automorphisms �1 D ŒP12;P13� and

�2 D .P23P13
�1P31P32P12P21

�1/2:

Let �n � …An denote the symmetric group on X . The presentation for �nŒ2� Š

P…An=PIn given in Corollary 1.1 follows from Theorem A by adding the �n–orbits
of �1 and �2 to Collins’ presentation for P…An as relators, then applying the obvious
Tietze transformations.

We now demonstrate that the presence of separating �–twists in our generating set for
PIn is necessary.

Proposition 3.7 For n� 3, the group generated by doubled commutator transvections
is a proper subgroup of PIn .

Proof Let D denote the subgroup of PIn generated by doubled commutator transvec-
tions. In other words, D is the normal closure of �1 D ŒP12;P13� in …An . Then the
�n–orbit of �1 is a normal generating set for D in P…An . Adding the members of
this orbit to the presentation of P…An as relators yields a finite presentation Q of
P…An=D , which may be altered using Tietze transformations so that it looks like the
presentation in Corollary 1.1, with relator 10 (and relator 7, if nD 3) removed (where
we interpret Sij and Oi as formal symbols, rather than matrices). We shall show that
the relations of Q are not a complete set of relations on the generating set fSij ;Oig

for �nŒ2�Š P…An=PIn , and so conclude that D¤ PIn .

It is easily shown that for

� WD .S32S31
�1S13S23S21S12

�1/2;

the image of �2 in �nŒ2�, is trivial, but we shall show that � is non-trivial in the group
presented by Q. Observe that by trivialising all the generators of �nŒ2� except for S12

and S21 , we surject �nŒ2� onto the free Coxeter group generated by the images of S12

and S21 , say A and B , respectively. This is easily verified by examining the relators
of Q. The image of � under this map is ABAB ¤ 1, and so � is non-trivial in the
group presented by Q. Therefore D is a proper subgroup of PIn .
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Note that in the proof of Proposition 3.7 we also showed that relators 1–9 of Corollary 1.1
are not a sufficient set of relators that hold between the Oi and Sjk , as relator 10 is
not a consequence of the others. This allows us to conclude that the quotient space
B�

3
=PI3 is not simply connected.

Corollary 3.8 The complex B�
3
=PI3 is not simply connected.

Proof By Theorem 3.3, the complex B�
3
=PI3 is simply connected if and only if

PI3 is generated by the vertex stabilisers of the action of PI3 on B�
3

. As in the
proof of Theorem A, the group generated by the vertex stabilisers of this action may
be normally generated in …A3 by the group PI3.1/. The same calculations as in the
proof of Theorem A show that PI3.1/ is the normal closure of the doubled commutator
transvection ŒP12;P13�. However, Proposition 3.7 showed that this normal closure is a
proper subgroup of PI3 , so the quotient B�

3
=PI3 is not simply connected.

4 The connectivity of B�
n and its quotient

In this section, we determine the levels of connectivity of B�
n and B�

n =PIn . The
former is found to be simply connected, following the same approach as Day and
Putman [11], while the latter is shown to be closely related to a complex already studied
by Charney [7], which is .n� 3/–connected.

The connectivity of B�
n First, we recall the definition of the Cayley graph of a

group. Let G be a group with finite generating set S . The Cayley graph of G

with respect to S , denoted Cay.G;S/, is the graph with vertex set G and edge set
f.g;gs/ j g 2 G; s 2 S˙1g, where an ordered pair .x;y/ indicates that vertices x

and y are joined by an edge. If s 2 S has order 2, we identify each pair of edges
.g;gs/ and .g;gs�1/ for each g 2 G , to ensure that the Cayley graph is simplicial.
Similarly, we also insist that the identity element of G is excluded from S .

