

Ann. Funct. Anal. 6 (2015), no. 1, 109–115
 http://doi.org/10.15352/afa/06-1-9
 ISSN: 2008-8752 (electronic)
 http://projecteuclid.org/afa

p-QUASIPOSINORMAL COMPOSITION AND WEIGHTED COMPOSITION OPERATORS ON $L^2(\mu)$

ANURADHA GUPTA¹ AND NEHA BHATIA^{2*}

Communicated by Y. Lim

ABSTRACT. An operator T on a Hilbert space H is called p-quasiposinormal operator if $c^2T^*(T^*T)^pT \ge T^*(TT^*)^pT$ where 0 and for some <math>c > 0. In this paper, we have obtained conditions for composition and weighted composition operators to be p-quasiposinormal operators.

INTRODUCTION AND PRELIMINARIES

Let H be an infinite dimensional complex Hilbert space and B(H) be the algebra of all bounded operators on H. An operator T is called p-quasiposinormal [6] if for some c > 0 and 0 , it satisfies the inequality

$$c^{2}T^{*}(T^{*}T)^{p}T \ge T^{*}(TT^{*})^{p}T.$$

Let T be a measurable transformation on X. The composition operator C_T on the space $L^2(\mu)$ is given by

$$C_T f = f \circ T$$
 for $f \in L^2(\mu)$

Let ϕ be a complex-valued measurable function then the weighted composition operator $W_{\phi,T}$ on the space $L^2(\mu)$ induced by ϕ and T is given by

$$W_{\phi,T}f = \phi \cdot f \circ T$$
 for $f \in L^2(\mu)$

In [1], G.Datt has described the conditions for the composition and weighted composition operators to be k-quasiposinormal operators. The aim of this paper is to study the p-quasiposinormal composition and p-quasiposinormal weighted composition operators and their corresponding adjoints in terms of Radon–Nikodym

Date: Received: May 6, 2013; Accepted: Jul. 29, 2013.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B38; Secondary 47B20, 47B33.

Key words and phrases. composition operators, conditional expectation operators, pquasiposinormal operators, weighted composition operators.

A. GUPTA, N. BHATIA

derivative and conditional expectation operators. The Radon–Nikodym Theorem and the conditional expectation operators defined on $L^2(\mu)$ and its properties play an important role. In the second section we have proved the conditions for composition operators to be p-quasiposinormal. In the third section we prove the same results for weighted composition operators.

1. RADON–NIKODYM THEOREM AND CONDITIONAL EXPECTATION OPERATOR

Let $L^2(\mu) = L^2(X, \Sigma, \mu)$ be the space where (X, Σ, μ) is a σ -finite measure space. A transformation T is said to be measurable if $T^{-1}(A) \in \Sigma$ for $A \in \Sigma$. A measurable transformation T is said to be non-singular if

$$\mu(T^{-1}(A)) = 0$$
 whenever $\mu(A) = 0$ for every $A \in \Sigma$.

If T is non-singular, then we say that μT^{-1} is absolutely continuous with respect to μ . Hence, by Radon–Nikodym theorem there exists a unique non-negative measurable function h such that

$$(\mu T^{-1})(A) = \int_A h d\mu \quad \text{for } A \in \Sigma.$$

The non-negative measure function h is called the Radon–Nikodym derivative and is denoted by $\frac{d\mu T^{-1}}{d\mu}$. We always assume that h is almost everywhere finitevalued or equivalently $T^{-1}(\Sigma) \subset \Sigma$ is a sub-sigma finite algebra.

The conditional expectation operator $E(\cdot | T^{-1}(\Sigma)) = E(f)$ is defined for each non-negative function f in L^p $(1 \le p < \infty)$ and is uniquely determined by the following set of conditions:

- (1) E(f) is $T^{-1}(\Sigma)$ measurable.
- (2) If A is any $T^{-1}(\Sigma)$ measurable set for which $\int_A f d\mu$ converges then we have

$$\int_A f \, d\mu = \int_A E(f) \, d\mu.$$

The conditional expectation operator E has the following properties:

- (1) $E(f \cdot g \circ T) = (E(f))(g \circ T).$
- (2) E is monotonically increasing, i.e., if $f \leq g$ a.e. then

$$E(f) \le E(g)$$
 a.e.

(3) E(1) = 1.

(4) E(f) has the form $E(f) = g \circ T$.

for exactly one Σ -measurable function g provided that the support of g lies in the support of h which is given by

$$\sigma(h) = \{x : h(x) \neq 0\}.$$

As an operator on L^p , E is the projection operator onto the closure of the range of the composition operator C_T . This operator plays an important role in

the study of composition and weighted composition operators on various Banach function spaces [4, 5, 7].

2. Composition Operators

Let (X, Σ, μ) be a σ -finite measure space and C_T be the composition operator induced by the measurable transformation T on $L^2(\mu)$.

