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Abstract. We study several properties of the modulus of order bounded
disjointness-preserving operators. We show that, if T is an order bounded
disjointness-preserving operator, then T and |T | have the same compactness
property for several types of compactness. Finally, we characterize Banach lat-
tices having b-AM -compact (resp., AM -compact) operators defined between
them as having a modulus that is b-AM -compact (resp., AM -compact).

1. Introduction

In this article, our primary focus is on the properties of the class of disjointness-
preserving operators and the class of b-AM -compact operators. Various authors
have studied disjointness-preserving operators. In order to read the recent research
on order bounded disjointness-preserving operators see, for example, [7], [10],
and [12]. Meyer proved that an order bounded disjointness-preserving operator
T : E → F between two Archimedean Riesz spaces has a modulus that is a lattice
homomorphism and that |T ||x| = |Tx| for all x ∈ E. Another important result
related to order bounded disjointness-preserving operator is the polar decomposi-
tion theorem (see [8, Theorem 7]). In this paper, we prove a simplified version of
the polar decomposition of disjointness-preserving operators on Banach lattices.
This version is used with Meyer’s theorem in order to prove several new results
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about order bounded disjointness-preserving operators. The b-AM -compact oper-
ators were introduced by Aqzzouz and H’michane in [4]. Those authors also stud-
ied the duality problem (see [3]).

Aliprantis and Burkinshaw showed that every weakly compact operator from an
AL-space into a KB -space has a weakly compact modulus (see [1, Theorem 5.35]).
Schmidt proved that every weakly compact operator from an AM -space into a
Dedekind complete AM -space with unit has a weakly compact modulus. A similar
result for the class of compact operators is due to Krengel. We study this problem
for the class of b-AM -compact (AM -compact) operators. More results for the class
of AM -compact operators and b-AM -compact operators can be found in [2], [9],
and [5].

Before we state our results, we need to fix some notation and recall some
definitions. Let E and F be two vector lattices (Riesz spaces), let x, y ∈ E with
x ≤ y, and let the order interval [x, y] be the subset of E defined by [x, y] = {z ∈
E : x ≤ z ≤ y}. A subset of E is called order bounded if it is included in an
order interval. Let T : E → F be an operator between two Riesz spaces E and
F . Note that T is considered order bounded if it maps order bounded subsets of
E to order bounded subsets of F . By E ′ and E ′′ we will denote the topological
dual and topological bidual of E , respectively. The vector space E∼ of all order
bounded linear functionals on E is called the order dual of E . The vector space
E∼∼ = (E∼)∼ will denote the order bidual of E . The b-order bounded subsets
are the sets that are order bounded in E∼∼. Note also that T is b-order bounded
if it maps b-order bounded subsets of E to b-order bounded subsets of F . The
algebraic adjoint of T will be denoted by T ′ : F ′ → E ′, and its order adjoint will
be denoted by T∼ : F∼ → E∼. A vector lattice E is considered to be discrete if
it admits a complete disjoint system of discrete elements, where we say a nonzero
element x ∈ E is discrete whenever the ideal generated by x coincides with the
vector subspace generated by x. A Banach lattice is a Banach space (E, ‖ · ‖)
such that E is a vector lattice and its norm satisfies the following property: for
each x, y ∈ E, if |x| ≤ |y|, then we have ‖x‖ ≤ ‖y‖. A norm of Banach lattice
(E, ‖ · ‖) is order-continuous if for each net (xα)α∈Λ such that xα ↓ 0, (i.e. (xα)
is decreasing and inf{xα : α ∈ Λ} = 0) we have ‖xα‖ → 0. A Banach lattice E
is said to be a Kantorovich–Banach space (KB -space) whenever every increasing
norm bounded sequence of E+ is norm-convergent. If E is a Banach lattice, and
x ∈ E+, then the principal ideal Ix generated by x is

Ix =
{
y ∈ E : ∃λ > 0 with |y| ≤ λx

}
,

and thus Ix under the norm ‖ · ‖∞, defined by

‖y‖∞ = inf
{
λ > 0 : |y| ≤ λx

}
, y ∈ Ix,

is an AM -space with the unit x, whose closed unit ball is the order interval
[−x, x]. Let T : E → X be an operator between Banach lattice E and Banach
space X. Then T is order weakly compact (resp., b-weakly compact) if it maps an
order bounded (resp., b-order bounded) subset of E to relatively weak compact
subset of X. Thus T is AM -compact (resp., b-AM -compact) if it maps an order
bounded (resp., b-order bounded) subset of E to relatively compact subset of X.
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By K(E,X), AM(E,X), and AMb(E,X) we denote the collection of compact,
AM -compact, and b-AM -compact operators, respectively. Clearly we have

K(E,X) ⊂ AMb(E,X) ⊂ AM(E,X).