We establish Theorem 3.1 by constructing a map ‰ from the Cayley graph of …An

to B�
n and demonstrating that the induced map of fundamental groups is both surjective

and trivial. We require the Cayley graph of …An with respect to a particular generating
set, which we now describe. Assume that n� 3. For 1� i ¤ j < n, let tij permute xi

and xj , fixing xk with k ¤ i; j . Using the symmetric group action on X , we deduce
from Proposition 2.2 that we may generate …An using the set

Z WD ftij ; �2; �3;P21;P23;P31;P34 j 1� i ¤ j � ng:

We may use the symmetric group action on X to streamline the presentation of …An

given in Section 2, to obtain the following list of defining relators for …An on the
generating set Z :
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(1) tij D tji ,

(2) tij
2 D 1,

(3) utij u�1 D tu.i/u.j/ ,

(4) �2
2 D 1,

(5) .�2�3/
2 D 1,

(6) Œ�2;P31�D 1,

(7) .�2P21/
2 D 1,

(8) .�3P23/
2 D 1,

(9) P23P31P21 D P21
�1P31P23 ,

(10) ŒP21;P31�D 1,

(11) ŒP21;P34�D 1,

(12) �3 D t23�2t23 ,

(13) P31 D t23P21t23 ,

(14) P23 D t13P21t13 ,

(15) P34 D t14t23P21t23t14 ,

(16) P21 D wP21w
�1 for w 2W ,

(17) �2 D v�2v
�1 for v 2 V ,

where 1� i ¤ j � n, u 2 ftij g, and W and V are the sets of words on ftij g that fix
both x1 and x2 , and only x2 , respectively. The relations of type 16 and 17 arise due
to the streamlining of the presentation of …An D E…An Ì�˙1.X / given in Section 2.
Note that relations 1–3 are a complete set of relations for the symmetric group, when
generated by the transpositions ftij g [25].

We now consider the Cayley graph Cay.…An;Z/. Observe that for each z 2Z either
z.x1/D x1 or fx1; z.x1/g forms a partial �–basis for Fn . This allows us to construct
a map of complexes from the star of the vertex 1 in Cay.…An;Z/ to B�

n , by mapping
an edge z 2Z˙1 to the edge v1�z.v1/ (which may be degenerate). Using the actions
of …An on Cay.…An;Z/ and B�

n , we can extend this map to a map of complexes
‰W Cay.…An;Z/ ! B�

n . Explicitly, ‰ takes a vertex z1 � � � zr of Cay.…An;Z/

(zi 2Z˙1 ) to the vertex z1 � � � zr .x1/.

Proof of Theorem 3.1 This proof is modelled on Day and Putman’s proof of [11,
Theorem A]. Let

‰�W �1.Cay.…An;Z/; 1/! �1.B
�
n ;x1/

be the map of fundamental groups induced by ‰ . Explicitly, the image of a loop
z1 � � � zk (zi 2Z˙1 ) in �1.Cay.…An;Z/; 1/ under ‰� is

x1� z1.x1/� z1z2.x1/� � � � z1z2 � � � � zk.x1/D x1:

We first show that ‰� is the trivial map, then show that it is also surjective.

Recall that the Cayley graph C of a group G with presentation hX j Ri forms the
1–skeleton of its Cayley complex, which we obtain by attaching disks along the loops
in C corresponding to all conjugates in G of the words in R. It is well-known that
the Cayley complex of a group G is simply connected [19, Proposition 4.2]. We now
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verify that the loops in �1.Cay.…An;Z/; 1/ corresponding to the relators in the above
streamlined presentation for …An have trivial image under ‰� . This allows us to
extend ‰ to a map from the (simply connected) Cayley complex of …An (rel Z ), and
so conclude that ‰� is trivial.

Note that in the following we confuse a relator with the loop in �1.Cay.…An;Z/; 1/

to which it corresponds. Many of the relators 1–17 map to x1 in B�
n , as they are words

on members of Z that fix x1 . The only ones we need to check are 1–3 and 14–17.
Relators 1–3 map into the contractible simplex spanned by x1; : : : ;xn , so are trivial.
Relators 14 and 15 are mapped into the simplices x1�x3 and x1�x4 , respectively.
We rewrite relators 16 and 17 as P21w D wP21 and �2v D v�2 . It is clear, then, that
relators of type 16 map into the contractible subcomplex of B�

n spanned by x1; : : : ;xn

and x1x2x1 , and relators of type 17 map into the contractible subcomplex spanned by
x1;x2

˙1; : : : ;xn . All relators have now been dealt with, so we conclude that ‰� is
the trivial map.