The adjoint C_T^* is given by $C_T^* f = hE(f) \circ T^{-1}$ for f in $L^2(\mu)$.

The following lemma [2, 7] is intrumental in proving the subsequent result.

Lemma 2.1. Let P be the projection of $L^2(X, \Sigma, \mu)$ onto $\overline{R(C_T)}$. Then

- (1) $C_T^*C_T f = hf$ and $C_T C_T^* f = (h \circ T) Pf \forall f \in L^2(\mu)$.
- (2) $\overline{R(C_T)} = \{ f \in L^2(\mu) : f \text{ is } T^{-1}(\Sigma) \text{ measurable} \}.$
- (3) If f is $T^{-1}(\Sigma)$ measurable and g and fg belong to $L^2(\mu)$, then P(fg) = fP(g), (f need not be in $L^2(\mu)$).

Proposition 2.2. For 0 ,

- (1) $(C_T^* C_T)^p f = h^p f.$
- (2) $(C_T C_T^*)^p f = (h \circ T)^p P(f).$
- (3) E is the identity operator on $L^2(\mu)$ if and only if $T^{-1}(\Sigma) = \Sigma$.

The following theorem characterizes the p-quasiposinormal composition operators.

Theorem 2.3. If C_T be the composition operator induced by T on $L^2(\mu)$. Then the following statements are equivalent:

(1) C_T is p-quasiposinormal. (2) $c^2hE(h^p) \ge hE((h \circ T)^p)$ where 0 and for some <math>c > 0.

Proof. For $f \in L^2(\mu)$,

$$C_T^* (C_T^* C_T)^p C_T f = C_T^* (C_T^* C_T)^p f \circ T$$

= $C_T^* (h^p \cdot f \circ T)$
= $h E (h^p \cdot f \circ T) \circ T^{-1}.$

Also,

$$C_T^*(C_T C_T^*)^p C_T f = C_T^*(C_T C_T^*)^p f \circ T$$

= $C_T^*((h \circ T)^p E(f \circ T))$
= $hE((h \circ T)^p E(f \circ T)) \circ T^{-1}.$

If C_T is a *p*-quasiposinormal, then

$$c^{2}C_{T}^{*}(C_{T}^{*}C_{T})^{p}C_{T} \geq C_{T}^{*}(C_{T}C_{T}^{*})^{p}C_{T} \quad \text{for some } c > 0$$

$$\Leftrightarrow \quad c^{2}hE(h^{p} \cdot f \circ T) \circ T^{-1} \geq hE((h \circ T)^{p}E(f \circ T)) \circ T^{-1}$$

$$\Leftrightarrow \quad c^{2}hE(h^{p}) \cdot f \circ T \geq hE(h \circ T)^{p}f \circ T$$

$$\Leftrightarrow \quad c^{2}hE(h^{p})g \geq hE((h \circ T)^{p})g \quad \text{where } g = f \circ T \in L^{2}$$

$$\Leftrightarrow \quad c^{2}hE(h^{p}) \geq hE(h \circ T)^{p}.$$

Corollary 2.4. If $T^{-1}(\Sigma) = \Sigma$. Then the following statements are equivalent:

- (1) C_T is p-quasiposinormal.
- (2) $c^2 h^{p+1} \ge h(h \circ T)^p$ where 0 and for some <math>c > 0.

Proof. Result follows from the Theorem 2.3 and the fact that E is the identity operator.

The following theorem gives us an equivalent condition for the adjoint of composition operator to be *p*-quasiposinormal.

Theorem 2.5. If C_T be a composition operator on $L^2(\mu)$. Then the following statements are equivalent:

- (1) C_T^* is p-quasiposinormal. (2) $h^{p+1} \leq c^2 h^p \circ TE(h)$ where 0 and for some <math>c > 0.

Proof. For every $f \in L^2(\mu)$,

$$C_T (C_T^* C_T)^p C_T^* f = C_T (C_T^* C_T)^p (hE(f) \circ T^{-1})$$

= $C_T (h^p \cdot hE(f) \circ T^{-1})$
= $(h^{p+1}E(f) \circ T^{-1}) \circ T$

and

$$C_T (C_T C_T^*)^p C_T^* f = C_T (C_T C_T^*)^p (hE(f) \circ T^{-1})$$

= $C_T ((h \circ T)^p \cdot E(hE(f) \circ T^{-1}))$
= $((h \circ T)^p \cdot E(hE(f) \circ T^{-1})) \circ T.$

Thus, if C_T^* is *p*-quasiposinormal then

$$\langle (C_T (C_T^* C_T)^p C_T^* - c^2 C_T (C_T C_T^*)^p C_T^*) f, f \rangle \le 0$$