For an operator T : E → F between two Riesz spaces we say that its modulus
|T | exists whenever

|T | := T ∨ (−T )

exists. By using [1, Theorem 1.18], for Riesz spaces E and F whenever F is
Dedekind-complete, each order bounded operator T : E → F satisfies the follow-
ing statement:

|T |(x) = sup
{
|Ty| : |y| ≤ x

}
,

for each x ∈ E+. We refer to [1] and [11] for any unexplained terms from Banach
lattice theory.

2. Main results

2.1. On the modulus of disjointness-preserving operators. In this section,
we study and prove some new results about disjointness-preserving operators.
Recall that an operator T : E → F between two Riesz spaces is called disjointness-
preserving if Tx ⊥ Ty for all x, y ∈ E satisfying x ⊥ y. By Meyer’s theorem [11,
Theorem 3.1.4], we know that, if an order bounded operator T : E → F between
two Archimedean Riesz spaces preserves disjointness, then its modulus exists, and

|T |
(
|x|

)
=

∣∣T(|x|)∣∣ = |Tx|

holds for all x ∈ E.
In the following theorem, we prove an extension of the Krengel–Synnatzschke

theorem in the case of disjointness-preserving operators (for another proof of the
same, see [6, Lemma 2.6]).

Theorem 2.1. If T : E → F is an order bounded disjointness-preserving operator
between two Archimedean Riesz spaces, then

|T∼| = |T |∼.

Proof. Obviously, |T∼| ≤ |T |∼ holds, so it is enough to prove that |T |∼ ≤ |T∼|.
Let 0 ≤ f ∈ F∼, and let x ∈ E+. By using Meyer’s theorem (see [1, Theorem 2.40]
and [1, Lemma 1.75]), we have〈

|T |∼f, x
〉
=

〈
f, |T |x

〉
=

〈
f, |Tx|

〉
≤

〈
|T∼|f, x

〉
,

and so |T |∼f ≤ |T∼|f . Thus |T |∼ ≤ |T∼|, which completes the proof. �

Corollary 2.2. If T : E → F is an order bounded disjointness-preserving oper-
ator between two Banach lattices, then |T ′| = |T |′.
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In the following theorem, we prove a simplified version of the polar decompo-
sition theorem, which asserts that we can write an order bounded disjointness-
preserving operator as the product of a continuous operator times a lattice homo-
morphism.

Theorem 2.3 (Polar decomposition theorem [8, Theorem 7]). Let T : E → F be
an order bounded disjointness-preserving operator between two Banach lattices.
Then there exists a continuous operator U : Z → Z such that T = U |T |. Where
Z = B(|T |(E)), Z is the band generated by |T |(E). Moreover, |U | = I.

Proof. By using [1, Theorem 3.46(3)], Z is a Banach sublattice of F . Since
T (E) ⊂ Z, then, without loss of generality, we assume that F = Z. Thus by
[11, Corollary 3.1.19] and its proof there exist positive operators U1, U2 : Z → Z
such that U1 + U2 = I, and T = (U1 − U2)|T |. Since Z is a Banach lattice, then
U1 and U2 are continuous. Thus if we set U = U1 − U2, then U : Z → Z is a
continuous operator, and T = U |T |. In addition, |U | = U1 + U2 = I. �

As a corollary, we have the following theorem.

Theorem 2.4. Let T : E → F be an order bounded disjointness-preserving
operator between two Banach lattices, and assume that {xn} is a sequence in E .
The following assertions are true:

(a) {Txn} is norm-(weak)-convergent if {|T |(xn)} is norm-(weak)-convergent;
(b) {|T |(xn)} is norm-convergent if {Txn} is norm-convergent;
(c) ker(T ) = ker(|T |);
(d) T has closed range if and only if range of |T | is closed; and
(e) T is invertible if and only if |T | is invertible.