We argue as in Day and Putman’s proof [11] for the surjectivity of ‰� . We represent a
loop ! 2 �1.B

�
n ;x1/ as

x1 D w0�w1� � � � �wk D x1;

for some k � 0. We will demonstrate that for any such path (not necessarily with
wk D x1 ), there exist �1; : : : ; �k 2…An.1/ such that

wi D �1t12�2t12 � � ��i t12.x1/

for 0 � i � k . We use induction. In the case k D 0, there is nothing to prove. Now
suppose k > 0. Consider the subpath

w0�w1� � � � �wk�1:

By induction, to prove the claim all we need find is �k 2…An.1/ such that

wk D �1t12 � � ��k t12.x1/:

We know that wk�1D �1t12 � � ��k�1t12.x1/ and wk form a partial �–basis, therefore
so do x1 and .�1t12 � � ��k�1t12/

�1.wk/. By construction, the action of …An is
transitive on the set of two-element partial �–bases, so there exists �k 2 …An.1/

mapping x2 to .�1t12 � � ��k�1t12/
�1.wk/. Therefore

wk D �1t12 � � ��k t12.x1/;

as required.

Now we define
�kC1 D .�1t12 � � ��k t12/

�1;
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so that
R WD �1t12 � � ��k t12�kC1 D 1

is a relation in …An . Observe that since wk D x1 , we have �kC1 2…An.1/. Also,
the generating set Z contains a subset that generates …An.1/, by Proposition 2.2. We
are thus able to write

�i D zi
1 � � � z

i
pi
;

for some zi
j 2 Z˙1 (1 � i � k C 1, 1 � j � pi ), each of which fixes x1 . We see

that R 2 �1.Cay.…An;Z/; 1/ maps to ! 2 �1.B
�
n ;x1/. Removing repeated vertices,

R maps to
x1��1t12.x1/� � � � ��1t12 � � ��k t12.x1/D x1;

which equals ! by construction. Hence ‰� is surjective as well as trivial, and hence
�1.B

�
n ;x1/D 1.

The connectivity of B�
n=PIn A complex analogous to B�

n may be defined when
working over Zn rather than Fn . We write Bn.Z/ for the complex of partial bases
of Zn , whose .k � 1/–simplices correspond to subsets fu1; : : : ;ukg of free abelian
bases of Zn . Writing members of Zn multiplicatively, there is an analogous notion of
an odd palindrome on some fixed free abelian basis V , and so also of a partial �–basis.
The complex of partial �–bases of Zn is defined in the obvious way, and denoted
B�

n .Z/. Just as …An acts transitively on the set of �–bases of Fn , so does �nŒ2� act
transitively on the set of �–bases of Zn , as we now verify.

Lemma 4.1 The group �nŒ2� acts transitively on the set of �–bases of Zn .

Proof By definition, any �–basis is of the form fM v1; : : : ;M vng, for M 2 �nŒ2�

and fv1; : : : ; vng the standard basis of Zn , where vi has 1 in the i th position and 0s
elsewhere. Thus, we have a well-defined action of �nŒ2� on the set of �–bases of Zn

by left-multiplication of basis elements, which is transitive, as every �–basis lies in
the same orbit as fv1; : : : ; vng.

We first show that B�
n =PIn ŠB�

n .Z/, then show that B�
n .Z/ is .n� 3/–connected

using a related complex studied by Charney. To prove the former, the following lemma
is required.