Let $f = \chi_{T^{-1}(A)}$ with $\mu(T^{-1}(A)) < \infty$ and $E(\chi_{T^{-1}(A)}) \circ T^{-1} = E(\chi_A \circ T) \circ T^{-1} = E(\chi_A \circ T) \circ T^{-1}$ χ_A on $\sigma(h)$, therefore

$$\int_{T^{-1}(A)} (h^{p+1} \circ TE(\chi_{T^{-1}(A)}) - c^2 h^p \circ T^2 \cdot (E(hE(\chi_{T^{-1}A}) \circ T^{-1}) \circ T)) d\mu \le 0$$

$$\Rightarrow \int ((h^{p+1}E(\chi_{T^{-1}(A)}) \circ T^{-1} - c^2h^p \circ T \cdot E(hE(\chi_{T^{-1}A}) \circ T^{-1}) \circ T \circ T^{-1})d\mu T^{-1} \le 0$$

$$\Rightarrow \int (h^{p+1}\chi_A - c^2h^p \circ T \cdot E(h\chi_A))hd\mu \le 0$$

$$\Rightarrow \int (h^{p+1} - c^2h^p \circ T \cdot E(h))hd\mu \le 0$$

$$\Rightarrow h^{p+1} \le c^2h^p \circ T \cdot E(h).$$

Corollary 2.6. If $T^{-1}(\Sigma) = \Sigma$. Then the following statements are equivalent:

- (1) C_T^* is *p*-quasiposinormal.
- (2) $h^{p+1} \leq c^2 h^p \circ T \cdot h$ where 0 and for some <math>c > 0.

Proof. Since $T^{-1}(\Sigma) = \Sigma$ then E = I and hence the result follows.

3. WEIGHTED COMPOSITION OPERATORS

Let (X, Σ, μ) be a σ -finite measure space and $W \equiv W_{\phi,T}$ be the weighted composition operator on $L^2(\mu)$ induced by the complex valued function ϕ and a measurable transformation T. Define

$$J = hE(|\phi|^2) \circ T^{-1}.$$

In [2, 7], it has been shown that W is bounded on $L^p(\mu)$ for $1 \le p < \infty$ if and only if $J \in L^{\infty}(\mu)$.

The adjoint W^* is given by $W^*f = h \cdot E(\phi f) \circ T^{-1}$ for f in $L^2(\mu)$. Also,

$$\begin{split} (W^*W)f &= W^*(Wf) = W^*(\phi \cdot f \circ T) \\ &= h \cdot E(\phi \cdot f \circ T) \circ T^{-1} \\ &= h \cdot E(\phi^2) \circ T^{-1}f. \\ (W^*W)^p f &= h^p \cdot [E(\phi^2)]^p \circ T^{-1}f \\ &= J^p f. \end{split}$$

The following lemma [3] is instrumental in proving the next theorem.

Lemma 3.1. Let $f \in L^2(\mu)$ and $(WW^*)f = \phi(h \circ T)E(\phi f)$. Then for all $p \in (0, \infty)$,

$$(WW^*)^p f = \phi(h^p \circ T) [E(\phi^2)]^{p-1} E(\phi f).$$

In the following theorem, an equivalent condition for the weighted composition operator to be p-quasiposinormal has been obtained in terms of Radon–Nikodym derivative h and the function J.

Theorem 3.2. If W be a weighted composition operator on $L^2(\mu)$. Then the following statements are equivalent:

- (1) W is p-quasiposinormal.
- (2) $c^2 h E(\phi^2 J^p) \ge h^{p+1} [E(\phi^2)]^{p+1}$ where 0 and for some <math>c > 0.

Proof. Using the properties of conditional expectation operator E and for every $f \in L^2(\mu)$,

$$\begin{split} W^{*}(WW^{*})^{p}Wf &= W^{*}(WW^{*})^{p}(\phi \cdot f \circ T) \\ &= W^{*}(\phi(h^{p} \circ T)[E(\phi^{2})]^{p-1}E(\phi\phi \cdot f \circ T)) \\ &= W^{*}(\phi(h^{p} \circ T)[E(\phi^{2})]^{p-1}E(\phi^{2}) \cdot f \circ T) \\ &= W^{*}(\phi(h^{p} \circ T)[E(\phi^{2})]^{p} \cdot f \circ T) \\ &= h \cdot E(\phi^{2}(h^{p} \circ T)[E(\phi^{2})]^{p} \cdot f \circ T) \circ T^{-1} \\ &= h \cdot h^{p} \circ T[E(\phi^{2})]^{p+1} f \circ T \circ T^{-1} \\ &= h \cdot h^{p}[E(\phi^{2})]^{p+1} \circ T^{-1}f \\ &= h^{p+1}[E(\phi^{2})]^{p+1} \circ T^{-1}f \end{split}$$

and

$$W^*(W^*W)^p Wf = W^*(W^*W)^p (\phi \cdot f \circ T)$$

= $W^*(J^p \phi \cdot f \circ T)$
= $h \cdot E(\phi^2 J^p \cdot f \circ T) \circ T^{-1}$
= $h \cdot E(\phi^2 J^p) \circ T^{-1} f.$