Proof.

(a) Operator T is an order bounded disjointness-preserving operator, so by
Theorem 2.3 we have T = U |T |, where U is a continuous operator on
B(|T |(E)). Assume that {|T |(xn)} is norm-(weak)-convergent to x. There-
fore {U |T |(xn)} is norm-(weak)-convergent to U(x). In other words,
{T (xn)} is norm-(weak)-convergent to U(x).

(b) Assume that {Txn} is norm-convergent. Thus {Txn} is a Cauchy sequence.
By the following equality,∥∥|T |xn − |T |xm

∥∥ = ‖Txn − Txm‖,

and we conclude that {|T |(xn)} is also a Cauchy sequence. Since F is a
Banach space, then {|T |(xn)} is norm-convergent.

(c) For each x ∈ E we have ||T |x| = |T ||x| = |Tx|. Therefore ‖|T |x‖ = ‖Tx‖,
for each x ∈ E. Consequently, x ∈ ker(|T |) if and only if x ∈ ker(T ).

(d) Let T (E) be closed. We prove that |T |(E) is closed. Assume that y ∈
|T |(E), so there exists a sequence {xn} in E such that {|T |xn} is norm-
convergent to y. By using Part (a), the sequence {Txn} is norm-convergent.
So there exists some z ∈ F such that {Txn} is norm-convergent to z.
It follows from our hypothesis that z = Tx for some x ∈ E. Hence
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‖T (xn − x)‖ → 0. Thus from∥∥|T |(xn − x)
∥∥ =

∥∥T (xn − x)
∥∥

and the uniqueness of limit, we conclude that y = |T |x ∈ |T |(E). Con-

versely, let |T |(E) be closed, and let z ∈ T (E). So there exists a sequence
{xn} ⊂ E such that ‖Txn−z‖ → 0. Hence by using Part (b), we conclude
that {|T |xn} is norm-convergent. Since |T |(E) is closed, we see that, for
some x ∈ E, {|T |xn} is norm-convergent to |T |x. Therefore {U |T |xn} is
norm-convergent to U |T |x; that is, {Txn} is norm-convergent to Tx. Thus
from the uniqueness of limit we have z = Tx ∈ T (E), and therefore T (E)
is closed.

(e) Let T be invertible. It follows from Part (c) that |T | is injective. It is
easy to see that |T | is surjective so |T | is invertible. Conversely, let |T | be
invertible. By using Part (c) and part (d), we conclude that T is injective
and that T (E) is closed. Since |T | is a lattice isomorphism, then |T |−1

is positive (see [1, Theorem 2.15]). Hence we easily obtain that |T |′ and
(|T |′)−1 are positive; therefore, by the same theorem and from |T ′| = |T |′
we see that |T ′| is a lattice isomorphism. Thus T ′ is disjointness-preserving.
Therefore, by applying Part (c) to T ′ instead of T , we have

ker(T ′) = ker
(
|T ′|

)
= ker

(
|T |′

)
= {0}.

Thus T (E) = T (E) = ⊥(ker(|T |′)) = F , and T is invertible. For another
proof of this part, see [6, Proposition 2.7]. �

Corollary 2.5 (see [8, Corollary 1]). LetT : E → F be an invertible order bounded
disjointness-preserving operator between two Banach lattices. Then there exists a
continuous operator W : Z → Z such that |T | = WT , where Z = B(|T |(E)).

Proof. By using the polar decomposition theorem there exists a continuous oper-
ator U : Z → Z such that T = U |T |. On the other hand, from Part (e) of
Theorem 2.4 we see that |T | is invertible. Therefore, T |T |−1 = U , and U is
invertible. Let W = U−1. Consequently, |T | = W (U |T |) = WT . �

Corollary 2.6. Let T : E → F be an invertible order bounded disjointness-
preserving operator between two Banach lattices. For a sequence {xn} in E we
observe that {Txn} is weakly convergent if and only if {|T |(xn)} is weakly con-
vergent.