Lemma 4.2 Fix fu1; : : : ;ung as a �–basis for Zn , and let �W Fn ! Zn be the
abelianisation map. Let zU D f Qu1; : : : ; Qukg be a partial �–basis of Fn such that
�. Qui/Dui for each 1� i �k . Then we can extend zU to a �–basis of Fn , f Qu1; : : : ; Qung,
such that �. Qui/D ui for 1� i � n.
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Proof Extend f Qu1; : : : ; Qukg to a full �–basis of Fn , f Qu1; : : : ; Quk ; Qu
0
kC1

; : : : ; Qu0ng, and
define u0j D �. Qu

0
j / for kC 1� j � n. Then fu1; : : : ;uk ;u

0
kC1

; : : : ;u0ng is a �–basis
for Zn . By Lemma 4.1, the group �nŒ2� acts transitively on the set of �–bases of Zn ,
so there exists � 2 �nŒ2�.k/ such that �.u0j /D uj for kC 1� j � n. By Lemma 3.5,
� lifts to some Q� 2 P…An.k/, and the �–basis f Qu1; : : : ; Quk ; Q�. Qu

0
kC1

/; : : : ; Q�. Qu0n/g

projects onto fu1; : : : ;ung as desired.

Now we establish an isomorphism of simplicial complexes B�
n =PIn ŠB�

n .Z/.

Theorem 4.3 The spaces B�
n =PIn and B�

n .Z/ are isomorphic as simplicial com-
plexes.

Proof Let �W Fn ! Zn be the abelianisation map, and define a map of simplicial
complexes ˆW B�

n !B�
n .Z/ on simplices by fw1; : : : ; wkg 7! f�.w1/; : : : ; �.wk/g

for 1 � k � n. The map ˆ is surjective: by Lemma 4.2, each �–basis of Zn is the
image of some �–basis of Fn , and �–bases of Zn correspond to maximal simplices
of B�

n .Z/.

It is clear that the map ˆ is invariant under the action of PIn on B�
n , and so ˆ factors

through B�
n =PIn . To establish the theorem, all we need do is show that the induced

map from B�
n =PIn!B�

n .Z/ is injective. In other words, we must show that if two
simplices s; s0 of B�

n have the same image under ˆ, then s and s0 differ by the action
of some member of PIn .

Suppose that sD fw1; : : : ; wkg and s0D fw0
1
; : : : ; w0

k
g have the same image under ˆ.

We may assume that �.wi/ D �.w
0
i/ for 1 � i � k . Let ˆ.s/ D f xw1; : : : ; xwkg, and

extend this partial �–basis of Zn to a full �–basis W Df xw1; : : : ; xwng. By Lemma 4.2,
we may extend fw1; : : : ; wkg to fw1; : : : ; wng and fw0

1
; : : : ; w0

k
g to fw0

1
; : : : ; w0ng

such that both of these full �–bases map onto W . Define � 2…An by �.wi/D w
0
i

for 1� i � n. By construction, �.s/D s0 and � 2 PIn , so the theorem is proved.

This more explicit description of B�
n =PIn as B�

n .Z/ enables us to investigate the
quotient’s connectivity.

Proof of Theorem 3.2 By a unimodular sequence in Zn , we mean an (ordered)
sequence .u1; : : : ;uk/� .Z

n/k whose entries form a basis of a direct summand of Zn .
Observe that this is just an ordered version of the notion of a partial basis of Zn . The set
of all such sequences of length at least one form a poset under subsequence inclusion.
Charney considers (among others) the subposet of sequences .u1; : : : ;uk/ such that
each ui is congruent to a standard basis vector vj under mod 2 reduction of the entries
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of ui . We denote by Xn the poset complex given by the subposet of such sequences.
Theorem 2.5 of Charney [7] says that Xn is .n� 3/–connected.

Let B�
n .Z/

� denote the barycentric subdivision of B�
n .Z/. Label each vertex of

B�
n .Z/

� by the partial �–basis associated to the simplex of B�
n .Z/ to which the

vertex corresponds. Define a simplicial map hW Xn ! B�
n .Z/

� by .u1; : : : ;uk/ 7!

fu1; : : : ;ukg. We may think of h as “forgetting the order” of each unimodular sequence.
Comparing the definitions of Xn and B�

n .Z/, it is not immediately clear that h is
well-defined, as there might be some vertex .u1; : : : ;uk/ of Xn such that fu1; : : : ;ukg

extends to a full basis of Zn , but not a full �–basis. However, viewing the full basis
of Zn as a matrix in �nŒ2�, a straightforward column operations argument shows that
this cannot be the case, so h is well-defined.