Now, W is p-quasiposinormal if and only if

$$c^{2}W^{*}(W^{*}W)^{p}W \ge W^{*}(WW^{*})^{p}W$$

$$\Leftrightarrow \quad c^{2}h[E(\phi^{2}J^{p})] \circ T^{-1} \ge h^{p+1} \circ T[E(\phi^{2})]^{p+1} \circ T^{-1}$$

$$\Leftrightarrow \quad c^{2}h[E(\phi^{2}J^{p})] \ge h^{p+1}[E(\phi^{2})]^{p+1}.$$

An equivalent condition for the adjoint of weighted composition operator to become p-quasiposinormal has been derived in the following theorem:

Theorem 3.3. If W be a weighted composition operator on $L^2(\mu)$. Then the following statements are equivalent:

- (1) W^* is p-quasiposinormal.
- $(2) J^p hE(\phi f) \leq c^2 \phi(h^p \circ T)[E(\phi^2)]^{p-1}E(\phi hE(\phi f) \circ T^{-1}) \circ T.$

Proof. The proof is along the similar lines as in the preceding theorem.

Example 3.4. Let $w = \langle w_n \rangle_{n=1}^{\infty}$ be a sequence of positive real numbers. Consider the weighted Banach space $l^2(w)$ with $X = \mathbb{N}$ and μ is a measure given by $\mu(n) = w_{n+r}$ for a fixed natural number r. Let T be a measurable transformation given by T(n) = n + r for all $n \in \mathbb{N}$. We note that $\mu \circ T$ is absolutely continuous with respect to μ . Also, Let $\langle \phi(n) \rangle$ be a sequence of non-negative real numbers given by

$$\phi(n) = \begin{cases} \frac{1}{2^n}, & \text{if n is even} \\ 0, & \text{otherwise} \end{cases}$$

Direct computations shows that

$$h(k) = \frac{\sum_{j \in T^{-1}(k)} m_j}{m_{k+r}}$$
$$E(f)(k) = \frac{\sum_{j \in T^{-1}(T(k))} f_j m_j}{\sum_{j \in T^{-1}(T(k))} m_j}$$

for all non-negative sequence $f = \langle f_n \rangle_{n=1}^{\infty}$ and $k \in \mathbb{N}$. By Theorem 2.3, C_T is p-quasiposinormal if and only if

$$c^{2} \sum_{j \in T^{-1}(T(k))} (h(j))^{p} m_{j} \ge \sum_{j \in T^{-1}(T(k))} (h(T(j)))^{p} m_{j}.$$

By Theorem 3.2, W is p-quasiposinormal if and only if

$$c^{2} \sum_{j \in T^{-1}(T(k))} \left(\left(\frac{1}{2^{n}}\right)^{2} (J(j)) \right)^{p} m_{j} \ge \left\{ \frac{\sum_{j \in T^{-1}(T(k))} \left(\frac{1}{2^{n}}\right)^{2} m_{j}}{m_{T(k)}} \right\}^{p+1} \frac{1}{m_{T(k)}^{p-2}} \left(\sum_{j \in T^{-1}(T(k))} m_{j} \right)^{p-1}.$$

References

- 1. G. Datt, On k-Quasiposinormal Weighted composition operators, Thai J. Math. 11 (2013), no. 1, 131–142.
- 2. D.J. Harrington and R. Whitley, Seminormal composition operator, J. Operator Theory 11 (1984), 125-135.
- 3. M.R. Jabbarzadeh and M.R. Azimi, Some weak hyponormal classes of weighted composition operators, Bull. Korean Math. Soc. 47 (2010), no. 4, 793–803.
- 4. B.S. Komal and S. Gupta, Composition operators on Orlicz space, Indian J. Pure Appl. Math. **32** (2001), no. 7, 1117–1122.
- 5. B.S. Komal, V. Khosla and K. Raj, On operators of weighted composition on Orlicz sequence spaces, Int. J. Contemp. Math. Sci. 5 (2010), no. 40, 1961–1968.
- 6. M.Y. Lee and S.H. Lee, On(p,k)-quasiposinormal operators, J. Appl. Math Comput. 19 (2005), no. 1-2, 573–578.
- 7. R.K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80-82.

¹ Department of Mathematics, Delhi College of Arts and Commerce Univer-SITY OF DELHI, DELHI 110023, INDIA.

E-mail address: dishna2@yahoo.in

² DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI, DELHI 110007, INDIA. *E-mail address*: nehaphd@yahoo.com