Recall that the solid hull of a subset A of Riesz space E is the smallest solid
set including A and is exactly the set

Sol(A) :=
{
x ∈ E : ∃y ∈ A with |x| ≤ |y|

}
.

Proposition 2.7. Let T : E → F be an order bounded disjointness-preserving
operator between two Archimedean Riesz spaces, and let A ⊂ E. Then we have

Sol
(
T (A)

)
= Sol

(
|T |(A)

)
.
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Proof. Since |T (x)| = ||T |(x)| for each x ∈ E, we have

Sol
(
T (A)

)
=

{
x ∈ F : ∃y ∈ T (A) with |x| ≤ |y|

}
,

=
{
x ∈ F : ∃z ∈ A with |x| ≤

∣∣T (z)∣∣},
=

{
x ∈ F : ∃z ∈ A with |x| ≤

∣∣|T |(z)∣∣},
=

{
x ∈ F : ∃y ∈ |T |(A) with |x| ≤ |y|

}
,

= Sol
(
|T |(A)

)
,

which completes the proof. �

Recall that a continuous operator T : X → E from a Banach space to a
Banach lattice is semicompact whenever for each ε > 0 there exists some u ∈ E+

satisfying ∥∥(|Tx| − u
)+∥∥ < ε

for all x ∈ X with ‖x‖ ≤ 1. In addition, a continuous operator T : E → X from a
Banach lattice to a Banach space is said to beM -weakly compact if lim ‖Txn‖ = 0
holds for every norm bounded disjoint sequence {xn} of E . Similarly, a continuous
operator T : X → E from a Banach space to a Banach lattice is said to be
L-weakly compact whenever lim ‖yn‖ = 0 holds for every disjoint sequence {yn}
in the solid hull of T (U), where U is the closed unit ball of the Banach space X.
Also note that if T : E → F is an order bounded disjointness-preserving operator
between two Banach lattices, then ||T |x| = |Tx| for each x ∈ E, and so ‖|T |x‖ =
‖Tx‖ for each x ∈ E. A continuous operator T : E → X is b-AM -compact
(resp., AM -compact) if and only if for each 0 ≤ x′′ ∈ E ′′ (resp., 0 ≤ x ∈ E) the
restriction of T to E∩ Ix′′ (resp., Ix) is compact (see [4, Proposition 2.5]). We are
now ready to prove the main result of this section.

Theorem 2.8. Let T : E → F be an order bounded disjointness-preserving
operator between two Banach lattices. Then |T | exists, and the following assertions
are true:

(a) T is order weakly compact if and only if |T | is;
(b) |T | is b-weakly compact if and only if T is;
(c) |T | is b-AM-compact if and only if T is;
(d) |T | is AM-compact if and only if T is;
(e) |T | is compact if and only if T is;
(f) |T | is Dunford–Pettis if and only if T is;
(g) |T | is semicompact if and only if T is;
(h) |T | is M-weakly compact if and only if T is;
(i) if T or |T | is L-weakly compact then both of them are M-weakly compact

and L-weakly compact; and
(j) T is weakly compact if |T | is. Moreover, the converse is true if T is invert-

ible.

Proof. The existence of a modulus of T is a well-known result by Meyer [11,
Theorem 3.1.4].
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(a) Assume that |T | is order weakly compact; we prove that T is order weakly
compact. Let {xn} ⊂ E+ be a weakly null order bounded sequence.
Since |T | is order weakly compact, so ‖|T |(xn)‖ → 0 by using [11, Corol-
lary 3.4.9]. There exists a continuous operator U : B(|T |(E)) → B(|T |(E))
such that T = U |T |, by using polar decomposition theorem. It follows
from continuity of U that ‖U |T |(xn)‖ → 0. In other words, ‖T (xn)‖ → 0.
Therefore by same corollary T is order weakly compact. For the converse,
see [3, Theorem 2.2].

(b) Let {xn} be a b-order bounded disjoint sequence of positive elements in E .
For each n ∈ N we have,∥∥|T |xn

∥∥ = ‖Txn‖.

In other words, ‖Txn‖ → 0 if and only if ‖|T |(xn)‖ → 0. Hence from [2,
Proposition 1] we conclude that |T | is b-weakly compact if and only if T
is b-weakly compact. The same method can be used to prove parts (f)
and (h).