We see that h induces a map �i.Xn/! �i.B
�
n .Z/

�/ for i � 0, and show that the
induced map is surjective. Set a consistent lexicographical order on the vertices of
B�

n .Z/
� , and view ! 2�i.B

�
n .Z/

�/ as a simplicial i–sphere. The chosen lexicograph-
ical ordering allows us to lift ! to �i.Xn/, so the induced maps are surjective. The
statement of the theorem follows immediately, since �i.Xn/D 1 for 0� i � n� 3.

5 A presentation for �3Œ2�

In order to apply Armstrong’s theorem [1], it must be the case that B�
n =PInŠB�

n .Z/
is simply connected. However, as we have seen from Corollary 3.8, the space B�

3
.Z/

has non-trivial fundamental group. The case nD 3 forms the base case of our inductive
proof of Theorem A, so we require an alternative approach to find a generating set
for PI3 . Our approach is to find a specific finite presentation of �3Œ2�, and use the
short exact sequence

1 �! PI3 �! P…A3 �! �3Œ2� �! 1

to lift the relators in the presentation of �3Œ2� to a normal generating set for PI3 .

The augmented partial �–basis complex for Z3 By adding simplices to the com-
plex B�

3
.Z/, we obtain a simply connected complex that �3Œ2� acts on. This action

allows us to present �3Œ2�.

Recall that Bn.Z/ is the partial basis complex of Zn . We represent its vertices by
column vectors uD .u.1/; : : : ;u.n//T . For use in the proof of Theorem 5.1, we follow
Day and Putman [11] and define the rank of u to be ju.n/j, and denote it by R.u/. Let
Y denote the full subcomplex of B3.Z/ spanned by B�

3
.Z/ and vertices u for which

u.1/ and u.2/ are odd and u.3/ is even. We call Y the augmented partial �–basis
complex for Z3 . We now demonstrate that Y is simply connected.
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Theorem 5.1 The complex Y is simply connected.

Proof By Theorem 2.5 of Charney [7], we know that B�
3
.Z/ is 0–connected, and

hence so is Y . To show that Y is simply connected, we adapt the proof of Theorem B
of Day and Putman [11].

Let u be a vertex of a simplicial complex C . The link of u in C , denoted lkC .u/, is
the full subcomplex of C spanned by vertices joined by an edge to u. Let v3 2 Z3

be the standard basis vector with third entry 1 and 0s elsewhere. Observe that for any
vertex u 2 Y we have lkY.u/Š lkY.v3/. This is because the group generated by �3Œ2�

and the matrix

E D

241 0 0

1 1 0

0 0 1

35
acts simplicially on Y and transitively on the 0–skeleton of Y . This action is transitive
on vertices because �3Œ2� acts transitively on the vertices of B�

3
.Z/, and any vertex of

Y nB�
3
.Z/ may be taken to a vertex of B�

3
.Z/ by acting on it with E .

We begin by establishing that lkY.v3/ is connected (and hence, by the above, so is the
link of any vertex of Y ). By considering what the columns of M 2 GL.3;Z/ whose
final column is v3 must look like, we see that a necessary and sufficient condition
for .u.1/;u.2/;u.3//T to be a member of lkY.v3/ is that .u.1/;u.2//T is a vertex of
B2.Z/. The link lkY.v3/ may thus be described as follows: it has one vertex for each
pair .a; b/, where a is a vertex of B2.Z/ and b 2 2Z, with vertices .a; b/ and .c; d/
joined by an edge if and only if a and c are joined by an edge in B2.Z/. Hence lkY.v3/

is connected, though note that its fundamental group is an infinite-rank free group.

Now, let ! 2 �1.Y; v3/. We represent ! by the sequence of vertices

w0�w1� � � � �wr ;

where wi (1� i � r ) are vertices of Y , and w0Dwr Dv3 . Our goal is to systematically
homotope this loop so that the rank of each vertex in the sequence is 0. Such a loop
may be contracted to the vertex v3 , and so is trivial in �1.Y/.

Consider a vertex wi for some 1< i < r , with R.wi/¤ 0. Since lkY.wi/ is connected,
there is some path

wi�1� q1� q2� � � � � qs �wiC1

in lkY.wi/, as seen in Figure 7. Fix attention on some qj (1� j � s ). By the division
algorithm, there exist aj ; bj 2Z such that R.qj /Daj �R.wi/Cbj , with 0�bj <R.wi/.
As in the proof of Lemma 2.4, we wish to ensure that aj is even, if possible. In all but
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. . .

. . .

wi

wi�1 wiC1

q1 qs

Qq1 Qqs

Figure 7: We find two homotopic paths that bound a disk inside lkY.wi/ ,
where the “upper” path seen here is constructed so that R. Qqj / <R.qj / for
1� j � s .

one case, we will be able to rewrite the division algorithm as R.qj /DAj �R.wi/CBj ,
for some Aj ;Bj 2Z such that Aj is even and 0�jBj j<R.wi/. We do a case-by-case
parity analysis. Note that since qj and wi are joined by an edge, R.qj / and R.wi/ can-
not both be odd, otherwise qj and wi would both map to the same member of .Z=2/3

when we reduce their entries mod 2. This would prohibit fqj ; wig from extending to a
basis J of Z3 , otherwise the image of J in .Z=2/3 would generate despite only having
two members. If R.qj / and R.wi/ have different parities and aj is odd, we may take
Aj DajC1 and Bj Dbj�R.wi/. In that case, jBj j<R.wi/, since bj must be odd and
hence non-zero. If both R.qj / and R.wi/ are even, we may still do this, unless bj D 0.

We now associate to each qj a new vertex, Qqj , defined by

Qqj D

8<:
qj � aj �wi if aj even,
qj �Aj �wi if aj odd, bj ¤ 0;

qj � aj �wi if aj odd, bj D 0:

Note that R. Qqj / D 0 when bj D 0, and under the conditions given, Qqj is always
well-defined as a vertex of Y . The path

wi�1� q1� � � � � qs �wiC1

is homotopic inside lkY.wi/ to the path

wi�1� Qq1� � � � � Qqs �wiC1;

as seen in Figure 7. By construction, R. Qqj / <R.wi/. Iterating this procedure contin-
ually homotopes ! until it is inside the contractible (full) subcomplex spanned by v3

and lkY.v3/, and hence is trivial. Therefore �1.Y/D 1.
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v1 v2

v1C v2

v3

Figure 8: The quotient complex of Y under the action of �3Œ2� . We have
labelled its vertices using representatives from the vertex set of Y .

The complex B�
3
.Z/ is not simply connected It may be tempting to try to use the

method in the above proof to show that B�
3
.Z/ is simply connected; however, we

know by Corollary 3.8 that B�
3
.Z/ has non-trivial fundamental group. The obstruction

to the above proof going through occurs when defining Qqj in the case that aj is odd
and bj D 0, as Qqj 62B

�
3
.Z/. When aj is odd and bj D 0, there is no even multiple

of wi that can be added to qj to decrease its rank, so this method of homotoping loops
to a point will not work.

Presenting �3Œ2� Let �3Œ2�.w1; : : : ; wk/ denote the stabiliser of the ordered tuple
.w1; : : : ; wk/ of vertices of Y . Having demonstrated that Y is simply connected, we
now turn our attention to the obvious action of �3Œ2� on Y . This action is simplicial,
does not invert edges, and the quotient complex under the action is contractible, as
seen in Figure 8. The quotient lifts to a subcomplex W of Y via the vertex labels seen
in Figure 8. This subcomplex is what Brown [6] refers to as a fundamental domain
for the action, and so a theorem of Brown [6, Theorem 3] allows us to conclude that
�3Œ2� is the free product of the stabilisers of the vertices of W modulo edge relations,
which identify the copies of the edge stabiliser �3Œ2�.a; b/ inside the vertex stabilisers
�3Œ2�.a/ and �3Œ2�.b/, where a; b 2 fv1; v2; v3; v1C v2g are distinct.