(c) Assume that T is b-AM -compact; we prove that |T | is b-AM -compact.
Let {xn} be a b-order bounded sequence in E such that {|T |xn} is weakly
convergent to x for some x ∈ F . By using [4, Proposition 2.6], it is suffi-
cient to prove that |T |xn is norm-convergent to x. Since {|T |xn} is weakly
convergent, by using part (a) of Theorem 2.4, {Txn} is weakly convergent
to some y ∈ F . Then T is b-AM -compact, so Txn is norm-convergent to y.
Therefore {Txn} is a Cauchy sequence. So from∥∥|T |xn − |T |xm

∥∥ = ‖Txn − Txm‖,

it holds that {|T |xn} is a Cauchy sequence. Therefore {|T |xn} is norm-
convergent to some z ∈ F . It follows from the uniqueness of weak limit
that z = x. So |T |xn is norm-convergent to x, and that completes the
proof.
Conversely, assume that |T | is b-AM -compact. It is sufficient to prove

that, for each 0 ≤ x′′ ∈ E ′′, if Y = Ix′′∩E, then the restriction of T to Y is
a compact operator. So let 0 ≤ x′′ ∈ E ′′ be fixed and let Y = Ix′′∩E. Since
|T | is b-AM -compact, the restriction of |T | to Y is a compact operator.
On the other hand, by using polar decomposition theorem, there exists
a continuous operator U : B(|T |(E)) → B(|T |(E)) such that T = U |T |.
So it follows from continuity of U that the restriction of U |T | to Y is
compact. In other words, the restriction of T to Y is compact, and the
proof is complete.

(d) The proof of AM -compactness of |T | is similar to the proof of b-AM -
compactness whenever T is AM -compact. So we just prove that if |T | is
AM -compact, then T is also AM -compact. It is sufficient to show that for
each x ∈ E+ the restriction of T to Ix is a compact operator. Since |T | is
AM -compact, the restriction of |T | to Ix is a compact operator. Now by
the continuity of U that is given by the polar decomposition theorem, the
restriction of U |T | to Ix is a compact operator (i.e., the restriction of T
to Ix is a compact operator), and the proof is complete.
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(e) This is a consequence of part (a) and part (b) of Theorem 2.4. For a proof,
see [12, Proposition 1.9].

(f) See the proof of part (b).
(g) We know |Tx| = ||T |x| for each x ∈ E. So,∥∥(|Tx| − u

)+∥∥ =
∥∥(∣∣|T |x∣∣− u

)+∥∥,
for each x, u ∈ E. This ends the proof.

(h) See the proof of part (b).
(i) From Proposition 2.7 we conclude that Sol(T (U)) = Sol(|T |(U)), where

U is the closed unit ball of X. Therefore T is L-weakly compact if and
only if |T | is. So both T and |T | are L-weakly compact. We know that |T |
is a lattice homomorphism, so the result follows from [1, Exercise 4(a),
p. 336] and from part (h).

(j) This follows from part (a) of Theorem 2.4. Assume that T is invertible;
then the converse follows from Corollary 2.6. �

2.2. On the modulus of b-AM -compact and AM -compact operators. In
this section, we prove a theorem that characterizes Banach lattices such that
each b-AM -compact (resp., AM -compact) operator between them has a modulus
that is b-AM -compact (resp., AM -compact). The proof of the first part employs
the method used in the proof of [1, Theorem 5.7]. We start this section with
an example of a compact operator (therefore b-AM -compact and AM -compact)
whose modulus exists but is neither b-AM -compact nor AM -compact.

Example 2.9. For this example, we assume all hypotheses and definitions in [1,
Example 5.6]. Then T : E → E is a norm bounded operator, which is defined as
follows:

T (x1, x2, . . .) = (α1T1x1, α2T2x2, . . .)

where α = (α1, α2, . . .) ∈ `∞ is fixed. If limαn = 0, then T is a compact operator.