We obtain a finite presentation for �3Œ2�.v1/ using the semi-direct production decom-
position of �3Œ2�.v1/ given by Lemma 3.5 (noting that �2Œ2� Š P…A2 ). The group
�3Œ2�.v1/ is generated by the set fO2;O3;S23;S32;S12;S13g, with a complete list of
relators given by all relators of the form 1–9 (excluding 7, as it is not defined when
nD 3) seen in Corollary 1.1. By permuting the indices accordingly, we also obtain
finite presentations for the stabiliser groups �3Œ2�.v2/ and �3Œ2�.v3/. Identifying the
edge stabiliser subgroups of these three groups appropriately, we obtain the presentation
seen in Corollary 1.1 without relators 7 and 10; we denote this presentation by P .
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We now see that the effect of identifying the edge stabiliser subgroups of �nŒ2�.v1Cv2/

with the corresponding copies inside the other three vertex stabiliser groups is to include
one additional relator: relator 10. Since �3Œ2�.v1C v2/ and �3Œ2�.v1/ are conjugate
inside GL.3;Z/, we take a formal presentation for �3Œ2�.v1C v2/ by adding a “hat”
to each of the symbols in the presentation of �3Œ2�.v1/.

The members of �3Œ2�.v1C v2/ are not, however, strings of formal symbols, but are
members of �3Œ2�. To express them as such, we observe that

�3Œ2�.v1C v2/DE21 ��3Œ2�.v1/ �E21
�1;

where E21 is the elementary matrix with 1 in the .2; 1/ position. In Table 1 we see
the conjugates of the generators of �3Œ2�.v1/ by E21 . These give expressions for the
formal symbols generating �3Œ2�.v1C v2/. For example,

yS12 DE21S12E21
�1
DO1O2S21S12

�1:

Generator M of �3Œ2�.v1/ The conjugate yM DE21 �M �E21
�1

O2 S21O2

O3 O3

S12 O1O2S21S12
�1

S13 S13S23

S23 S23

S32 S32S31
�1

Table 1: The conjugates of the generating set of �3Œ2�.v1/ by E21

Let fi be the edge joining v1Cv2 to vi (1� i � 3), and let Ji be the stabiliser of fi .
We consider these each in turn. Observe that

J2 DE21 ��3Œ2�.v1; v2/ �E21
�1;

so J2 is generated by fO3;S13S23;S23g. We have expressed those three generators
in terms of the generators of �3Œ2�.v1/. To obtain the relations corresponding to this
edge stabiliser, we must express them using the generators of �3Œ2�.v1C v2/, and set
them to be equal accordingly. Consulting Table 1, we get the edge relations

yO3 DO3; yS13 D S13S23 and yS23 D S23:

Note that these relations simply reiterate the expressions we had already determined for
yO3 , yS13 and yS23 . Similarly, as we obtain J3 by conjugating �3Œ2�.v1; v3/ by E21 ,

the edge relations arising from the edge f3 are

yO2 D S21O2; yS12 DO1O2S21S12
�1 and yS32 D S32S31

�1:
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Finally, to obtain J1 , we conjugate �3Œ2�.v1; v2/ by the elementary matrix E12 . We
obtain that J1 is generated by fO3;S13;S13S23g, which gives edge relations yO3DO3 ,
S13 D

yS13
yS�1

23
and yS13 D S13S23 . Note that these relations all arise as consequences

of the edge relations coming from the edges f2 and f3 , so are not required.

We now use these edge relations to replace the formal relators defining �3Œ2�.v1C v2/

with words on the generating set fSij ;Okg. Using Tietze transformations and Brown’s
Theorem 3 [6], we may then conclude that a complete presentation for �3Œ2� is obtained
by adding these relators to the presentation P . For example, the relator yO2

2
becomes

.S21O2/
2 . All but one of these additional relators are consequences of ones already

in P . The one relator that is not is Œ yS13; yS32� yS
�2
12

, which becomes

ŒS13S23;S32S31
�1�.O1O2S21S12

�1/�2:

Using the other relations in �3Œ2�, this word may be rewritten in the form of relator 10
in Corollary 1.1; we have thus verified that the presentation given in Corollary 1.1 is
correct when nD 3. This proves Proposition 1.2.
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