(a) If we put αn = 2−
n
3 , then T is a compact operator and also anAM -compact

and b-AM -compact operator, but its modulus does not exist.
(b) If we set αn = 2−

n
2 , then T is a compact operator, and its modulus

exists but is not a compact operator. Moreover, we assert that |T | is
not b-AM -compact. Indeed the norm bounded sequence {x̂n}, which was
constructed as follows, is also b-order bounded. For each n, fix xn ∈ En

with ‖xn‖ = 1 and ‖|Tn|(xn)‖ = 2
n
2 . Let x̂n denote the element of E

whose nth component is xn and every other zero. Thus ‖x̂n‖ = 1. Let
x̂ = (|x1|, |x2|, . . .), and we have

x̂ ∈ E ′′ = (E1
′′ ⊕ E2

′′ ⊕ . . .)∞.

Therefore {x̂n} ⊂ [−x̂, x̂] so {x̂n} is a b-order bounded sequence. We know
that for n > m,∥∥|T |x̂n − |T |x̂m

∥∥ =
∥∥(0, . . . , 0,−αm|T |xm, 0, . . . , 0, αn|T |xn, 0, 0, . . .

)∥∥
= 1;
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thus |T | is neither a b-AM -compact operator nor a compact operator.
On the other hand, since E has order continuous norm and is a discrete
Banach lattice, then |T | is AM -compact by using [4, Lemma 2.2].

(c) Next we replace E with F = (E1⊕E2⊕. . .)∞, and we define T : F → F as
we have above. If we then put αn = 2−

n
2 , we obtain that T is a compact

operator (and also an AM -compact and b-AM -compact operator) and
that |T | exists. Since

{x̂n} ⊂ [−x̂, x̂] ⊂ F,

then {x̂n} is an order bounded subset of F . In a similar manner we
can show that |T | is not AM -compact and therefore that it is neither
a b-AM -compact nor a compact operator.

Theorem 2.10. Let T : E → F be a b-AM-compact (resp., AM-compact) oper-
ator between two Banach lattices if either:

(a) F is an AM-space, or
(b) E is an AL-space, and F is a discrete KB-space.

Then T has a b-AM-compact (resp., AM-compact) modulus that is given by the
Riesz–Kantorovich formula,

|T |x = sup
{
Ty : y ∈ E, |y| ≤ x

}
.

In addition, the set of all b-AM-compact (resp., AM-compact) operators from E
to F with the r-norm is a Banach lattice.

Proof.

(a) Let F be an AM -space, and for x ∈ E+ we write

Ax =
{
Ty : y ∈ E, |y| ≤ x

}
= T [−x, x].

Thus Ax is totally bounded; according to [1, Theorem 4.30], we know that
|T |x = supAx exists in F . Hence |T |x exists for each x ∈ E+; therefore
|T | exists.
First, let T be a b-AM -compact operator, and then let B be a b-order

bounded subset of E . There is some x̃ ∈ E ′′ such that B ⊂ [−x̃, x̃]. Let
S = [−x̃, x̃] ∩ E. Hence B ⊂ S. Since S is b-order bounded, then T (S)
is totally bounded in F . If D denotes all suprema of finite subsets of
T (S), then, by [1, Theorem 4.30], D is totally bounded. For each x ∈
S+ = S ∩ E+, let Ax be defined as above. Thus by [1, Theorem 4.30]
we have |T |x = supAx ∈ D. Hence |T |(S+) ⊂ D shows that|T |(S+) is
totally bounded; therefore |T |(S) is totally bounded. Furthermore, |T |(B)
is relatively compact; that is, |T | is b-AM -compact.
On the other hand, let T be an AM -compact operator. Again for each

x ∈ E+ the set Ax, as defined above, is totally bounded. Let B be an order
bounded subset of E ; therefore, there is some x ∈ E such that B ⊂ [−x, x].
Set S = [−x, x]. Similar to the above argument, |T |(S) is totally bounded.
So |T |(B) is relatively compact; that is, |T | is AM -compact.
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(b) By using [1, Theorem 4.75] and the fact that E is AL-space and that F
is KB -space, we see that |T | exists. Now by using [4, Proposition 2.9(3)],
we have that |T | is b-AM -compact. To prove that the vector space of all
b-AM -compact (resp. AM -compact) operators from E into F is a Banach
lattice, one can repeat the arguments in the proof of [1, Theorem 4.74]. �
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